

Rechen- und Kommunikationszentrum (RZ)

Introduction to OpenMP

part I of III

Christian Terboven <terboven@rz.rwth-aachen.de>

30.07.2013 / Aachen, Germany

Stand: 22.07.2013

Version 2.3

RZ: Christian Terboven

Folie 2

 De-facto standard for Shared-Memory Parallelization.

 1997: OpenMP 1.0 for FORTRAN

 1998: OpenMP 1.0 for C and C++

 1999: OpenMP 1.1 for FORTRAN

(errata)

 2000: OpenMP 2.0 for FORTRAN

 2002: OpenMP 2.0 for C and C++

 2005: OpenMP 2.5 now includes

both programming languages.

 05/2008: OpenMP 3.0 release

 07/2011: OpenMP 3.1 release

 07/2013: OpenMP 4.0 released

History

http://www.OpenMP.org

RWTH Aachen University is
a member of the OpenMP
Architecture Review Board
(ARB) since 2006.

RZ: Christian Terboven

Folie 3

 Basic Concept: Parallel Region

 The For Construct

 The Single Construct

 The Task Construct

 Scoping: Managing the Data Environment

 Synchronization: the Critical and Reduction Constructs

 More Components of OpenMP

Agenda

RZ: Christian Terboven

Folie 4

Parallel Region

RZ: Christian Terboven

Folie 5

 OpenMP programs start with

just one thread: The Master.

 Worker threads are spawned

at Parallel Regions, together

with the Master they form the

Team of threads.

 In between Parallel Regions the

Worker threads are put to sleep.

The OpenMP Runtime takes care

of all thread management work.

 Concept: Fork-Join.

 Allows for an incremental parallelization!

OpenMP Execution Model

Master Thread Serial Part

Parallel
Region Slave

Threads Slave
Threads Worker
Threads

Parallel
Region

Serial Part

RZ: Christian Terboven

Folie 6

 OpenMP: Shared-Memory Parallel Programming Model.

 All processors/cores access

 a shared main memory.

 Real architectures are

 more complex, as we

 will see later / as we

 have seen.

 Parallelization in OpenMP

 employs multiple threads.

OpenMP‘s machine model

Memory

Cache Cache Cache Cache

Proc Proc Proc Proc

Crossbar / Bus

RZ: Christian Terboven

Folie 7

 The parallelism has to be expressed explicitly.

 Structured Block

 Exactly one entry point at the top

 Exactly one exit point at the bottom

 Branching in or out is not allowed

 Terminating the program is allowed

(abort / exit)

Parallel Region and Structured Blocks

C/C++

#pragma omp parallel

{

 ...

 structured block

 ...

}

 Specification of number of threads:

 Environment variable:

OMP_NUM_THREADS=…

 Or: Via num_threads clause:

add num_threads(num) to the

parallel construct

Fortran

!$omp parallel

 ...

 structured block

 ...

$!omp end parallel

RZ: Christian Terboven

Folie 8

Hello OpenMP World

Demo

RZ: Christian Terboven

Folie 9

Hello orphaned World

Demo

RZ: Christian Terboven

Folie 10

 From within a shell, global adjustment of the number of threads:

 export OMP_NUM_THREADS=4

 ./program

 From within a shell, one-time adjustment of the number of threads:

 OMP_NUM_THREADS=4 ./program

 Intel Compiler on Linux: asking for more information:

 export KMP_AFFINITY=verbose

 export OMP_NUM_THREADS=4

 ./program

Starting OpenMP Programs on Linux

RZ: Christian Terboven

Folie 11

For Construct

RZ: Christian Terboven

Folie 12

 If only the parallel construct is used, each thread executes the

Structured Block.

 Program Speedup: Worksharing

 OpenMP‘s most common Worksharing construct: for

 Distribution of loop iterations over all threads in a Team.

 Scheduling of the distribution can be influenced.

 Loops often account for most of a program‘s runtime!

For Worksharing

C/C++

int i;

double a[N], b[N], c[N];

#pragma omp parallel for

for (i = 0; i < N; i++)

{

 a[i] = b[i] + c[i];

}

Fortran

INTEGER :: i

INTEGER, DIMENSION(N) :: a,b,c

!$omp parallel do

DO i = 1, N

 a[i] = b[i] + c[i];

END DO

RZ: Christian Terboven

Folie 13

Worksharing illustrated

do i = 0, 99

 a(i) = b(i) + c(i)

end do

do i = 0, 24

 a(i) = b(i) + c(i)

end do

do i = 25, 49

 a(i) = b(i) + c(i)

end do

do i = 50, 74

 a(i) = b(i) + c(i)

end do

do i = 75, 99

 a(i) = b(i) + c(i)

end do

A(0)
.
.
.

A(99)

B(0)
.
.
.

B(99)

C(0)
.
.
.

C(99)

Memory Pseudo-Code
Here: 4 Threads

Thread 1

Thread 2

Thread 3

Thread 4

Serial

RZ: Christian Terboven

Folie 14

Vector Addition

Demo

RZ: Christian Terboven

Folie 15

The Single Construct

RZ: Christian Terboven

Folie 16

 The single construct specifies that the enclosed structured block is

executed by only on thread of the team.

 It is up to the runtime which thread that is.

 Useful for:

 I/O

 Memory allocation and deallocation, etc. (in general: setup work)

 Implementation of the single-creator parallel-executor pattern as we will see

now…

The Single Construct

C/C++

#pragma omp single [clause]

... structured block ...

Fortran

!$omp single [clause]

... structured block ...

!$omp end single

RZ: Christian Terboven

Folie 17

Task Construct

RZ: Christian Terboven

Folie 18

 Lets solve Sudoku puzzles with brute multi-core force

 (1) Find an empty field

 (2) Insert a number

 (3) Check Sudoku

 (4 a) If invalid:

 Delete number,

 Insert next number

 (4 b) If valid:

 Go to next field

Sudoko for Lazy Computer Scientists

RZ: Christian Terboven

Folie 19

 Each encountering thread/task creates a new Task

 Code and data is being packaged up

 Tasks can be nested

 Into another Task directive

 Into a Worksharing construct

 Data scoping clauses:

 shared(list)

 private(list) firstprivate(list)

 default(shared | none)

The Task Construct

C/C++

#pragma omp task [clause]

... structured block ...

Fortran

!$omp task [clause]

... structured block ...

!$omp end task

RZ: Christian Terboven

Folie 20

 This parallel algorithm finds all valid solutions

 (1) Search an empty field

 (2) Insert a number

 (3) Check Sudoku

 (4 a) If invalid:

 Delete number,

 Insert next number

 (4 b) If valid:

 Go to next field

Parallel Brute-force Sudoku (1/3)

#pragma omp task

needs to work on a new copy
of the Sudoku board

first call contained in a
#pragma omp parallel

#pragma omp single

such that one tasks starts the
execution of the algorithm

#pragma omp taskwait

wait for all child tasks

RZ: Christian Terboven

Folie 21

 OpenMP parallel region creates a team of threads

#pragma omp parallel

{

#pragma omp single

 solve_parallel(0, 0, sudoku2,false);

} // end omp parallel

 Single construct: One thread enters the execution of solve_parallel

 the other threads wait at the end of the single …

 … and are ready to pick up tasks „from the work queue“

 Syntactic sugar (either you like it or you do not)

#pragma omp parallel sections

{

 solve_parallel(0, 0, sudoku2,false);

} // end omp parallel

Parallel Brute-force Sudoku (2/3)

RZ: Christian Terboven

Folie 22

 The actual implementation

for (int i = 1; i <= sudoku->getFieldSize(); i++) {

 if (!sudoku->check(x, y, i)) {

#pragma omp task firstprivate(i,x,y,sudoku)

{

 // create from copy constructor

 CSudokuBoard new_sudoku(*sudoku);

 new_sudoku.set(y, x, i);

 if (solve_parallel(x+1, y, &new_sudoku)) {

 new_sudoku.printBoard();

 }

} // end omp task

 }

}

#pragma omp taskwait

Parallel Brute-force Sudoku (3/3)

#pragma omp taskwait

wait for all child tasks

#pragma omp task

needs to work on a new copy
of the Sudoku board

RZ: Christian Terboven

Folie 23

Performance Evaluation

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8 9 10 11 12 16 24 32

R
u

n
ti

m
e

[s
e

c]
 f

o
r

1
6

x1
6

#threads

Sudoku on 2x Intel® Xeon® E5-2650 @2.0 GHz

Intel C++ 13.1, scatter binding

RZ: Christian Terboven

Folie 24

Scoping

RZ: Christian Terboven

Folie 25

 Managing the Data Environment is the challenge of OpenMP.

 Scoping in OpenMP: Dividing variables in shared and private:

 private-list and shared-list on Parallel Region

 private-list and shared-list on Worksharing constructs

 General default is shared for Parallel Region, firstprivate for Tasks.

 Loop control variables on for-constructs are private

 Non-static variables local to Parallel Regions are private

 private: A new uninitialized instance is created for each thread

 firstprivate: Initialization with Master‘s value

 lastprivate: Value of last loop iteration is written back to Master

 Static variables are shared

Scoping Rules

RZ: Christian Terboven

Folie 26

 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

RZ: Christian Terboven

Folie 27

 Global / static variables can be privatized with the threadprivate

directive

 One instance is created for each thread

 Before the first parallel region is encountered

 Instance exists until the program ends

 Does not work (well) with nested Parallel Region

 Based on thread-local storage (TLS)

 TlsAlloc (Win32-Threads), pthread_key_create (Posix-Threads), keyword

__thread (GNU extension)

Privatization of Global/Static Variables

C/C++

static int i;

#pragma omp threadprivate(i)

Fortran

SAVE INTEGER :: i

!$omp threadprivate(i)

RZ: Christian Terboven

Folie 28

 Some rules from Parallel Regions apply:

 Static and Global variables are shared

 Automatic Storage (local) variables are private

 If shared scoping is not derived by default:

 Orphaned Task variables are firstprivate by default!

 Non-Orphaned Task variables inherit the shared attribute!

→ Variables are firstprivate unless shared in the enclosing context

 So far no verification tool is available to check Tasking programs

for correctness!

Tasks in OpenMP: Data Scoping

RZ: Christian Terboven

Folie 29

Synchronization

RZ: Christian Terboven

Folie 30

 Can all loops be parallelized with for-constructs? No!

 Simple test: If the results differ when the code is executed backwards, the

loop iterations are not independent. BUT: This test alone is not sufficient:

 Data Race: If between two synchronization points at least one thread

writes to a memory location from which at least one other thread

reads, the result is not deterministic (race condition).

Synchronization Overview

C/C++

int i;

double s, a[N];

#pragma omp parallel for

for (i = 0; i < N; i++)

{

 s = s + a[i];

}

RZ: Christian Terboven

Folie 31

 A Critical Region is executed by all threads, but by only one thread

simultaneously (Mutual Exclusion).

 Do you think this solution scales well?

Synchronization: Critical Region

C/C++

#pragma omp critical (name)

{

 ... structured block ...

}

C/C++

int i;

double s, a[N];

#pragma omp parallel for

for (i = 0; i < N; i++)

{

#pragma omp critical

 { s = s + a[i]; }

}

RZ: Christian Terboven

Folie 32

#pragma omp parallel

{

#pragma omp for

for (i = 0; i < N; i++)

{

 s = s + a[i];

}

} // end parallel

It‘s your turn: Make It Scale!

do i = 0, 99

 s = s + a(i)

end do

do i = 0, 24
 s = s + a(i)
end do

do i = 25, 49
 s = s + a(i)
end do

do i = 50, 74
 s = s + a(i)
end do

do i = 75, 99
 s = s + a(i)
end do

RZ: Christian Terboven

Folie 33

 In a reduction-operation the operator is applied to all variables in the
list. The variables have to be shared.

 reduction(operator:list)

 The result is provided in the associated reduction variable

 Possible reduction operators with initialization value:

 + (0), * (1), - (0),

 & (~0), | (0), && (1), || (0),

 ^ (0), min (least number), max (largest number)

The Reduction Clause

C/C++

int i;

double s, a[N];

#pragma omp parallel for reduction(+:s)

for(i = 0; i < N; i++)

{

 s = s + a[i];

}

RZ: Christian Terboven

Folie 34

 OpenMP barrier (implicit or explicit)

 All tasks created by any thread of the current Team are guaranteed to be

completed at barrier exit

 Task barrier: taskwait

 Encountering Task suspends until child tasks are complete

 Only direct childs, not descendants!

The Barrier and Taskwait Constructs

C/C++

#pragma omp taskwait

C/C++

#pragma omp barrier

RZ: Christian Terboven

Folie 35

More Components of OpenMP

RZ: Christian Terboven

Folie 36

Components of OpenMP

Directives Runtime Functions Env. Variables

Red color indicates new addition to OpenMP 4.0

Array Section Expressions
Parallel Region
Worksharing Constructs
SIMD Constructs
Device Constructs
Tasking
Synchronization Constructs
Cancellation Constructs
Declaration Constructs
Memory Flush
Data-sharing attributes

Number of Threads
Thread ID
Dynamic Thread Adjustment
Cancellation Status
Nested Parallelism
Schedlue
Active Levels
Device Selection
Thread Limit
Nesting Level
Ancestor Thread
Team Size
Wallclock Timer
Locking

Number of Threads
Scheduling Type
Dynamic Thread Adjustment
Thread Affinity Places
Nested Parallelism
Stacksize
Idle Thread
Active Levels
Thread Limit
Cancellation
Default Printout

RZ: Christian Terboven

Folie 37

The Worksharing Constructs

 The work is distributed over the threads

 Must be enclosed in a parallel region

 Must be encountered by all threads in theam, or non at all

 No implied barrier on entry; implied barrier on exit

 A worksharing construct does not launch any new threads

RZ: Christian Terboven

Folie 38

Some Additional Directives

RZ: Christian Terboven

Folie 39

Appendix A: make/gmake

RZ: Christian Terboven

Folie 40

 make: “smart” utility to manage compilation of programs and much more

• automatically detects which parts need to be rebuild

• general rules for compilation of many files

• dependencies between files can be handled

 Usage:

 make <target> or gmake <target>

 Rules:

 target: output file (or only a name)

 prerequisites: input files (e.g. source code files)

 command: action to be performed

make / gmake

target ... : prerequisites ...

< tab > command

< tab > ...

