
NVIDIA CUDA TOOLKIT V6.0

RN-06722-001 _v6.0 | February 2014

Release Notes for Windows, Linux, and Mac OS

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | ii

TABLE OF CONTENTS

Chapter 1. CUDA Toolkit Major Components... 1
Chapter 2. New Features...3

2.1. General CUDA... 3
2.2. CUDA Tools...4

2.2.1. CUDA Compiler...4
2.2.2. CUDA-GDB...4
2.2.3. CUDA-MEMCHECK.. 5
2.2.4. CUDA Profiling Tools Interface (CUPTI).. 5
2.2.5. Nsight Eclipse Edition...5
2.2.6. NVIDIA Visual Profiler...5

2.3. CUDA Libraries.. 5
2.3.1. cuBLAS Library... 5
2.3.2. cuFFT Library.. 6
2.3.3. cuRAND Library.. 6
2.3.4. cuSPARSE Library.. 6
2.3.5. CUDA Math Library.. 6
2.3.6. NVIDIA Performance Primitives (NPP).. 6

2.4. CUDA Samples... 7
Chapter 3. Unsupported Features.. 8
Chapter 4. Deprecated Features..9
Chapter 5. Performance Improvements..11

5.1. General CUDA.. 11
Chapter 6. Resolved Issues... 12

6.1. General CUDA.. 12
6.2. CUDA Tools... 12

6.2.1. CUDA Compiler... 12
6.2.2. Nsight Eclipse Edition... 12

6.3. CUDA Libraries... 12
6.3.1. cuBLAS Library..12
6.3.2. NVIDIA Performance Primitives (NPP)...13

Chapter 7. Known Issues..14
7.1. Linux on ARMv7 Specific Issues... 14
7.2. General CUDA.. 14
7.3. CUDA Tools... 15

7.3.1. CUDA Compiler... 15
7.3.2. NVIDIA Visual Profiler... 15

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 1

Chapter 1.
CUDA TOOLKIT MAJOR COMPONENTS

This section provides an overview of the major components of the CUDA Toolkit and
points to their locations after installation.
Compiler

The CUDA-C and CUDA-C++ compiler, nvcc, is found in the bin/ directory. It is
built on top of the NVVM optimizer, which is itself built on top of the LLVM compiler
infrastructure. Developers who want to target NVVM directly can do so using the
Compiler SDK, which is available in the nvvm/ directory.

Tools
The following development tools are available in the bin/ directory (except for
NSight Visual Studio Edition (VSE) which is installed as a plug-in to Microsoft Visual
Studio).

‣ IDEs: nsight (Linux, Mac), NSight VSE (Windows)
‣ Debuggers: cuda-memcheck, cuda-gdb (Linux, Mac), NSight VSE (Windows)
‣ Profilers: nvprof, nvvp, NSight VSE (Windows)
‣ Utilities: cuobjdump, nvdisasm

Libraries
The scientific and utility libraries listed below are available in the lib/ directory
(DLLs on Windows are in bin/), and their interfaces are available in the include/
directory.

‣ cublas (BLAS)
‣ cublas_device (BLAS Kernel Interface)
‣ cuda_occupancy (Kernel Occupancy Calculation [header file implementation])
‣ cudadevrt (CUDA Device Runtime)
‣ cudart (CUDA Runtime)
‣ cufft (Fast Fourier Transform [FFT])
‣ cupti (Profiling Tools Interface)
‣ curand (Random Number Generation)
‣ cusparse (Sparse Matrix)
‣ npp (NVIDIA Performance Primitives [image and signal processing])
‣ nvblas ("Drop-in" BLAS)
‣ nvcuvid (CUDA Video Decoder [Windows, Linux])

CUDA Toolkit Major Components

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 2

‣ thrust (Parallel Algorithm Library [header file implementation])

CUDA Samples
Code samples that illustrate how to use various CUDA and library APIs are available
in the samples/ directory on Linux and Mac, and are installed to C:\ProgramData
\NVIDIA Corporation\CUDA Samples on Windows. On Linux and Mac, the
samples/ directory is read-only and the samples must be copied to another location
if they are to be modified. Further instructions can be found in the Getting Started
Guides for Linux and Mac.

Documentation
The most current version of these release notes can be found online at http://
docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html.
Documentation can be found in PDF form in the doc/pdf/ directory, or in HTML
form at doc/html/index.html and online at http://docs.nvidia.com/cuda/
index.html.

Other
The Open64 source files are controlled under terms of the GPL license. Current
and previously released versions are located at ftp://download.nvidia.com/
CUDAOpen64/.
The CUDA-GDB source files are controlled under terms of the GPL license.

‣ The source code for CUDA-GDB that shipped with CUDA 5.5 and subsequent
versions is located at https://github.com/NVIDIA/cuda-gdb.

‣ The source code for CUDA-GDB that shipped with CUDA 5.0 and previous
versions is located at ftp://download.nvidia.com/CUDAOpen64/.

http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html
http://docs.nvidia.com/cuda/index.html
http://docs.nvidia.com/cuda/index.html
ftp://download.nvidia.com/CUDAOpen64/
ftp://download.nvidia.com/CUDAOpen64/
https://github.com/NVIDIA/cuda-gdb
ftp://download.nvidia.com/CUDAOpen64/

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 3

Chapter 2.
NEW FEATURES

2.1. General CUDA
‣ Unified Memory is a new feature enabling a type of memory that can be accessed

by both the CPU and GPU without explicit copying between the two. This is called
"managed memory" in the software APIs.

‣ Unified Memory is automatically migrated to the physical memory attached
to the processor that is accessing it. This migration provides high performance
access from either processor, unlike "zero-copy" memory where all accesses are
out of CPU system memory.

‣ The Unified Memory system does not allow sharing of managed memory
pointers between processes. This means that it does not correctly manage
memory handles that have been duplicated via a fork() operation; results
are undefined if either the child or parent accesses managed data following a
fork(). It is safe, however, to fork() a child process that then immediately
exits via an exec() call, because the child thereby drops the memory handles,
making the parent the sole owner once again.

‣ Added a standalone header library for calculating occupancy (the library is not
dependent on the CUDA Runtime or CUDA Driver APIs). The header library
provides a programmatic interface for the occupancy calculations previously
contained in the CUDA Occupancy Calculator.

‣ Support for the following Linux distributions has been added as of CUDA 6.0:
Fedora 19, Ubuntu 13.04, CentOS 5.5+, CentOS 6.4, OpenSUSE 12.3, and SLES SP11.

‣ Support for the ICC Compiler has been upgraded to version 13.1.
‣ Support for the Windows Server 2012 R2 operating system has been added as of

CUDA 6.0.
‣ RDMA (remote direct memory access) for GPUDirect is now supported for

applications running under MPS (Multi-Process Service).
‣ CUDA Inter-Process Communication (IPC) is now supported for applications

running under MPS. CUDA IPC event and memory handles can be exported and
opened by the MPS clients of a single MPS server.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 4

‣ Applications running under MPS can now use assert() in their kernels. When
an assert is triggered, all work submitted by MPS clients will be stalled until the
assert is handled. The MPS client that triggered the assert will exit, but will not
interfere with other running MPS clients.

‣ Previously, a wide variety of errors were reported by an "Unspecified
Launch Failure (ULF)" message or by the corresponding error codes
CUDA_ERROR_LAUNCH_FAILED and cudaErrorLaunchFailed. The CUDA driver
now supports enhanced error reporting by providing richer error messages when
exceptions occur. This will help developers determine the causes of application
faults without the need of additional tools.

‣ Man page documentation has been added for the following:

‣ All the libraries, at a high level
‣ All of the tools binaries, at a high level
‣ The CUDA driver API, in detail
‣ The CUDA runtime API, in detail

2.2. CUDA Tools

2.2.1. CUDA Compiler
‣ Parameters with reference type are now supported for __global__ functions. If the

object bound to the reference is read or written from the GPU during the execution
of the __global__ function, the object must reside in memory that is accessible
from the GPU.

2.2.2. CUDA-GDB
‣ The code base for CUDA-GDB was upgraded from GDB 7.2 to GDB 7.6, which

enables support for DWARF 4 and thus enables distributions using GCC 4.8. GDB
7.6 also provides better ARM debugging support: allowing single stepping between
32-bit and 16-bit instructions.

‣ To mitigate the issue of variables not being accessible at some code addresses,
the debugger offers two new options. With set cuda value_extrapolation,
the latest known value is displayed with (possibly) a prefix. With set cuda
ptx_cache, the latest known value of the PTX register associated with a source
variable is display with the (cached) prefix.

‣ It is now possible for the set cuda break_on_launch option to break on kernels
launched from the GPU. Also, enabling this option does not disable deferred kernel
launch notifications.

‣ Remote debugging has been made considerably faster: up to two orders of
magnitude. Local debugging is also considerably faster.

‣ CUDA-GDB can now use optimized methods to single-step a program; these
accelerate single-stepping most of the time. This feature can be disabled with set
cuda single_stepping_optimizations off.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 5

2.2.3. CUDA-MEMCHECK
‣ The CUDA-MEMCHECK tool now works with applications that use the multi-

process server (MPS) to share a single GPU among multiple processes.

2.2.4. CUDA Profiling Tools Interface (CUPTI)
‣ The nvprof profiling tool now works with multiple processes that are sharing a

single GPU with the multi-process server (MPS).

2.2.5. Nsight Eclipse Edition
‣ Nsight Eclipse Edition now supports developing (building, debugging, and

profiling) CUDA applications on remote systems.

2.2.6. NVIDIA Visual Profiler
‣ The Visual Profiler guided analysis system has been updated with several

enhancements.

‣ It now includes a side-by-side source and disassembly view annotated with
instruction execution counts, inactive thread counts, and predicated instruction
counts. This view enables you to find hotspots and inefficient code sequences
within your kernels.

‣ It has been updated with several new analysis passes: (1) kernel instructions are
categorized into classes so that you can see if the instruction mix matches your
expectations, (2) inefficient shared memory access patterns are detected and
reported, and (3) the per-SM activity level is presented to help you detect detect
load-balancing issues across the blocks of your kernel.

‣ It can now generate a kernel analysis report. The report is a PDF version of the
per-kernel information presented by the guided analysis system.

2.3. CUDA Libraries

2.3.1. cuBLAS Library
‣ The cuBLAS library now supports execution of Level-3 BLAS routines out-of-core

(that is, out of system memory, even if the total data is too large to fit completely
in GPU memory) and across two GPUs in parallel. This functionality is exposed
via the cublasXt interface. Note that the GPUs must both be on the same GPU
board, such as a Tesla K10 or GeForce GTX 690; furthermore, with the appropriate
licensing, more than two GPUs on the same board can be supported (seehttps://
developer.nvidia.com/cublasxt).

‣ CUDA 6.0 includes a new library called NVBLAS, which intercepts certain calls to
a host BLAS implementation and routes them to cuBLAS via the cublasXt interface.

https://developer.nvidia.com/cublasxt
https://developer.nvidia.com/cublasxt

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 6

For an existing application that makes use of BLAS calls, NVBLAS allows for drop-
in GPU acceleration with only relinking.

‣ Conversion LAPACK routines cublas{T}tpttr and cublas{T}trttp, which
convert from Packed Triangular format to Triangular and to Packed Triangular
format from Triangular, have been added to cuBLAS.

2.3.2. cuFFT Library
‣ The cuFFT library now supports execution of batched and single FFTs across two

GPUs by using the cufftXt interface. Note that the GPUs must both be on the same
GPU board, such as a Tesla K10 or GeForce GTX 690. As of CUDA 6.0, all types of
batched transforms are supported, with the exception that strides are not allowed.
For single transforms, C2C/Z2Z 1-D, 2-D, and 3-D transforms with power-of-2 sizes
are supported.

2.3.3. cuRAND Library
In CUDA 6.0, support for a new random number generator, Mersenne Twister 19937,
has been added. This generator is widely recognized to be very efficient at producing
random variates with excellent statistical properties. The generator is callable from the
host and generates results in GPU memory. A kernel-callable interface is not available at
this time.

2.3.4. cuSPARSE Library
‣ The routines cusparse(X)bsrsv2, cusparse(X)bsric02, and

cusparse(X)bsrilu02 have been added to the cuSPARSE library. They perform
triangular solve, incomplete Cholesky factorization, and incomplete LU factorization
on the matrices stored in block CSR format, respectively. The routines handle
arbitrary block sizes; moreover, the user can query the size of working space used
internally and pre-allocate the buffer, passing a pointer to it to the routines. If the
matrix becomes numerically singular (during factorization), the user can query its
properties and use the boost value to proceed with computation.

2.3.5. CUDA Math Library
‣ Support for over 80 new SIMD instructions (__v*2() and __v*4(), particularly

useful in video processing) has been added to the math library.

2.3.6. NVIDIA Performance Primitives (NPP)
‣ The NPP library in the CUDA 6.0 release contains more than 500 new image and

signal processing primitives, including BGR/YUV conversions, color transformations
using a 3D LUT with trilinear interpolation, optimized Huffman coding for JPEG,
filter median routines, error metric computations, and other miscellaneous color and
pixel routines.

New Features

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 7

‣ In CUDA 6.0, NPP adds a new primitive, FilterMedian, to filter the image using
a median filter. The new primitive supports variants with different data types and
channel settings.

2.4. CUDA Samples
‣ (Windows) The HTML and PDF documentation for the CUDA Samples, available

on all platforms, replaces the former CUDA Samples Browser, which was available
only on Windows. The documentation provides a listing of the samples similar to
that of the CUDA Samples Browser and also provides links to download individual
samples.

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 8

Chapter 3.
UNSUPPORTED FEATURES

The following features are officially unsupported in the current release. Developers must
employ alternative solutions to these features in their software.
CUDA Profiling Tools Interface

CUPTI users should adopt the new asynchronous activity buffering API
implemented by cuptiActivityRegisterCallbacks(), cuptiActivityFlush(),
and cuptiActivityFlushAll(). Further information can be found in the CUPTI
documentation.

cuSPARSE "Legacy" API
Please use the cuSPARSE API in cusparse.h. Further information on the new
cuSPARSE API can be found in the cuSPARSE library documentation.

Linux Distributions That Are No Longer Supported as of CUDA 6.0
The following Linux distributions are no longer supported: Fedora 18, OpenSUSE
12.2, SLES 11 SP1, Ubuntu 12.10, and Ubuntu 10.04.

Linux Compilers That Are No Longer Supported as of CUDA 6.0
ICC version 12.1 is no longer supported, but a newer version of ICC is supported.

Mac Operating Systems That Are No Longer Supported as of CUDA 6.0
OS X 10.7.x is no longer supported.

Mac Models with the MCP79 Chipset
The CUDA 6.0 toolkit and r331 driver do not work on Macs with GPUs based on the
MCP79 chipset. To continue developing or running CUDA applications, please use
the CUDA 5.5 toolkit or r319 driver, as appropriate. The affected Mac models include
the following:

iMac (20-inch, Early 2009) MacBook Pro (15-inch, Late 2008)

iMac (24-inch, Early 2009) MacBook Pro (15-inch, Mid 2009)

iMac (21.5-inch, Late 2009) MacBook Pro (15-inch 2.53 GHz, Mid 2009)

MacBook Air (Late 2008, Mid 2009) MacBook Pro (13-inch, Mid 2009)

MacBook Pro (17-inch, Early 2009) Mac mini (Early 2009)

MacBook Pro (17-inch, Mid 2009) Mac mini (Late 2009)

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 9

Chapter 4.
DEPRECATED FEATURES

The following features are deprecated in the current release of the CUDA software.
The features still work in the current release, but their documentation may have
been removed, and they will become officially unsupported in a future release. We
recommend that developers employ alternative solutions to these features in their
software.
Windows XP 64-bit Edition Support

Support for CUDA on the 64-bit version of the Windows XP operating system is
deprecated in this CUDA release and will be dropped in the next major release.
CUDA on the 32-bit version of Windows XP is still supported. We recommend that
developers and users on the 64-bit version of Windows XP migrate to Windows 7 or
Windows 8.1, which are supported in the current and future CUDA releases.

Windows Vista Support
Support for CUDA on the Windows Vista operating system is deprecated in this
CUDA release and will be dropped in the next major release. We recommend that
users and developers migrate to Windows 7 or Windows 8.1, which are supported in
the current and future releases.

Windows Server 2012 Support
Support for CUDA on the Windows Server 2012 operating system is deprecated in
this CUDA release and will be dropped in the next major release. We recommend that
users and developers migrate to Windows Server 2012 R2, which is supported in the
current and future releases.

Developing and Running 32-bit CUDA and OpenCL Applications on x86 Linux
Platforms

Support for developing and running 32-bit CUDA and OpenCL applications on x86
Linux platforms is deprecated. This implies the following:

‣ Support is currently still available in the toolkit and driver.
‣ Support may be dropped from the toolkit in a future release, and similarly from

the driver.
‣ New features may not have support for 32-bit x86 Linux applications.
‣ This notice applies to running applications on a 32-bit Linux kernel, and also to

running 32-bit applications on a 64-bit Linux kernel.
‣ This notice applies to x86 architectures only; 32-bit Linux applications are still

officially supported and are not deprecated on the ARM architecture.

Deprecated Features

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 10

(Mac) Developing and Running 32-bit CUDA and OpenCL Applications on OS X
Platforms

Support for developing and running 32-bit CUDA and OpenCL applications on OS X
platforms is deprecated. This implies the following:

‣ Support is currently still available in the toolkit and driver.
‣ Support may be dropped from the toolkit in a future release, and similarly from

the driver.
‣ New features may not have support for 32-bit OS X applications.

Targeting G80 (sm_10) for CUDA and OpenCL Applications
Support for targeting the G80 architecture (sm_10) for CUDA and OpenCL
applications is deprecated. This implies the following:

‣ Support is currently still available in the toolkit.
‣ Support may be dropped from the toolkit in a future release.
‣ Support in the driver for running sm_10 binaries is unaffected in this release by

the deprecation.
‣ New features may not have support for sm_10.

CUDA Video Encoder
Support for building applications with the CUDA Video Encoder interface,
NVCUVENC, is deprecated and will be dropped in a subsequent release. This
functionality is still available in the current release of the CUDA Toolkit, and the
driver will continue to run applications built against this interface. Moving forward,
we recommend using a newer video encoding interface, NVENC, which is available
at https://developer.nvidia.com/nvidia-video-codec-sdk.

https://developer.nvidia.com/nvidia-video-codec-sdk

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 11

Chapter 5.
PERFORMANCE IMPROVEMENTS

5.1. General CUDA
‣ The latency of launching a child kernel (that is, grid) from the GPU using Dynamic

Parallelism has been reduced.

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 12

Chapter 6.
RESOLVED ISSUES

6.1. General CUDA
‣ In the CUDA 6.0 release, a Dynamic Parallelism kernel will not be launched if an

illegal stream handle is used. Although previous releases would set the proper
error code in the case of an invalid stream handle, a kernel could still be launched
and in some cases complete and generate its output results. The new version of the
Dynamic Parallelism runtime behaves differently and does not launch the kernel.

6.2. CUDA Tools

6.2.1. CUDA Compiler
‣ The following issue has been fixed in CUDA 6.0. On the GK110, the kernel occasionally

may produce incorrect results when, either by loop unrolling or straight lines of
code, there are more than 63 outstanding texture/LDG instructions at one point
during the program execution.

6.2.2. Nsight Eclipse Edition
‣ Before Nsight 6.0, the CPU architecture was set in the linker and compiler

properties. Now this setting is configurable on a per-target system basis.

6.3. CUDA Libraries

6.3.1. cuBLAS Library
‣ The following issue has been fixed in CUDA 6.0. In CUDA 5.0 and CUDA 5.5, the

cuBLAS routine SGEMM() for operations NN and NT can give wrong results on Kepler
Architecture SM35 when the following conditions are met :

Resolved Issues

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 13

4 * ldc * n >= 2^32 and m >= 256

where m, n, and ldc are respectively the number of rows, the number of columns,
and the leading dimension of the resulting matrix C.

6.3.2. NVIDIA Performance Primitives (NPP)
‣ In CUDA 6.0, NPP routines are fully validated on the ARM platform. Please report

any functional errors via the CUDA registered developer website.
‣ In CUDA 6.0, NPP has improved the stability of JPEG-codec-related functions

in multi-threaded and multi-GPU applications. This includes the DCT and
quantization primitives.

‣ Fixed a bug in the progressive refine encoding mode.
‣ Optimized the performance of the CPU Huffman decoder code.

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 14

Chapter 7.
KNOWN ISSUES

7.1. Linux on ARMv7 Specific Issues
‣ Mapping host memory to device memory is not allowed on ARM. Because

of this, cudaMemHostRegister() is not supported by the CUDA driver on
the ARMv7 Linux platform. In general, any call to cudaMemHostAlloc()
with the flag CU_MEMHOSTALLOC_DEVICEMAP is expected to return
CUDA_ERROR_NOT_SUPPORTED.

7.2. General CUDA
‣ Documentation on the CUDA Multi-Process Service (MPS) is only available online at

http://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf. A
few new features have been enabled in CUDA 6.0 for MPS applications:

‣ MPS applications are now supported by cuda-memcheck, which will detect any
MPS-specific execution errors.

‣ Visual Profiler and nvprof also support profiling MPS applications and have
the ability to import profile data from multiple CUDA applications.

‣ Device assert, CUDA IPC, and GPUDirect RDMA can also be used in MPS
applications.

‣ To revert an NVIDIA driver that is version 331.17 or newer to one that is earlier
than 331.17, the current driver must be manually removed by running nvidia-
uninstall before the earlier version is installed.

‣ The new __managed__ variables in CUDA 6.0 create global-scope symbols
accessible from both device and host code. In a program using the runtime API,
because these variables are valid for CPU access, their lifetime is that of the whole
program instead of the CUDA context that contains them. Unlike __device__
variables, their value should persist across calls to cudaDeviceReset(). For the
CUDA 6.0 Early Access release, however, calling cudaDeviceReset() destroys the
storage for __managed__ variables, causing CPU access to fail.

http://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf

Known Issues

www.nvidia.com
NVIDIA CUDA Toolkit v6.0 RN-06722-001 _v6.0 | 15

For programs using the driver API, the lifetime of __managed__ variables is always
limited to the context in which they were created, so no persistence is expected.

‣ (Mac) Tesla-class (sm_1x architecture) GPUs are not yet supported on OS X 10.9. A
future release of the CUDA driver on OS X 10.9 will resolve this issue.

‣ The CUDA reference manual incorrectly describes the type of CUdeviceptr as
an unsigned int on all platforms. On 64-bit platforms, a CUdeviceptr is an
unsigned long long, not an unsigned int.

7.3. CUDA Tools

7.3.1. CUDA Compiler
‣ (Mac) When Clang is used as the host compiler, 32-bit target compilation on OS X

is not supported. This is because the Clang compiler doesn't support the -malign-
double switch that the NVCC compiler needs to properly align double-precision
structure fields when compiling for a 32-bit target (GCC does support this switch).
Note that GCC is the default host compiler used by NVCC on OS X 10.8 and Clang
is the default on OS X 10.9.

‣ The NVCC compiler doesn't accept Unicode characters in any filename or path
provided as a command-line parameter.

‣ A CUDA program may not compile correctly if a type or typedef T is private to a
class or a structure, and at least one of the following is satisfied:

‣ T is a parameter type for a __global__ function.
‣ T is an argument type for a template instantiation of a __global__ function.

This restriction will be fixed in a future release.
‣ (Mac) The documentation surrounding the use of the flag -malign-double

suggests it be used to make the struct size the same between host and device code.
We know now that this flag causes problems with other host libraries. The CUDA
documentation will be updated to reflect this. The work around for this issue is to
manually add padding so that the structs between the host compiler and CUDA are
consistent.

7.3.2. NVIDIA Visual Profiler
‣ (Windows) Using the mouse wheel button to scroll does not work within the Visual

Profiler on Windows.
‣ The Visual Profiler cannot correctly import profiler data generated by nvprof

when the option --kernels <kernel filter> is used. Visual Profiler reports
a warning, "Some collected events or source-level results could not be associated
with the session timeline." One workaround is to use the nvprof option --
kernels :::1 to profile the first invocation for all kernels.

‣ (Mac) Visual Profiler events and metrics do not work correctly on OS X 10.8.5. Please
upgrade to OS X 10.9.2 to use Visual Profiler events and metrics.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	CUDA Toolkit Major Components
	New Features
	2.1. General CUDA
	2.2. CUDA Tools
	2.2.1. CUDA Compiler
	2.2.2. CUDA-GDB
	2.2.3. CUDA-MEMCHECK
	2.2.4. CUDA Profiling Tools Interface (CUPTI)
	2.2.5. Nsight Eclipse Edition
	2.2.6. NVIDIA Visual Profiler

	2.3. CUDA Libraries
	2.3.1. cuBLAS Library
	2.3.2. cuFFT Library
	2.3.3. cuRAND Library
	2.3.4. cuSPARSE Library
	2.3.5. CUDA Math Library
	2.3.6. NVIDIA Performance Primitives (NPP)

	2.4. CUDA Samples

	Unsupported Features
	Deprecated Features
	Performance Improvements
	5.1. General CUDA

	Resolved Issues
	6.1. General CUDA
	6.2. CUDA Tools
	6.2.1. CUDA Compiler
	6.2.2. Nsight Eclipse Edition

	6.3. CUDA Libraries
	6.3.1. cuBLAS Library
	6.3.2. NVIDIA Performance Primitives (NPP)

	Known Issues
	7.1. Linux on ARMv7 Specific Issues
	7.2. General CUDA
	7.3. CUDA Tools
	7.3.1. CUDA Compiler
	7.3.2. NVIDIA Visual Profiler

