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Optimizing parallel performance 

!  Understand how software maps to architecture 
!  Use heterogeneous CPU+GPU computing 
!  Use massive amounts of parallelism 
!  Understand SIMT instruction execution 
!  Enable global memory coalescing 
!  Understand cache behavior 
!  Use Shared memory 
!  Optimize memory copies 
!  Understand PTX instructions 
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CUDA Parallel Threads and Memory 

Thread 

Per-thread Private 
Local Memory 

Block 

Per-block 
Shared 
Memory 

Grid 0 

. . . 
Per-app 
Device 
Global 

Memory 

. . . 

Grid 1 

__device__  float GlobalVar; 

__shared__  float SharedVar;  float  LocalVar; 
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Using CPU+GPU Architecture 

!   Heterogeneous system architecture 
!   Use the right processor and memory for each task 
!   CPU excels at executing a few serial threads 

!   Fast sequential execution 
!   Low latency cached memory access 

!   GPU excels at executing many parallel threads 
!   Scalable parallel execution 
!   High bandwidth parallel memory access 
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CUDA kernel maps to Grid of Blocks 

kernel_func<<<nblk, nthread>>>(param, … ); 
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Registers 

Thread blocks execute on an SM 
Thread instructions execute on a core 
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 float  myVar; __shared__  float shVar; __device__  float glVar; 
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CUDA Parallelism 

GPU 

SMs: SM
em

 

SM
em

 

SM
em

 

PCIe	  
Bridge Host 

Memory 

CPU 

Cache 

Device Memory 

Cache 

. . 
. 

Host Thread Grid of Thread Blocks 

!   CUDA virtualizes the physical hardware 
!   Thread is a virtualized scalar processor  (registers, PC, state) 
!   Block is a virtualized multiprocessor  (threads, shared mem.) 

!   Scheduled onto physical hardware without pre-emption 
!   Threads/blocks launch & run to completion 
!   Blocks execute independently 
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Expose Massive Parallelism 

!  Use hundreds to thousands of thread blocks 
!  A thread block executes on one SM 
!  Need many blocks to use 10s of SMs 
!  SM executes 2 to 8 concurrent blocks efficiently 
!  Need many blocks to scale to different GPUs 
!  Coarse-grained data parallelism, task parallelism 

!  Use hundreds of threads per thread block 
!  A thread instruction executes on one core  
!  Need 384 – 512 threads/SM to use all the cores all the time 
!  Use multiple of 32 threads (warp) per thread block 
!  Fine-grained data parallelism, vector parallelism, thread 

parallelism, instruction-level parallelism 
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Scalable Parallel Architectures 
run thousands of concurrent threads 

128 SP cores 
12,288 threads  

32 SP cores 
3,072 threads 

240 SP cores 
30,720 threads 
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Fermi SM increases instruction-level 
parallelism 

512 CUDA Cores 
24,576 threads 

SM 

CUDA 
Core 
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SM parallel instruction execution 

!  SIMT (Single Instruction Multiple Thread) execution 
!  Threads run in groups of 32 called warps 
!  Threads in a warp share instruction unit (IU) 
!  HW automatically handles branch divergence 

!  Hardware multithreading 
!  HW resource allocation & thread scheduling 
!  HW relies on threads to hide latency 

!  Threads have all resources needed to run 
!  Any warp not waiting for something can run 
!  Warp context switches are zero overhead 

Load/Store Units x 16 
Special Func Units x 4 
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SIMT Warp Execution in the SM 

Warp:  a set of 32 parallel threads 
that execute an instruction 
together 

SIMT:  Single-Instruction Multi-Thread 
applies instruction to warp of 
independent parallel threads 

!   SM dual issue pipelines select two 
warps to issue to parallel cores 

!   SIMT warp executes each instruction 
for 32 threads 

!   Predicates enable/disable individual 
thread execution 

!   Stack manages per-thread branching 

!   Redundant regular computation 
faster than irregular branching 
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Enable Global Memory Coalescing 

!   Individual threads access independent addresses 
!   A thread loads/stores 1, 2, 4, 8, 16 B per access 
!   LD.sz / ST.sz;   sz = {8, 16, 32, 64, 128} bits per thread 

!   For 32 parallel threads in a warp,  SM load/store units coalesce 
individual thread accesses into minimum number of 128B 
cache line accesses or 32B memory block accesses 

!   Access serializes to distinct cache lines or memory blocks 

!   Use nearby addresses for threads in a warp 

!   Use unit stride accesses when possible 
!   Use Structure of Arrays (SoA) to get unit stride 
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Unit stride accesses coalesce well 

__global__ void kernel(float* arrayIn, 
                       float* arrayOut) 
{ 
  int i = blockDim.x * blockIdx.x 
        + threadIdx.x; 
  // Stride 1 coalesced load access    
  float val = arrayIn[i]; 
  // Stride 1 coalesced store access    
  arrayOut[i] = val + 1; 
} 
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Example Coalesced Memory Access 

!   16 threads within a warp load 8 B per thread: 
        LD.64 Rd, [Ra + offset] ; 

!   16 individual 8B thread accesses fall in two 
128B cache lines 

!   LD.64 coalesces 16 individual accesses into 
2 cache line accesses 

!   Implements parallel vector scatter/gather 

!   Loads from same address are broadcast 
!   Stores to same address select a winner 
!   Atomics to same address serialize 

!   Coalescing scales gracefully with the 
number of unique cache lines or memory 
blocks accessed 

Thread 15 Thread 14 Thread 13 Thread 12 Thread 11 Thread 10 Thread 9 Thread 8 Thread 7 Thread 6 Thread 5 Thread 4 Thread 3 Thread 2 Thread 1 Thread 0 
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Address 160 
Address 168 

Address 144 
Address 152 

Address 128 
Address 136 

Address 112 
Address 120 

Address 256 
Address 264 

Address 240 
Address 248 

128B
 cache line 



©  2010 NVIDIA Corporation   Optimizing GPU Performance    2010-05-20 16 

Memory Access Pipeline 

!   Load/store/atomic memory accesses are pipelined 
!   Latency to DRAM is a few hundred clocks 
!   Batch load requests together, then use return values 
!   Latency to Shared Memory / L1 Cache is 10 – 20 cycles 
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Fermi Cached Memory Hierarchy 

!   Configurable L1 cache per SM 
!   16KB L1$ / 48KB Shared Memory 
!   48KB L1$ / 16KB Shared Memory 

!   L1 caches per-thread local accesses 
!   Register spilling, stack access 

!   L1 caches global LD accesses 
!   Global stores bypass L1 

!   Shared 768KB L2 cache 
!   L2 cache speeds atomic operations 
!   Caching captures locality, amplifies 

bandwidth, reduces latency 
!   Caching aids irregular or 

unpredictable accesses 
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Use per-Block Shared Memory 

!   Latency is an order of magnitude lower than L2 or DRAM 
!   Bandwidth is 4x – 8x higher than L2 or DRAM 

!   Place data blocks or tiles in shared memory when the data is 
accessed multiple times 

!   Communicate among threads in a block using Shared memory 
!   Use synchronization barriers between communication steps 

!   __syncthreads() is single bar.sync instruction – very fast 

!   Threads of warp access shared memory banks in parallel via 
fast crossbar network 

!   Bank conflicts can occur – incur a minor performance impact 
!   Pad 2D tiles with extra column for parallel column access if tile 

width == # of banks (16 or 32) 
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Using cudaMemCpy() 

!   cudaMemcpy() invokes a DMA copy engine 
!   Minimize the number of copies 
!   Use data as long as possible in a given place 
!   PCIe gen2 peak bandwidth = 6 GB/s 
!   GPU load/store DRAM peak bandwidth = 150 GB/s 
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Overlap computing & CPUGPU transfers 

!   cudaMemcpy() invokes 
data transfer engines 
!   CPUGPU and 

GPUCPU data 
transfers 

!   Overlap with CPU and 
GPU processing 

!  Pipeline Snapshot: 

Kernel 0 

Kernel 1 

Kernel 2 

Kernel 3 

cpy => 

cpy => 

cpy => 

cpy => 

cpy <= 

cpy <= 

cpy <= 

cpy <= 
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Fermi runs independent kernels in parallel 
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Minimize thread runtime variance 

Warps executing kernel with variable run time 

SMs 

Long running warp 

Time:  
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PTX Instructions 

!   Generate a program.ptx file with  nvcc –ptx  
!   http://developer.download.nvidia.com/compute/cuda/3_0/toolkit/docs/

ptx_isa_2.0.pdf 
!   PTX instructions:  op.type dest, srcA, srcB; 

!   type = .b32, .u32, .s32, .f32, .b64, .u64, .s64, .f64 
!   memtype = .b8, .b16, .b32, .b64, .b128 

!   PTX instructions map directly to Fermi instructions 
!   Some map to instruction sequences, e.g. div, rem, sqrt 
!   PTX virtual register operands map to SM registers 

!   Arithmetic: add, sub, mul, mad, fma, div, rcp, rem, abs, neg, min, 
max, setp.cmp, cvt 

!   Function: sqrt, sin, cos, lg2, ex2 
!   Logical: mov, selp, and, or, xor, not, cnot, shl, shr 
!   Memory: ld, st, atom.op, tex, suld, sust 
!   Control: bra, call, ret, exit, bar.sync 
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Optimizing Parallel GPU Performance 

!  Understand the parallel architecture 
!  Understand how application maps to architecture 
!  Use LOTS of parallel threads and blocks 
!  Often better to redundantly compute in parallel 
!  Access memory in local regions 
!  Leverage high memory bandwidth 
!  Keep data in GPU device memory 
!  Experiment and measure 

!  Questions? 


