RWTH

Introduction to OpenMP

part Il of llIl & Outlook on OpenMP 4.0 for Accelerators

Christian Terboven <terboven@rz.rwth-aachen.de>
31.07.2013 / Aachen, Germany
Stand: 22.07.2013
Version 2.3

Rechen- und Kommunikationszentrum (RZ)

Agenda RWTH

» Avoiding Overhead: nowait, collapse, if, final and mergeable
» lterator Loops and User-defined Reductions
» Task Scheduling and Task Dependencies

» Outlook: OpenMP for Accelerators

What is an Accelerator in OpenMP?
Execution and Data Model
Target Construct

Example: SAXPY

v v VvV v Vv

Outlook: Asynchronicity

» OpenMP 4.0 Feature Overview

RZ: Christian Terboven Folie 2

RWTHAACHEN
UNIVERSITY

Avoiding Overhead

RZ: Christian Terboven Folie 3

The nowait Clause Rwﬁh"%gglw

» A worksharing construct (do/for, sections, single) has no barrier
on entry — however, an implied barrier exists at the end of the
worksharing region, unless the nowait clause is specified.

» Static schedule guarantees since OpenMP 3.0:
#pragma omp for schedule(static) nowait
for(i =1; i < N; i++4)
af[i] = ..
#pragma omp for schedule (static)
for (i = 1; i < N; i++)
c[i] = a[i] + ..

Allowed in OpenMP 3.0 if and only if:

- Number of iterations is the same
- Chunk is the same (or not specified)

RZ: Christian Terboven Folie 4

The collapse Clause Rwﬁh"#@ggw

» Loop collapsing: Ask the compiler to fuse perfectly nested loops to
exploit a larger iteration space for the parallelization:

#pragma omp for collapse (

Iteration space from i-loop and j-loop is

for(i = 1; i < N; i++) collapsed into a single one, if loops are
for(j = 1; § < M; j++) perfectly nested and form a rectangular
iteration space.
for(k = 1; k < K; k++

foo(i, j, k)~

RZ: Christian Terboven Folie 5

if Clause: Parallel Region RWTH

» If the expression of an if clause on a Parallel Region evaluates to
false

» The Parallel Region is executed with a Team of one Thread only

— Used for optimization, e.g. avoid going parallel

» OpenMP data scoping rules still apply!

C/C++
fpragma omp parallel if (expr)

Fortran

'Somp parallel if (expr)

RZ: Christian Terboven Folie 6

if Clause: Tasks RWTH

» If the expression of an if clause on atask
evaluates to false

» The encountering task is suspended
» The new task is executed immediately
» The parent task resumes when new tasks finishes

— Used for optimization, e.g. avoid creation of small tasks

C/C++

fpragma omp task if (expr)

Fortran

'Somp task if (expr)

RZ: Christian Terboven Folie 7

final Clause

» For recursive problems that perform task decomposition, stop
task creation at a certain depth exposes enough parallelism
and reduces the overhead.

» final task: forces all child tasks to be final and included = execution is

sequentially included in the task region (undeferred execution).

C/C++ Fortran

fpragma omp task final (expr) 'Somp task final (expr)

» But: merging the data environment may have side-effects

void foo (bool arg)
{
int 1 = 3;
#pragma omp task final(arg) firstprivate (i)
i++;
printf (“%d\n”, 1i); // will print 3 or 4 depending on expr
}

RZ: Christian Terboven Folie 8

mergeable Clause RWTH

» If the mergeable clause is present, the implementation is allowed
to merge the task‘s data environment with the enclosing region

» if the generated task is undeferred or included
» undeferred: if clause present and evaluates to false

» included: final clause present and evaluates to true

C/C++ Fortran

fpragma omp task mergeable !'Somp task mergeable

» Personal Note: As of today (07/2013), no compiler or runtime
Implement final and/or mergeable in a way that-real world
application may profit from using these clauses ®.

RZ: Christian Terboven Folie 9

The taskyield Directive RWTH

» The taskyield directive specifies that the current task can be
suspended in favor of execution of a different task.

» Hint to the runtime for optimization and/or deadlock prevention

C/C++ Fortran

fpragma omp taskyield 'Somp taskyield

RZ: Christian Terboven Folie 10

RWTH

taskyield Example (1/2)

#include <omp.h>

vold something useful () ;
void something critical ()

void foo(omp lock t * lock, int n)
{
for(int i = 0; 1 < n; i++)
#pragma omp task
{
something useful () ;
while('omp test lock(lock)) {
#pragma omp taskyield
}
something critical();
omp unset lock (lock) ;

RZ: Christian Terboven Folie 11

taskyield Example (2/2) w\l}é\ggw

#include <omp.h>

vold something useful () ;
void something critical ()

void foo(omp lock t * lock, int n)
{
for(int 1 = 0; i1 < n; 1i++)
#pragma omp task
{
something useful () ;
while('omp test lock(lock)) {
#pragma omp taskyield

} w
something critical () ; The waiting task may be
— suspended here and allow the
omp unset lock (lock) ; .
) — — executing thread to perform
other work. This may also
J avoid deadlock situations.

RZ: Christian Terboven Folie 12

RWTHAACHEN
UNIVERSITY

lterator Loops and User-
defined Reductions

RZ: Christian Terboven Folie 13

Example: Bounding Box Code RWTH

» This computes a bounding box of a 2D point cloud:

struct Point2D; /* data structure as you would expect it */
Point2D 1b (RANGE, RANGE) /* lower bound - init with max */
Point2D ub(0.0f, 0.0f); /* upper bound - init with min */
for (std::vector<Point2D>::iterator it = points.begin();
it !'= points.end(); 1it++) {
Point2D &p = *it; /* compare every point to lb, ub*/
lb.setX (std::min (lb.getX (), p.getX()));
lb.setY (std::min(lb.getY (), p.get¥()));
ub.setX (std: :max (ub.getX (), p.getX())):
ub.setY (std: :max (ub.getY (), p.get¥Y())):

}
» ,,Problems® for an OpenMP parallelization?

» Reduction operation has to work with non-POD datatypes

» Loop employs C++ iterator over std::.vector datatype elements

RZ: Christian Terboven Folie 14

Bounding Box w/ OpenMP 4.0 RWTH

» OpenMP 3.0 introduced Worksharing support for iterator loops

fpragma omp for

for (std::vector<Point2D>::iterator it =
points.begin(); it != points.end(); it++) {

» OpenMP 4.0 brings user-defined reductions

» name: minp, datatype: Point2D

P read: omp in, written to: omp out, initialization: omp priv

#fpragma omp declare reduction (minp : Point2D
omp out.setX(std::min(omp in.getX (), omp out.getX())),
omp out.setY (std::min(omp in.getY (), omp out.get¥())))
initializer (omp priv = Point2D (RANGE, RANGE))

fpragma omp parallel for reduction (minp:1lb) reduction (maxp:ub)

for (std::vector<Point2D>::iterator it =
points.begin(); 1t != points.end(); 1it++) {

RZ: Christian Terboven * Folie 15

RWTHAACHEN
UNIVERSITY

Task Scheduling and
Task Dependencies

RZ: Christian Terboven Folie 16

Tasks in OpenMP: Scheduling RWNTH

» Default: Tasks are tied to the thread that first executes them — not
neccessarily the creator. Scheduling constraints:

» Only the thread a task is tied to can execute it
» Atask can only be suspended at a suspend point
P Task creation, task finish, taskwait, barrier, taskyield

» If task is not suspended in a barrier, executing thread can only switch to a

direct descendant of all tasks tied to the thread

» Tasks created with the untied clause are never tied

» But: More freedom to the implementation, e.g. load balancing

RZ: Christian Terboven Folie 17

Unsafe use of untied Tasks RWTH

» Problem: Because untied tasks may migrate between threads at any
point, thread-centric constructs can yield unexpected results

» Remember when using untied tasks:
» Avoid threadprivate variables
» Avoid any use of thread-ids (i.e. omp get thread num())

» Be careful with critical region and locks

» Simple Solution:

» Create a tied task region with

#fpragma omp task if (0)

RZ: Christian Terboven Folie 18

RWTH

The depend Clause

C/C++

#fpragma omp task depend (dependency-type: list)
. structured block ...

» The task dependence is fulfilled when the predecessor
task has completed

» in dependency-type: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the list items

In an out or inout clause.

» out and inout dependency-type: The generated task will be a dependent
task of all previously generated sibling tasks that reference at least one of the

list items in an in, out, Or inout clause.

» The list items in a depend clause may include array sections.

RZ: Christian Terboven Folie 19

Concurrent Execution w/ Dep. RWTH

» Note: variables in the depend clause do not necessarily have to
Indicate the data flow
T1 has to be completed
) before T2 and "= can be
pragma omp parallel

#pragma omp single executed.
{

vold process in parallel) ({

int x = 1; T2 and can be
executed in parallel.

for (int i = 0; 1 < T; ++1i) {

#pragma omp task shared(x, ...) depend(out: x) // Tl
preprocess some data(...);
#pragma omp task shared(x, ...) depend(in: x) // T2

do something with data(...);
#fpragma omp task shared(x, ...) depend(in: x)
do something independent with data(...);
}
} // end omp single, omp parallel

RZ: Christian Terboven Folie 20

RWTHAACHEN
UNI\IERSITY

,Real“ Task Dependencies

void blocked cholesky(int NB, float A[NB] [NB]) {
int i, 3, k;
for (k=0; k<NB; k++) {
#fpragma omp task depend(inout:A[k] [k])
spotrf (A[k] [k]) ;
for (i=k+1; i<NT; 1i++) ¥
#fpragma omp task depend(in:A[k][k]) depend(inout: A[k][l])
strsm (Alk][k], A[k][i]);
// update trailing submatrix
for (i=k+1; 1i<NT; i++) {
for (j=k+1; j<i; J++)
#pragma omp task depend(in:A[k][i],A[k][3F])
depend (inout:A[j] [1])
sgemm (A[k] [1i], Alk][J], A[J][1]);
#pragma omp task depend(in:A[k][i]) depend(inout:A[i][i])
ssyrk (A[k][i], A[1][1]);

RZ: Christian Terboven Folie 21

RWTHAACHEN
UNIVERSITY

Outlook: OpenMP for
Accelerators

RZ: Christian Terboven Folie 22

RWTHAACHEN
UNIVERSITY

What is an Accelerator in OpenMP?

RZ: Christian Terboven Folie 23

What kind of devices shall be supported? RWTH

» In how differs an accelerator from just another core?

» different functionality, i.e. optimized for something special
» different (possibly limited) instruction set

— heterogeneous device

» Assumptions used as design goals for OpenMP 4.0:

» every accelerator device is attached to one host device
P itis probably heterogeneous

» it may not be programmable in the same language as the host, or it may not

implement all operations available on the host
P it may or may not share memory with the host device

» some accelerators are specialized for loop nests

RZ: Christian Terboven Folie 24

RWTHAACHEN
UNIVERSITY

Execution Model and Data Model

RZ: Christian Terboven Folie 25

Execution Model

» Host-centric: the execution of an OpenMP program starts on the
host device and it may offload target regions to target devices

» In principle, a target region also begins as a single thread of execution: when
a target construct is encountered, the target region is executed by the implicit
device thread and the encountering thread/task [on the host] waits at the

construct until the execution of the region completes

» If atarget device is not present, or not supported, or not available,
the target region is executed by the host device

» If aconstruct creates a data environment, the data environment iIs
created at the time the construct is encountered

RZ: Christian Terboven Folie 26

Data Model RWTH

» When an OpenMP program begins, each device has an initial device
data environment

» Directives accepting data-mapping attribute clauses determine how
an original variable is mapped to a corresponding variable in a
device data environment

» original: the variable on the host
P corresponding: the variable on the device

» the corresponding variable in the device data environment may share

storage with the original variable (danger of data races)

» If acorresponding variable is present in the enclosing device data
environment, the new device data environment inherits the
corresponding variable from the enclosing device

RZ: Christian Terboven Folie 27

Execution + Data Model RWTH

» Data environment is lexically scoped

» Data environment is destroyed at closing curly brace

» Allocated buffers/data are automatically released
» Usetarget construct to

» Transfer control from the host to the device
» Establish a data environment (if not yet done)

» Host thread waits until offloaded region completed

Host Device
PA 11)
| lii; alloc|..
\ | C2t><) -~
EEI T I ELF © L. #pragma omp target \
T P11 1T 1T F
a3 _—

| R map (alloc:...) \
l" ' ' “ ol R " ‘; /
TR map (to:...) \

map (from:...)

{ ... }
RZ: Christian Terboven @ Folle 28

Example: Execution and Data Model

RWTH

» Environment Variable OMP_DEFAULT_DEVICE=<int>: sets the
device number to use in target constructs

double B[N] = ...;
fpragma omp target device (0)
#fpragma omp parallel for
for (1i=0; 1i<N,; 1i++)

B[i] += sin(B[i]);

// some initialization

map (tofrom:B)

» map variable B to device, then execute parallel region on device, works

probably pretty well on Intel Xeon Phi

double B[N] = ...;
fpragma omp target device (0)

#pragma omp distribute

B[b] += sin(B[b]);

// some initialization

#pragma omp teams num teams (num blocks)

for (i=0; 1i<N; 1 += num blocks)
fpragma omp parallel for
for (b = 1i; b < i+num blocks; b++)

map (tofrom:B)
num threads (bsize)

P same as above, but code probably better optimized for NVIDIA GPGPUs

RZ: Christian Terboven

Folie 29

Comparing OpenMP with OpenACC RWTH

» OpenMP 4.0 —for Intel Xeon Phi:

fpragma omp target device (0) map (tofrom:B)
#fpragma omp parallel for
for (i=0; 1i<N,; i++)

B[i] += sin(B[1]);

» OpenMP 4.0 - for NVIDIA GPGPU:

fpragma omp target device (0) map (tofrom:B)

#pragma omp distribute
for (i=0; 1i<N; 1 += num blocks)
#pragma omp parallel for
for (b = i; b < i+num blocks; b++)
B[b] += sin(B[b]l);

#pragma omp teams num teams (num blocks) num threads (bsize)

» OpenACC - for NVIDIA GPGPU:

#pragma acc parallel copy(B[0:N]) num gangs (numblocks) \
vector length (bsize)
fpragma acc loop gang vector
for (i=0; i<N; ++1i) {
B[i] += sin(B[1]);

RZ:

lie 30

Comparing OpenMP with OpenACC RWTH

» OpenMP 4.0 —for Intel Xeon Phi:

fpragma omp target device (0) map (tofrom:B)
#fpragma omp parallel for
for (i=0; 1i<N,; i++)

B[i] += sin(B[1]);

» OpenMP 4.0 — for NVIDIA GPGPU.

fpragma omp target device (0) map (tofrom:B)
#pragma omp teams num teams (num blocks) num threads (bsize)
#pragma omp distribute
for (i=0; 1i<N; 1 += num blocks)
#fpragma omp parallel for
for (b = 1; b < i+num blocks; b++)
B[b] += sin(B[b]);

Changed to RC2:

Combined directive
#pragma omp teams distribute parallel for

RZ:| lie 31

RWTHAACHEN
UNIVERSITY

Target Construct

RZ: Christian Terboven Folie 32

target data construct RWTH

» Creates a device data environment for the extent of the region
» when a target data construct is encountered, a new device data environment

IS created, and the encountering task executes the target data region

» when an if clause is present and the if-expression evaluates to false, the

device is the host

p C/C++:

The syntax of the target data construct is as follows:

#pragma omp target data [clause[[,] clause],...] new-line
structured-block

where clause is one of the following:
device(integer-expression)

map([map-type : | list)
if(scalar-expression)

RZ: Christian Terboven Folie 33

map clause RWTH

» Map avariable from the current task's data environment to the
device data environment associated with the construct

P the list items that appear in a map clause may include array sections
» alloc-type: each new corresponding list item has an undefined initial value

P to-type: each new corresponding list item is initialized with the original lit

item's value

» from-type: declares that on exit from the region the corresponding list item's

value is assigned to the original list item

» tofrom-type: the default, combination of to and from

p C/C++:

The syntax of the map clause is as follows:

map([map-type : | list)

RZ: Christian Terboven Folie 34

target construct R“TH

» Creates a device data environment and execute the construct on the
same device

» superset of the target data constructs - in addition, the target construct
specifies that the region is executed by a device and the encountering task

walits for the device to complete the target region

p C/C++:

The syntax of the target construct is as follows:

#pragma omp target [clausef[,] clause],...] new-line
structured-block

where clause is one of the following:
device(integer-expression)

map([map-type : | list)
if(scalar-expression)

RZ: Christian Terboven Folie 35

Example: Target Construct RWTH

fpragma omp target device (0)
#fpragma omp parallel for

{
for (1=0; 1i<N; i++)

fpragma omp target
#pragma omp teams num teams (8) num threads (4)
#fpragma omp distribute
for (k = 0; k < NUM K; k++)
{
fpragma omp parallel for
for (J = 0; J < NUM J; J++)
{

RZ: Christian Terboven Folie 36

target update construct RWTH

» Makes the corresponding list items in the device data environment
consistent with their original list items, according to the specified
motion clauses

p C/C++:

The syntax of the target update construct is as follows:
#pragma omp target update motion-clause[, clause[[,] clause],...] new-line
where motion-clause is one of the following:

to(fist)
from(list)

and where clause is one of the following:

device(integer-expression)
if(scalar-expression)

RZ: Christian Terboven Folie 37

RWTH

declare target directive

» Specifies that [static] variables, functions (C, C++ and Fortran) and
subroutines (Fortran) are mapped to a device

» if alistitem is a function or subroutine then a device-specific version of the

routines is created that can be called from a target region

» if alistitem is a variable then the original variable is mapped to a
corresponding variable in the initial device data environment for all devices (if

the variable is initialized it is mapped with the same value)

» all declarations and definitions for a function must have a declare target

directive

p C/C++:

The syntax of the declare target directive is as follows:

#pragma omp declare target new-line
declarations-definition-seq
#pragma omp end decdlare target new-line

RZ: Christian Terboven Folie 38

teams construct (1/2) RWTH

» Creates a league of thread teams where the master thread of each
team executes the region

» the number of teams is determined by the num_teams clause, the number of
threads in each team is determined by the num_threads clause, within a team

region team numbers uniquely identify each team (omp_get team_num())

» once created, the number of teams remeinas constant for the duration of the

teams region

The teams region is executed by the master thread of each team

The threads other than the master thread to not begin execution
until the master thread encounteres a parallel region

» Only the following constructs can be closely nested in the team

region: distribute, parallel, parallel loop/for, parallel sections and
parallel workshare

RZ: Christian Terboven Folie 39

teams construct (2/2) RWTH

» A teams construct must be contained within a target construct,

which must not contain any statements or directives outside of the
teams construct

» After the teams have completed execution of the teams region, the
encountering thread resumes execution of the enclosing target
region

p C/C++:

The syntax of the teams construct is as follows

#pragma omp teams [clause[[,] clause],...] new-line
structured-block

where clause is one of the following:

num_teams(integer-expression)
num_threads(integer-expression)
default(shared | none)

private(/ist)

firstprivate(/ist)

shared(list)

reduction(operator : list)

RZ: Christian Terboven Folie 40

distribute construct

» Specifies that the iteration of one or more loops will be executed by
the thread teams, the iterations are distributed across the master
threads of all teams

» there is no implicit barrier at the end of a distribute construct

» adistribute construct must be closely nested in a teams region

p C/C++:

The syntax of the distribute construct is as follows:

#pragma omp distribute [clause[[,] clause],...] new-line
for-loops

Where clause is one of the following:

private(/ist)

firstprivate(/ist)

collapse(n)

dist_schedule(kind[, chunk_size])

All associated for-loops must have the canonical form described in Section 2.5.

RZ: Christian Terboven Folie 41

RWTHAACHEN
Example UNIVERSITY

SAXPY

RZ: Christian Terboven Folie 42

SAXPY: Serial (Host)

RWTH

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE

for (int i 0; i < n; ++i){
yl[i]l = a*x[i] + y[i];
}

for (int i = 0; i < n; ++i){
y[i] = b*x[i] + y[i];
}

free(x); free(y); return O;

RZ: Christian Terboven

Folie 43

SAXPY: OpenACC v2 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));

// Initialize x, y

// Run SAXPY TWICE
#pragma acc data copyin(x[0:n])
{

#pragma acc parallel copy(y[0:n])
#pragma acc loop

for (int 1 = 0; i < n; ++i){
y[i] = a*x[i] + yl[i];

}

#pragma acc parallel copy(y[0:n])

#pragma acc loop

for (int i = 0; i < n; ++1i){

y[i] = b*x[i] + y[i];
}

}

free(x); free(y); return O;

}

RZ: Christian Terboven

Folie 44

SAXPY: OpenMP 4.0 (NVIDIA GPGPU) RWTH

int main(int argc, const char* argv[]) {
int n = 10240; float a = 2.0f; float b = 3.0f;
float *x = (float*) malloc(n * sizeof(float));
float *y = (float*) malloc(n * sizeof(float));
// Initialize x, y

// Run SAXPY TWICE
#pragma omp target data map (to:x)
{
#pragma omp target map (tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i = 0; i < n; ++i){

y[i] = a*x[i] + yl[i];
}

#pragma omp target map (tofrom:y)
#pragma omp teams
#pragma omp distribute
#pragma omp parallel for
for (int i 0; 1i < n; ++i){
y[i]l = b*x[i] + y[i]’

}
}

free (xX); free(y); return 07

Rz Christian Terboven Folie 45

RWTHAACHEN
UNIVERSITY

Outlook: Asynchronicity

RZ: Christian Terboven Folie 46

Example: Asynchronous Offload via Tasks RWTH

» For asynchronous execution use the task construct and task

dependencies:

{

{
#fpragma omp
#pragma omp

#pragma omp
#pragma omp
#pragma omp
for (i = c;

fpragma omp target data map(alloc:Z)

#fpragma omp parallel for
for (¢ = 0; c¢ < nchunks; ¢ += chunksz)

task dep (out:c)
target update map(to: Z[c:chunksz])

task dep(in:c)

target

parallel for

i < ¢ + chunksz; i++)

Zz[1] = £(Z[1])

RZ: Christian Terboven

Folie 47

RWTHAACHEN
UNIVERSITY

OpenMP 4.0 Feature
Overview

RZ: Christian Terboven Folie 48

OpenMP 4.0 Achievements

» End of along road? A brief rest stop along the way...

Addressed several major open issues for OpenMP
Did not break existing code unnecessarily
Included 103 passed tickets

» Focus on major tickets initially
» Builds on two comment drafts (“RC1” and “RC2")

» Many small tickets after RC2, a few large ones

» Final vote was held on July 11

» Already starting work on OpenMP 5.0

RZ: Christian Terboven Folie 49

Overview of major 4.0 additions Rwl.ll.l!l'wéggl%\l

» Covered previously

» Device constructs

» Task dependences and task groups

» Thread affinity control

» Support for array sections (including in C and C++)

» User-defined reductions
» Not covered during this week
» SIMD constructs

» Cancellation
» Initial support for Fortran 2003
» Sequentially consistent atomics

» Display of initial OpenMP internal control variables

RZ: Christian Terboven Folie 50

RWTHAACHEN
The End UNIVERSITY

Thank you for your attention.

RZ: Christian Terboven Folie 51

