
© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 1

Stanford CS 193G

Lecture 15:
Optimizing Parallel GPU Performance

2010-05-20

John Nickolls

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 2

Optimizing parallel performance

!  Understand how software maps to architecture
!  Use heterogeneous CPU+GPU computing
!  Use massive amounts of parallelism
!  Understand SIMT instruction execution
!  Enable global memory coalescing
!  Understand cache behavior
!  Use Shared memory
!  Optimize memory copies
!  Understand PTX instructions

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 3

CUDA Parallel Threads and Memory

Thread

Per-thread Private
Local Memory

Block

Per-block
Shared
Memory

Grid 0

. . .
Per-app
Device
Global

Memory

. . .

Grid 1

__device__ float GlobalVar;

__shared__ float SharedVar; float LocalVar;

Sequence

Registers

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 4

Using CPU+GPU Architecture

!   Heterogeneous system architecture
!   Use the right processor and memory for each task
!   CPU excels at executing a few serial threads

!   Fast sequential execution
!   Low latency cached memory access

!   GPU excels at executing many parallel threads
!   Scalable parallel execution
!   High bandwidth parallel memory access

GPU

SM
em

SM
em

SM
em

PCIe	
Bridge Host

Memory

CPU

Cache

Device Memory

Cache

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 5

CUDA kernel maps to Grid of Blocks

kernel_func<<<nblk, nthread>>>(param, …);

GPU

SMs: SM
em

SM
em

SM
em

PCIe	
Bridge Host

Memory

CPU

Cache

Device Memory

Cache

. . .

Host Thread Grid of Thread Blocks

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 6

Registers

Thread blocks execute on an SM
Thread instructions execute on a core

GPU

SMs: SM
em

SM
em

SM
em

PCIe	
Bridge Host

Memory

CPU

Cache

Device Memory

Cache

Block

Per-block
Shared
Memory

Per-app
Device
Global

Memory
Per-thread

Local Memory

Thread
 float myVar; __shared__ float shVar; __device__ float glVar;

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 7

CUDA Parallelism

GPU

SMs: SM
em

SM
em

SM
em

PCIe	
Bridge Host

Memory

CPU

Cache

Device Memory

Cache

. .
.

Host Thread Grid of Thread Blocks

!   CUDA virtualizes the physical hardware
!   Thread is a virtualized scalar processor (registers, PC, state)
!   Block is a virtualized multiprocessor (threads, shared mem.)

!   Scheduled onto physical hardware without pre-emption
!   Threads/blocks launch & run to completion
!   Blocks execute independently

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 8

Expose Massive Parallelism

!  Use hundreds to thousands of thread blocks
!  A thread block executes on one SM
!  Need many blocks to use 10s of SMs
!  SM executes 2 to 8 concurrent blocks efficiently
!  Need many blocks to scale to different GPUs
!  Coarse-grained data parallelism, task parallelism

!  Use hundreds of threads per thread block
!  A thread instruction executes on one core
!  Need 384 – 512 threads/SM to use all the cores all the time
!  Use multiple of 32 threads (warp) per thread block
!  Fine-grained data parallelism, vector parallelism, thread

parallelism, instruction-level parallelism

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 9

Scalable Parallel Architectures
run thousands of concurrent threads

128 SP cores
12,288 threads

32 SP cores
3,072 threads

240 SP cores
30,720 threads

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 10

Fermi SM increases instruction-level
parallelism

512 CUDA Cores
24,576 threads

SM

CUDA
Core

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 11

SM parallel instruction execution

!  SIMT (Single Instruction Multiple Thread) execution
!  Threads run in groups of 32 called warps
!  Threads in a warp share instruction unit (IU)
!  HW automatically handles branch divergence

!  Hardware multithreading
!  HW resource allocation & thread scheduling
!  HW relies on threads to hide latency

!  Threads have all resources needed to run
!  Any warp not waiting for something can run
!  Warp context switches are zero overhead

Load/Store Units x 16
Special Func Units x 4

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 12

SIMT Warp Execution in the SM

Warp: a set of 32 parallel threads
that execute an instruction
together

SIMT: Single-Instruction Multi-Thread
applies instruction to warp of
independent parallel threads

!   SM dual issue pipelines select two
warps to issue to parallel cores

!   SIMT warp executes each instruction
for 32 threads

!   Predicates enable/disable individual
thread execution

!   Stack manages per-thread branching

!   Redundant regular computation
faster than irregular branching

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 13

Enable Global Memory Coalescing

!   Individual threads access independent addresses
!   A thread loads/stores 1, 2, 4, 8, 16 B per access
!   LD.sz / ST.sz; sz = {8, 16, 32, 64, 128} bits per thread

!   For 32 parallel threads in a warp, SM load/store units coalesce
individual thread accesses into minimum number of 128B
cache line accesses or 32B memory block accesses

!   Access serializes to distinct cache lines or memory blocks

!   Use nearby addresses for threads in a warp

!   Use unit stride accesses when possible
!   Use Structure of Arrays (SoA) to get unit stride

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 14

Unit stride accesses coalesce well

__global__ void kernel(float* arrayIn,
 float* arrayOut)
{
 int i = blockDim.x * blockIdx.x
 + threadIdx.x;
 // Stride 1 coalesced load access
 float val = arrayIn[i];
 // Stride 1 coalesced store access
 arrayOut[i] = val + 1;
}

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 15

Example Coalesced Memory Access

!   16 threads within a warp load 8 B per thread:
 LD.64 Rd, [Ra + offset] ;

!   16 individual 8B thread accesses fall in two
128B cache lines

!   LD.64 coalesces 16 individual accesses into
2 cache line accesses

!   Implements parallel vector scatter/gather

!   Loads from same address are broadcast
!   Stores to same address select a winner
!   Atomics to same address serialize

!   Coalescing scales gracefully with the
number of unique cache lines or memory
blocks accessed

Thread 15 Thread 14 Thread 13 Thread 12 Thread 11 Thread 10 Thread 9 Thread 8 Thread 7 Thread 6 Thread 5 Thread 4 Thread 3 Thread 2 Thread 1 Thread 0

Address 224
Address 232

Address 208
Address 216

Address 192
Address 200

Address 176
Address 184

Address 160
Address 168

Address 144
Address 152

Address 128
Address 136

Address 112
Address 120

Address 256
Address 264

Address 240
Address 248

128B
 cache line

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 16

Memory Access Pipeline

!   Load/store/atomic memory accesses are pipelined
!   Latency to DRAM is a few hundred clocks
!   Batch load requests together, then use return values
!   Latency to Shared Memory / L1 Cache is 10 – 20 cycles

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 17

Fermi Cached Memory Hierarchy

!   Configurable L1 cache per SM
!   16KB L1$ / 48KB Shared Memory
!   48KB L1$ / 16KB Shared Memory

!   L1 caches per-thread local accesses
!   Register spilling, stack access

!   L1 caches global LD accesses
!   Global stores bypass L1

!   Shared 768KB L2 cache
!   L2 cache speeds atomic operations
!   Caching captures locality, amplifies

bandwidth, reduces latency
!   Caching aids irregular or

unpredictable accesses

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 18

Use per-Block Shared Memory

!   Latency is an order of magnitude lower than L2 or DRAM
!   Bandwidth is 4x – 8x higher than L2 or DRAM

!   Place data blocks or tiles in shared memory when the data is
accessed multiple times

!   Communicate among threads in a block using Shared memory
!   Use synchronization barriers between communication steps

!   __syncthreads() is single bar.sync instruction – very fast

!   Threads of warp access shared memory banks in parallel via
fast crossbar network

!   Bank conflicts can occur – incur a minor performance impact
!   Pad 2D tiles with extra column for parallel column access if tile

width == # of banks (16 or 32)

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 19

Using cudaMemCpy()

!   cudaMemcpy() invokes a DMA copy engine
!   Minimize the number of copies
!   Use data as long as possible in a given place
!   PCIe gen2 peak bandwidth = 6 GB/s
!   GPU load/store DRAM peak bandwidth = 150 GB/s

SM
EM

SM
EM

SM
EM

SM
EM

Device Memory
PCIe	

Bridge

CPU

Host
Memory

cudaMemcpy()

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 20

Overlap computing & CPUGPU transfers

!   cudaMemcpy() invokes
data transfer engines
!   CPUGPU and

GPUCPU data
transfers

!   Overlap with CPU and
GPU processing

!  Pipeline Snapshot:

Kernel 0

Kernel 1

Kernel 2

Kernel 3

cpy =>

cpy =>

cpy =>

cpy =>

cpy <=

cpy <=

cpy <=

cpy <=

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 21

Fermi runs independent kernels in parallel

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 22

Minimize thread runtime variance

Warps executing kernel with variable run time

SMs

Long running warp

Time:

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 23

PTX Instructions

!   Generate a program.ptx file with nvcc –ptx
!   http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/

ptx_isa_2.0.pdf
!   PTX instructions: op.type dest, srcA, srcB;

!   type = .b32, .u32, .s32, .f32, .b64, .u64, .s64, .f64
!   memtype = .b8, .b16, .b32, .b64, .b128

!   PTX instructions map directly to Fermi instructions
!   Some map to instruction sequences, e.g. div, rem, sqrt
!   PTX virtual register operands map to SM registers

!   Arithmetic: add, sub, mul, mad, fma, div, rcp, rem, abs, neg, min,
max, setp.cmp, cvt

!   Function: sqrt, sin, cos, lg2, ex2
!   Logical: mov, selp, and, or, xor, not, cnot, shl, shr
!   Memory: ld, st, atom.op, tex, suld, sust
!   Control: bra, call, ret, exit, bar.sync

© 2010 NVIDIA Corporation Optimizing GPU Performance 2010-05-20 24

Optimizing Parallel GPU Performance

!  Understand the parallel architecture
!  Understand how application maps to architecture
!  Use LOTS of parallel threads and blocks
!  Often better to redundantly compute in parallel
!  Access memory in local regions
!  Leverage high memory bandwidth
!  Keep data in GPU device memory
!  Experiment and measure

!  Questions?

