
INCOMPLETE-LU AND CHOLESKY
PRECONDITIONED ITERATIVE METHODS
USING CUSPARSE AND CUBLAS

WP-06720-001_v6.0 | February 2014

White Paper

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
Chapter 2. Preconditioned Iterative Methods..3
Chapter 3. Numerical Experiments... 10
Chapter 4. Conclusion... 16
Appendix A. Acknowledgements...17
Appendix B. References...18

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | iii

LIST OF FIGURES

Figure 1 Speedup of the Incomplete-LU Cholesky (with 0 fill-in) Prec. Iterative Methods 2

Figure 2 The Splitting of Total Time Taken on the GPU by the Preconditioned Iterative
Method...9

Figure 3 Performance of BiCGStab and CG with Incomplete-LU Cholesky Preconditioning 14

Figure 4 Speedup of prec. BiCGStab and CG on GPU (with csrilu0) vs. CPU (with all) 15

Figure 5 Average Speedup of BiCGStab and CG on GPU (with csrilu0) and CPU (with all) 15

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | iv

LIST OF TABLES

Table 1 Symmetric Positive Definite (s.p.d.) and Nonsymmetric Test Matrices 10

Table 2 csrilu0 Preconditioned CG and BiCGStab Methods .. 11

Table 3 csrilut(5,10-3) Preconditioned CG and BiCGStab Methods 11

Table 4 csrilut(10,10-5) Preconditioned CG and BiCGStab Methods 12

Table 5 csrilut(20,10-7) Preconditioned CG and BiCGStab Methods 13

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 1

Chapter 1.
INTRODUCTION

The solution of large sparse linear systems is an important problem in computational
mechanics, atmospheric modeling, geophysics, biology, circuit simulation and many
other applications in the field of computational science and engineering. In general,
these linear systems can be solved using direct or preconditioned iterative methods.
Although the direct methods are often more reliable, they usually have large memory
requirements and do not scale well on massively parallel computer platforms.

The iterative methods are more amenable to parallelism and therefore can be used
to solve larger problems. Currently, the most popular iterative schemes belong to
the Krylov subspace family of methods. They include Bi-Conjugate Gradient Stabilized
(BiCGStab) and Conjugate Gradient (CG) iterative methods for nonsymmetric and
symmetric positive definite (s.p.d.) linear systems, respectively [2], [11]. We describe these
methods in more detail in the next section.

In practice, we often use a variety of preconditioning techniques to improve the
convergence of the iterative methods. In this white paper we focus on the incomplete-
LU and Cholesky preconditioning [11], which is one of the most popular of these
preconditioning techniques. It computes an incomplete factorization of the coefficient
matrix and requires a solution of lower and upper triangular linear systems in every
iteration of the iterative method.

In order to implement the preconditioned BiCGStab and CG we use the sparse matrix-
vector multiplication [3], [15] and the sparse triangular solve [8], [16] implemented in the
cuSPARSE library. We point out that the underlying implementation of these algorithms
takes advantage of the CUDA parallel programming paradigm [5], [9], [13], which
allows us to explore the computational resources of the graphical processing unit (GPU).
In our numerical experiments the incomplete factorization is performed on the CPU
(host) and the resulting lower and upper triangular factors are then transferred to the
GPU (device) memory before starting the iterative method. However, the computation of
the incomplete factorization could also be accelerated on the GPU.

We point out that the parallelism available in these iterative methods depends highly
on the sparsity pattern of the coefficient matrix at hand. In our numerical experiments
the incomplete-LU and Cholesky preconditioned iterative methods achieve on average
more than 2x speedup using the cuSPARSE and cuBLAS libraries on the GPU over the
MKL [17] implementation on the CPU. For example, the speedup for the preconditioned

Introduction

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 2

iterative methods with the incomplete-LU and Cholesky factorization with 0 fill-in
(ilu0) is shown in Figure 1 for matrices resulting from a variety of applications. It will be
described in more detail in the last section.

of
fsh

or
e

(R
' ,R

)

af
_s

he
ll3

 (R
' ,R

)

pa
ra

bo
lic

_f
em

 (R
' ,R

)

ap
ac

he
2

(R
' ,R

)

ec
olo

gy
2

(R
' ,R

)

th
er

m
al2

 (R
' ,R

)

G3_
cir

cu
it (

R
' ,R

)

FEM
_3

D_t
he

rm
al2

 (L
,U

)

th
er

m
om

ec
h_

dk
 (L

,U
)

ASIC
_3

20
ks

 (L
,U

)
ca

ge
13

 (L
,U

)

at
m

os
m

od
d

(L
,U

)

sp
ee

du
p

av
er

ag
e

S
pe

ed
up

 (
in

cl
ud

in
g

fa
ct

.)
G

P
U

 (
ilu

0)
 v

s.
 C

P
U

 (
ilu

0)

0

1

2

3

4

5

6

Speedup
Average:

2.07x

Figure 1 Speedup of the Incomplete-LU Cholesky (with 0 fill-in) Prec.
Iterative Methods

In the next sections we briefly describe the methods of interest and comment on the role
played in them by the parallel sparse matrix-vector multiplication and triangular solve
algorithms.

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 3

Chapter 2.
PRECONDITIONED ITERATIVE METHODS

Let us consider the linear system

(1)

where is a nonsingular coefficient matrix and are the solution and
right-hand-side vectors.

In general, the iterative methods start with an initial guess and perform a series of
steps that find more accurate approximations to the solution. There are two types of
iterative methods: (i) the stationary iterative methods, such as the splitting-based Jacobi
and Gauss-Seidel (GS), and (ii) the nonstationary iterative methods, such as the Krylov
subspace family of methods, which includes CG and BiCGStab. As we mentioned earlier
we focus on the latter in this white paper.

The convergence of the iterative methods depends highly on the spectrum of the
coefficient matrix and can be significantly improved using preconditioning. The
preconditioning modifies the spectrum of the coefficient matrix of the linear system in
order to reduce the number of iterative steps required for convergence. It often involves
finding a preconditioning matrix , such that is a good approximation of and
the systems with are relatively easy to solve.

For the s.p.d. matrix we can let be its incomplete-Cholesky factorization, so

that , where is an upper triangular matrix. Let us assume that is

nonsingular, then is s.p.d. and instead of solving the linear system (1), we can
solve the preconditioned linear system

(2)

The pseudocode for the preconditioned CG iterative method is shown in Algorithm 1.

Preconditioned Iterative Methods

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 4

Algorithm 1 Conjugate Gradient (CG)

Notice that in every iteration of the incomplete-Cholesky preconditioned CG iterative
method we need to perform one sparse matrix-vector multiplication and two triangular

Preconditioned Iterative Methods

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 5

solves. The corresponding CG code using the cuSPARSE and cuBLAS libraries in C
programming language is shown below.
/***** CG Code *****/
/* ASSUMPTIONS:
 1. The cuSPARSE and cuBLAS libraries have been initialized.
 2. The appropriate memory has been allocated and set to zero.
 3. The matrix A (valA, csrRowPtrA, csrColIndA) and the incomplete-
 Cholesky upper triangular factor R (valR, csrRowPtrR, csrColIndR)
 have been computed and are present in the device (GPU) memory. */

//create the info and analyse the lower and upper triangular factors
cusparseCreateSolveAnalysisInfo(&inforRt);
cusparseCreateSolveAnalysisInfo(&inforR);
cusparseDcsrsv_analysis(handle,CUSPARSE_OPERATION_TRANSPOSE,
 n, descrR, valR, csrRowPtrR, csrColIndR, inforRt);
cusparseDcsrsv_analysis(handle,CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, descrR, valR, csrRowPtrR, csrColIndR, inforR);

//1: compute initial residual r = f - A x0 (using initial guess in x)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,
 descrA, valA, csrRowPtrA, csrColIndA, x, 0.0, r);
cublasDscal(n,-1.0, r, 1);
cublasDaxpy(n, 1.0, f, 1, r, 1);
nrmr0 = cublasDnrm2(n, r, 1);

//2: repeat until convergence (based on max. it. and relative residual)
for (i=0; i<maxit; i++){
 //3: Solve M z = r (sparse lower and upper triangular solves)
 cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_TRANSPOSE,
 n, 1.0, descrpR, valR, csrRowPtrR, csrColIndR,
 inforRt, r, t);
 cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, 1.0, descrpR, valR, csrRowPtrR, csrColIndR,
 inforR, t, z);

 //4: \rho = r^{T} z
 rhop= rho;
 rho = cublasDdot(n, r, 1, z, 1);
 if (i == 0){
 //6: p = z
 cublasDcopy(n, z, 1, p, 1);
 }
 else{
 //8: \beta = rho_{i} / \rho_{i-1}
 beta= rho/rhop;
 //9: p = z + \beta p
 cublasDaxpy(n, beta, p, 1, z, 1);
 cublasDcopy(n, z, 1, p, 1);
 }

 //11: Compute q = A p (sparse matrix-vector multiplication)
 cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,
 descrA, valA, csrRowPtrA, csrColIndA, p, 0.0, q);

 //12: \alpha = \rho_{i} / (p^{T} q)
 temp = cublasDdot(n, p, 1, q, 1);
 alpha= rho/temp;
 //13: x = x + \alpha p
 cublasDaxpy(n, alpha, p, 1, x, 1);
 //14: r = r - \alpha q
 cublasDaxpy(n,-alpha, q, 1, r, 1);

 //check for convergence
 nrmr = cublasDnrm2(n, r, 1);
 if (nrmr/nrmr0 < tol){
 break;
 }
}

//destroy the analysis info (for lower and upper triangular factors)
cusparseDestroySolveAnalysisInfo(inforRt);
cusparseDestroySolveAnalysisInfo(inforR);

Preconditioned Iterative Methods

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 6

For the nonsymmetric matrix we can let be its incomplete-LU factorization, so that
, where and are lower and upper triangular matrices, respectively. Let

us assume that is nonsingular, then is nonsingular and instead of solving the
linear system (1), we can solve the preconditioned linear system

(3)

The pseudocode for the preconditioned BiCGStab iterative method is shown in
Algorithm 2.

Preconditioned Iterative Methods

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 7

Algorithm 2 Bi-Conjugate Gradient Stabilized (BiCGStab)

Notice that in every iteration of the incomplete-LU preconditioned BiCGStab iterative
method we need to perform two sparse matrix-vector multiplications and four

Preconditioned Iterative Methods

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 8

triangular solves. The corresponding BiCGStab code using the cuSPARSE and cuBLAS
libraries in C programming language is shown below.
/***** BiCGStab Code *****/
/* ASSUMPTIONS:
 1. The cuSPARSE and cuBLAS libraries have been initialized.
 2. The appropriate memory has been allocated and set to zero.
 3. The matrix A (valA, csrRowPtrA, csrColIndA) and the incomplete-
 LU lower L (valL, csrRowPtrL, csrColIndL) and upper U (valU,
 csrRowPtrU, csrColIndU) triangular factors have been
 computed and are present in the device (GPU) memory. */

//create the info and analyse the lower and upper triangular factors
cusparseCreateSolveAnalysisInfo(&infoL);
cusparseCreateSolveAnalysisInfo(&infoU);
cusparseDcsrsv_analysis(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, descrL, valL, csrRowPtrL, csrColIndL, infoL);
cusparseDcsrsv_analysis(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, descrU, valU, csrRowPtrU, csrColIndU, infoU);

//1: compute initial residual r = b - A x0 (using initial guess in x)
cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,
 descrA, valA, csrRowPtrA, csrColIndA, x, 0.0, r);
cublasDscal(n,-1.0, r, 1);
cublasDaxpy(n, 1.0, f, 1, r, 1);
//2: Set p=r and \tilde{r}=r
cublasDcopy(n, r, 1, p, 1);
cublasDcopy(n, r, 1, rw,1);
nrmr0 = cublasDnrm2(n, r, 1);

//3: repeat until convergence (based on max. it. and relative residual)
for (i=0; i<maxit; i++){
 //4: \rho = \tilde{r}^{T} r
 rhop= rho;
 rho = cublasDdot(n, rw, 1, r, 1);
 if (i > 0){
 //12: \beta = (\rho_{i} / \rho_{i-1}) (\alpha / \omega)
 beta= (rho/rhop)*(alpha/omega);
 //13: p = r + \beta (p - \omega v)
 cublasDaxpy(n,-omega,q, 1, p, 1);
 cublasDscal(n, beta, p, 1);
 cublasDaxpy(n, 1.0, r, 1, p, 1);
 }
 //15: M \hat{p} = p (sparse lower and upper triangular solves)
 cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, 1.0, descrL, valL, csrRowPtrL, csrColIndL,
 infoL, p, t);
 cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, 1.0, descrU, valU, csrRowPtrU, csrColIndU,
 infoU, t, ph);

 //16: q = A \hat{p} (sparse matrix-vector multiplication)
 cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,
 descrA, valA, csrRowPtrA, csrColIndA, ph, 0.0, q);

 //17: \alpha = \rho_{i} / (\tilde{r}^{T} q)
 temp = cublasDdot(n, rw, 1, q, 1);
 alpha= rho/temp;
 //18: s = r - \alpha q
 cublasDaxpy(n,-alpha, q, 1, r, 1);
 //19: x = x + \alpha \hat{p}
 cublasDaxpy(n, alpha, ph,1, x, 1);

 //20: check for convergence
 nrmr = cublasDnrm2(n, r, 1);
 if (nrmr/nrmr0 < tol){
 break;
 }

 //23: M \hat{s} = r (sparse lower and upper triangular solves)
 cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, 1.0, descrL, valL, csrRowPtrL, csrColIndL,
 infoL, r, t);
 cusparseDcsrsv_solve(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
 n, 1.0, descrU, valU, csrRowPtrU, csrColIndU,
 infoU, t, s);

 //24: t = A \hat{s} (sparse matrix-vector multiplication)
 cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, n, n, 1.0,
 descrA, valA, csrRowPtrA, csrColIndA, s, 0.0, t);

 //25: \omega = (t^{T} s) / (t^{T} t)
 temp = cublasDdot(n, t, 1, r, 1);
 temp2= cublasDdot(n, t, 1, t, 1);
 omega= temp/temp2;
 //26: x = x + \omega \hat{s}
 cublasDaxpy(n, omega, s, 1, x, 1);
 //27: r = s - \omega t
 cublasDaxpy(n,-omega, t, 1, r, 1);

 //check for convergence
 nrmr = cublasDnrm2(n, r, 1);
 if (nrmr/nrmr0 < tol){
 break;
 }
}

//destroy the analysis info (for lower and upper triangular factors)
cusparseDestroySolveAnalysisInfo(infoL);
cusparseDestroySolveAnalysisInfo(infoU);

Preconditioned Iterative Methods

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 9

As shown in Figure 2 the majority of time in each iteration of the incomplete-LU
and Cholesky preconditioned iterative methods is spent in the sparse matrix-vector
multiplication and triangular solve. The sparse matrix-vector multiplication has already
been extensively studied in the following references [3], [15]. The sparse triangular solve
is not as well known, so we briefly point out the strategy used to explore parallelism in it
and refer the reader to the NVIDIA technical report [8] for further details.

of
fsh

or
e

(R
' ,R

)

af
_s

he
ll3

 (R
' ,R

)

pa
ra

bo
lic

_f
em

 (R
' ,R

)

ap
ac

he
2

(R
' ,R

)

ec
olo

gy
2

(R
' ,R

)

th
er

m
al2

 (R
' ,R

)

G3_
cir

cu
it (

R
' ,R

)

FEM
_3

D_t
he

rm
al2

 (L
,U

)

th
er

m
om

ec
h_

dk
 (L

,U
)

ASIC
_3

20
ks

 (L
,U

)
ca

ge
13

 (L
,U

)

at
m

os
m

od
d

(L
,U

)

Ti
m

e
(s

)

0%

all other
operations

matrix-vector
multiplication

triangular solve

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Figure 2 The Splitting of Total Time Taken on the GPU by the
Preconditioned Iterative Method

To understand the main ideas behind the sparse triangular solve, notice that although
the forward and back substitution is an inherently sequential algorithm for dense
triangular systems, the dependencies on the previously obtained elements of the
solution do not necessarily exist for the sparse triangular systems. We pursue the
strategy that takes advantage of the lack of these dependencies and split the solution
process into two phases as mentioned in [1], [4], [6], [7], [8], [10], [12], [14].

The analysis phase builds the data dependency graph that groups independent rows
into levels based on the matrix sparsity pattern. The solve phase iterates across the
constructed levels one-by-one and computes all elements of the solution corresponding
to the rows at a single level in parallel. Notice that by construction the rows within each
level are independent of each other, but are dependent on at least one row from the
previous level.

The analysis phase needs to be performed only once and is usually significantly slower
than the solve phase, which can be performed multiple times. This arrangement is ideally
suited for the incomplete-LU and Cholesky preconditioned iterative methods.

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 10

Chapter 3.
NUMERICAL EXPERIMENTS

In this section we study the performance of the incomplete-LU and Cholesky
preconditioned BiCGStab and CG iterative methods. We use twelve matrices selected
from The University of Florida Sparse Matrix Collection [18] in our numerical
experiments. The seven s.p.d. and five nonsymmetric matrices with the respective
number of rows (m), columns (n=m) and non-zero elements (nnz) are grouped and
shown according to their increasing order in Table 1.

Table 1 Symmetric Positive Definite (s.p.d.) and Nonsymmetric Test
Matrices

Matrix m,n nnz s.p.d. Application

1. offshore 259,789 4,242,673 yes Geophysics

2. af_shell3 504,855 17,562,051 yes Mechanics

3. parabolic_fem 525,825 3,674,625 yes General

4. apache2 715,176 4,817,870 yes Mechanics

5. ecology2 999,999 4,995,991 yes Biology

6. thermal2 1,228,045 8,580,313 yes Thermal Simulation

7. G3_circuit 1,585,478 7,660,826 yes Circuit Simulation

8. FEM_3D_thermal2 147,900 3,489,300 no Mechanics

9. thermomech_dK 204,316 2,846,228 no Mechanics

10. ASIC_320ks 321,671 1,316,08511 no Circuit Simulation

11. cage13 445,315 7,479,343 no Biology

12. atmosmodd 1,270,432 8,814,880 no Atmospheric Model

In the following experiments we use the hardware system with NVIDIA C2050
(ECC on) GPU and Intel Core i7 CPU 950 @ 3.07GHz, using the 64-bit Linux
operating system Ubuntu 10.04 LTS, cuSPARSE library 4.0 and MKL 10.2.3.029. The
MKL_NUM_THREADS and MKL_DYNAMIC environment variables are left unset to
allow MKL to use the optimal number of threads.

Numerical Experiments

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 11

We compute the incomplete-LU and Cholesky factorizations using the MKL routines
csrilu0 and csrilut with 0 and threshold fill-in, respectively. In the csrilut routine
we allow three different levels of fill-in denoted by (5,10-3), (10,10-5) and (20,10-7). In
general, the fill-in is based on maximum allowed number of elements
per row and the dropping of elements with magnitude , where ,

 and are the elements of the lower , upper triangular factors and the i-th row of
the coefficient matrix , respectively.

We compare the implementation of the BiCGStab and CG iterative methods using the
cuSPARSE and cuBLAS libraries on the GPU and MKL on the CPU. In our experiments
we let the initial guess be zero, the right-hand-side where , and
the stopping criteria be the maximum number of iterations 2000 or relative residual

, where is the residual at i-th iteration.

Table 2 csrilu0 Preconditioned CG and BiCGStab Methods

ilu0 CPU GPU Speedup

#
fact.
time(s)

copy
time(s)

solve
time(s) # it.

solve
time(s) # it. vs. ilu0

1 0.38 0.02 0.72 8.83E-08 25 1.52 8.83E-08 25 0.57

2 1.62 0.04 38.5 1.00E-07 569 33.9 9.69E-08 571 1.13

3 0.13 0.01 39.2 9.84E-08 1044 6.91 9.84E-08 1044 5.59

4 0.12 0.01 35.0 9.97E-08 713 12.8 9.97E-08 713 2.72

5 0.09 0.01 107 9.98E-08 1746 55.3 9.98E-08 1746 1.92

6 0.40 0.02 155. 9.96E-08 1656 54.4 9.79E-08 1656 2.83

7 0.16 0.02 20.2 8.70E-08 183 8.61 8.22E-08 183 2.32

8 0.32 0.02 0.13 5.25E-08 4 0.52 5.25E-08 4 0.53

9 0.20 0.01 72.7 1.96E-04 2000 40.0 2.08E-04 2000 1.80

10 0.11 0.01 0.27 6.33E-08 6 0.12 6.33E-08 6 1.59

11 0.70 0.03 0.28 2.52E-08 2.5 0.15 2.52E-08 2.5 1.10

12 0.25 0.04 12.5 7.33E-08 76.5 4.30 9.69E-08 74.5 2.79

Table 3 csrilut(5,10-3) Preconditioned CG and BiCGStab Methods

ilut(5,10-3) CPU GPU Speedup

#
fact.
time(s)

copy
time(s)

solve
time(s) # it.

solve
time(s) # it.

vs. ilut
(5,10-3) vs. ilu0

1 0.14 0.01 1.17 9.70E-08 32 1.82 9.70E-08 32 0.67 0.69

2 0.51 0.03 49.1 9.89E-08 748 33.6 9.89E-08 748 1.45 1.39

3 1.47 0.02 11.7 9.72E-08 216 6.93 9.72E-08 216 1.56 1.86

4 0.17 0.01 67.9 9.96E-08 1495 26.5 9.96E-08 1495 2.56 5.27

Numerical Experiments

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 12

ilut(5,10-3) CPU GPU Speedup

#
fact.
time(s)

copy
time(s)

solve
time(s) # it.

solve
time(s) # it.

vs. ilut
(5,10-3) vs. ilu0

5 0.55 0.04 59.5 9.22E-08 653 71.6 9.22E-08 653 0.83 1.08

6 3.59 0.05 47.0 9.50E-08 401 90.1 9.64E-08 401 0.54 0.92

7 1.24 0.05 23.1 8.08E-08 153 24.8 8.08E-08 153 0.93 2.77

8 0.82 0.03 0.12 3.97E-08 2 1.12 3.97E-08 2 0.48 1.10

9 0.10 0.01 54.3 5.68E-04 2000 24.5 1.58E-04 2000 2.21 1.34

10 0.12 0.01 0.16 4.89E-08 4 0.08 6.45E-08 4 1.37 1.15

11 4.99 0.07 0.36 1.40E-08 2.5 0.37 1.40E-08 2.5 0.99 6.05

12 0.32 0.03 39.2 7.05E-08 278.5 10.6 8.82E-08 270.5 3.60 8.60

The results of the numerical experiments are shown in Table 2 through Table 5, where
we state the speedup obtained by the iterative method on the GPU over CPU (speedup),

number of iterations required for convergence (# it.), achieved relative residual ()

and time in seconds taken by the factorization (fact.), iterative solution of the linear
system (solve), and cudaMemcpy of the lower and upper triangular factors to the
GPU (copy). We include the time taken to compute the incomplete-LU and Cholesky
factorization as well as to transfer the triangular factors from the CPU to the GPU
memory in the computed speedup.

Table 4 csrilut(10,10-5) Preconditioned CG and BiCGStab Methods

ilut(10,10-5) CPU GPU Speedup

#
fact.
time(s)

copy
time(s)

solve
time(s) # it.

solve
time(s) # it.

vs. ilut
(10,10-5) vs. ilu0

1 0.15 0.01 1.06 8.79E-08 34 1.96 8.79E-08 34 0.57 0.63

2 0.52 0.03 60.0 9.86E-08 748 38.7 9.86E-08 748 1.54 1.70

3 3.89 0.03 9.02 9.79E-08 147 5.42 9.78E-08 147 1.38 1.83

4 1.09 0.03 34.5 9.83E-08 454 38.2 9.83E-08 454 0.91 2.76

5 3.25 0.06 26.3 9.71E-08 272 55.2 9.71E-08 272 0.51 0.53

6 11.0 0.07 44.7 9.42E-08 263 84.0 9.44E-08 263 0.59 1.02

7 5.95 0.09 8.84 8.53E-08 43 17.0 8.53E-08 43 0.64 1.68

8 2.94 0.04 0.09 2.10E-08 1.5 1.75 2.10E-08 1.5 0.64 3.54

9 0.11 0.01 53.2 4.24E-03 2000 24.4 4.92E-03 2000 2.18 1.31

10 0.12 0.01 0.16 4.89E-11 4 0.08 6.45E-11 4 1.36 1.18

11 2.89 0.09 0.44 6.10E-09 2.5 0.48 6.10E-09 2.5 1.00 33.2

12 0.36 0.03 36.6 7.05E-08 278.5 10.6 8.82E-08 270.5 3.35 8.04

Numerical Experiments

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 13

Table 5 csrilut(20,10-7) Preconditioned CG and BiCGStab Methods

ilut(20,10-7) CPU GPU Speedup

#
fact.
time(s)

copy
time(s)

solve
time(s) # it.

solve
time(s) # it.

vs. ilut
(20,10-7) vs. ilu0

1 0.82 0.02 47.6 9.90E-08 1297 159. 9.86E-08 1292 0.30 25.2

2 9.21 0.11 32.1 8.69E-08 193 84.6 8.67E-08 193 0.44 1.16

3 10.04 0.04 6.26 9.64E-08 90 4.75 9.64E-08 90 1.10 2.36

4 8.12 0.10 15.7 9.02E-08 148 22.5 9.02E-08 148 0.78 1.84

5 8.60 0.10 21.2 9.52E-08 158 53.6 9.52E-08 158 0.48 0.54

6 35.2 0.11 29.2 9.88E-08 162 80.5 9.88E-08 162 0.56 1.18

7 23.1 0.14 3.79 7.50E-08 14 12.1 7.50E-08 14 0.76 3.06

8 5.23 0.05 0.14 1.19E-09 1.5 2.37 1.19E-09 1.5 0.70 6.28

9 0.12 0.01 55.1 3.91E-03 2000 24.4 2.27E-03 2000 2.25 1.36

10 0.14 0.01 0.14 9.35E-08 3.5 0.07 7.19E-08 3.5 1.28 1.18

11 218. 0.12 0.43 9.80E-08 2 0.66 9.80E-08 2 1.00 247.

12 15.0 0.21 12.2 3.45E-08 31 4.95 3.45E-08 31 1.35 5.93

The summary of performance of BiCGStab and CG iterative methods preconditioned
with different incomplete factorizations on the GPU is shown in Figure 3, where "*"
indicates that the method did not converge to the required tolerance. Notice that in
general in our numerical experiments the performance for the incomplete factorizations
decreases as the threshold parameters are relaxed and the factorization becomes more
dense, thus inhibiting parallelism due to data dependencies between rows in the sparse
triangular solve. For this reason, the best performance on the GPU is obtained for the
incomplete-LU and Cholesky factorization with 0 fill-in, which will be our point of
reference.

Numerical Experiments

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 14

of
fsh

or
e

(R
' ,R

)

af
_s

he
ll3

 (R
' ,R

)

pa
ra

bo
lic

_f
em

 (R
' ,R

)

ap
ac

he
2

(R
' ,R

)

ec
olo

gy
2

(R
' ,R

)

th
er

m
al2

 (R
' ,R

)

G3_
cir

cu
it (

R
' ,R

)

FEM
_3

D_t
he

rm
al2

 (L
,U

)

th
er

m
om

ec
h_

dk
 (L

,U
)

ASIC
_3

20
ks

 (L
,U

)
ca

ge
13

 (L
,U

)

at
m

os
m

od
d

(L
,U

)

Ti
m

e
(s

)
on

 th
e

G
P

U
(in

cl
ud

in
g

fa
ct

.)

0.10

1.00

10.00

100.00

ilu0

ilut(5,10-3)

ilut(10,10-5)

ilut(20,10-7)
*

Figure 3 Performance of BiCGStab and CG with Incomplete-LU Cholesky
Preconditioning

Although the incomplete factorizations with a more relaxed threshold are often closer to
the exact factorization and thus result in fewer iterative steps, they are also much more
expensive to compute. Moreover, notice that even though the number of iterative steps
decreases, each step is more computationally expensive. As a result of these tradeoffs
the total time, the sum of the time taken by the factorization and the iterative solve, for
the iterative method does not necessarily decrease with a more relaxed threshold in our
numerical experiments.

The speedup based on the total time taken by the preconditioned iterative method
on the GPU with csrilu0 preconditioner and CPU with all four preconditioners is
shown in Figure 4. Notice that for majority of matrices in our numerical experiments the
implementation of the iterative method using the cuSPARSE and cuBLAS libraries does
indeed outperform the MKL.

Numerical Experiments

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 15

of
fsh

or
e

(R
' ,R

)

af
_s

he
ll3

 (R
' ,R

)

pa
ra

bo
lic

_f
em

 (R
' ,R

)

ap
ac

he
2

(R
' ,R

)

ec
olo

gy
2

(R
' ,R

)

th
er

m
al2

 (R
' ,R

)

G3_
cir

cu
it (

R
' ,R

)

FEM
_3

D_t
he

rm
al2

 (L
,U

)

th
er

m
om

ec
h_

dk
 (L

,U
)

ASIC
_3

20
ks

 (L
,U

)

ca
ge

13
 (L

,U
)

at
m

os
m

od
d

(L
,U

)

S
pe

ed
up

 (
in

cl
ud

in
g

fa
ct

.)
G

P
U

 (
ilu

0)
 v

s.
 C

P
U

 (
al

l)

0

1

2

3

4

5

6

ilu0

ilut(5,10-3)

ilut(10,10-5)

ilut(20,10-7)

*

Figure 4 Speedup of prec. BiCGStab and CG on GPU (with csrilu0) vs.
CPU (with all)

Finally, the average of the obtained speedups is shown in Figure 5, where we have
excluded the runs with cage13 matrix for ilut(10,10-5) and runs with offshore
and cage13 matrices for ilut(20,10-7) incomplete factorizations because of their
disproportional speedup. However, the speedup including these runs is shown in
parenthesis on the same plot. Consequently, we can conclude that the incomplete-LU
and Cholesky preconditioned BiCGStab and CG iterative methods obtain on average
more than 2x speedup on the GPU over their CPU implementation.

2.07x

GPU vs. CPU with ilu0 GPU vs. CPU with ilu0(5,10-3) GPU vs. CPU with ilu0(10,10-5) GPU vs. CPU with ilu0(20,10-7)

2.2x (4.78x)
2.49x (24.79x)2.69x

Figure 5 Average Speedup of BiCGStab and CG on GPU (with csrilu0)
and CPU (with all)

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 16

Chapter 4.
CONCLUSION

The performance of the iterative methods depends highly on the sparsity pattern of
the coefficient matrix at hand. In our numerical experiments the incomplete-LU and
Cholesky preconditioned BiCGStab and CG iterative methods implemented on the GPU
using the cuSPARSE and cuBLAS libraries achieved an average of 2x speedup over their
MKL implementation.

The sparse matrix-vector multiplication and triangular solve, which is split into a slower
analysis phase that needs to be performed only once and a faster solve phase that can be
performed multiple times, were the essential building blocks of these iterative methods.
In fact the obtained speedup was usually mostly influenced by the time taken by the
solve phase of the algorithm.

Finally, we point out that the use of multiple-right-hand-sides would increase the
available parallelism and can result in a significant relative performance improvement
in the preconditioned iterative methods. Also, the development of incomplete-LU and
Cholesky factorizations using CUDA parallel programming paradigm can further
improve the obtained speedup.

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 17

Appendix A.
ACKNOWLEDGEMENTS

This white paper was authored by Maxim Naumov for NVIDIA Corporation.

Permission to make digital or hard copies of all or part of this work for any use is
granted without fee provided that copies bear this notice and the full citation on the first
page.

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 18

Appendix B.
REFERENCES

[1] E. Anderson and Y. Saad Solving Sparse Triangular Linear Systems on Parallel Computers,
Int. J. High Speed Comput., pp. 73-95, 1989.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,
C. Romine, H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, SIAM, Philadelphia, PA, 1994.

[3] N. Bell and M. Garland, Implementing Sparse Matrix-Vector Multiplication on Throughput-
Oriented Processors, Proc. Conf. HPC Networking, Storage and Analysis (SC09), ACM, pp.
1-11, 2009.

[4] A. Greenbaum, Solving Sparse Triangular Linear Systems using Fortran with Parallel
Extensions on the NYU Ultracomputer Prototype, Report 99, NYU Ultracomputer Note, New
York University, NY, April, 1986.

[5] D. B. Kirk and W. W. Hwu, Programming Massively Parallel Processors: A Hands-on
Approach, Elsevier, 2010.

[6] J. Mayer, Parallel Algorithms for Solving Linear Systems with Sparse Triangular Matrices,
Computing, pp. 291-312 (86), 2009.

[7] R. Mirchandaney, J. H. Saltz and D. Baxter, Run-Time Parallelization and Scheduling of
Loops, IEEE Transactions on Computers, pp. (40), 1991.

[8] M. Naumov, Parallel Solution of Sparse Triangular Linear Systems in the Preconditioned
Iterative Methods on the GPU, NVIDIA Technical Report, NVR-2011-001, 2011.

[9] J. Nickolls, I. Buck, M. Garland and K. Skadron, Scalable Parallel Programming with CUDA,
Queue, pp. 40-53 (6-2), 2008.

[10] E. Rothberg and A. Gupta, Parallel ICCG on a Hierarchical Memory Multiprocessor -
Addressing the Triangular Solve Bottleneck, Parallel Comput., pp. 719-741 (18), 1992.

[11] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, Philadelphia, PA, 2nd Ed.,
2003.

References

www.nvidia.com
Incomplete-LU and Cholesky Preconditioned Iterative
Methods Using cuSPARSE and cuBLAS

WP-06720-001_v6.0 | 19

[12] J. H. Saltz, Aggregation Methods for Solving Sparse Triangular Systems on
Multiprocessors, SIAM J. Sci. Statist. Comput., pp. 123-144 (11), 1990.

[13] J. Sanders and E. Kandrot, CUDA by Example: An Introduction to General-Purpose GPU
Programming, Addison-Wesley, 2010.

[14] M. Wolf, M. Heroux and E. Boman, Factors Impacting Performance of Multithreaded
Sparse Triangular Solve, 9th Int. Meet. HPC Comput. Sci. (VECPAR), 2010.

[15] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick and J. Demmel, Optimization of Sparse
Matrix-Vector Multiplication on Emerging Multicore Platforms, Parallel Comput., pp. 178-194
(35-3), 2009.

[16] NVIDIA cuSPARSE and cuBLAS Libraries, http://www.nvidia.com/object/
cuda_develop.html

[17] Intel Math Kernel Library, http://software.intel.com/en-us/articles/intel-mkl

[18] The University of Florida Sparse Matrix Collection, http://www.cise.ufl.edu/research/
sparse/matrices/.

http://www.nvidia.com/object/cuda_develop.html
http://www.nvidia.com/object/cuda_develop.html
http://software.intel.com/en-us/articles/intel-mkl
http://www.cise.ufl.edu/research/sparse/matrices/
http://www.cise.ufl.edu/research/sparse/matrices/

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2011-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Preconditioned Iterative Methods
	Numerical Experiments
	Conclusion
	Acknowledgements
	References

