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CHANGES FROM PREVIOUS VERSION

‣ New support for separate compilation.
‣ Replaced Device Code Repositories with Using Separate Compilation in CUDA
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Chapter 1.
INTRODUCTION

1.1. Overview

1.1.1. CUDA Programming Model
The CUDA Toolkit targets a class of applications whose control part runs as a process
on a general purpose computer (Linux, Windows), and which use one or more NVIDIA
GPUs as coprocessors for accelerating SIMD parallel jobs. Such jobs are self- contained,
in the sense that they can be executed and completed by a batch of GPU threads entirely
without intervention by the host process, thereby gaining optimal benefit from the
parallel graphics hardware.

Dispatching GPU jobs by the host process is supported by the CUDA Toolkit in the form
of remote procedure calling. The GPU code is implemented as a collection of functions
in a language that is essentially C, but with some annotations for distinguishing them
from the host code, plus annotations for distinguishing different types of data memory
that exists on the GPU. Such functions may have parameters, and they can be called
using a syntax that is very similar to regular C function calling, but slightly extended for
being able to specify the matrix of GPU threads that must execute the called function.
During its life time, the host process may dispatch many parallel GPU tasks. See Figure
1.

1.1.2. CUDA Sources
Hence, source files for CUDA applications consist of a mixture of conventional C++
host code, plus GPU device (i.e., GPU-) functions. The CUDA compilation trajectory
separates the device functions from the host code, compiles the device functions using
proprietary NVIDIA compilers/assemblers, compiles the host code using a general
purpose C/C++ compiler that is available on the host platform, and afterwards embeds
the compiled GPU functions as load images in the host object file. In the linking stage,
specific CUDA runtime libraries are added for supporting remote SIMD procedure
calling and for providing explicit GPU manipulation such as allocation of GPU memory
buffers and host-GPU data transfer.
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1.1.3. Purpose of NVCC
This compilation trajectory involves several splitting, compilation, preprocessing,
and merging steps for each CUDA source file, and several of these steps are subtly
different for different modes of CUDA compilation (such as compilation for device
emulation, or the generation of device code repositories). It is the purpose of the CUDA
compiler driver nvcc to hide the intricate details of CUDA compilation from developers.
Additionally, instead of being a specific CUDA compilation driver, nvcc mimics the
behavior of the GNU compiler gcc: it accepts a range of conventional compiler options,
such as for defining macros and include/library paths, and for steering the compilation
process. All non-CUDA compilation steps are forwarded to a general purpose C
compiler that is supported by nvcc, a nd on Windows platforms, where this compiler is
an instance of the Microsoft Visual Studio compiler, nvcc will translate its options into
appropriate cl command syntax. This extended behavior plus cl option translation is
intended for support of portable application build and make scripts across Linux and
Windows platforms.

1.2. Supported Host Compilers
nvcc uses the following compilers for host code compilation:
On Linux platforms

The GNU compiler, gcc, and arm-linux-gnueabihf-g++ for cross compilation to
the ARMv7 architecture

On Windows platforms
The Microsoft Visual Studio compiler, cl

On both platforms, the compiler found on the current execution search path will
be used, unless nvcc option -compiler-bindir is specified (see File and Path
Specifications).

1.3. Supported Build Environments
nvcc can be used in the following build environments:
Linux

Any shell
Windows

DOS shell
Windows

CygWin shells, use nvcc's drive prefix options (see Options for Guiding the Compiler
Driver).

Windows:
MinGW shells, use nvcc's drive prefix options (see Options for Guiding the Compiler
Driver).
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Although a variety of POSIX style shells is supported on Windows, nvcc will still
assume the Microsoft Visual Studio compiler for host compilation. Use of gcc is not
supported on Windows.
#define ACOS_TESTS      (5)
#define ACOS_THREAD_CNT (128)
#define ACOS_CTA_CNT    (96)

struct acosParams {
    float *arg;
    float *res;
    int n;
};

__global__ void acos_main (struct acosParams parms)
{
    int i;
    int totalThreads = gridDim.x * blockDim.x;
    int ctaStart = blockDim.x * blockIdx.x;
    for (i = ctaStart + threadIdx.x; i < parms.n; i += totalThreads) {
        parms.res[i] = acosf(parms.arg[i]);
    }
}

int main (int argc, char *argv[])
{
    volatile float acosRef;
    float* acosRes = 0;
    float* acosArg = 0;
    float* arg = 0;
    float* res = 0;
    float t;
    struct acosParams funcParams;
    int errors;
    int i;

    cudaMalloc ((void **)&acosArg, ACOS_TESTS * sizeof(float));
    cudaMalloc ((void **)&acosRes, ACOS_TESTS * sizeof(float));
    
    arg = (float *) malloc (ACOS_TESTS * sizeof(arg[0]));
    res = (float *) malloc (ACOS_TESTS * sizeof(res[0]));

    cudaMemcpy (acosArg, arg, ACOS_TESTS * sizeof(arg[0]), 
                cudaMemcpyHostToDevice);
    
    funcParams.res = acosRes;
    funcParams.arg = acosArg;
    funcParams.n = opts.n;

    acos_main<<<ACOS_CTA_CNT,ACOS_THREAD_CNT>>>(funcParams);

    cudaMemcpy (res, acosRes, ACOS_TESTS * sizeof(res[0]), 
                cudaMemcpyDeviceToHost);

Figure 1 Example of CUDA Source File
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Chapter 2.
COMPILATION PHASES

2.1. NVCC Identification Macro
nvcc predefines the macro __NVCC__. This macro can be used in C/C++/CUDA source
files to test whether they are currently being compiled by nvcc. In addition, nvcc
predefines the macro __CUDACC__, which can be used in source files to test whether
they are being treated as CUDA source files. The __CUDACC__ macro can be particularly
useful when writing header files.

2.2. NVCC Phases
A compilation phase is the a logical translation step that can be selected by command
line options to nvcc. A single compilation phase can still be broken up by nvcc into
smaller steps, but these smaller steps are just implementations of the phase: they depend
on seemingly arbitrary capabilities of the internal tools that nvcc uses, and all of these
internals may change with a new release of the CUDA Toolkit Hence, only compilation
phases are stable across releases, and although nvcc provides options to display the
compilation steps that it executes, these are for debugging purposes only and must not
be copied and used into build scripts.

nvcc phases are selected by a combination of command line options and input file
name suffixes, and the execution of these phases may be modified by other command
line options. In phase selection, the input file suffix defines the phase input, while the
command line option defines the required output of the phase.

The following paragraphs will list the recognized file name suffixes and the supported
compilation phases. A full explanation of the nvcc command line options can be found
in the next chapter.

2.3. Supported Input File Suffixes
The following table defines how nvcc interprets its input files:
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.cu CUDA source file, containing host code and device functions

.cup Preprocessed CUDA source file, containing host code and device

functions

.c C source file

.cc, .cxx, .cpp C++ source file

.gpu GPU intermediate file (see Figure 2)

.ptx PTX intermediate assembly file (see Figure 2)

.o, .obj Object file

.a, .lib Library file

.res Resource file

.so Shared object file

Notes:

‣ nvcc does not make any distinction between object, library or resource files. It just
passes files of these types to the linker when the linking phase is executed.

‣ nvcc deviates from gcc behavior with respect to files whose suffixes are unknown
(i.e., that do not occur in the above table): instead of assuming that these files must
be linker input, nvcc will generate an error.

2.4. Supported Phases
The following table specifies the supported compilation phases, plus the option to
nvcc that enables execution of this phase. It also lists the default name of the output
file generated by this phase, which will take effect when no explicit output file name is
specified using option -o:

CUDA compilation to C/C++

source file

-cuda .cpp.ii appended to source file name,

as in x.cu.cpp.ii. This output file can

be compiled by the host compiler that

was used by nvcc to preprocess the .cu

file

C/C++ preprocessing -E < result on standard output >

C/C++ compilation to object file -c Source file name with suffix replaced by o

on Linux,  or obj on Windows

Cubin generation from CUDA

source files

-cubin Source file name with suffix replaced by

cubin
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Cubin generation from .gpu

intermediate files

-cubin Source file name with suffix replaced by

cubin

Cubin generation from ptx

intermediate files.

-cubin Source file name with suffix replaced by

cubin

PTX generation from CUDA

source files

-ptx Source file name with suffix replaced by

ptx

PTX generation from .gpu

intermediate files

-ptx Source file name with suffix replaced by

ptx

Fatbin generation from source,

ptx or cubin files

-fatbin Source file name with suffix replaced by

fatbin

GPU generation from CUDA

source files

-gpu Source file name with suffix replaced by

gpu

Linking an executable, or dll < no phase option > a.out on Linux, or a.exe on Windows

Constructing an object file

archive, or library

-lib a.a on Linux, or a.lib on Windows

make dependency generation -M < result on standard output >

Running an executable -run -

Notes:

‣ The last phase in this list is more of a convenience phase. It allows running the
compiled and linked executable without having to explicitly set the library path
to the CUDA dynamic libraries. Running using nvcc will automatically set the
environment variables that are specified in nvcc.profile (see Environment
Variable Expansion) prior to starting the executable.

‣ Files with extension .cup are assumed to be the result of preprocessing CUDA
source files, by nvcc commands as nvcc -E x.cu -o x.cup, or nvcc -E x.cu >
x.cup. Similar to regular compiler distributions, such as Microsoft Visual Studio or
gcc, preprocessed source files are the best format to include in compiler bug reports.
They are most likely to contain all information necessary for reproducing the bug.

2.5. Supported Phase Combinations
The following phase combinations are supported by nvcc:

‣ CUDA compilation to object file. This is a combination of CUDA Compilation and C
compilation, and invoked by option -c.

‣ Preprocessing is usually implicitly performed as first step in compilation phases
‣ Unless a phase option is specified, nvcc will compile and link all its input files
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‣ When -lib is specified, nvcc will compile all its input files, and store the resulting
object files into the specified archive/library.

2.6. Keeping Intermediate Phase Files
nvcc will store intermediate results by default into temporary files that are deleted
immediately before nvcc completes. The location of the temporary file directories that
are used are, depending on the current platform, as follows:
Windows temp directory

Value of environment variable TEMP, or c:/Windows/temp
Linux temp directory

/tmp

Options -keep or -save-temps (these options are equivalent) will instead store these
intermediate files in the current directory, with names as described in Supported Phases.

2.7. Cleaning Up Generated Files
All files generated by a particular nvcc command can be cleaned up by repeating the
command, but with additional option -clean. This option is particularly useful after
using -keep, because the keep option usually leaves quite an amount of intermediate
files around.

Because using -clean will remove exactly what the original nvcc command created, it
is important to exactly repeat all of the options in the original command. For instance, in
the following example, omitting -keep, or adding -c will have different cleanup effects.
nvcc acos.cu -keep

nvcc acos.cu -keep -clean

2.8. Use of Platform Compiler
A general purpose C compiler is needed by nvcc in the following situations:

‣ During non-CUDA phases (except the run phase), because these phases will be
forwarded by nvcc to this compiler

‣ During CUDA phases, for several preprocessing stages (see also The CUDA
Compilation Trajectory).

On Linux platforms, the compiler is assumed to be gcc, or g++ for linking. On Windows
platforms, the compiler is assumed to be cl. The compiler executables are expected to be
in the current executable search path, unless option --compiler-bindir is specified,
in which case the value of this option must be the name of the directory in which these
compiler executables reside. This option is used for cross compilation to the ARMv7
architecture as well, where the underlying host compiler is required to be a gcc compiler,
capable of generating ARMv7 code.
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2.8.1. Proper Compiler Installations
On both Linux and Windows, properly installed compilers have some form of internal
knowledge that enables them to locate system include files, system libraries and dlls,
include files and libraries related the compiler installation itself, and include files and
libraries that implement libc and libc++.

A properly installed gcc compiler has this knowledge built in, while a properly
installed Microsoft Visual Studio compiler has this knowledge available in a batch script
vsvars.bat, at a known place in its installation tree. This script must be executed
prior to running the cl compiler, in order to place the correct settings into specific
environment variables that the cl compiler recognizes.

On Windows platforms, nvcc will locate vsvars.bat via the specified --compiler-
bindir and execute it so that these environment variables become available.

On Linux platforms, nvcc will always assume that the compiler is properly installed.

2.8.2. Non Proper Compiler Installations
The platform compiler can still be improperly used, but in this case the user of nvcc is
responsible for explicitly providing the correct include and library paths on the nvcc
command line. Especially using gcc compilers, this requires intimate knowledge of gcc
and Linux system issues, and these may vary over different gcc distributions. Therefore,
this practice is not recommended

2.9. cross compiling from x86 to ARMv7
Cross compiling to the ARMv7 architecture is controlled by using the following nvcc
command line options:

‣ -target-cpu-arch ARM. This option signals cross compilation to ARM.
‣ -ccbin <arm-cross-compiler>. This sets the host compiler with which nvcc

cross compiles the host.
‣ -m32. This option signals that the target platform is a 32-bit platform. Use this when

the host platform is a 64-bit x86 platform.

2.10. nvcc.profile
nvcc expects a configuration file nvcc.profile in the directory where the nvcc
executable itself resides. This profile contains a sequence of assignments to environment
variables which are necessary for correct execution of executables that nvcc invokes.
Typical is extending the variables PATH, LD_LIBRARY_PATH with the bin and lib
directories in the CUDA Toolkit installation.

The single purpose of nvcc.profile is to define the directory structure of the CUDA
release tree to nvcc. It is not intended as a configuration file for nvcc users.
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2.10.1. Syntax
Lines containing all spaces, or lines that start with zero or more spaces followed by a
# character are considered comment lines. All other lines in nvcc.profile must have
settings of either of the following forms:
name = <text>
name ?= <text>
name += <text>
name =+ <text>

Each of these three forms will cause an assignment to environment variable name: the
specified text string will be macro- expanded (see Environment Variable Expansion) and
assigned (=), or conditionally assigned (?=), or prepended (+=), or appended (=+)

2.10.2. Environment Variable Expansion
The assigned text strings may refer to the current value of environment variables by
either of the following syntax:
%name%

DOS style
$(name)

make style

2.10.3. HERE_, _SPACE_
Prior to evaluating nvcc.profile, nvcc defines _HERE_ to be directory path in which
the profile file was found. Depending on how nvcc was invoked, this may be an absolute
path or a relative path.

Similarly, nvcc will assign a single space string to _SPACE_. This variable can be used to
enforce separation in profile lines such as:
INCLUDES += -I../common $(_SPACE_)

Omitting the _SPACE_ could cause glueing effects such as -I../common-Iapps with
previous values of INCLUDES.

2.10.4. Variables Interpreted by NVCC Itself
The following variables are used by nvcc itself:

compiler-bindir The default value of the directory in which the host compiler resides

(see Supported Host Compilers). This value can still be overridden by

command line option --compiler-bindir

INCLUDES This string extends the value of nvcc command option -Xcompiler.

It is intended for defining additional include paths. It is in actual

compiler option syntax, i.e., gcc syntax on Linux and cl syntax on

Windows.
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LIBRARIES This string extends the value of nvcc command option -Xlinker. It

is intended for defining additional libraries and library search paths.

It is in actual compiler option syntax, i.e., gcc syntax on Linux and

cl syntax on Windows.

PTXAS_FLAGS This string extends the value of nvcc command option -Xptxas. It is

intended for passing optimization options to the CUDA internal tool

ptxas.

OPENCC_FLAGS This string extends the value of nvcc command line option -

Xopencc. It is intended to pass optimization options to the CUDA

internal tool nvopencc.

2.10.5. Example of profile
#
# nvcc and nvcc.profile are in the bin directory of the
# cuda installation tree. Hence, this installation tree
# is ‘one up’:
#
TOP           = $(_HERE_)/..

#
# Define the cuda include directories: 
#
INCLUDES  +=  -I$(TOP)/include -I$(TOP)/include/cudart ${_SPACE_}

#
# Extend dll search path to find cudart.dll and cuda.dll
# and add these two libraries to the link line
#
PATH         += $(TOP)/lib;
LIBRARIES    =+ ${_SPACE_} -L$(TOP)/lib -lcuda -lcudart
#
# Extend the executable search path to find the
# cuda internal tools:
#
PATH         += $(TOP)/open64/bin:$(TOP)/bin:

#
# Location of Microsoft Visual Studio compiler
#
compiler-bindir  = c:/mvs/bin

#
# No special optimization flags for device code compilation:
#
PTXAS_FLAGS    += 
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Chapter 3.
NVCC COMMAND OPTIONS

3.1. Command Option Types and Notation
nvcc recognizes three types of command options: boolean (flag-) options, single value
options, and list (multivalued-) options.

Boolean options do not have an argument: they are either specified on a command
line or not. Single value options must be specified at most once, and list (multivalued-)
options may be repeated. Examples of each of these option types are, respectively: -v
(switch to verbose mode), -o (specify output file), and -I (specify include path).

Single value options and list options must have arguments, which must follow the name
of the option itself by either one of more spaces or an equals character. In some cases
of compatibility with gcc (such as -I, -l, and -L), the value of the option may also
immediately follow the option itself, without being separated by spaces. The individual
values of multivalued options may be separated by commas in a single instance of the
option, or the option may be repeated, or any combination of these two cases.

Hence, for the two sample options mentioned above that may take values, the following
notations are legal:
-o file
-o=file
-Idir1,dir2 -I=dir3 -I dir4,dir5

The option type in the tables in the remainder of this section can be recognized as
follows: boolean options do not have arguments specified in the first column, while the
other two types do. List options can be recognized by the repeat indicator ,... at the
end of the argument.

Each option has a long name and a short name, which are interchangeable with each
other. These two variants are distinguished by the number of hyphens that must precede
the option name: long names must be preceded by two hyphens, while short names
must be preceded by a single hyphen. An example of this is the long alias of -I, which is
--include-path.

Long options are intended for use in build scripts, where size of the option is less
important than descriptive value. In contrast, short options are intended for interactive
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use. For nvcc, this distinction may be of dubious value, because many of its options
are well known compiler driver options, and the names of many other single-hyphen
options were already chosen before nvcc was developed (and not especially short).
However, the distinction is a useful convention, and the short options names may be
shortened in future releases of the CUDA Toolkit.

Long options are described in the first columns of the options tables, and short options
occupy the second columns.

3.2. Command Option Description

3.2.1. Options for Specifying the Compilation Phase
Options of this category specify up to which stage the input files must be compiled.

--cuda -cuda Compile all .cu input files to

.cu.cpp.ii output.

--cubin -cubin Compile all .cu/.gpu/.ptx input files

to device-only .cubin files. This step

discards the host code for each .cu input

file.

--ptx -ptx Compile all .cu/.gpu input files to

device-only .ptx files. This step discards

the host code for each .cu input file.

--gpu -gpu Compile all .cu input files to device-only

.gpu files. This step discards the host

code for each .cu input file.

--fatbin -fatbin Compile all .cu/.gpu/.ptx/.cubin

input files to device-only .fatbin files.

This step discards the host code for each

.cu input file.

--preprocess -E Preprocess all .c/.cc/.cpp/.cxx/.cu

input files.

--generate-dependencies -M Generate for the one

.c/.cc/.cpp/.cxx/.cu input file (more

than one are not allowed in this step) a

dependency file that can be included in a

make file.

--compile -c Compile each .c/.cc/.cpp/.cxx/.cu

input file into an object file.
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--link -link This option specifies the default behavior:

compile and link all inputs.

--lib -lib Compile all input files into object files

(if necessary), and add the results to the

specified library output file.

--run -run This option compiles and links all inputs

into an executable, and executes it. Or,

when the input is a single executable, it

is executed without any compilation. This

step is intended for developers who do

not want to be bothered with setting the

necessary CUDA dll search paths (these

will be set temporarily by nvcc according

to the definitions in nvcc.profile).

3.2.2. File and Path Specifications
--x language -x Explicitly specify the language for the

input files, rather than letting the

compiler choose a default based on the

file name suffix.

Allowed values for this option: c,c++,cu.

--output-file file -o Specify name and location of the output

file. Only a single input file is allowed

when this option is present in nvcc non-

linking/archiving mode.

--pre-include include-

file,...

-include Specify header files that must be

preincluded during preprocessing or

compilation.

--library library-file,... -l Specify libraries to be used in the linking

stage without the library file extension.

The libraries are searched for on the

library search paths that have been

specified using option -L (see Libraries).

--define-macro

macrodef,...

-D Specify macro definitions for use during

preprocessing or compilation.

--undefine-macro

macrodef,...

-U Undefine a macro definition.
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--include-path include-

path,...

-I Specify include search paths.

--system-include include-

path,...

-isystem Specify system include search paths.

--library-path library-

path,...

-L Specify library search paths (see

Libraries).

--output-directory

directory

-odir Specify the directory of the output

file. This option is intended for letting

the dependency generation step (--

generate-dependencies) generate a

rule that defines the target object file in

the proper directory.

--compiler-bindir

directory

-ccbin Specify the directory in which the host

compiler executable (Microsoft Visual

Studio cl, or a gcc derivative) resides.

By default, this executable is expected in

the current executable search path.

--libdevice-directory

directory

-ldir Specify the directory that contains the

libdevice library files when option --

dont-use-profile is used. Libdevice

library files are located in the nvvm/

libdevice directory in the CUDA toolkit.

3.2.3. Options for Altering Compiler/Linker Behavior
--profile -pg Instrument generated code/executable

for use by gprof (Linux only).

--debug level -g Generate debug-able code.

--device-debug -G Generate debug-able device code.

--generate-line-info -lineinfo Generate line-number information for
device code.

--optimize level -O Generate optimized code.

--shared -shared Generate a shared library during linking.
Note: when other linker options are
required for controlling dll generation,
use option -Xlinker.

--machine -m Specify 32-bit vs. 64-bit architecture.
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3.2.4. Options for Passing Specific Phase Options
These allow for passing specific options directly to the internal compilation tools that
nvcc encapsulates, without burdening nvcc with too-detailed knowledge on these tools.
A table of useful sub-tool options can be found at the end of this chapter.

--compiler-options

options,...

-Xcompiler Specify options directly to the compiler/

preprocessor.

--linker-options

options,...

-Xlinker Specify options directly to the host linker.

--opencc-options

options,...

-Xopencc Specify options directly to nvopencc,

typically for steering nvopencc

optimization.

--ptxas-options

options,...

-Xptxas Specify options directly to the ptx

optimizing assembler.

--nvlink-options

options,...

-Xnvlink Specify options directly to nvlink.

3.2.5. Options for Guiding the Compiler Driver
--dryrun -dryrun Do not execute the compilation

commands generated by nvcc. Instead,
list them.

--verbose -v List the compilation commands generated
by this compiler driver, but do not
suppress their execution.

--keep -keep Keep all intermediate files that are
generated during internal compilation
steps.

--save-temps -save-temps This option is an alias of --keep.

--dont-use-profile -noprof Do not use the nvcc.profile file to
guide the compilation.

--clean-targets -clean This option reverses the behaviour of
nvcc. When specified, none of the
compilation phases will be executed.
Instead, all of the non-temporary files
that nvcc would otherwise create will be
deleted.

--run-args arguments,... -run-args Used in combination with option -R, to
specify command line arguments for the
executable.

--input-drive-prefix
prefix

-idp On Windows platforms, all command line
arguments that refer to file names must
be converted to Windows native format
before they are passed to pure Windows
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executables. This option specifies how
the current development environment
represents absolute paths. Use -idp /
cygwin/ for CygWin build environments,
and -idp / for Mingw.

--dependency-drive-prefix
prefix

-ddp On Windows platforms, when generating
dependency files (option -M), all file
names must be converted to whatever
the used instance of make will recognize.
Some instances of make have trouble
with the colon in absolute paths in native
Windows format, which depends on the
environment in which this make instance
has been compiled. Use -ddp /cygwin/
for a CygWin make, and -ddp / for
Mingw. Or leave these file names in native
Windows format by specifying nothing.

--drive-prefix prefix -dp Specifies prefix as both input-drive-
prefix and dependency-drive-
prefix.

3.2.6. Options for Steering CUDA Compilation
--target-cpu-architecture -target-cpu-arch Specify the name of the class of CPU

architecture for which the input files
must be compiled.

--use_fast_math -use_fast_math Make use of fast math library. -
use_fast_math implies -ftz=true -
prec-div=false -prec-sqrt=false -
fmad=true.

--ftz -ftz The -ftz option controls single precision
denormals support. When -ftz=false,
denormals are supported and with -
ftz=true, denormals are flushed to 0.

--prec-div -prec-div The -prec-div option controls single
precision division. With -prec-div=true,
the division is IEEE compliant, with
-prec-div=false, the division is
approximate.

--prec-sqrt -prec-sqrt The -prec-sqrt option controls single
precision square root. With -prec-
sqrt=true, the square root is IEEE
compliant, with -prec-sqrt=false, the
square root is approximate.

--entries entry,... -e In case of compilation of ptx or gpu
files to cubin: specify the global entry
functions for which code must be
generated. By default, code will be
generated for all entries.

--fmad -fmad Enables (disables) the contraction of
floating-point multiplies and adds/
subtracts into floating-point multiply-add
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operations (FMAD, FFMA, or DFMA). The
default is -fmad=true.

3.2.7. Options for Steering GPU Code Generation
--gpu-architecture gpuarch -arch Specify the name of the NVIDIA GPU to

compile for. This can either be a real
GPU, or a virtual PTX architecture. PTX
code represents an intermediate format
that can still be further compiled and
optimized for, depending on the ptx
version, a specific class of actual GPUs .

The architecture specified by this option
is the architecture that is assumed by the
compilation chain up to the PTX stage,
while the architecture(s) specified with
the -code option are assumed by the last,
potentially runtime, compilation stage.

Currently supported compilation
architectures are: virtual architectures
compute_10, compute_11, compute_12,
compute_13, compute_20, compute_30,
compute_32,  compute_35; and  GPU
architectures sm_10, sm_11, sm_12,
sm_13, sm_20, sm_21, sm_30, sm_32, 
sm_35.

--gpu-code gpuarch,... -code Specify the name of the NVIDIA GPU to
generate code for.

nvcc embeds a compiled code image in
the executable for each specified code
architecture, which is a true binary load
image for each real architecture, and PTX
code for each virtual architecture.

During runtime, such embedded PTX code
will be dynamically compiled by the CUDA
runtime system if no binary load image is
found for the current GPU.

Architectures specified for options -
arch and -code may be virtual as well as
real, but the code architectures must be
compatible with the arch architecture.
When the  code option is used, the value
for the -arch option must be a virtual
PTX architecture.

For instance, arch=compute_13 is not
compatible with code=sm_10, because
the earlier compilation stages will assume
the availability of compute_13 features
that are not present on sm_10.

This option defaults to the value of
option -arch. Currently supported GPU
architectures: sm_10, sm_11, sm_12,
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sm_13, sm_20, sm_21, sm_30,  sm_32
and sm_35.

--generate-code -gencode This option provides a generalization of
the -arch=<arch> -code=code,...
option combination for specifying
nvcc behavior with respect to code
generation. Where use of the previous
options generates different code for
a fixed virtual architecture, option
--generate-code allows multiple
nvopencc invocations, iterating over
different virtual architectures. In fact, -
arch=<arch> -code=<code>,...
is equivalent to --generate-code
arch=<arch>,code=<code>,....

--generate-code options may
be repeated for different virtual
architectures.

Allowed keywords for this
option: arch,code.

--maxrregcount amount -maxrregcount Specify the maximum amount of registers
that GPU functions can use.

Until a function-specific limit, a higher
value will generally increase the
performance of individual GPU threads
that execute this function. However,
because thread registers are allocated
from a global register pool on each GPU,
a higher value of this option will also
reduce the maximum thread block size,
thereby reducing the amount of thread
parallelism. Hence, a good maxrregcount
value is the result of a trade-off.

If this option is not specified, then no
maximum is assumed.

Value less than the minimum registers
required by ABI will be bumped up by the
compiler to ABI minimum limit.

3.2.8. Generic Tool Options
--source-in-ptx -src-in-ptx Interleave source in PTX.

--Werror kind,... -Werror Make warnings of the specified kinds into

errors. The following is the list of warning

kinds accepted by this option:

‣ cross-execution-space-call

Be more strict about unsupported

cross execution space calls. The

compiler will generate an error
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instead of a warning for a call

from a __host__ __device__ to a

__host__ function.

--help -h Print help information on this tool.

--version -V Print version information on this tool.

--options-file file,... -optf Include command line options from

specified file.

3.2.9. Phase Options
The following sections lists some useful options to lower level compilation tools.

3.2.9.1. Ptxas Options

The following table lists some useful ptxas options which can be specified with nvcc
option -Xptxas.

--allow-expensive-

optimizations

-allow-expensive-

optimizations
Enable (disable) to allow compiler to

perform expensive optimizations using

maximum available resources (memory

and compile-time).

If unspecified, default behavior is to

enable this feature for optimization level

>= O2.

--compile-only -c Generate relocatable object.

--def-load-cache -dlcm Default cache modifier on global/generic

load. Default value: ca.

--def-store-cache -dscm Default cache modifier on global/generic

store.

--gpu-name gpuname -arch Specify name of NVIDIA GPU to generate

code for. This option also takes virtual

compute architectures, in which case

code generation is suppressed. This can

be used for parsing only.

Allowed values for this option:

compute_10, compute_11, compute_12,

compute_13, compute_20, compute_30, 

compute_35; and  sm_10, sm_11, sm_12,

sm_13, sm_20, sm_21, sm_30,  sm_32

and sm_35.
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Default value: sm_10.

--opt-level N -O Specify optimization level. Default value:

3.

--output-file file -o Specify name of output file. Default

value: elf.o.

--preserve-relocs -preserve-relocs This option will make ptxas to generate

relocatable references for variables and

preserve relocations generated for them

in linked executable.

--sp-bound-check -sp-bound-check Generate stack-pointer bounds-checking

code sequence. This option is turned on

automatically when device-debug(-g)

or opt-level(-O) 0 is specified.

--disable-optimizer-

constants

-disable-optimizer-

consts

Disable use of optimizer constant bank.

--verbose -v Enable verbose mode which prints code

generation statistics.

--warning-as-error -Werror Make all warnings into errors.

--device-debug -g Semantics same as nvcc option --

device-debug.

--entry entry,... -e Semantics same as nvcc option --

entries.

--fmad -fmad Semantics same as nvcc option --fmad.

--generate-line-info -lineinfo Semantics same as nvcc option --

generate-line-info.

--machine -m Semantics same as nvcc option --

machine.

--maxrregcount amount -maxrregcount Semantics same as nvcc option --

maxrregcount.

--help -h Semantics same as nvcc option --help.

--options-file file,... -optf Semantics same as nvcc option --

options-file.

--version -V Semantics same as nvcc option --

version.
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3.2.9.2. Nvlink Options

The following table lists some useful nvlink options which can be specified with nvcc
option -Xnvlink.

--preserve-relocs -preserve-relocs Preserve resolved relocations in linked

executable.
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Chapter 4.
THE CUDA COMPILATION TRAJECTORY

This chapter explains the internal structure of the various CUDA compilation phases.
These internals can usually be ignored unless one wants to understand, or manually
rerun, the compilation steps corresponding to phases. Such command replay is useful
during debugging of CUDA applications, when intermediate files need be inspected
or modified. It is important to note that this structure reflects the current way in which
nvcc implements its phases; it may significantly change with new releases of the CUDA
Toolkit.

The following section illustrates how internal steps can be made visible by nvcc, and
rerun. After that, a translation diagram of the .cu to .cu.cpp.ii phase is listed.
All other CUDA compilations are variants in some form of another of the .cu to C++
transformation.

4.1. Listing and Rerunning NVCC Steps
Intermediate steps can be made visible by options -v and -dryrun. In addition, option
-keep might be specified to retain temporary files, and also to give them slightly more
meaningful names. The following sample command lists the intermediate steps for a
CUDA compilation:

nvcc -cuda x.cu --compiler-bindir=c:/mvs/vc/bin -keep -dryrun

This command results in a listing as the one shown at the end of this section.

Depending on the actual command shell that is used, the displayed commands are
almost executable: the DOS command shell, and the Linux shells sh and csh each have
slightly different notations for assigning values to environment variables.

The command list contains the following:

‣ Definition of standard variables _HERE_ and _SPACE_ (see HERE_, _SPACE_)
‣ Environment assignments resulting from executing nvcc.profile (see

nvcc.profile)
‣ Definition of Visual Studio installation macros, derived from -compiler-bindir

(see Variables Interpreted by NVCC Itself)
‣ Environment assignments resulting from executing vsvars32.bat
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‣ Commands generated by nvcc
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#$ _SPACE_=
#$ _HERE_=c:\sw\gpgpu\bin\win32_debug
#$ TOP=c:\sw\gpgpu\bin\win32_debug/../..
#$ BINDIR=c:\sw\gpgpu\bin\win32_debug
#$ 
COMPILER_EXPORT=c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/
win32_debug
#$ 
PATH=c:\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:
\cygwin\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:
\WINDOWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program Files\Microsoft
 SQL Server\90\Tools\binn\;c:\Program Files\Perforce;C:\cygwin\lib\lapack
#$ 
PATH=c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/
open64/bin;c:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/
win32_debug/bin;c:\sw\gpgpu\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin
\win32_debug;C:\cygwin\usr\local\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr
\X11R6\bin;c:\WINDOWS\system32;c:\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program
 Files\Microsoft SQL Server\90\Tools\binn\;c:\Program Files\Perforce;C:\cygwin
\lib\lapack
#$ INCLUDES="-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" "-Ic:\sw\gpgpu\bin
\win32_debug/../../cuda/tools/cudart"
#$ INCLUDES="-Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/
win32_debug/include" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" "-Ic:\sw
\gpgpu\bin\win32_debug/../../cuda/tools/cudart"
#$ LIBRARIES= "c:\sw\gpgpu\bin\win32_debug/cuda.lib" "c:\sw\gpgpu\bin
\win32_debug/cudart.lib"
#$ PTXAS_FLAGS=
#$ OPENCC_FLAGS=-Werror
#$ VSINSTALLDIR=c:/mvs/vc/bin/..
#$ VCINSTALLDIR=c:/mvs/vc/bin/..
#$ FrameworkDir=c:\WINDOWS\Microsoft.NET\Framework
#$ FrameworkVersion=v2.0.50727
#$ FrameworkSDKDir=c:\MVS\SDK\v2.0
#$ DevEnvDir=c:\MVS\Common7\IDE
#$ 
PATH=c:\MVS\Common7\IDE;c:\MVS\VC\BIN;c:\MVS\Common7\Tools;c:\MVS
\Common7\Tools\bin;c:\MVS\VC\PlatformSDK\bin;c:\MVS\SDK\v2.0\bin;c:\WINDOWS
\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\VCPackages;c:\sw\gpgpu\bin
\win32_debug/../../../compiler/gpgpu/export/win32_debug/open64/bin;c:\sw\gpgpu
\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/bin;c:\sw\gpgpu
\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:\cygwin\usr\local
\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:\WINDOWS\system32;c:
\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program Files\Microsoft SQL Server\90\Tools
\binn\;c:\Program Files\Perforce;C:\cygwin\lib\lapack
#$ 
INCLUDE=c:\MVS\VC\ATLMFC\INCLUDE;c:\MVS\VC\INCLUDE;c:\MVS\VC\PlatformSDK
\include;c:\MVS\SDK\v2.0\include;
#$ 
LIB=c:\MVS\VC\ATLMFC\LIB;c:\MVS\VC\LIB;c:\MVS\VC\PlatformSDK\lib;c:\MVS\SDK
\v2.0\lib;
#$ 
LIBPATH=c:\WINDOWS\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\ATLMFC\LIB
#$ 
PATH=c:/mvs/vc/bin;c:\MVS\Common7\IDE;c:\MVS\VC\BIN;c:\MVS\Common7\Tools;c:\MVS
\Common7\Tools\bin;c:\MVS\VC\PlatformSDK\bin;c:\MVS\SDK\v2.0\bin;c:\WINDOWS
\Microsoft.NET\Framework\v2.0.50727;c:\MVS\VC\VCPackages;c:\sw\gpgpu\bin
\win32_debug/../../../compiler/gpgpu/export/win32_debug/open64/bin;c:\sw\gpgpu
\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/bin;c:\sw\gpgpu
\bin\win32_debug/open64/bin;c:\sw\gpgpu\bin\win32_debug;C:\cygwin\usr\local
\bin;C:\cygwin\bin;C:\cygwin\bin;C:\cygwin\usr\X11R6\bin;c:\WINDOWS\system32;c:
\WINDOWS;c:\WINDOWS\System32\Wbem;c:\Program Files\Microsoft SQL Server\90\Tools
\binn\;c:\Program Files\Perforce;C:\cygwin\lib\lapack
#$ cudafe -E -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -DCUDA_NO_SM_13_DOUBLE_INTRINSICS
 -DCUDA_FLOAT_MATH_FUNCTIONS "-Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/
gpgpu/export/win32_debug/include" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc"
 "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. "-Ic:\MVS\VC\ATLMFC
\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK
\v2.0\include" -D__CUDACC__ -C --preinclude "cuda_runtime.h" -o "x.cpp1.ii"
 "x.cu"
#$ cudafe "-Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/
win32_debug/include" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" "-Ic:
\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. --gen_c_file_name
 "x.cudafe1.c" --gen_device_file_name "x.cudafe1.gpu" --include_file_name
 x.fatbin.c --no_exceptions -tused "x.cpp1.ii"
#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -
DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-Ic:\sw\gpgpu
\bin\win32_debug/../../../compiler/gpgpu/export/win32_debug/include" "-Ic:\sw
\gpgpu\bin\win32_debug/../../cuda/inc" "-Ic:\sw\gpgpu\bin\win32_debug/../../
cuda/tools/cudart" -I. "-Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-
Ic:\MVS\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -D__CUDACC__ -C -o
 "x.cpp2.i" "x.cudafe1.gpu"
#$ cudafe --c "-Ic:\sw\gpgpu\bin\win32_debug/../../../compiler/gpgpu/export/
win32_debug/include" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/inc" "-Ic:
\sw\gpgpu\bin\win32_debug/../../cuda/tools/cudart" -I. --gen_c_file_name
 "x.cudafe2.c" --gen_device_file_name "x.cudafe2.gpu" --include_file_name
 x.fatbin.c "x.cpp2.i"
#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -
DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-Ic:\sw\gpgpu\bin
\win32_debug/../../../compiler/gpgpu/export/win32_debug/include" "-Ic:\sw\gpgpu
\bin\win32_debug/../../cuda/inc" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/
tools/cudart" -I. "-Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-Ic:\MVS
\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -D__GNUC__ -D__CUDABE__ -o
 "x.cpp3.i" "x.cudafe2.gpu"
#$ nvopencc -Werror "x.cpp3.i" -o "x.ptx"
#$ ptxas -arch=sm_10 "x.ptx" -o "x.cubin"
#$ filehash --skip-cpp-directives -s "" "x.cpp3.i" > "x.cpp3.i.hash"
#$ fatbin --key="x@xxxxxxxxxx" --source-name="x.cu" --usage-mode="" --embedded-
fatbin="x.fatbin.c" --image=profile=sm_10,file=x.cubin
#$ cudafe -E --c -DCUDA_NO_SM_12_ATOMIC_INTRINSICS -
DCUDA_NO_SM_13_DOUBLE_INTRINSICS -DCUDA_FLOAT_MATH_FUNCTIONS "-Ic:\sw\gpgpu\bin
\win32_debug/../../../compiler/gpgpu/export/win32_debug/include" "-Ic:\sw\gpgpu
\bin\win32_debug/../../cuda/inc" "-Ic:\sw\gpgpu\bin\win32_debug/../../cuda/
tools/cudart" -I. "-Ic:\MVS\VC\ATLMFC\INCLUDE" "-Ic:\MVS\VC\INCLUDE" "-Ic:\MVS
\VC\PlatformSDK\include" "-Ic:\MVS\SDK\v2.0\include" -o "x.cu.c" "x.cudafe1.c"
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4.2. Full CUDA Compilation Trajectory
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Figure 2 CUDA Compilation from .cu to .cu.cpp.ii

The CUDA phase converts a source file coded in the extended CUDA language, into a
regular ANSI C++ source file that can be handed over to a general purpose C++ compiler
for further compilation and linking. The exact steps that are followed to achieve this are
displayed in Figure 2.
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4.2.1. Compilation Flow
In short, CUDA compilation works as follows: the input program is separated by the
CUDA front end (cudafe), into C/C++ host code and the .gpu device code. Depending
on the value(s) of the -code option to nvcc, this device code is further translated by
the CUDA compilers/assemblers into CUDA binary (cubin) and/or into intermediate
PTX code. This code is merged into a device code descriptor which is included by the
previously separated host code. This descriptor will be inspected by the CUDA runtime
system whenever the device code is invoked (called) by the host program, in order to
obtain an appropriate load image for the current GPU.

4.2.2. CUDA Frontend
In the current CUDA compilation scheme, the CUDA front end is invoked twice. The
first step is for the actual splitup of the .cu input into host and device code. The second
step is a technical detail (it performs dead code analysis on the .gpu generated by the
first step), and it might disappear in future releases.

4.2.3. Preprocessing
The trajectory contains a number of preprocessing steps. The first of these, on the .cu
input, has the usual purpose of expanding include files and macro invocations that are
present in the source file. The remaining preprocessing steps expand CUDA system
macros in (C-) code that has been generated by preceding CUDA compilation steps. The
last preprocessing step also merges the results of the previously diverged compilation
flow.
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SAMPLE NVCC USAGE

The following lists a sample makefile that uses nvcc for portability across Windows
and Linux.
#
# On windows, store location of Visual Studio compiler
# into the environment. This will be picked up by nvcc,
# even without explicitly being passed.
# On Linux, use whatever gcc is in the current path
# (so leave compiler-bindir undefined):
#
ifdef ON_WINDOWS
    export compiler-bindir := c:/mvs/bin
endif

#
# Similar for OPENCC_FLAGS and PTXAS_FLAGS.
# These are simply passed via the environment:
#
export OPENCC_FLAGS := 
export PTXAS_FLAGS  := -fastimul

#
# cuda and C/C++ compilation rules, with
# dependency generation:
#
%.o : %.cpp
$(NVCC) -c %^ $(CFLAGS) -o $@
$(NVCC) -M %^ $(CFLAGS)  > $@.dep

%.o : %.c
$(NVCC) -c %^ $(CFLAGS) -o $@
$(NVCC) -M %^ $(CFLAGS)  > $@.dep

%.o : %.cu
$(NVCC) -c %^ $(CFLAGS) -o $@
$(NVCC) -M %^ $(CFLAGS)  > $@.dep

#
# Pick up generated dependency files, and 
# add /dev/null because gmake does not consider
# an empty list to be a list:
#
include  $(wildcard *.dep) /dev/null

#
# Define the application; 
# for each object file, there must be a
# corresponding .c or .cpp or .cu file:
#
OBJECTS = a.o    b.o    c.o
APP     = app

$(APP) : $(OBJECTS)
 $(NVCC) $(OBJECTS) $(LDFLAGS) -o $@

#
# Cleanup:
#
clean : 
 $(RM) $(OBJECTS) *.dep
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Chapter 6.
GPU COMPILATION

This chapter describes the GPU compilation model that is maintained by nvcc, in
cooperation with the CUDA driver. It goes through some technical sections, with
concrete examples at the end.

6.1. GPU Generations
In order to allow for architectural evolution, NVIDIA GPUs are released in different
generations. New generations introduce major improvements in functionality and/
or chip architecture, while GPU models within the same generation show minor
configuration differences that moderately affect functionality, performance, or both.

Binary compatibility of GPU applications is not guaranteed across different generations.
For example, a CUDA application that has been compiled for a Fermi GPU will very
likely not run on a next generation graphics card (and vice versa). This is because the
Fermi instruction set and instruction encodings is different from Kepler, which in turn
will probably be substantially different from those of the next generation GPU.
Tesla

‣ sm_10
‣ sm_11
‣ sm_12
‣ sm_13

Fermi

‣ sm_20
‣ sm_21

Kepler

‣ sm_30
‣ sm_35
‣ ..??..
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Next generation

‣ ..??..

Because they share the basic instruction set, binary compatibility within one GPU
generation, however, can under certain conditions guaranteed. This is the case between
two GPU versions that do not show functional differences at all (for instance when
one version is a scaled down version of the other), or when one version is functionally
included in the other. An example of the latter is the base Tesla version sm_10 whose
functionality is a subset of all other Tesla versions: any code compiled for sm_10 will run
on all other Tesla GPUs

6.2. GPU Feature List
The following table lists the names of the current GPU architectures, annotated with the
functional capabilities that they provide. There are other differences, such as amounts of
register and processor clusters, that only affect execution performance.

In the CUDA naming scheme, GPUs are named sm_xy, where x denotes the GPU
generation number, and y the version in that generation. Additionally, to facilitate
comparing GPU capabilities, CUDA attempts to choose its GPU names such that if
x1y1 <= x2y2 then all non-ISA related capabilities of sm_x1y1 are included in those of
sm_x2y2. From this it indeed follows that sm_10 is the base Tesla model, and it also
explains why higher entries in the tables are always functional extensions to the lower
entries. This is denoted by the plus sign in the table. Moreover, if we abstract from the
instruction encoding, it implies that sm_10's functionality will continue to be included
in all later GPU generations. As we will see next, this property will be the foundation for
application compatibility support by nvcc.

sm_10 ISA_1

Basic features

sm_11 + atomic memory operations on global memory

sm_12 + atomic memory operations on shared memory

+ vote instructions

sm_13 + double precision floating point support

sm_20 + Fermi support

sm_30 + Kepler support

sm_35 + dynamic parallelism support

6.3. Application Compatibility
Binary code compatibility over CPU generations, together with a published instruction
set architecture is the usual mechanism for ensuring that distributed applications out
there in the field will continue to run on newer versions of the CPU when these become
mainstream.
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This situation is different for GPUs, because NVIDIA cannot guarantee binary
compatibility without sacrificing regular opportunities for GPU improvements. Rather,
as is already conventional in the graphics programming domain, nvcc relies on a
two stage compilation model for ensuring application compatibility with future GPU
generations.

6.4. Virtual Architectures
GPU compilation is performed via an intermediate representation, PTX ([...]), which can
be considered as assembly for a virtual GPU architecture. Contrary to an actual graphics
processor, such a virtual GPU is defined entirely by the set of capabilities, or features,
that it provides to the application. In particular, a virtual GPU architecture provides a
(largely) generic instruction set, and binary instruction encoding is a non-issue because
PTX programs are always represented in text format.

Hence, a nvcc compilation command always uses two architectures: a compute
architecture to specify the virtual intermediate architecture, plus a real GPU architecture
to specify the intended processor to execute on. For such an nvcc command to be valid,
the real architecture must be an implementation (someway or another) of the virtual
architecture. This is further explained below.

The chosen virtual architecture is more of a statement on the GPU capabilities that
the application requires: using a smallest virtual architecture still allows a widest range
of actual architectures for the second nvcc stage. Conversely, specifying a virtual
architecture that provides features unused by the application unnecessarily restricts the
set of possible GPUs that can be specified in the second nvcc stage.

From this it follows that the virtual compute architecture should always be chosen as
low as possible, thereby maximizing the actual GPUs to run on. The real sm architecture
should be chosen as high as possible (assuming that this always generates better code),
but this is only possible with knowledge of the actual GPUs on which the application is
expected to run. As we will see later, in the situation of just in time compilation, where
the driver has this exact knowledge: the runtime GPU is the one on which the program
is about to be launched/executed.
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x.cu (device code part)

x .ptx

X.cubin

Stage 2 (ptxas)

Cuda device driver

Execute

Stage 1 (nvopencc)

n
v

c
cVirtual compute

Real sm
architecture

architecture

 

6.5. Virtual Architecture Feature List
compute_10 Basic features

compute_11 + atomic memory operations on global memory

compute_12 + atomic memory operations on shared memory

+ vote instructions

compute_13 + double precision floating point support

compute_20 + Fermi support

compute_30 + Kepler support

The above table lists the currently defined virtual architectures. As it appears, this table
shows a 1-1 correspondence to the table of actual GPUs listed earlier in this chapter. The
only difference except for the architecture names is that the ISA specification is missing
for the compute architectures.

However, this correspondence is misleading, and might degrade when new GPU
architectures are introduced and also due to development of the CUDA compiler.

First, a next generation architecture might not provide any functional improvements,
in which case the list of real architectures will be extended (because we must be able to
generate code for this architecture), but no new compute architecture is necessary.

Second, it may be decided to let the compiler emulate certain higher grade features
on lower grade GPUs. For example, this might be done for double precision floating
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point support. In this case double precision based applications will run on all real GPU
architectures, though with considerably lower performance on the models that do not
provide native double support. Such double precision emulation is here used merely
as an example (it currently is not actually considered), but the CUDA compiler already
does emulation for features that are considered basic though not natively supported:
integer division and 64-bit integer arithmetic. Because integer division and 64-bit integer
support are part of the basic feature set, they will not explicitly show up in the features
tables.

Feature emulation might have two different consequences for the virtual architecture
table: the feature might be silently added to a lower grade virtual architecture (as has
happened for integer division and 64-bit arithmetic), or it could be kept in a separate
virtual architecture. For instance if we were to emulate double precision floating point
on an sm_10, then keeping the virtual architecture compute_13 would make sense
because of the drastic performance consequences: applications would then have to
explicitly enable it during nvcc compilation and there would therefore be no danger of
unwittingly using it on lower grade GPUs. Either way, the following nvcc command
would become valid (which currently is not the case):
nvcc x.cu -arch=compute_13 -code=sm_10

The two cases of feature implementation are further illustrated below:
 

compute_M

sm _L sm_M sm_H

L : low grade
M : medium grade
H : high grade

‘natural’ feature
implementation

feature
implementation by

emulation

: implements

 

6.6. Further Mechanisms
Clearly, compilation staging in itself does not help towards the goal of application
compatibility with future GPUs. For this we need the two other mechanisms by CUDA
Samples: just in time compilation (JIT) and fatbinaries.

6.6.1. Just in Time Compilation
The compilation step to an actual GPU binds the code to one generation of GPUs. Within
that generation, it involves a choice between GPU coverage and possible performance.
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For example, for Tesla, compiling to sm_10 allows the code to run on all Tesla versions,
but compiling to sm_13 would probably yield better code.
 

x.cu (device code part)

Stage 1 (nvopencc)
Cuda device driver

Execute

x.p tx

x .cubin

n
v

cc

Stage 2 (ptxas)

Virtual compute 
architecture

Real sm
architecture

 

By specifying a virtual code architecture instead of a real GPU, nvcc postpones the
second compilation stage until application runtime, at which the target GPU is exactly
known. For instance, the command below allows generation of exactly matching GPU
binary code, when the application is launched on ansm_10, an sm_13, and even a later
architecture

nvcc x.cu -arch=compute_10 -code=compute_10

The disadvantage of just in time compilation is increased application startup delay,
but this can be alleviated by letting the CUDA driver use a compilation cache (refer to
"Section 3.1.1.2. Just-in-Time Compilation" of CUDA C Programming Guide) which is
persistent over multiple runs of the applications.

6.6.2. Fatbinaries
A different solution to overcome startup delay by JIT while still allowing execution on
newer GPUs is to specify multiple code instances, as in

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13

This command generates exact code for two Tesla variants, plus ptx code for use by
JIT in case a next-generation GPU is encountered. nvcc organizes its device code in
fatbinaries, which are able to hold multiple translations of the same GPU source code. At
runtime, the CUDA driver will select the most appropriate translation when the device
function is launched.
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6.7. NVCC Examples

6.7.1. Base Notation
nvcc provides the options -arch and -code for specifying the target architectures for
both translation stages. Except for allowed short hands described below, the -arch
option takes a single value, which must be the name of a virtual compute architecture,
while option -code takes a list of values which must all be the names of actual GPUs.
nvcc performs a stage 2 translation for each of these GPUs, and will embed the result in
the result of compilation (which usually is a host object file or executable).

Example

nvcc x.cu -arch=compute_10 -code=sm_10,sm_13

6.7.2. Shorthand
nvcc allows a number of shorthands for simple cases.

6.7.2.1. Shorthand 1

-code arguments can be virtual architectures. In this case the stage 2 translation will
be omitted for such virtual architecture, and the stage 1 PTX result will be embedded
instead. At application launch, and in case the driver does not find a better alternative,
the stage 2 compilation will be invoked by the driver with the PTX as input.

Example

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13

6.7.2.2. Shorthand 2

The -code option can be omitted. Only in this case, the -arch value can be a non-
virtual architecture. The -code values default to the closest virtual architecture that is
implemented by the GPU specified with -arch, plus the -arch value itself (in case the
-arch value is a virtual architecture then these two are the same, resulting in a single-
code default). After that, the effective -arch value will be the closest virtual architecture:

Example

nvcc x.cu -arch=sm_13
nvcc x.cu -arch=compute_10

are short hands for

nvcc x.cu -arch=compute_13 -code=sm_13,compute_13
nvcc x.cu -arch=compute_10 -code=compute_10
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6.7.2.3. Shorthand 3

Both -arch and -code options can be omitted.

Example

nvcc x.cu

is short hand for

nvcc x.cu -arch=compute_10 -code=sm_10,compute_10

6.7.3. Extended Notation
The options -arch and -code can be used in all cases where code is to be generated
for one or more GPUs using a common virtual architecture. This will cause a single
invocation of nvcc stage 1 (that is, preprocessing and generation of virtual PTX
assembly code), followed by a compilation stage 2 (binary code generation) repeated for
each specified GPU.

Using a common virtual architecture means that all assumed GPU features are fixed
for the entire nvcc compilation. For instance, the following nvcc command assumes no
double precision floating point support for both the sm_10 code and the sm_13 code:

nvcc x.cu -arch=compute_10 -code=compute_10,sm_10,sm_13

Sometimes it is necessary to perform different GPU code generation steps, partitioned
over different architectures. This is possible using nvcc option -gencode, which then
must be used instead of a -arch/-code combination.

Unlike option -arch, option -gencode may be repeated on the nvcc command line. It
takes sub-options arch and code, which must not be confused with their main option
equivalents, but behave similarly. If repeated architecture compilation is used, then the
device code must use conditional compilation based on the value of the architecture
identification macro __CUDA_ARCH__, which is described in the next section.

For example, the following assumes absence of double precision support for the sm_10
and sm_11 code, but full support for sm_:

nvcc x.cu \
    -gencode arch=compute_10,code=sm_10 \
    -gencode arch=compute_10,code=sm_11 \
    -gencode arch=compute_13,code=sm_13

Or, leaving actual GPU code generation to the JIT compiler in the CUDA driver:

nvcc x.cu \
    -gencode arch=compute_10,code=compute_10 \
    -gencode arch=compute_13,code=compute_13

The code sub-options can be combined, but for technical reasons must then be quoted,
which causes a slightly less pleasant syntax:
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nvcc x.cu \
    -gencode arch=compute_10,code=\’sm_10,sm_11\’ \
    -gencode arch=compute_12,code=\’sm_12,sm_13\’

6.7.4. Virtual Architecture Identification Macro
The architecture identification macro __CUDA_ARCH__ is assigned a three-digit value
string xy0 (ending in a literal 0) during each nvcc compilation stage 1 that compiles for
compute_xy.

This macro can be used in the implementation of GPU functions for determining the
virtual architecture for which it is currently being compiled. The host code (the non-GPU
code) must not depend on it.
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Chapter 7.
USING SEPARATE COMPILATION IN CUDA

Prior to the 5.0 release, CUDA did not support separate compilation, so CUDA code
could not call device functions or access variables across files. Such compilation is
referred to as whole program compilation. We have always supported the separate
compilation of host code, it was just the device CUDA code that needed to all be within
one file. Starting with CUDA 5.0, separate compilation of device code is supported,
but the old whole program mode is still the default, so there are new options to invoke
separate compilation.

7.1. Code Changes for Separate Compilation
The code changes required for separate compilation of device code are the same as what
you already do for host code, namely using extern and static to control the visibility
of symbols. Note that previously extern was ignored in CUDA code; now it will be
honored. With the use of static it is possible to have multiple device symbols with
the same name in different files. For this reason, the CUDA API calls that referred to
symbols by their string name are deprecated; instead the symbol should be referenced
by its address.

7.2. Default Behavior and sm_1x
Separate compilation only works for sm_20 and above, because there is no ABI for
sm_1x. sm_10 is also the default target architecture, so a default compile will be
whole program compilation. Because multiple architectures can be specified on the
same command line, we have left the default as whole program compilation for all
architectures. So a user must explicitly opt-in to separate compilation by specifying new
commands, which are described in the next section.

7.3. NVCC Options for Separate Compilation
CUDA works by embedding device code into host objects. In whole program
compilation, it embeds executable device code into the host object.  In separate



Using Separate Compilation in CUDA

www.nvidia.com
CUDA Compiler Driver NVCC TRM-06721-001_v6.0 | 40

compilation, we embed relocatable device code into the host object, and run the device
linker (nvlink) to link all the device code together.  The output of nvlink is then linked
together with all the host objects by the host linker to form the final executable.

The generation of relocatable vs executable device code is controlled by the --
relocatable-device-code={true,false} option, which can be shortened to –
rdc={true,false}.

The –c option is already used to control stopping a compile at a host object, so a new
option --device-c (or –dc) is added that simply does –c --relocatable-device-
code=true.

To invoke just the device linker, the --device-link (-dlink) option can be used,
which emits a host object containing the embedded executable device code.  The output
of that must then be passed to the host linker. Or:
nvcc <objects>

can be used to implicitly call both the device and host linkers as long as the architecture
is > sm_20. This works because if the device linker does not see any relocatable code it
does not do anything.

A diagram of the flow is as follows:
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7.4. Libraries
The device linker has the ability to read the static host library formats (.a on Linux and
Mac, .lib on Windows). It ignores any dynamic (.so or .dll) libraries. The -l and -L
options can be used to pass libraries to both the device and host linker. The library name
is specified without the library file extension when the -l option is used.

nvcc -arch=sm_20 a.o b.o -L<path> -lfoo

Alternatively, the library name, including the library file extension, can be used without
the -l option on Windows.

nvcc -arch=sm_20 a.obj b.obj foo.lib -L<path>

Note that the device linker ignores any objects that do not have relocatable device code.

7.5. Examples
Suppose we have the following files:

******* b.h ***********
#define N 8

extern __device__ int g[N];

extern __device__ void bar(void;

******* b.cu***********
#include "b.h"

__device__ int g[N];

__device__ void bar (void)
{
  g[threadIdx.x]++;
}
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******* a.cu ***********
#include <stdio.h>
#include "b.h"

__global__ void foo (void) {

  __shared__ int a[N];
  a[threadIdx.x] = threadIdx.x;

  __syncthreads();

  g[threadIdx.x] = a[blockDim.x - threadIdx.x - 1];

  bar();
}

int main (void) {
  unsigned int i;
  int *dg, hg[N];
  int sum = 0;

  foo<<<1, N>>>();

  if(cudaGetSymbolAddress((void**)&dg, g)){
      printf("couldn't get the symbol addr\n");
      return 1;
  }
  if(cudaMemcpy(hg, dg, N * sizeof(int), cudaMemcpyDeviceToHost)){
      printf("couldn't memcpy\n");
      return 1;
  }

  for (i = 0; i < N; i++) {
    sum += hg[i];
  }
  if (sum == 36) {
    printf("PASSED\n");
  } else {
    printf("FAILED (%d)\n", sum);
  }

  return 0;
}

These can be compiled with the following commands (these examples are for Linux):

nvcc –arch=sm_20 –dc a.cu b.cu
nvcc –arch=sm_20 a.o b.o

If you want to invoke the device and host linker separately, you can do:

nvcc –arch=sm_20 –dc a.cu b.cu
nvcc –arch=sm_20 –dlink a.o b.o –o link.o
g++ a.o b.o link.o –L<path> -lcudart

Note that a target architecture must be passed to the device linker. If you invoke the
device linker without a target arch, e.g.,

nvcc –dlink a.o b.o

You will get an error because that defaults to sm_10.

The objects could be put into a library and used with:
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nvcc –arch=sm_20 –dc a.cu b.cu
nvcc –lib a.o b.o –o test.a
nvcc –arch=sm_20 test.a

Note that only static libraries are supported by the device linker.

A ptx file can be compiled to a host object file and then linked by using:

nvcc -arch=sm_20 -dc a.ptx

An example that uses libraries, host linker, and dynamic parallelism would be:

nvcc –arch=sm_35 –dc a.cu b.cu
nvcc –arch=sm_35 –dlink a.o b.o –lcudadevrt –o link.o
g++ a.o b.o link.o –lcudadevrt –L<path> –lcudart

It is possible to do multiple device links within a single host executable, as long as each
device link is independent of the other (they cannot share code across device executables).

7.6. Potential Separate Compilation Issues

7.6.1. Object Compatibility
Only relocatable device code with the same ABI version, same SM target architecture,
and same pointer size (32 or 64) can be linked together. Incompatible objects will
produce a link error. An object could have been compiled for a different architecture but
also have PTX available, in which case the device linker will JIT the PTX to cubin for the
desired architecture and then link. Relocatable device code requires CUDA 5.0 or later
toolkit.

If a kernel is limited to a certain number of registers with the launch_bounds attribute
or the -maxrregcount option, then all functions that the kernel calls must not use more
than that number of registers; if they exceed the limit, then a link error will be given.

7.6.2. JIT Linking Support
CUDA 5.0 does not support JIT linking, while CUDA 5.5 does. This means that to use JIT
linking you must recompile your code with CUDA 5.5 or later. JIT linking means doing
a relink of the code at startup time. The device linker (nvlink) links at the cubin level.
If the cubin does not match the target architecture at load time, the driver re-invokes
the device linker to generate cubin for the target architecture, by first JIT'ing the PTX for
each object to the appropriate cubin, and then linking together the new cubin.

7.6.3. Implicit CUDA Host Code
A file like b.cu above only contains CUDA device code, so one might think that the b.o
object doesn't need to be passed to the host linker. But actually there is implicit host code
generated whenever a device symbol can be accessed from the host side, either via a
launch or an API call like cudaGetSymbolAddress(). This implicit host code is put into
b.o, and needs to be passed to the host linker. Plus, for JIT linking to work all device
code must be passed to the host linker, else the host executable will not contain device
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code needed for the JIT link. So a general rule is that the device linker and host linker
must see the same host object files (if the object files have any device references in them -
if a file is pure host then the device linker doesn't need to see it).
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Chapter 8.
MISCELLANEOUS NVCC USAGE

8.1. Printing Code Generation Statistics
A summary on the amount of used registers and the amount of memory needed per
compiled device function can be printed by passing option -v to ptxas:

nvcc -Xptxas -v acos.cu
ptxas info   : Compiling entry function 'acos_main'
ptxas info   : Used 4 registers, 60+56 bytes lmem, 44+40 bytes smem, 
               20 bytes cmem[1], 12 bytes cmem[14]

As shown in the above example, the amounts of local and shared memory are listed by
two numbers each. First number represents the total size of all the variables declared in
that memory segment and the second number represents the amount of system allocated
data. The amount and location of system allocated data as well as the allocation of
constant variables to constant banks is profile specific. For constant memory, the total
space allocated in that bank is shown.

If separate compilation is used, some of this info must come from the device linker, so
should use nvcc –Xnvlink –v.
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