>

NVIDIA

CS 193G

Lecture 5: Parallel Patterns |

Getting out of the trenches <X

NVIDIA

® so far, we’ve concerned ourselves with low-level
details of kernel programming
® Mapping of threads to work
® | aunch grid configuration
® shared memory management

® Resource allocation

® | ots of moving parts

® Hard to see the forest for the trees

CUDA Madlibs <X

nvibia

__global wvoid foo(...)
{

extern shared smem[];

int 1 =

// now what???

int B
int N =
int S =
foo<<<B,N,S>>>() ;

Parallel Patterns <X

NVIDIA

® Thinkata higher level than individual CUDA kernels
® Specify what to compute, not how to compute it
® et programmer worry about algorithm

® Defer pattern implementation to someone else

Common Parallel Computing S,%A
Scenarios

® Many parallel threads need to generate a single result
- Reduce

® Many parallel threads need to partition data
- Split

® Many parallel threads produce variable output / thread
- Compact / Expand

Primordial CUDA Pattern: Blocking <3

nVIDIA

® partition data to operate in well-sized blocks
® Small enough to be staged in shared memory
® Assign each data partition to a thread block
® No different from cache blocking!

® provides several performance benefits
® Have enough blocks to keep processors busy

® Working in shared memory cuts memory latency
dramatically

® Likely to have coherent access patterns on load/store to
shared memory

Primordial CUDA Pattern: Blocking <3

nVIDIA

® Partition data into subsets that fit into shared
memory

Primordial CUDA Pattern: Blocking <3

NVIDIA

® Handle each data subset with one thread block

Primordial CUDA Pattern: Blocking <3

nvibia

® | 0ad the subset from global memory to shared
memory, using multiple threads to exploit memory-
level parallelism

Primordial CUDA Pattern: Blocking <3

NVIDIA

® perform the computation on the subset from shared
memory

Primordial CUDA Pattern: Blocking <3

nvibia

® Copy the result from shared memory back to global
memory

Primordial CUDA Pattern: Blocking <3

nVIDIA

® All CUDA kernels are built this way

® Blocking may not matter for a particular problem, but
you’re still forced to think about it

® Not all kernels require __shared memory
® All kernels do require registers

® All of the parallel patterns we’ll discuss have CUDA
Implementations that exploit blocking in some
fashion

Reduction <X

NVIDIA

® Reduce vectorto a single value
® via an associative operator (+, *, min/max, AND/OR, ...)
® cpu: sequential implementation
for(int 1 = 0, 1 < n, ++1i)
® GPU: “tree”-based Implementation

Serial Reduction <X

nvibia

// reduction via serial iteration
float sum(float *data, int n)

{
float result = 0;

for(int i = 0; 1 < n; ++1i)
{
result += data[i];

return result;

Parallel Reduction — Interleaved <X

nvibDiA

Values (in shared memory)|10| 1|8 |-1|0|-2|3|5|-2|-3|2|7]|0]|11|{0] 2

Step 1 Thread
Stride 1 IDs
Values
Step 2 Thread
Stride 2 IDs
Values

Step 3 Thread

Stride 4 IDs
Values

Step 4 Thread

Stride 8 IDs

Values

Parallel Reduction — Contiguous

Values (in shared memory)

Step 1
Stride 8

Step 2
Stride 4

Step 3
Stride 2

Step 4
Stride 1

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

Thread
IDs

Values

>

nvibDiA

11| 0 | 2
11| 0 | 2
13 S 11| 0 | 2
13 -2 11| 0 | 2
13 -2 11| 0 | 2

CUDA Reduction

__global wvoid block sum(float *input,

float *results,

size t n)

extern shared float sdatal]:;

int 1 = ..., int tx = threadldx.x;

// load input into _ shared memory
float x = 0;
if(i < n)
X = input[i];
sdata[tx] = x;

__syncthreads() ;

<3

nvibia

CUDA Reduction <X

nVvIDIA
// block-wide reduction in shared mem

for (int offset = blockDim.x / 2;
offset > O;

offset >>= 1)

if(tx < offset)
{

// add a partial sum upstream to our own
sdata[tx] += sdata[tx + offset];

}

__syncthreads() ;

CUDA Reduction n%%A
// finally, thread 0 writes the result
if (threadIdx.x == 0)
{
// note that the result is per-block
// not per-thread
results[blockIdx.x] = sdata[O0];

An Aside <X

nVIDIA
// is this barrier divergent?

for (int offset = blockDim.x / 2;
offset > O;
offset >>= 1)

__syncthreads() ;

An Aside <3

nvIDIA
// what about this one?

__global wvoid do i halt(int *input)
{

int 1 = ...

if (input[i])

{

__syncthreads ()|,

CUDA Reduction <X

NVIDIA
// global sum via per-block reductions

float sum(float *d input, size t n)

{

size t block size = ..., num blocks = ...;

// allocate per-block partial sums
// plus a final total sum
float *d sums = 0;
cudaMalloc((void**) &d sums,

sizeof (float) * (num blocks + 1))

CUDA Reduction <X

NVIDIA
// reduce per-block partial sums

int smem sz = block size*sizeof(float);
block sum<<<num blocks,block size,smem sz>>>

(d input, d sums, n);

// reduce partial sums to a total sum
block sum<<<1l,block size,smem sz>>>
d sums, d sums + num blocks, num blocks);

// copy result to host
float result = 0;
cudaMemcpy (&result, d sums+num blocks, ...);

return result;

Caveat Reductor <X

NVIDIA

® What happens if there are too many partial sums to
fitinto shared memory in the second stage?

® What happens if the temporary storage is too big?

® Give each thread more work in the first stage
® Sumis associative & commutative
® Order doesn’t matter to the result
® We can schedule the sum any way we want
- serial accumulation before block-wide reduction

® Exercise left to the hacker

Parallel Reduction Complexity <3

NVIDIA

® Log(N) parallel steps, each step S does N/2°
Independent ops
® Step Complexity is O(log N)

® For N=20, performs 2., 52°° = N-1 operations
® \work Complexity is O(N) — It is work-efficient

® i e does not perform more operations than a sequential
algorithm

® With P threads physically in parallel (P processors),
time complexity is O(N/P + log N)
® Compare to O(N) for sequential reduction

=

nvibDiA

Split Operation

® Given:array of true and false elements (and payloads)

Flag
Payload

® Return an array with all true elements at the beginning

® Examples: sorting, building trees

T

=

F

T

F

F

T

F

3

1

7

0

4

1

§)

3

T

T

T

F

F

3

0

§)

1

7

Variable Output Per Thread: rf,%m
Compact

® Remove null elements

3 0 7‘0 Z 1 0 3

3 7 4‘1 3

® Example: collision detection

Variable Output Per Thread: rf,%m
General Case

® Reserve Variable Storage Per Thread

® Example: binning

Split, Compact, Expand <X

NVIDIA

® tach thread must answer a simple question:
“Where do | write my output?”
® The answer depends on what other threads write!

® scan provides an efficient parallel answer

Scan (a.k.a. Parallel Prefix Sum) <3

NVIDIA

® Given an array A =[ag, ay, ...y A 4]
and a binary associative operator @ with identity I,

scan(A) =[l, a, (,® &), -.., (8, @ a2, ® ... ® a,,)]

® Prefix sum: if @ is addition, then scan on the series

3 1 7 0 4 1 6 3

returns the series

0 3 4 (11 |11 | 15| 16 | 22

Applications of Scan <X

nVIDIA

® scanis a simple and useful parallel building block
for many parallel algorithms:

® Radix sort ® Polynomial evaluation
® Quicksort (seg. scan) ® Solving recurrences
® String comparison ® Tree operations

® | exical analysis ® Histograms

® Siream compaction ® Allocation

® Run-length encoding ® i

® Fascinating, since scan is unnecessary in sequential
computing!

Serial Scan

int input[8] = {3, 1, 7, O,

int result[8];
int running sum = 0;
for(int i = 0; 1 < 8; ++1i)
{

result[i] = running sum;

running sum += input[i];

// result = {0, 3, 4, 11,

4,

11,

1,

15,

6, 3};

16, 22}

>

NVIDIA

A Scan Algorithm — Preview <X

nvibia

3|11 7]1]0[4]1]6]3

Assume array is already in shared memory

See Harris, M., S. Sengupta, and J.D. Owens. “Parallel Prefix Sum (Scan) in CUDA”, GPU Gems 3

A Scan Algorithm — Preview <X

NVIDIA

lteration O, n-1 threads

Each @ corresponds
to a single thread.

Iterate log(n) times. Each thread adds value stride elements away to its own value

A Scan Algorithm — Preview <X

NVIDIA

lteration 1, n-2 threads

Each @ corresponds
to a single thread.

Iterate log(n) times. Each thread adds value offset elements away to its own value

A Scan Algorithm — Preview <X

nvibDiA

Iteration i, n-2! threads

Each @ corresponds
to a single thread.

Iterate log(n) times. Each thread adds value offset elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

A Scan Algorithm — Preview

11

15

16

22

25

® We have an inclusive scan result

<3

nvibia

A Scan Algorithm — Preview <X

nVIDIA

314 ([11)111({15]116([22|25— ?

ONONONNINNN,

00— 0|34]11|11]15]|16](22

® or an exclusive scan, right-shift through
___shared memory

® Note that the unused final element is also the sum
of the entire array
® Often called the “carry”
® Scan & reduce in one RS

CUDA Block-wise Inclusive Scan <X

NVIDIA
__global void inclusive scan(int *data)

{

extern shared int sdatal[];

unsigned int 1 =

// load input into _ shared memory
int sum = input[i];
sdata[threadIdx.x] = sum;

__syncthreads() ;

CUDA Block-wise Inclusive Scan <X

nviDi
for(int o = 1; o < blockDim.x; o <<= 1) A

{
if (threadIdx.x >= 0)

sum += sdata[threadIdx.x - 0];

// wait on reads

__syncthreads() ;

// write my partial sum
sdata[threadIdx.x] = sum;

// wait on writes

__syncthreads() ;

CUDA Block-wise Inclusive Scan <X

NVIDIA
// we're done!

// each thread writes out its result
result[i] = sdata[threadIdx.x];

Results are Local to Each Block <X

nVIDIA
Block O

Input:

5 5 4 4 5 4 0 0 4 2 5 5 1 3 1 5
Result:

5 10 14 18 23 27 27 27 31 33 38 43 44 47 48 53

Block 1

Input:

1 2 3 0 3 0 2 3 4 4 3 2 2 5 5 0
Result.:

1 3 6 6 9 9 11 14 18 22 25 27 29 34 39 39

Results are Local to Each Block <X

NVIDIA

® Need to propagate results from each block to all
subsequent blocks

® 2-phase scan
1. Per-block scan & reduce
2. Scan per-block sums

® Final update propagates phase 2 data and
transforms to exclusive scan result

® Details in MP3

Summing Up <3

NVIDIA

® patterns like reduce, split, compact, scan, and
others let us reason about data parallel problems
abstractly

® Higher level patterns are built from more
fundamental patterns

® Scanin particular is fundamental to parallel
processing, but unnecessary in a serial world

® Get others to Implement these for you!
- but not until after MP3

