
DEVELOPING A LINUX KERNEL
MODULE USING RDMA FOR
GPUDIRECT
TB-06712-001 _v6.0 | February 2014

Application Guide



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | ii

TABLE OF CONTENTS

Chapter 1. Overview............................................................................................ 1
1.1. How RDMA for GPUDirect Works....................................................................... 1
1.2. Standard DMA Transfer...................................................................................2
1.3. RDMA for GPUDirect Transfers..........................................................................2

Chapter 2. Design Considerations.............................................................................4
2.1. Lazy Unpinning Optimization........................................................................... 4
2.2. Supported Systems........................................................................................4
2.3. PCI BAR sizes.............................................................................................. 5
2.4. Tokens Usage.............................................................................................. 5

Chapter 3. How to Perform Specific Tasks................................................................. 7
3.1. Pinning GPU memory.....................................................................................7
3.2. Unpinning GPU memory................................................................................. 8
3.3. Handling the free callback..............................................................................8
3.4. Linking a Kernel Module against nvidia.ko........................................................... 9

Chapter 4. References.........................................................................................10
4.1. Basics of UVA CUDA Memory Management.......................................................... 10
4.2. Userspace API............................................................................................ 11
4.3. Kernel API................................................................................................ 12
4.4. Unpin Callback...........................................................................................15



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | iii

LIST OF FIGURES

Figure 1 RDMA for GPUDirect within the Linux Device Driver Model ....................................1

Figure 2 CUDA VA Space Addressing .........................................................................10



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | iv



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 1

Chapter 1.
OVERVIEW

RDMA for GPUDirect is a feature introduced in Kepler-class GPUs and CUDA 5.0 that
enables a direct path for communication between the GPU and a peer device using
standard features of PCI Express. The devices must share the same upstream root
complex. A few straightforward changes must be made to device drivers to enable
this functionality with a wide range of hardware devices. This document introduces
the technology and describes the steps necessary to enable an RDMA for GPUDirect
connection to NVIDIA GPUs on Linux.

Figure 1 RDMA for GPUDirect within the Linux Device Driver Model

1.1. How RDMA for GPUDirect Works
When setting up RDMA for GPUDirect communication between two peers, all physical
addresses are the same from the PCI Express devices' point of view. Within this physical
address space are linear windows called PCI BARs (each device can have up to six). The
PCI Express device issues reads and writes to a peer device's BAR addresses in the same
way that they are issued to system memory.

Traditionally, resources like BAR windows are mapped to user or kernel address space
using the CPU's MMU as memory mapped I/O (MMIO) addresses. However, because



Overview

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 2

current operating systems don't have sufficient mechanisms for exchanging MMIO
regions between drivers, the NVIDIA kernel driver exports functions to perform the
necessary address translations and mappings.

To add RDMA for GPUDirect support to a device driver, a small amount of address
mapping code within the kernel driver must be modified. This code typically resides
near existing calls to get_user_pages().

The APIs and control flow involved with RDMA for GPUDirect are very similar to those
used with standard DMA transfers.

See Supported Systems and PCI BAR sizes for more hardware details.

1.2. Standard DMA Transfer
First, we outline a standard DMA Transfer initiated from userspace. In this scenario, the
following components are present:

‣ Userspace program
‣ Userspace communication library
‣ Kernel driver for the device interested in doing DMA transfers

The general sequence is as follows:

 1. The userspace program requests a transfer via the userspace communication library.
This operation takes a pointer to data (a virtual address) and a size in bytes.

 2. The communication library must make sure the memory region corresponding to
the virtual address and size is ready for the transfer. If this is not the case already, it
has to be handled by the kernel driver (next step).

 3. The kernel driver receives the virtual address and size from the userspace
communication library. It then asks the kernel to translate the virtual address range
to a list of physical pages and make sure they are ready to be transferred to or from.
We will refer to this operation as pinning the memory.

 4. The kernel driver uses the list of pages to program the physical device's DMA
engine(s).

 5. The communication library initiates the transfer.
 6. After the transfer is done, the communication library should eventually clean up any

resources used to pin the memory. We will refer to this operation as unpinning the
memory.

1.3. RDMA for GPUDirect Transfers
For the communication to support RDMA for GPUDirect transfers some changes to the
sequence above have to be introduced. First of all, two new components are present:

‣ Userspace CUDA library
‣ NVIDIA kernel driver



Overview

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 3

As described in Basics of UVA CUDA Memory Management, programs using the CUDA
library have their address space split between GPU and CPU virtual addresses, and the
communication library has to implement two separate paths for them.

The userspace CUDA library provides a function that lets the communication library
distinguish between CPU and GPU addresses. Moreover, for GPU addresses it returns
additional metadata that is required to uniquely identify the GPU memory represented
by the address. See Userspace API for details.

The difference between the paths for CPU and GPU addresses is in how the memory
is pinned and unpinned. For CPU memory this is handled by built-in Linux Kernel
functions (get_user_pages() and put_page()). However, in the GPU memory case
the pinning and unpinning has to be handled by functions provided by the NVIDIA
Kernel driver. See Pinning GPU memory and Unpinning GPU memory for details.

Some hardware caveats are explained in Supported Systems and PCI BAR sizes.



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 4

Chapter 2.
DESIGN CONSIDERATIONS

2.1. Lazy Unpinning Optimization
The most straightforward implementation using RDMA for GPUDirect would
pin memory before each transfer and unpin it right after the transfer is complete.
Unfortunately, this would perform poorly in general, as pinning and unpinning memory
are expensive operations. The rest of the steps required to perform an RDMA transfer,
however, can be performed quickly without entering the kernel (the DMA list can be
cached and replayed using MMIO registers/command lists).

Hence, lazily unpinning memory is key to a high performance RDMA implementation.
What it implies, is keeping the memory pinned even after the transfer has finished. This
takes advantage of the fact that it is likely that the same memory region will be used for
future DMA transfers thus lazy unpinning saves pin/unpin operations.

An example implementation of lazy unpinning would keep a set of pinned memory
regions and only unpin some of them (for example the least recently used one) if the
total size of the regions reached some threshold, or if pinning a new region failed
because of BAR space exhaustion (see PCI BAR sizes).

2.2. Supported Systems
Even though the only theoretical requirement for RDMA for GPUDirect to work
between a third-party device and an NVIDIA GPU is that they share the same root
complex, there exist bugs (mostly in chipsets) causing it to perform badly, or not work at
all in certain setups.

We can distinguish between three situations, depending on what is on the path between
the GPU and the third-party device:

‣ PCIe switches only
‣ single CPU/IOH
‣ CPU/IOH <-> QPI/HT <-> CPU/IOH



Design Considerations

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 5

The first situation, where there are only PCIe switches on the path, is optimal and yields
the best performance. The second one, where a single CPU/IOH is involved, works, but
yields worse performance. Finally, the third situation, where the path traverses a QPI/HT
link, doesn't work reliably.

Tip lspci can be used to check the PCI topology:
$ lspci -t

IOMMUs

RDMA for GPUDirect currently relies upon all physical addresses being the same from
the PCI devices' point of view. This makes it incompatible with IOMMUs and hence they
must be disabled for RDMA for GPUDirect to work.

2.3. PCI BAR sizes
PCI devices can ask the OS/BIOS to map a region of physical address space to them.
These regions are commonly called BARs.

NVIDIA GPUs can back their BARs with arbitrary device memory, making RDMA for
GPUDirect possible.

The maximum BAR size available for RDMA for GPUDirect differs from GPU to GPU.
The main limitation is BIOS bugs that render systems unbootable (or the GPU unusable)
if the requested BAR size is too big.

The smallest available BAR size on Kepler class GPUs is 256 MB. Of that, 32MB are
reserved for internal use.

2.4. Tokens Usage
As can be seen in Userspace API and Kernel API, pinning and unpinning memory
requires two tokens in addition to the GPU virtual address.

These tokens, p2pToken and vaSpaceToken, are necessary to uniquely identify a GPU
VA space. A process identifier alone does not identify a GPU VA space.

The tokens are consistent within a single CUDA context (i.e., all memory obtained
through cudaMalloc() within the same CUDA context will have the same p2pToken



Design Considerations

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 6

and vaSpaceToken). However, a given GPU virtual address need not map to the same
context/GPU for its entire lifetime. As a concrete example:
cudaSetDevice(0)
ptr0 = cudaMalloc();
cuPointerGetAttribute(&return_data, CU_POINTER_ATTRIBUTE_P2P_TOKENS, ptr0);
// Returns [p2pToken = 0xabcd, vaSpaceToken = 0x1]
cudaFree(ptr0);
cudaSetDevice(1);
ptr1 = cudaMalloc();
assert(ptr0 == ptr1);
// The CUDA driver is free (although not guaranteed) to reuse the VA,
// even on a different GPU
cuPointerGetAttribute(&return_data, CU_POINTER_ATTRIBUTE_P2P_TOKENS, ptr0);
// Returns [p2pToken = 0x0123, vaSpaceToken = 0x2]

That is, the same address, when passed to cuPointerGetAttribute, may return
different tokens at different times during the program's execution. Therefore, the third
party communication library must call cuPointerGetAttribute() for every pointer it
operates on.

Security implications

The two tokens act as an authentication mechanism for the NVIDIA kernel driver. If
you know the tokens, you can map the address space corresponding to them, and the
NVIDIA kernel driver doesn't perform any additional checks. The 64bit p2pToken is
randomized to prevent it from being guessed by an adversary.



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 7

Chapter 3.
HOW TO PERFORM SPECIFIC TASKS

3.1. Pinning GPU memory
 1. Invoke cuPointerGetAttribute() on the address to check whether it points to

GPU memory.

void transfer_to_address(void *address, size_t size)
{
    CUDA_POINTER_ATTRIBUTE_P2P_TOKENS tokens;
    CUresult status = cuPointerGetAttribute(&tokens,
 CU_POINTER_ATTRIBUTE_P2P_TOKENS, address);
    if (CUDA_SUCCESS == status) {
        // GPU path
        pass_to_kernel_driver(tokens, address, size);
    }
    else {
        // CPU path
        // ...
    }
}
                    

If the function succeeds, the address points to GPU memory and the
result can be passed to the kernel driver. See Userspace API for details on
cuPointerGetAttribute().



How to Perform Specific Tasks

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 8

 2. In the kernel driver, invoke nvidia_p2p_get_pages().

void pin_memory(CUDA_POINTER_ATTRIBUTE_P2P_TOKENS *tokens, void *address,
 size_t size)
{
    nvidia_p2p_page_table_t *page_table;

    int ret = nvidia_p2p_get_pages(tokens->p2pToken, tokens->vaSpaceToken,
 address, size,
            &page_table,
            free_callback, NULL);
    if (ret == 0) {
        // Succesfully pinned, page_table can be accessed
    }
    else {
        // Pinning failed
    }
}
                    

If the function succeeds the memory has been pinned and the page_table entries
can be used to program the device's DMA engine. See Kernel API for details on
nvidia_p2p_get_pages().

3.2. Unpinning GPU memory
In the kernel driver, invoke nvidia_p2p_put_pages().

void unpin_memory(CUDA_POINTER_ATTRIBUTE_P2P_TOKENS *tokens, void *address,
 size_t size, nvidia_p2p_page_table_t *page_table)
{
    nvidia_p2p_put_pages(tokens->p2pToken, tokens->vaSpaceToken, address,
 size, page_table);
}
                    

See Kernel API for details on nvidia_p2p_put_pages().

3.3. Handling the free callback
 1. The NVIDIA kernel driver invokes free_callback(data) as specified in the

nvidia_p2p_get_pages() call if it needs to revoke the mapping. See Kernel API
and Unpin Callback for details.

 2. The callback waits for pending transfers and then cleans up the page table allocation.

void free_callback(void *data)
{
    my_state *state = data;
    wait_for_pending_transfers(state);
    nvidia_p2p_free_pages(state->page_table);
}
                    

 3. The NVIDIA kernel driver handles the unmapping so nvidia_p2p_put_pages()
should not be called.



How to Perform Specific Tasks

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 9

3.4. Linking a Kernel Module against nvidia.ko
 1. Run the extraction script:

./NVIDIA-Linux-x86_64-<version>.run –x

This extracts the NVIDA driver and kernel wrapper.
 2. Navigate to the output directory:

cd <output directory>/kernel/

 3. Within this directory, build the NVIDIA module for your kernel:
make module

After this is done, the Module.symvers file under your kernel build directory
contains symbol information for nvidia.ko.

 4. Modify your kernel module build process with the following line:
KBUILD_EXTRA_SYMBOLS := <path to kernel build directory>/Module.symvers



www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 10

Chapter 4.
REFERENCES

4.1. Basics of UVA CUDA Memory Management
Unified virtual addressing (UVA) is a memory address management system enabled
by default in CUDA 4.0 and later releases on Fermi and Kepler GPUs running 64-bit
processes. The design of UVA memory management provides a basis for the operation
of RDMA for GPUDirect. On UVA-supported configurations, when the CUDA runtime
initializes, the virtual address (VA) range of the application is partitioned into two areas:
the CUDA-managed VA range and the OS-managed VA range. All CUDA-managed
pointers are within this VA range, and the range will always fall within the first 40 bits
of the process's VA space.

Figure 2 CUDA VA Space Addressing

Subsequently, within the CUDA VA space, addresses can be subdivided into three types:
GPU

A page backed by GPU memory. This will not be accessible from the host and the VA
in question will never have a physical backing on the host. Dereferencing a pointer to
a GPU VA from the CPU will trigger a segfault.

CPU
A page backed by CPU memory. This will be accessible from both the host and the
GPU at the same VA.

FREE
These VAs are reserved by CUDA for future allocations.



References

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 11

This partitioning allows the CUDA runtime to determine the physical location of a
memory object by its pointer value within the reserved CUDA VA space.

Addresses are subdivided into these categories at page granularity; all memory within a
page is of the same type. Note that GPU pages may not be the same size as CPU pages.
The CPU pages are usually 4KB and the GPU pages on Kepler-class GPUs are 64KB.
RDMA for GPUDirect operates exclusively on GPU pages (created by cudaMalloc())
that are within this CUDA VA space.

4.2. Userspace API

Data structures

typedef struct CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_st {
    unsigned long long p2pToken;
    unsigned int vaSpaceToken;
} CUDA_POINTER_ATTRIBUTE_P2P_TOKENS;
    

Function cuPointerGetAttribute()
CUresult CUDAAPI cuPointerGetAttribute(void *data, CUpointer_attribute
 attribute, CUdeviceptr pointer);

In RDMA for GPUDirect scope, the usage of interest is when data is a pointer to
CUDA_POINTER_ATTRIBUTE_P2P_TOKENS and CU_POINTER_ATTRIBUTE_P2P_TOKENS
is passed as the attribute. Like below:

    CUDA_POINTER_ATTRIBUTE_P2P_TOKENS tokens;
    cuPointerGetAttribute(&tokens, CU_POINTER_ATTRIBUTE_P2P_TOKENS, pointer);
    

In this case, the function returns two tokens for use with the Kernel API.

Parameters
tokens [out]

Struct CUDA_POINTER_ATTRIBUTE_P2P_TOKENS with the two tokens.
attribute [in]

In RDMA for GPUDirect scope should always be
CU_POINTER_ATTRIBUTE_P2P_TOKENS.

pointer [in]
A pointer.

Returns
CUDA_SUCCESS

if pointer points to GPU memory.
anything else

if pointer points to CPU memory.

This function may be called at any time, including before CUDA initialization.



References

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 12

cuPointerGetAttribute() is a CUDA driver API function. This is because the
required functionality is not incorporated into the CUDA runtime API function
cudaPointerGetAttributes(). This in no way limits the scope where RDMA for
GPUDirect may be used as cuPointerGetAttribute() is compatible with CUDA
runtime API.

No runtime API equivalent to cuPointerGetAttribute() is provided, as the
additional overhead associated with the CUDA runtime API to driver API call sequence
would introduce unneeded overhead and cuPointerGetAttribute() is on the critical
path in many communication libraries.

Note that values set in tokens can be different for the same pointer value during a
lifetime of a userspace program. See Tokens Usage for a concrete example.

Note that for security reasons the value set in p2pToken will be randomized, to prevent
it from being guessed by an adversary.

4.3. Kernel API
Following declarations can be found in the nv-p2p.h header that is distributed in the
NVIDIA Driver package.

Data structures

typedef
struct nvidia_p2p_page {
    uint64_t physical_address;
    union nvidia_p2p_request_registers {
        struct {
            uint32_t wreqmb_h;
            uint32_t rreqmb_h;
            uint32_t rreqmb_0;
            uint32_t reserved[3];
        } fermi;
    } registers;
} nvidia_p2p_page_t;
    

In nvidia_p2p_page only the physical_address is relevant to RDMA for GPUDirect.

#define NVIDIA_P2P_PAGE_TABLE_VERSION   0x00010001

typedef
struct nvidia_p2p_page_table {
    uint32_t version;
    uint32_t page_size;
    struct nvidia_p2p_page **pages;
    uint32_t entries;
} nvidia_p2p_page_table_t;
    

Fields



References

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 13

version
the version of the page table; should be compared to
NVIDIA_P2P_PAGE_TABLE_VERSION before accessing the other fields

page_size
the GPU page size

pages
the page table entries

entries
number of the page table entries

Function nvidia_p2p_get_pages()

int nvidia_p2p_get_pages(uint64_t p2p_token, uint32_t va_space_token,
                uint64_t virtual_address,
                uint64_t length,
                struct nvidia_p2p_page_table **page_table,
                void (*free_callback)(void *data),
                void *data);
   

This function makes the pages underlying a range of GPU virtual memory accessible to
a third-party device.

Parameters
p2p_token [in]

A token that uniquely identifies the P2P mapping.
va_space_token [in]

A GPU virtual address space qualifier.
virtual_address [in]

The start address in the specified virtual address space. Has to be aligned to 64K.
length [in]

The length of the requested P2P mapping.
page_table [out]

A pointer to an array of structures with P2P PTEs. Cannot be NULL.
free_callback [in]

A pointer to the function to be invoked if the pages underlying the virtual address
range are freed implicitly. Cannot be NULL.

data [in]
An opaque pointer to private data to be passed to the callback function.

Returns
0

upon successful completion.
-EINVAL

if an invalid argument was supplied.
-ENOTSUPP

if the requested operation is not supported.



References

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 14

-ENOMEM
if the driver failed to allocate memory or if insufficient resources were available to
complete the operation.

-EIO
if an unknown error occurred.

This is an expensive operation and should be performed as infrequently as possible - see
Lazy Unpinning Optimization.

Function nvidia_p2p_put_pages()

int nvidia_p2p_put_pages(uint64_t p2p_token, uint32_t va_space_token,
        uint64_t virtual_address,
        struct nvidia_p2p_page_table *page_table);
    

This function releases a set of pages previously made accessible to a third-party device.

Parameters
p2p_token [in]

A token that uniquely identifies the P2P mapping.
va_space_token [in]

A GPU virtual address space qualifier.
virtual_address [in]

The start address in the specified virtual address space.
page_table [in]

A pointer to an array of structures with P2P PTEs.

Returns
0

upon successful completion.
-EINVAL

if an invalid argument was supplied.
-EIO

if an unknown error occurred.

Function nvidia_p2p_free_page_table()

int nvidia_p2p_free_page_table(struct nvidia_p2p_page_table *page_table);
    

This function frees a third-party P2P page table.

Parameters
page_table [in]

A pointer to an array of structures with P2P PTEs.

Returns
0

upon successful completion.



References

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v6.0 | 15

-EINVAL
if an invalid argument was supplied.

4.4. Unpin Callback
When the third party device driver pins the GPU pages with
nvidia_p2p_get_pages() it must also provide a callback function that the NVIDIA
driver will call if it needs to revoke access to the mapping. This callback occurs
synchronously, giving the third party driver time to clean up and remove any references
to the pages in question (i.e., wait for DMA to complete). The user callback function
may block for a few milliseconds, although it is recommended that the callback
complete as quickly as possible. Care has to be taken not to introduce deadlocks as
waiting for the GPU to do anything is not safe within the callback.

Note that the access will be revoked only if the userspace program deallocates the
corresponding GPU memory (either explicitly or by exiting early) before the kernel
driver has a chance to unpin the memory with nvidia_p2p_put_pages().



Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com


	Table of Contents
	List of Figures
	Overview
	1.1. How RDMA for GPUDirect Works
	1.2. Standard DMA Transfer
	1.3. RDMA for GPUDirect Transfers

	Design Considerations
	2.1. Lazy Unpinning Optimization
	2.2. Supported Systems
	2.3. PCI BAR sizes
	2.4. Tokens Usage

	How to Perform Specific Tasks
	3.1. Pinning GPU memory
	3.2. Unpinning GPU memory
	3.3. Handling the free callback
	3.4. Linking a Kernel Module against nvidia.ko

	References
	4.1. Basics of UVA CUDA Memory Management
	4.2. Userspace API
	4.3. Kernel API
	4.4. Unpin Callback


