

Rechen- und Kommunikationszentrum (RZ)

Introduction to OpenMP

part III of III & Outlook on OpenMP 4.0 for Accelerators

Christian Terboven <terboven@rz.rwth-aachen.de>

31.07.2013 / Aachen, Germany

Stand: 22.07.2013

Version 2.3

RZ: Christian Terboven

Folie 2

 Avoiding Overhead: nowait, collapse, if, final and mergeable

 Iterator Loops and User-defined Reductions

 Task Scheduling and Task Dependencies

 Outlook: OpenMP for Accelerators

 What is an Accelerator in OpenMP?

 Execution and Data Model

 Target Construct

 Example: SAXPY

 Outlook: Asynchronicity

 OpenMP 4.0 Feature Overview

Agenda

RZ: Christian Terboven

Folie 3

Avoiding Overhead

RZ: Christian Terboven

Folie 4

 A worksharing construct (do/for, sections, single) has no barrier

on entry – however, an implied barrier exists at the end of the

worksharing region, unless the nowait clause is specified.

 Static schedule guarantees since OpenMP 3.0:

#pragma omp for schedule(static) nowait

 for(i = 1; i < N; i++)

 a[i] = …

#pragma omp for schedule(static)

 for (i = 1; i < N; i++)

 c[i] = a[i] + …

The nowait Clause

Allowed in OpenMP 3.0 if and only if:
 - Number of iterations is the same
 - Chunk is the same (or not specified)

RZ: Christian Terboven

Folie 5

 Loop collapsing: Ask the compiler to fuse perfectly nested loops to

exploit a larger iteration space for the parallelization:

#pragma omp for collapse(2)

 for(i = 1; i < N; i++)

 for(j = 1; j < M; j++)

 for(k = 1; k < K; k++)

 foo(i, j, k);

The collapse Clause

Iteration space from i-loop and j-loop is
collapsed into a single one, if loops are
perfectly nested and form a rectangular
iteration space.

RZ: Christian Terboven

Folie 6

 If the expression of an if clause on a Parallel Region evaluates to

false

 The Parallel Region is executed with a Team of one Thread only

→ Used for optimization, e.g. avoid going parallel

 OpenMP data scoping rules still apply!

if Clause: Parallel Region

C/C++

#pragma omp parallel if(expr)

 ...

Fortran

!$omp parallel if(expr)

 ...

RZ: Christian Terboven

Folie 7

 If the expression of an if clause on a task

evaluates to false

 The encountering task is suspended

 The new task is executed immediately

 The parent task resumes when new tasks finishes

→ Used for optimization, e.g. avoid creation of small tasks

if Clause: Tasks

C/C++

#pragma omp task if(expr)

 ...

Fortran

!$omp task if(expr)

 ...

RZ: Christian Terboven

Folie 8

 For recursive problems that perform task decomposition, stop

task creation at a certain depth exposes enough parallelism

and reduces the overhead.

 final task: forces all child tasks to be final and included = execution is

sequentially included in the task region (undeferred execution).

 But: merging the data environment may have side-effects
void foo(bool arg)

{

 int i = 3;

 #pragma omp task final(arg) firstprivate(i)

 i++;

 printf(“%d\n”, i); // will print 3 or 4 depending on expr

}

final Clause

C/C++

#pragma omp task final(expr)

Fortran

!$omp task final(expr)

RZ: Christian Terboven

Folie 9

 If the mergeable clause is present, the implementation is allowed

to merge the task‘s data environment with the enclosing region

 if the generated task is undeferred or included

 undeferred: if clause present and evaluates to false

 included: final clause present and evaluates to true

 Personal Note: As of today (07/2013), no compiler or runtime

implement final and/or mergeable in a way that-real world

application may profit from using these clauses .

mergeable Clause

C/C++

#pragma omp task mergeable

Fortran

!$omp task mergeable

RZ: Christian Terboven

Folie 10

 The taskyield directive specifies that the current task can be

suspended in favor of execution of a different task.

 Hint to the runtime for optimization and/or deadlock prevention

The taskyield Directive

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield

RZ: Christian Terboven

Folie 11

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

 for(int i = 0; i < n; i++)

 #pragma omp task

 {

 something_useful();

 while(!omp_test_lock(lock)) {

 #pragma omp taskyield

 }

 something_critical();

 omp_unset_lock(lock);

 }

}

taskyield Example (1/2)

RZ: Christian Terboven

Folie 12

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

 for(int i = 0; i < n; i++)

 #pragma omp task

 {

 something_useful();

 while(!omp_test_lock(lock)) {

 #pragma omp taskyield

 }

 something_critical();

 omp_unset_lock(lock);

 }

}

taskyield Example (2/2)

The waiting task may be
suspended here and allow the
executing thread to perform

other work. This may also
avoid deadlock situations.

RZ: Christian Terboven

Folie 13

Iterator Loops and User-

defined Reductions

RZ: Christian Terboven

Folie 14

 This computes a bounding box of a 2D point cloud:

struct Point2D; /* data structure as you would expect it */

Point2D lb(RANGE, RANGE) /* lower bound – init with max */

Point2D ub(0.0f, 0.0f); /* upper bound – init with min */

for (std::vector<Point2D>::iterator it = points.begin();

 it != points.end(); it++) {

 Point2D &p = *it; /* compare every point to lb, ub*/

 lb.setX(std::min(lb.getX(), p.getX()));

 lb.setY(std::min(lb.getY(), p.getY()));

 ub.setX(std::max(ub.getX(), p.getX()));

 ub.setY(std::max(ub.getY(), p.getY()));

}

 „Problems“ for an OpenMP parallelization?

 Reduction operation has to work with non-POD datatypes

 Loop employs C++ iterator over std::vector datatype elements

Example: Bounding Box Code

RZ: Christian Terboven

Folie 15

 OpenMP 3.0 introduced Worksharing support for iterator loops

#pragma omp for

 for (std::vector<Point2D>::iterator it =

 points.begin(); it != points.end(); it++) {

 ...

 OpenMP 4.0 brings user-defined reductions

 name: minp, datatype: Point2D

 read: omp_in, written to: omp_out, initialization: omp_priv

#pragma omp declare reduction(minp : Point2D :

 omp_out.setX(std::min(omp_in.getX(), omp_out.getX())),

 omp_out.setY(std::min(omp_in.getY(), omp_out.getY())))

 initializer(omp_priv = Point2D(RANGE, RANGE))

#pragma omp parallel for reduction(minp:lb) reduction(maxp:ub)

 for (std::vector<Point2D>::iterator it =

 points.begin(); it != points.end(); it++) {

 ...

Bounding Box w/ OpenMP 4.0

RZ: Christian Terboven

Folie 16

Task Scheduling and

Task Dependencies

RZ: Christian Terboven

Folie 17

 Default: Tasks are tied to the thread that first executes them → not

neccessarily the creator. Scheduling constraints:

 Only the thread a task is tied to can execute it

 A task can only be suspended at a suspend point

 Task creation, task finish, taskwait, barrier, taskyield

 If task is not suspended in a barrier, executing thread can only switch to a

direct descendant of all tasks tied to the thread

 Tasks created with the untied clause are never tied

 No scheduling restrictions, e.g. can be suspended at any point

 But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling

RZ: Christian Terboven

Folie 18

 Problem: Because untied tasks may migrate between threads at any

point, thread-centric constructs can yield unexpected results

 Remember when using untied tasks:

 Avoid threadprivate variables

 Avoid any use of thread-ids (i.e. omp_get_thread_num())

 Be careful with critical region and locks

 Simple Solution:

 Create a tied task region with

 #pragma omp task if(0)

Unsafe use of untied Tasks

RZ: Christian Terboven

Folie 19

 The task dependence is fulfilled when the predecessor

task has completed

 in dependency-type: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the list items

in an out or inout clause.

 out and inout dependency-type: The generated task will be a dependent

task of all previously generated sibling tasks that reference at least one of the

list items in an in, out, or inout clause.

 The list items in a depend clause may include array sections.

The depend Clause

C/C++

#pragma omp task depend(dependency-type: list)

... structured block ...

RZ: Christian Terboven

Folie 20

 Note: variables in the depend clause do not necessarily have to

indicate the data flow

Concurrent Execution w/ Dep.

void process_in_parallel) {

 #pragma omp parallel

 #pragma omp single

 {

 int x = 1;

 ...

 for (int i = 0; i < T; ++i) {

 #pragma omp task shared(x, ...) depend(out: x) // T1

 preprocess_some_data(...);

 #pragma omp task shared(x, ...) depend(in: x) // T2

 do_something_with_data(...);

 #pragma omp task shared(x, ...) depend(in: x) // T3

 do_something_independent_with_data(...);

 }

 } // end omp single, omp parallel

}

T1 has to be completed
before T2 and T3 can be
executed.

T2 and T3 can be
executed in parallel.

RZ: Christian Terboven

Folie 21

„Real“ Task Dependencies

void blocked_cholesky(int NB, float A[NB][NB]) {

 int i, j, k;

 for (k=0; k<NB; k++) {

 #pragma omp task depend(inout:A[k][k])

 spotrf (A[k][k]) ;

 for (i=k+1; i<NT; i++)

 #pragma omp task depend(in:A[k][k]) depend(inout:A[k][i])

 strsm (A[k][k], A[k][i]);

 // update trailing submatrix

 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++)

 #pragma omp task depend(in:A[k][i],A[k][j])

 depend(inout:A[j][i])

 sgemm(A[k][i], A[k][j], A[j][i]);

 #pragma omp task depend(in:A[k][i]) depend(inout:A[i][i])

 ssyrk (A[k][i], A[i][i]);

 }

 }

}

RZ: Christian Terboven

Folie 22

Outlook: OpenMP for

Accelerators

RZ: Christian Terboven

Folie 23

What is an Accelerator in OpenMP?

RZ: Christian Terboven

Folie 24

 In how differs an accelerator from just another core?

 different functionality, i.e. optimized for something special

 different (possibly limited) instruction set

→ heterogeneous device

 Assumptions used as design goals for OpenMP 4.0:

 every accelerator device is attached to one host device

 it is probably heterogeneous

 it may not be programmable in the same language as the host, or it may not

implement all operations available on the host

 it may or may not share memory with the host device

 some accelerators are specialized for loop nests

What kind of devices shall be supported?

RZ: Christian Terboven

Folie 25

Execution Model and Data Model

RZ: Christian Terboven

Folie 26

 Host-centric: the execution of an OpenMP program starts on the

host device and it may offload target regions to target devices

 In principle, a target region also begins as a single thread of execution: when

a target construct is encountered, the target region is executed by the implicit

device thread and the encountering thread/task [on the host] waits at the

construct until the execution of the region completes

 If a target device is not present, or not supported, or not available,

the target region is executed by the host device

 If a construct creates a data environment, the data environment is

created at the time the construct is encountered

Execution Model

RZ: Christian Terboven

Folie 27

 When an OpenMP program begins, each device has an initial device

data environment

 Directives accepting data-mapping attribute clauses determine how

an original variable is mapped to a corresponding variable in a

device data environment

 original: the variable on the host

 corresponding: the variable on the device

 the corresponding variable in the device data environment may share

storage with the original variable (danger of data races)

 If a corresponding variable is present in the enclosing device data

environment, the new device data environment inherits the

corresponding variable from the enclosing device

Data Model

RZ: Christian Terboven

Folie 28

 Data environment is lexically scoped

 Data environment is destroyed at closing curly brace

 Allocated buffers/data are automatically released

 Use target construct to

 Transfer control from the host to the device

 Establish a data environment (if not yet done)

 Host thread waits until offloaded region completed

Execution + Data Model

Host Device

#pragma omp target \

alloc(…)

1

from(…)

4

to(…)

2

pA

 map(alloc:...) \

 map(to:...) \

{ ... }

3

 map(from:...)

RZ: Christian Terboven

Folie 29

 Environment Variable OMP_DEFAULT_DEVICE=<int>: sets the

device number to use in target constructs

 map variable B to device, then execute parallel region on device, works

probably pretty well on Intel Xeon Phi

 same as above, but code probably better optimized for NVIDIA GPGPUs

Example: Execution and Data Model

double B[N] = ...; // some initialization
#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)
 B[i] += sin(B[i]);

double B[N] = ...; // some initialization
#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)
 #pragma omp parallel for
 for (b = i; b < i+num_blocks; b++)
 B[b] += sin(B[b]);

RZ: Christian Terboven

Folie 30

 OpenMP 4.0 – for Intel Xeon Phi:

 OpenMP 4.0 – for NVIDIA GPGPU:

 OpenACC – for NVIDIA GPGPU:

Comparing OpenMP with OpenACC

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)
 B[i] += sin(B[i]);

#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

 vector_length(bsize)

#pragma acc loop gang vector

 for (i=0; i<N; ++i) {

 B[i] += sin(B[i]);

 }

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)
 #pragma omp parallel for
 for (b = i; b < i+num_blocks; b++)
 B[b] += sin(B[b]);

RZ: Christian Terboven

Folie 31

 OpenMP 4.0 – for Intel Xeon Phi:

 OpenMP 4.0 – for NVIDIA GPGPU:

 OpenACC – for NVIDIA GPGPU:

Comparing OpenMP with OpenACC

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)
 B[i] += sin(B[i]);

#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

 vector_length(bsize)

#pragma acc loop gang vector

 for (i=0; i<N; ++i) {

 B[i] += sin(B[i]);

 }

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)
 #pragma omp parallel for
 for (b = i; b < i+num_blocks; b++)
 B[b] += sin(B[b]);

Changed to RC2:

Combined directive
#pragma omp teams distribute parallel for

RZ: Christian Terboven

Folie 32

Target Construct

RZ: Christian Terboven

Folie 33

 Creates a device data environment for the extent of the region

 when a target data construct is encountered, a new device data environment

is created, and the encountering task executes the target data region

 when an if clause is present and the if-expression evaluates to false, the

device is the host

 C/C++:

target data construct

RZ: Christian Terboven

Folie 34

 Map a variable from the current task's data environment to the

device data environment associated with the construct

 the list items that appear in a map clause may include array sections

 alloc-type: each new corresponding list item has an undefined initial value

 to-type: each new corresponding list item is initialized with the original lit

item's value

 from-type: declares that on exit from the region the corresponding list item's

value is assigned to the original list item

 tofrom-type: the default, combination of to and from

 C/C++:

map clause

RZ: Christian Terboven

Folie 35

 Creates a device data environment and execute the construct on the

same device

 superset of the target data constructs - in addition, the target construct

specifies that the region is executed by a device and the encountering task

waits for the device to complete the target region

 C/C++:

target construct

RZ: Christian Terboven

Folie 36

Example: Target Construct

#pragma omp target device(0)

#pragma omp parallel for

{

 for (i=0; i<N; i++) ...

}

#pragma omp target

#pragma omp teams num_teams(8) num_threads(4)

#pragma omp distribute

 for (k = 0; k < NUM_K; k++)

 {

 #pragma omp parallel for

 for (j = 0; j < NUM_J; j++)

 {

 ...

 }

 }

RZ: Christian Terboven

Folie 37

 Makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified

motion clauses

 C/C++:

target update construct

RZ: Christian Terboven

Folie 38

 Specifies that [static] variables, functions (C, C++ and Fortran) and

subroutines (Fortran) are mapped to a device

 if a list item is a function or subroutine then a device-specific version of the

routines is created that can be called from a target region

 if a list item is a variable then the original variable is mapped to a

corresponding variable in the initial device data environment for all devices (if

the variable is initialized it is mapped with the same value)

 all declarations and definitions for a function must have a declare target

directive

 C/C++:

declare target directive

RZ: Christian Terboven

Folie 39

 Creates a league of thread teams where the master thread of each

team executes the region

 the number of teams is determined by the num_teams clause, the number of

threads in each team is determined by the num_threads clause, within a team

region team numbers uniquely identify each team (omp_get_team_num())

 once created, the number of teams remeinas constant for the duration of the

teams region

 The teams region is executed by the master thread of each team

 The threads other than the master thread to not begin execution

until the master thread encounteres a parallel region

 Only the following constructs can be closely nested in the team

region: distribute, parallel, parallel loop/for, parallel sections and

parallel workshare

teams construct (1/2)

RZ: Christian Terboven

Folie 40

 A teams construct must be contained within a target construct,

which must not contain any statements or directives outside of the

teams construct

 After the teams have completed execution of the teams region, the

encountering thread resumes execution of the enclosing target

region

 C/C++:

teams construct (2/2)

RZ: Christian Terboven

Folie 41

 Specifies that the iteration of one or more loops will be executed by

the thread teams, the iterations are distributed across the master

threads of all teams

 there is no implicit barrier at the end of a distribute construct

 a distribute construct must be closely nested in a teams region

 C/C++:

distribute construct

RZ: Christian Terboven

Folie 42

SAXPY

Example

RZ: Christian Terboven

Folie 43

SAXPY: Serial (Host)

int main(int argc, const char* argv[]) {

 int n = 10240; float a = 2.0f; float b = 3.0f;

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Initialize x, y

 // Run SAXPY TWICE

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

 free(x); free(y); return 0;

}

RZ: Christian Terboven

Folie 44

SAXPY: OpenACC v2 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

 int n = 10240; float a = 2.0f; float b = 3.0f;

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Initialize x, y

 // Run SAXPY TWICE

#pragma acc data copyin(x[0:n])

{

#pragma acc parallel copy(y[0:n])

#pragma acc loop

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

#pragma acc parallel copy(y[0:n])

#pragma acc loop

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

 free(x); free(y); return 0;

}

RZ: Christian Terboven

Folie 45

SAXPY: OpenMP 4.0 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

 int n = 10240; float a = 2.0f; float b = 3.0f;

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Initialize x, y

 // Run SAXPY TWICE

#pragma omp target data map(to:x)

{

#pragma omp target map(tofrom:y)

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

#pragma omp target map(tofrom:y)

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

 free(x); free(y); return 0;

}

RZ: Christian Terboven

Folie 46

Outlook: Asynchronicity

RZ: Christian Terboven

Folie 47

 For asynchronous execution use the task construct and task

dependencies:

Example: Asynchronous Offload via Tasks

#pragma omp target data map(alloc:Z)
{
 #pragma omp parallel for
 for (c = 0; c < nchunks; c += chunksz)
 {
 #pragma omp task dep(out:c)
 #pragma omp target update map(to: Z[c:chunksz])

 #pragma omp task dep(in:c)
 #pragma omp target
 #pragma omp parallel for
 for (i = c; i < c + chunksz; i++)
 Z[i] = f(Z[i]);
 }
}

RZ: Christian Terboven

Folie 48

OpenMP 4.0 Feature

Overview

RZ: Christian Terboven

Folie 49

 End of a long road? A brief rest stop along the way…

 Addressed several major open issues for OpenMP

 Did not break existing code unnecessarily

 Included 103 passed tickets

 Focus on major tickets initially

 Builds on two comment drafts (“RC1” and “RC2”)

 Many small tickets after RC2, a few large ones

 Final vote was held on July 11

 Already starting work on OpenMP 5.0

OpenMP 4.0 Achievements

RZ: Christian Terboven

Folie 50

 Covered previously

 Device constructs

 Task dependences and task groups

 Thread affinity control

 Support for array sections (including in C and C++)

 User-defined reductions

 Not covered during this week

 SIMD constructs

 Cancellation

 Initial support for Fortran 2003

 Sequentially consistent atomics

 Display of initial OpenMP internal control variables

Overview of major 4.0 additions

RZ: Christian Terboven

Folie 51

Thank you for your attention.

The End

