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Chapter 1.
INTRODUCTION

1.1. From Graphics Processing to General Purpose
Parallel Computing
Driven by the insatiable market demand for realtime, high-definition 3D graphics,
the programmable Graphic Processor Unit or GPU has evolved into a highly parallel,
multithreaded, manycore processor with tremendous computational horsepower and
very high memory bandwidth, as illustrated by Figure 1 and Figure 2.
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Figure 1 Floating-Point Operations per Second for the CPU and GPU
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Figure 2 Memory Bandwidth for the CPU and GPU

The reason behind the discrepancy in floating-point capability between the CPU and the
GPU is that the GPU is specialized for compute-intensive, highly parallel computation
- exactly what graphics rendering is about - and therefore designed such that more
transistors are devoted to data processing rather than data caching and flow control, as
schematically illustrated by Figure 3.
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Figure 3 The GPU Devotes More Transistors to Data Processing
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More specifically, the GPU is especially well-suited to address problems that can be
expressed as data-parallel computations - the same program is executed on many data
elements in parallel - with high arithmetic intensity - the ratio of arithmetic operations
to memory operations. Because the same program is executed for each data element,
there is a lower requirement for sophisticated flow control, and because it is executed on
many data elements and has high arithmetic intensity, the memory access latency can be
hidden with calculations instead of big data caches.

Data-parallel processing maps data elements to parallel processing threads. Many
applications that process large data sets can use a data-parallel programming model
to speed up the computations. In 3D rendering, large sets of pixels and vertices are
mapped to parallel threads. Similarly, image and media processing applications such as
post-processing of rendered images, video encoding and decoding, image scaling, stereo
vision, and pattern recognition can map image blocks and pixels to parallel processing
threads. In fact, many algorithms outside the field of image rendering and processing
are accelerated by data-parallel processing, from general signal processing or physics
simulation to computational finance or computational biology.

1.2. CUDA™: A General-Purpose Parallel Computing
Platform and Programming Model
In November 2006, NVIDIA introduced CUDA™, a general purpose parallel computing
platform and programming model that leverages the parallel compute engine in
NVIDIA GPUs to solve many complex computational problems in a more efficient way
than on a CPU.

CUDA comes with a software environment that allows developers to use C as a high-
level programming language. As illustrated by Figure 4, other languages, application
programming interfaces, or directives-based approaches are supported, such as
FORTRAN, DirectCompute, OpenACC.
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Figure 4 GPU Computing Applications
CUDA is designed to support various languages and application programming interfaces.

1.3. A Scalable Programming Model
The advent of multicore CPUs and manycore GPUs means that mainstream processor
chips are now parallel systems. Furthermore, their parallelism continues to scale
with Moore's law. The challenge is to develop application software that transparently
scales its parallelism to leverage the increasing number of processor cores, much as
3D graphics applications transparently scale their parallelism to manycore GPUs with
widely varying numbers of cores.

The CUDA parallel programming model is designed to overcome this challenge while
maintaining a low learning curve for programmers familiar with standard programming
languages such as C.

At its core are three key abstractions - a hierarchy of thread groups, shared memories,
and barrier synchronization - that are simply exposed to the programmer as a minimal
set of language extensions.
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These abstractions provide fine-grained data parallelism and thread parallelism,
nested within coarse-grained data parallelism and task parallelism. They guide the
programmer to partition the problem into coarse sub-problems that can be solved
independently in parallel by blocks of threads, and each sub-problem into finer pieces
that can be solved cooperatively in parallel by all threads within the block.

This decomposition preserves language expressivity by allowing threads to cooperate
when solving each sub-problem, and at the same time enables automatic scalability.
Indeed, each block of threads can be scheduled on any of the available multiprocessors
within a GPU, in any order, concurrently or sequentially, so that a compiled CUDA
program can execute on any number of multiprocessors as illustrated by Figure 5, and
only the runtime system needs to know the physical multiprocessor count.

This scalable programming model allows the GPU architecture to span a wide market
range by simply scaling the number of multiprocessors and memory partitions: from
the high-performance enthusiast GeForce GPUs and professional Quadro and Tesla
computing products to a variety of inexpensive, mainstream GeForce GPUs (see CUDA-
Enabled GPUs for a list of all CUDA-enabled GPUs).
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A GPU is built around an array of Streaming Multiprocessors (SMs) (see Hardware
Implementation for more details). A multithreaded program is partitioned into blocks
of threads that execute independently from each other, so that a GPU with more
multiprocessors will automatically execute the program in less time than a GPU with
fewer multiprocessors.

Figure 5 Automatic Scalability

1.4. Document Structure
This document is organized into the following chapters:

‣ Chapter Introduction is a general introduction to CUDA.
‣ Chapter Programming Model outlines the CUDA programming model.
‣ Chapter Programming Interface describes the programming interface.
‣ Chapter Hardware Implementation describes the hardware implementation.
‣ Chapter Performance Guidelines gives some guidance on how to achieve maximum

performance.
‣ Appendix CUDA-Enabled GPUs lists all CUDA-enabled devices.
‣ Appendix C Language Extensions is a detailed description of all extensions to the C

language.
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‣ Appendix Mathematical Functions lists the mathematical functions supported in
CUDA.

‣ Appendix C/C++ Language Support lists the C++ features supported in device code.
‣ Appendix Texture Fetching gives more details on texture fetching
‣ Appendix Compute Capabilities gives the technical specifications of various devices,

as well as more architectural details.
‣ Appendix Driver API introduces the low-level driver API.
‣ Appendix CUDA Environment Variables lists all the CUDA environment variables.
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Chapter 2.
PROGRAMMING MODEL

This chapter introduces the main concepts behind the CUDA programming model by
outlining how they are exposed in C. An extensive description of CUDA C is given in
Programming Interface.

Full code for the vector addition example used in this chapter and the next can be found
in the vectorAdd CUDA sample.

2.1. Kernels
CUDA C extends C by allowing the programmer to define C functions, called kernels,
that, when called, are executed N times in parallel by N different CUDA threads, as
opposed to only once like regular C functions.

A kernel is defined using the __global__ declaration specifier and the number of
CUDA threads that execute that kernel for a given kernel call is specified using a new
<<<...>>> execution configuration syntax (see C Language Extensions). Each thread
that executes the kernel is given a unique thread ID that is accessible within the kernel
through the built-in threadIdx variable.

As an illustration, the following sample code adds two vectors A and B of size N and
stores the result into vector C:
// Kernel definition
__global__ void VecAdd(float* A, float* B, float* C)
{
    int i = threadIdx.x;
    C[i] = A[i] + B[i];
}

int main()
{
    ...
    // Kernel invocation with N threads
    VecAdd<<<1, N>>>(A, B, C);
    ...
}

Here, each of the N threads that execute VecAdd() performs one pair-wise addition.
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2.2. Thread Hierarchy
For convenience, threadIdx is a 3-component vector, so that threads can be identified
using a one-dimensional, two-dimensional, or three-dimensional thread index, forming
a one-dimensional, two-dimensional, or three-dimensional thread block. This provides
a natural way to invoke computation across the elements in a domain such as a vector,
matrix, or volume.

The index of a thread and its thread ID relate to each other in a straightforward way:
For a one-dimensional block, they are the same; for a two-dimensional block of size (Dx,
Dy),the thread ID of a thread of index (x, y) is (x + y Dx); for a three-dimensional block of
size (Dx, Dy, Dz), the thread ID of a thread of index (x, y, z) is (x + y Dx + z Dx Dy).

As an example, the following code adds two matrices A and B of size NxN and stores the
result into matrix C:
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
                       float C[N][N])
{
    int i = threadIdx.x;
    int j = threadIdx.y;
    C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation with one block of N * N * 1 threads
    int numBlocks = 1;
    dim3 threadsPerBlock(N, N);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}

There is a limit to the number of threads per block, since all threads of a block are
expected to reside on the same processor core and must share the limited memory
resources of that core. On current GPUs, a thread block may contain up to 1024 threads.

However, a kernel can be executed by multiple equally-shaped thread blocks, so that the
total number of threads is equal to the number of threads per block times the number of
blocks.

Blocks are organized into a one-dimensional, two-dimensional, or three-dimensional
grid of thread blocks as illustrated by Figure 6. The number of thread blocks in a grid is
usually dictated by the size of the data being processed or the number of processors in
the system, which it can greatly exceed.



Programming Model

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 11

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 6 Grid of Thread Blocks

The number of threads per block and the number of blocks per grid specified in the
<<<...>>> syntax can be of type int or dim3. Two-dimensional blocks or grids can be
specified as in the example above.

Each block within the grid can be identified by a one-dimensional, two-dimensional,
or three-dimensional index accessible within the kernel through the built-in blockIdx
variable. The dimension of the thread block is accessible within the kernel through the
built-in blockDim variable.
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Extending the previous MatAdd() example to handle multiple blocks, the code becomes
as follows.
// Kernel definition
__global__ void MatAdd(float A[N][N], float B[N][N],
float C[N][N])
{
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    int j = blockIdx.y * blockDim.y + threadIdx.y;
    if (i < N && j < N)
        C[i][j] = A[i][j] + B[i][j];
}

int main()
{
    ...
    // Kernel invocation
    dim3 threadsPerBlock(16, 16);
    dim3 numBlocks(N / threadsPerBlock.x, N / threadsPerBlock.y);
    MatAdd<<<numBlocks, threadsPerBlock>>>(A, B, C);
    ...
}

A thread block size of 16x16 (256 threads), although arbitrary in this case, is a common
choice. The grid is created with enough blocks to have one thread per matrix element
as before. For simplicity, this example assumes that the number of threads per grid in
each dimension is evenly divisible by the number of threads per block in that dimension,
although that need not be the case.

Thread blocks are required to execute independently: It must be possible to execute
them in any order, in parallel or in series. This independence requirement allows thread
blocks to be scheduled in any order across any number of cores as illustrated by Figure 1
4, enabling programmers to write code that scales with the number of cores.

Threads within a block can cooperate by sharing data through some shared memory and
by synchronizing their execution to coordinate memory accesses. More precisely, one
can specify synchronization points in the kernel by calling the  __syncthreads()
intrinsic function;  __syncthreads() acts as a barrier at which all threads in the block
must wait before any is allowed to proceed. Shared Memory gives an example of using
shared memory.

For efficient cooperation, the shared memory is expected to be a low-latency memory
near each processor core (much like an L1 cache) and __syncthreads() is expected to
be lightweight.

2.3. Memory Hierarchy
CUDA threads may access data from multiple memory spaces during their execution
as illustrated by Figure 7. Each thread has private local memory. Each thread block has
shared memory visible to all threads of the block and with the same lifetime as the block.
All threads have access to the same global memory.

There are also two additional read-only memory spaces accessible by all threads: the
constant and texture memory spaces. The global, constant, and texture memory spaces
are optimized for different memory usages (see Device Memory Accesses). Texture
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memory also offers different addressing modes, as well as data filtering, for some
specific data formats (see Texture and Surface Memory).

The global, constant, and texture memory spaces are persistent across kernel launches
by the same application.

Global memory
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Block (2, 0)Block (1, 0)Block (0, 0)
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Figure 7 Memory Hierarchy
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2.4. Heterogeneous Programming
As illustrated by Figure 8, the CUDA programming model assumes that the CUDA
threads execute on a physically separate device that operates as a coprocessor to the host
running the C program. This is the case, for example, when the kernels execute on a
GPU and the rest of the C program executes on a CPU.

The CUDA programming model also assumes that both the host and the device maintain
their own separate memory spaces in DRAM, referred to as host memory and device
memory, respectively. Therefore, a program manages the global, constant, and texture
memory spaces visible to kernels through calls to the CUDA runtime (described in
Programming Interface). This includes device memory allocation and deallocation as
well as data transfer between host and device memory.
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Figure 8 Heterogeneous Programming
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2.5. Compute Capability
The compute capability of a device is defined by a major revision number and a minor
revision number.

Devices with the same major revision number are of the same core architecture. The
major revision number is 3 for devices based on the Kepler architecture, 2 for devices
based on the Fermi architecture, and 1 for devices based on the Tesla architecture.

The minor revision number corresponds to an incremental improvement to the core
architecture, possibly including new features.

CUDA-Enabled GPUs lists of all CUDA-enabled devices along with their compute
capability. Compute Capabilities gives the technical specifications of each compute
capability.
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Chapter 3.
PROGRAMMING INTERFACE

CUDA C provides a simple path for users familiar with the C programming language to
easily write programs for execution by the device.

It consists of a minimal set of extensions to the C language and a runtime library.

The core language extensions have been introduced in Programming Model. They allow
programmers to define a kernel as a C function and use some new syntax to specify the
grid and block dimension each time the function is called. A complete description of all
extensions can be found in C Language Extensions. Any source file that contains some of
these extensions must be compiled with nvcc as outlined in Compilation with NVCC.

The runtime is introduced in Compilation Workflow. It provides C functions that
execute on the host to allocate and deallocate device memory, transfer data between host
memory and device memory, manage systems with multiple devices, etc. A complete
description of the runtime can be found in the CUDA reference manual.

The runtime is built on top of a lower-level C API, the CUDA driver API, which is
also accessible by the application. The driver API provides an additional level of
control by exposing lower-level concepts such as CUDA contexts - the analogue of host
processes for the device - and CUDA modules - the analogue of dynamically loaded
libraries for the device. Most applications do not use the driver API as they do not
need this additional level of control and when using the runtime, context and module
management are implicit, resulting in more concise code. The driver API is introduced
in Driver API and fully described in the reference manual.

3.1. Compilation with NVCC
Kernels can be written using the CUDA instruction set architecture, called PTX, which
is described in the PTX reference manual. It is however usually more effective to use a
high-level programming language such as C. In both cases, kernels must be compiled
into binary code by nvcc to execute on the device.

nvcc is a compiler driver that simplifies the process of compiling C or PTX code: It
provides simple and familiar command line options and executes them by invoking the
collection of tools that implement the different compilation stages. This section gives
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an overview of nvcc workflow and command options. A complete description can be
found in the nvcc user manual.

3.1.1. Compilation Workflow

3.1.1.1. Offline Compilation
Source files compiled with nvcc can include a mix of host code (i.e., code that executes
on the host) and device code (i.e., code that executes on the device). nvcc's basic
workflow consists in separating device code from host code and then:

‣ compiling the device code into an assembly form (PTX code) and/or binary form
(cubin object),

‣ and modifying the host code by replacing the <<<...>>> syntax introduced in
Kernels (and described in more details in Execution Configuration) by the necessary
CUDA C runtime function calls to load and launch each compiled kernel from the
PTX code and/or cubin object.

The modified host code is output either as C code that is left to be compiled using
another tool or as object code directly by letting nvcc invoke the host compiler during
the last compilation stage.

Applications can then:

‣ Either link to the compiled host code (this is the most common case),
‣ Or ignore the modified host code (if any) and use the CUDA driver API (see Driver

API) to load and execute the PTX code or cubin object.

3.1.1.2. Just-in-Time Compilation
Any PTX code loaded by an application at runtime is compiled further to binary code
by the device driver. This is called just-in-time compilation. Just-in-time compilation
increases application load time, but allows the application to benefit from any new
compiler improvements coming with each new device driver. It is also the only way
for applications to run on devices that did not exist at the time the application was
compiled, as detailed in Application Compatibility.

When the device driver just-in-time compiles some PTX code for some application, it
automatically caches a copy of the generated binary code in order to avoid repeating
the compilation in subsequent invocations of the application. The cache - referred to as
compute cache - is automatically invalidated when the device driver is upgraded, so that
applications can benefit from the improvements in the new just-in-time compiler built
into the device driver.

Environment variables are available to control just-in-time compilation as described in
CUDA Environment Variables

3.1.2. Binary Compatibility
Binary code is architecture-specific. A cubin object is generated using the compiler
option -code that specifies the targeted architecture: For example, compiling with -
code=sm_13 produces binary code for devices of compute capability 1.3 (see Compute
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Capability for a description of the compute capability). Binary compatibility is
guaranteed from one minor revision to the next one, but not from one minor revision to
the previous one or across major revisions. In other words, a cubin object generated for
compute capability X.y is only guaranteed to execute on devices of compute capability
X.z where z≥y.

3.1.3. PTX Compatibility
Some PTX instructions are only supported on devices of higher compute capabilities.
For example, atomic instructions on global memory are only supported on devices of
compute capability 1.1 and above; double-precision instructions are only supported
on devices of compute capability 1.3 and above. The -arch compiler option specifies
the compute capability that is assumed when compiling C to PTX code. So, code that
contains double-precision arithmetic, for example, must be compiled with -arch=sm_13
(or higher compute capability), otherwise double-precision arithmetic will get demoted
to single-precision arithmetic.

PTX code produced for some specific compute capability can always be compiled to
binary code of greater or equal compute capability.

3.1.4. Application Compatibility
To execute code on devices of specific compute capability, an application must load
binary or PTX code that is compatible with this compute capability as described in
Binary Compatibility and PTX Compatibility. In particular, to be able to execute code
on future architectures with higher compute capability (for which no binary code can be
generated yet), an application must load PTX code that will be just-in-time compiled for
these devices (see Just-in-Time Compilation).

Which PTX and binary code gets embedded in a CUDA C application is controlled by
the -arch and -code compiler options or the -gencode compiler option as detailed in
the nvcc user manual. For example,
nvcc x.cu
        -gencode arch=compute_10,code=sm_10
        -gencode arch=compute_11,code=\'compute_11,sm_11\'

embeds binary code compatible with compute capability 1.0 (first -gencode option) and
PTX and binary code compatible with compute capability 1.1 (second -gencode option).

Host code is generated to automatically select at runtime the most appropriate code to
load and execute, which, in the above example, will be:

‣ 1.0 binary code for devices with compute capability 1.0,
‣ 1.1 binary code for devices with compute capability 1.1, 1.2, 1.3,
‣ binary code obtained by compiling 1.1 PTX code for devices with compute

capabilities 2.0 and higher.

x.cu can have an optimized code path that uses atomic operations, for example,
which are only supported in devices of compute capability 1.1 and higher. The
__CUDA_ARCH__ macro can be used to differentiate various code paths based on
compute capability. It is only defined for device code. When compiling with -
arch=compute_11 for example, __CUDA_ARCH__ is equal to 110.
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Applications using the driver API must compile code to separate files and explicitly load
and execute the most appropriate file at runtime.

The nvcc user manual lists various shorthand for the -arch, -code, and -gencode
compiler options. For example, -arch=sm_13 is a shorthand for -arch=compute_13 -
code=compute_13,sm_13 (which is the same as -gencode arch=compute_13,code=
\'compute_13,sm_13\').

3.1.5. C/C++ Compatibility
The front end of the compiler processes CUDA source files according to C++ syntax
rules. Full C++ is supported for the host code. However, only a subset of C++ is fully
supported for the device code as described in C/C++ Language Support.

3.1.6. 64-Bit Compatibility
The 64-bit version of nvcc compiles device code in 64-bit mode (i.e., pointers are 64-bit).
Device code compiled in 64-bit mode is only supported with host code compiled in 64-
bit mode.

Similarly, the 32-bit version of nvcc compiles device code in 32-bit mode and device
code compiled in 32-bit mode is only supported with host code compiled in 32-bit mode.

The 32-bit version of nvcc can compile device code in 64-bit mode also using the -m64
compiler option.

The 64-bit version of nvcc can compile device code in 32-bit mode also using the -m32
compiler option.

3.2. CUDA C Runtime
The runtime is implemented in the cudart library, which is linked to the application,
either statically via cudart.lib or libcudart.a, or dynamically via cudart.dll or
libcudart.so. Applications that require cudart.dll and/or cudart.so for dynamic
linking typically include them as part of the application installation package.

All its entry points are prefixed with cuda.

As mentioned in Heterogeneous Programming, the CUDA programming model
assumes a system composed of a host and a device, each with their own separate
memory. Device Memory gives an overview of the runtime functions used to manage
device memory.

Shared Memory illustrates the use of shared memory, introduced in Thread Hierarchy,
to maximize performance.

Page-Locked Host Memory introduces page-locked host memory that is required to
overlap kernel execution with data transfers between host and device memory.

Asynchronous Concurrent Execution describes the concepts and API used to enable
asynchronous concurrent execution at various levels in the system.
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Multi-Device System shows how the programming model extends to a system with
multiple devices attached to the same host.

Error Checking describes how to properly check the errors generated by the runtime.

Call Stack mentions the runtime functions used to manage the CUDA C call stack.

Texture and Surface Memory presents the texture and surface memory spaces that
provide another way to access device memory; they also expose a subset of the GPU
texturing hardware.

Graphics Interoperability introduces the various functions the runtime provides to
interoperate with the two main graphics APIs, OpenGL and Direct3D.

3.2.1. Initialization
There is no explicit initialization function for the runtime; it initializes the first time a
runtime function is called (more specifically any function other than functions from the
device and version management sections of the reference manual). One needs to keep
this in mind when timing runtime function calls and when interpreting the error code
from the first call into the runtime.

During initialization, the runtime creates a CUDA context for each device in the system
(see Context for more details on CUDA contexts). This context is the primary context for
this device and it is shared among all the host threads of the application. As part of this
context creation, the device code is just-in-time compiled if necessary (see Just-in-Time
Compilation) and loaded into device memory. This all happens under the hood and the
runtime does not expose the primary context to the application.

When a host thread calls cudaDeviceReset(), this destroys the primary context of the
device the host thread currently operates on (i.e., the current device as defined in Device
Selection). The next runtime function call made by any host thread that has this device
as current will create a new primary context for this device.

3.2.2. Device Memory
As mentioned in Heterogeneous Programming, the CUDA programming model
assumes a system composed of a host and a device, each with their own separate
memory. Kernels operate out of device memory, so the runtime provides functions to
allocate, deallocate, and copy device memory, as well as transfer data between host
memory and device memory.

Device memory can be allocated either as linear memory or as CUDA arrays.

CUDA arrays are opaque memory layouts optimized for texture fetching. They are
described in Texture and Surface Memory.

Linear memory exists on the device in a 32-bit address space for devices of compute
capability 1.x and 40-bit address space of devices of higher compute capability, so
separately allocated entities can reference one another via pointers, for example, in a
binary tree.

Linear memory is typically allocated using cudaMalloc() and freed using cudaFree()
and data transfer between host memory and device memory are typically done using
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cudaMemcpy(). In the vector addition code sample of Kernels, the vectors need to be
copied from host memory to device memory:
// Device code
__global__ void VecAdd(float* A, float* B, float* C, int N)
{
    int i = blockDim.x * blockIdx.x + threadIdx.x;
    if (i < N)
        C[i] = A[i] + B[i];
}
            
// Host code
int main()
{
    int N = ...;
    size_t size = N * sizeof(float);

    // Allocate input vectors h_A and h_B in host memory
    float* h_A = (float*)malloc(size);
    float* h_B = (float*)malloc(size);

    // Initialize input vectors
    ...

    // Allocate vectors in device memory
    float* d_A;
    cudaMalloc(&d_A, size);
    float* d_B;
    cudaMalloc(&d_B, size);
    float* d_C;
    cudaMalloc(&d_C, size);

    // Copy vectors from host memory to device memory
    cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
    cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);

    // Invoke kernel
    int threadsPerBlock = 256;
    int blocksPerGrid =
            (N + threadsPerBlock - 1) / threadsPerBlock;
    VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, N);

    // Copy result from device memory to host memory
    // h_C contains the result in host memory
    cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A);
    cudaFree(d_B);
    cudaFree(d_C);
            
    // Free host memory
    ...
}

Linear memory can also be allocated through cudaMallocPitch() and
cudaMalloc3D(). These functions are recommended for allocations of 2D or 3D
arrays as it makes sure that the allocation is appropriately padded to meet the
alignment requirements described in Device Memory Accesses, therefore ensuring best
performance when accessing the row addresses or performing copies between 2D arrays
and other regions of device memory (using the cudaMemcpy2D() and cudaMemcpy3D()
functions). The returned pitch (or stride) must be used to access array elements. The
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following code sample allocates a width x height 2D array of floating-point values and
shows how to loop over the array elements in device code:
// Host code
int width = 64, height = 64;
float* devPtr;
size_t pitch;
cudaMallocPitch(&devPtr, &pitch,
                width * sizeof(float), height);
MyKernel<<<100, 512>>>(devPtr, pitch, width, height);

// Device code
__global__ void MyKernel(float* devPtr,
                         size_t pitch, int width, int height)
{
    for (int r = 0; r < height; ++r) {
        float* row = (float*)((char*)devPtr + r * pitch);
        for (int c = 0; c > width; ++c) {
            float element = row[c];
        }
    }
}

The following code sample allocates a width x height x depth 3D array of floating-
point values and shows how to loop over the array elements in device code:
// Host code
int width = 64, height = 64, depth = 64;
cudaExtent extent = make_cudaExtent(width * sizeof(float),
                                    height, depth);
cudaPitchedPtr devPitchedPtr;
cudaMalloc3D(&devPitchedPtr, extent);
MyKernel<<<100, 512>>>(devPitchedPtr, width, height, depth);

// Device code
__global__ void MyKernel(cudaPitchedPtr devPitchedPtr,
                         int width, int height, int depth)
{
    char* devPtr = devPitchedPtr.ptr;
    size_t pitch = devPitchedPtr.pitch;
    size_t slicePitch = pitch * height;
    for (int z = 0; z < depth; ++z) {
        char* slice = devPtr + z * slicePitch;
        for (int y = 0; y < height; ++y) {
            float* row = (float*)(slice + y * pitch);
            for (int x = 0; x < width; ++x) {
                float element = row[x];
            }
        }
    }
}

The reference manual lists all the various functions used to copy memory between
linear memory allocated with cudaMalloc(), linear memory allocated with
cudaMallocPitch() or cudaMalloc3D(), CUDA arrays, and memory allocated for
variables declared in global or constant memory space.
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The following code sample illustrates various ways of accessing global variables via the
runtime API:
__constant__ float constData[256];
float data[256];
cudaMemcpyToSymbol(constData, data, sizeof(data));
cudaMemcpyFromSymbol(data, constData, sizeof(data));

__device__ float devData;
float value = 3.14f;
cudaMemcpyToSymbol(devData, &value, sizeof(float));

__device__ float* devPointer;
float* ptr;
cudaMalloc(&ptr, 256 * sizeof(float));
cudaMemcpyToSymbol(devPointer, &ptr, sizeof(ptr));

cudaGetSymbolAddress() is used to retrieve the address pointing to the memory
allocated for a variable declared in global memory space. The size of the allocated
memory is obtained through cudaGetSymbolSize().

3.2.3. Shared Memory
As detailed in Variable Type Qualifiers shared memory is allocated using the
__shared__ qualifier.

Shared memory is expected to be much faster than global memory as mentioned in
Thread Hierarchy and detailed in Shared Memory. Any opportunity to replace global
memory accesses by shared memory accesses should therefore be exploited as illustrated
by the following matrix multiplication example.

The following code sample is a straightforward implementation of matrix multiplication
that does not take advantage of shared memory. Each thread reads one row of A and one
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column of B and computes the corresponding element of C as illustrated in Figure 9. A is
therefore read B.width times from global memory and B is read A.height times.
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.width + col)
typedef struct {
    int width;
    int height;
    float* elements;
} Matrix;

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
               cudaMemcpyHostToDevice);

    // Allocate C in device memory
    Matrix d_C;
    d_C.width = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);

    // Invoke kernel
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

    // Read C from device memory
    cudaMemcpy(C.elements, Cd.elements, size,
               cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Each thread computes one element of C
    // by accumulating results into Cvalue
    float Cvalue = 0;
    int row = blockIdx.y * blockDim.y + threadIdx.y;
    int col = blockIdx.x * blockDim.x + threadIdx.x;
    for (int e = 0; e < A.width; ++e)
        Cvalue += A.elements[row * A.width + e]
                * B.elements[e * B.width + col];
    C.elements[row * C.width + col] = Cvalue;
}
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Figure 9 Matrix Multiplication without Shared Memory

The following code sample is an implementation of matrix multiplication that does take
advantage of shared memory. In this implementation, each thread block is responsible
for computing one square sub-matrix Csub of C and each thread within the block is
responsible for computing one element of Csub. As illustrated in Figure 10, Csub is equal
to the product of two rectangular matrices: the sub-matrix of A of dimension (A.width,
block_size) that has the same row indices as Csub, and the sub-matrix of B of dimension
(block_size, A.width )that has the same column indices as Csub. In order to fit into the
device's resources, these two rectangular matrices are divided into as many square
matrices of dimension block_size as necessary and Csub is computed as the sum of the
products of these square matrices. Each of these products is performed by first loading
the two corresponding square matrices from global memory to shared memory with one
thread loading one element of each matrix, and then by having each thread compute one
element of the product. Each thread accumulates the result of each of these products into
a register and once done writes the result to global memory.
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By blocking the computation this way, we take advantage of fast shared memory and
save a lot of global memory bandwidth since A is only read (B.width / block_size) times
from global memory and B is read (A.height / block_size) times.

The Matrix type from the previous code sample is augmented with a stride field, so that
sub-matrices can be efficiently represented with the same type. __device__ functions
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(see __device__) are used to get and set elements and build any sub-matrix from a
matrix.
// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
    int width;
    int height;
    int stride; 
    float* elements;
} Matrix;

// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
    return A.elements[row * A.stride + col];
}

// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col,
                           float value)
{
    A.elements[row * A.stride + col] = value;
}

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
 __device__ Matrix GetSubMatrix(Matrix A, int row, int col) 
{
    Matrix Asub;
    Asub.width    = BLOCK_SIZE;
    Asub.height   = BLOCK_SIZE;
    Asub.stride   = A.stride;
    Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
                                         + BLOCK_SIZE * col];
    return Asub;
}

// Thread block size
#define BLOCK_SIZE 16

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
    // Load A and B to device memory
    Matrix d_A;
    d_A.width = d_A.stride = A.width; d_A.height = A.height;
    size_t size = A.width * A.height * sizeof(float);
    cudaMalloc(&d_A.elements, size);
    cudaMemcpy(d_A.elements, A.elements, size,
               cudaMemcpyHostToDevice);
    Matrix d_B;
    d_B.width = d_B.stride = B.width; d_B.height = B.height;
    size = B.width * B.height * sizeof(float);
    cudaMalloc(&d_B.elements, size);
    cudaMemcpy(d_B.elements, B.elements, size,
    cudaMemcpyHostToDevice);

    // Allocate C in device memory
    Matrix d_C;
    d_C.width = d_C.stride = C.width; d_C.height = C.height;
    size = C.width * C.height * sizeof(float);
    cudaMalloc(&d_C.elements, size);

    // Invoke kernel
    dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
    dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
    MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);

    // Read C from device memory
    cudaMemcpy(C.elements, d_C.elements, size,
               cudaMemcpyDeviceToHost);

    // Free device memory
    cudaFree(d_A.elements);
    cudaFree(d_B.elements);
    cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatMul()
 __global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
    // Block row and column
    int blockRow = blockIdx.y;
    int blockCol = blockIdx.x;

    // Each thread block computes one sub-matrix Csub of C
    Matrix Csub = GetSubMatrix(C, blockRow, blockCol);

    // Each thread computes one element of Csub
    // by accumulating results into Cvalue
    float Cvalue = 0;

    // Thread row and column within Csub
    int row = threadIdx.y;
    int col = threadIdx.x;

    // Loop over all the sub-matrices of A and B that are
    // required to compute Csub
    // Multiply each pair of sub-matrices together
    // and accumulate the results
    for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {

        // Get sub-matrix Asub of A
        Matrix Asub = GetSubMatrix(A, blockRow, m);

        // Get sub-matrix Bsub of B
        Matrix Bsub = GetSubMatrix(B, m, blockCol);

        // Shared memory used to store Asub and Bsub respectively
        __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
        __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

        // Load Asub and Bsub from device memory to shared memory
        // Each thread loads one element of each sub-matrix
        As[row][col] = GetElement(Asub, row, col);
        Bs[row][col] = GetElement(Bsub, row, col);

        // Synchronize to make sure the sub-matrices are loaded
        // before starting the computation
        __syncthreads();

        // Multiply Asub and Bsub together
        for (int e = 0; e < BLOCK_SIZE; ++e)
            Cvalue += As[row][e] * Bs[e][col];

        // Synchronize to make sure that the preceding
        // computation is done before loading two new
        // sub-matrices of A and B in the next iteration
        __syncthreads();
    }

    // Write Csub to device memory
    // Each thread writes one element
    SetElement(Csub, row, col, Cvalue);
}
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Figure 10 Matrix Multiplication with Shared Memory

3.2.4. Page-Locked Host Memory
The runtime provides functions to allow the use of page-locked (also known as pinned)
host memory (as opposed to regular pageable host memory allocated by malloc()):

‣ cudaHostAlloc() and cudaFreeHost() allocate and free page-locked host
memory;

‣ cudaHostRegister() page-locks a range of memory allocated by malloc() (see
reference manual for limitations).

Using page-locked host memory has several benefits:

‣ Copies between page-locked host memory and device memory can be performed
concurrently with kernel execution for some devices as mentioned in Asynchronous
Concurrent Execution.

‣ On some devices, page-locked host memory can be mapped into the address space
of the device, eliminating the need to copy it to or from device memory as detailed
in Mapped Memory.

‣ On systems with a front-side bus, bandwidth between host memory and device
memory is higher if host memory is allocated as page-locked and even higher if
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in addition it is allocated as write-combining as described in Write-Combining
Memory.

Page-locked host memory is a scarce resource however, so allocations in page-locked
memory will start failing long before allocations in pageable memory. In addition, by
reducing the amount of physical memory available to the operating system for paging,
consuming too much page-locked memory reduces overall system performance.

The simple zero-copy CUDA sample comes with a detailed document on the page-
locked memory APIs.

3.2.4.1. Portable Memory
A block of page-locked memory can be used in conjunction with any device in the
system (see Multi-Device System for more details on multi-device systems), but by
default, the benefits of using page-locked memory described above are only available in
conjunction with the device that was current when the block was allocated (and with all
devices sharing the same unified address space, if any, as described in Unified Virtual
Address Space). To make these advantages available to all devices, the block needs to be
allocated by passing the flag cudaHostAllocPortable to cudaHostAlloc() or page-
locked by passing the flag cudaHostRegisterPortable to cudaHostRegister().

3.2.4.2. Write-Combining Memory
By default page-locked host memory is allocated as cacheable. It can optionally be
allocated as write-combining instead by passing flag cudaHostAllocWriteCombined
to cudaHostAlloc(). Write-combining memory frees up the host's L1 and L2 cache
resources, making more cache available to the rest of the application. In addition, write-
combining memory is not snooped during transfers across the PCI Express bus, which
can improve transfer performance by up to 40%.

Reading from write-combining memory from the host is prohibitively slow, so write-
combining memory should in general be used for memory that the host only writes to.

3.2.4.3. Mapped Memory
On devices of compute capability greater than 1.0, a block of page-locked
host memory can also be mapped into the address space of the device by
passing flag cudaHostAllocMapped to cudaHostAlloc() or by passing
flag cudaHostRegisterMapped to cudaHostRegister(). Such a block has
therefore in general two addresses: one in host memory that is returned by
cudaHostAlloc() or malloc(), and one in device memory that can be retrieved
using cudaHostGetDevicePointer() and then used to access the block from within a
kernel. The only exception is for pointers allocated with cudaHostAlloc() and when a
unified address space is used for the host and the device as mentioned in Unified Virtual
Address Space.

Accessing host memory directly from within a kernel has several advantages:

‣ There is no need to allocate a block in device memory and copy data between this
block and the block in host memory; data transfers are implicitly performed as
needed by the kernel;
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‣ There is no need to use streams (see Concurrent Data Transfers) to overlap data
transfers with kernel execution; the kernel-originated data transfers automatically
overlap with kernel execution.

Since mapped page-locked memory is shared between host and device however,
the application must synchronize memory accesses using streams or events (see
Asynchronous Concurrent Execution) to avoid any potential read-after-write, write-
after-read, or write-after-write hazards.

To be able to retrieve the device pointer to any mapped page-locked memory, page-
locked memory mapping must be enabled by calling cudaSetDeviceFlags() with
the cudaDeviceMapHost flag before any other CUDA call is performed. Otherwise,
cudaHostGetDevicePointer() will return an error.

cudaHostGetDevicePointer() also returns an error if the device does not support
mapped page-locked host memory. Applications may query this capability by checking
the canMapHostMemory device property (see Device Enumeration), which is equal to 1
for devices that support mapped page-locked host memory.

Note that atomic functions (see Atomic Functions) operating on mapped page-locked
memory are not atomic from the point of view of the host or other devices.

3.2.5. Asynchronous Concurrent Execution

3.2.5.1. Concurrent Execution between Host and Device
In order to facilitate concurrent execution between host and device, some function calls
are asynchronous: Control is returned to the host thread before the device has completed
the requested task. These are:

‣ Kernel launches;
‣ Memory copies between two addresses to the same device memory;
‣ Memory copies from host to device of a memory block of 64 KB or less;
‣ Memory copies performed by functions that are suffixed with Async;
‣ Memory set function calls.

Programmers can globally disable asynchronous kernel launches for all CUDA
applications running on a system by setting the CUDA_LAUNCH_BLOCKING environment
variable to 1. This feature is provided for debugging purposes only and should never be
used as a way to make production software run reliably.

Kernel launches are synchronous in the following cases:

‣ The application is run via a debugger or memory checker (cuda-gdb, cuda-
memcheck, Nsight) on a device of compute capability 1.x;

‣ Hardware counters are collected via a profiler (Nsight, Visual Profiler).

3.2.5.2. Overlap of Data Transfer and Kernel Execution
Some devices of compute capability 1.1 and higher can perform copies between
page-locked host memory and device memory concurrently with kernel execution.
Applications may query this capability by checking the asyncEngineCount device
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property (see Device Enumeration), which is greater than zero for devices that
support it. For devices of compute capability 1.x, this capability is only supported
for memory copies that do not involve CUDA arrays or 2D arrays allocated through
cudaMallocPitch() (see Device Memory).

3.2.5.3. Concurrent Kernel Execution
Some devices of compute capability 2.x and higher can execute multiple
kernels concurrently. Applications may query this capability by checking the
concurrentKernels device property (see Device Enumeration), which is equal to 1 for
devices that support it.

The maximum number of kernel launches that a device can execute concurrently is 32 on
devices of compute capability 3.5 and 16 on devices of lower compute capability.

A kernel from one CUDA context cannot execute concurrently with a kernel from
another CUDA context.

Kernels that use many textures or a large amount of local memory are less likely to
execute concurrently with other kernels.

3.2.5.4. Concurrent Data Transfers
Some devices of compute capability 2.x and higher can perform a copy from page-locked
host memory to device memory concurrently with a copy from device memory to page-
locked host memory.

Applications may query this capability by checking the asyncEngineCount device
property (see Device Enumeration), which is equal to 2 for devices that support it.

3.2.5.5. Streams
Applications manage concurrency through streams. A stream is a sequence of commands
(possibly issued by different host threads) that execute in order. Different streams, on
the other hand, may execute their commands out of order with respect to one another or
concurrently; this behavior is not guaranteed and should therefore not be relied upon for
correctness (e.g., inter-kernel communication is undefined).

3.2.5.5.1. Creation and Destruction

A stream is defined by creating a stream object and specifying it as the stream parameter
to a sequence of kernel launches and host <-> device memory copies. The following
code sample creates two streams and allocates an array hostPtr of float in page-
locked memory.
cudaStream_t stream[2];
for (int i = 0; i < 2; ++i)
    cudaStreamCreate(&stream[i]);
float* hostPtr;
cudaMallocHost(&hostPtr, 2 * size);
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Each of these streams is defined by the following code sample as a sequence of one
memory copy from host to device, one kernel launch, and one memory copy from device
to host:
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
    MyKernel <<<100, 512, 0, stream[i]>>>
          (outputDevPtr + i * size, inputDevPtr + i * size, size);
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
}

Each stream copies its portion of input array hostPtr to array inputDevPtr in device
memory, processes inputDevPtr on the device by calling MyKernel(), and copies
the result outputDevPtr back to the same portion of hostPtr. Overlapping Behavior
describes how the streams overlap in this example depending on the capability of the
device. Note that hostPtr must point to page-locked host memory for any overlap to
occur.

Streams are released by calling cudaStreamDestroy().
for (int i = 0; i < 2; ++i)
    cudaStreamDestroy(stream[i]);

cudaStreamDestroy() waits for all preceding commands in the given stream to
complete before destroying the stream and returning control to the host thread.

3.2.5.5.2. Default Stream

Kernel launches and host <-> device memory copies that do not specify any stream
parameter, or equivalently that set the stream parameter to zero, are issued to the default
stream. They are therefore executed in order.

3.2.5.5.3. Explicit Synchronization

There are various ways to explicitly synchronize streams with each other.

cudaDeviceSynchronize() waits until all preceding commands in all streams of all
host threads have completed.

cudaStreamSynchronize()takes a stream as a parameter and waits until all preceding
commands in the given stream have completed. It can be used to synchronize the host
with a specific stream, allowing other streams to continue executing on the device.

cudaStreamWaitEvent()takes a stream and an event as parameters (see Events for
a description of events)and makes all the commands added to the given stream after
the call to cudaStreamWaitEvent()delay their execution until the given event has
completed. The stream can be 0, in which case all the commands added to any stream
after the call to cudaStreamWaitEvent()wait on the event.

cudaStreamQuery()provides applications with a way to know if all preceding
commands in a stream have completed.

To avoid unnecessary slowdowns, all these synchronization functions are usually best
used for timing purposes or to isolate a launch or memory copy that is failing.



Programming Interface

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 34

3.2.5.5.4. Implicit Synchronization

Two commands from different streams cannot run concurrently if any one of the
following operations is issued in-between them by the host thread:

‣ a page-locked host memory allocation,
‣ a device memory allocation,
‣ a device memory set,
‣ a memory copy between two addresses to the same device memory,
‣ any CUDA command to the default stream,
‣ a switch between the L1/shared memory configurations described in Compute

Capability 2.x and Compute Capability 3.x.

For devices that support concurrent kernel execution and are of compute capability 3.0
or lower, any operation that requires a dependency check to see if a streamed kernel
launch is complete:

‣ Can start executing only when all thread blocks of all prior kernel launches from any
stream in the CUDA context have started executing;

‣ Blocks all later kernel launches from any stream in the CUDA context until the
kernel launch being checked is complete.

Operations that require a dependency check include any other commands within the
same stream as the launch being checked and any call to cudaStreamQuery() on that
stream. Therefore, applications should follow these guidelines to improve their potential
for concurrent kernel execution:

‣ All independent operations should be issued before dependent operations,
‣ Synchronization of any kind should be delayed as long as possible.

3.2.5.5.5. Overlapping Behavior

The amount of execution overlap between two streams depends on the order in which
the commands are issued to each stream and whether or not the device supports
overlap of data transfer and kernel execution (see Overlap of Data Transfer and Kernel
Execution), concurrent kernel execution (see Concurrent Kernel Execution), and/or
concurrent data transfers (see Concurrent Data Transfers).

For example, on devices that do not support concurrent data transfers, the two streams
of the code sample of Creation and Destruction do not overlap at all because the
memory copy from host to device is issued to stream[1] after the memory copy from
device to host is issued to stream[0], so it can only start once the memory copy from
device to host issued to stream[0] has completed. If the code is rewritten the following
way (and assuming the device supports overlap of data transfer and kernel execution)
for (int i = 0; i < 2; ++i)
    cudaMemcpyAsync(inputDevPtr + i * size, hostPtr + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
for (int i = 0; i < 2; ++i)
    MyKernel<<<100, 512, 0, stream[i]>>>
          (outputDevPtr + i * size, inputDevPtr + i * size, size);
    for (int i = 0; i < 2; ++i)
    cudaMemcpyAsync(hostPtr + i * size, outputDevPtr + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
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then the memory copy from host to device issued to stream[1] overlaps with the kernel
launch issued to stream[0].

On devices that do support concurrent data transfers, the two streams of the code
sample of Creation and Destruction do overlap: The memory copy from host to device
issued to stream[1] overlaps with the memory copy from device to host issued to
stream[0] and even with the kernel launch issued to stream[0] (assuming the device
supports overlap of data transfer and kernel execution). However, for devices of
compute capability 3.0 or lower, the kernel executions cannot possibly overlap because
the second kernel launch is issued to stream[1] after the memory copy from device
to host is issued to stream[0], so it is blocked until the first kernel launch issued to
stream[0] is complete as per Implicit Synchronization. If the code is rewritten as
above, the kernel executions overlap (assuming the device supports concurrent kernel
execution) since the second kernel launch is issued to stream[1] before the memory copy
from device to host is issued to stream[0]. In that case however, the memory copy from
device to host issued to stream[0] only overlaps with the last thread blocks of the kernel
launch issued to stream[1] as per Implicit Synchronization, which can represent only a
small portion of the total execution time of the kernel.

3.2.5.5.6. Callbacks

The runtime provides a way to insert a callback at any point into a stream via
cudaStreamAddCallback(). A callback is a function that is executed on the host once
all commands issued to the stream before the callback have completed. Callbacks in
stream 0 are executed once all preceding tasks and commands issued in all streams
before the callback have completed.

The following code sample adds the callback function MyCallback to each of two
streams after issuing a host-to-device memory copy, a kernel launch and a device-to-host
memory copy into each stream. The callback will begin execution on the host after each
of the device-to-host memory copies completes.

void CUDART_CB MyCallback(cudaStream_t stream, cudaError_t status, void *data){
    printf("Inside callback %d\n", (size_t)data);
}
...
for (size_t i = 0; i < 2; ++i) {
    cudaMemcpyAsync(devPtrIn[i], hostPtr[i], size, cudaMemcpyHostToDevice,
 stream[i]);
    MyKernel<<<100, 512, 0, stream[i]>>>(devPtrOut[i], devPtrIn[i], size);
    cudaMemcpyAsync(hostPtr[i], devPtrOut[i], size, cudaMemcpyDeviceToHost,
 stream[i]);
    cudaStreamAddCallback(stream[i], MyCallback, (void*)i, 0);
}
        

The commands that are issued in a stream (or all commands issued to any stream if the
callback is issued to stream 0) after a callback do not start executing before the callback
has completed. The last parameter of cudaStreamAddCallback() is reserved for future
use.

A callback must not make CUDA API calls (directly or indirectly), as it might end up
waiting on itself if it makes such a call leading to a deadlock.
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3.2.5.5.7. Stream Priorities

The relative priorities of streams can be specified at creation using
cudaStreamCreateWithPriority(). The range of allowable priorities,
ordered as [ highest priority, lowest priority ] can be obtained using the
cudaDeviceGetStreamPriorityRange() function. At runtime, as blocks in low-
priority schemes finish, waiting blocks in higher-priority streams are scheduled in their
place.

The following code sample obtains the allowable range of priorities for the current
device, and creates streams with the highest and lowest available priorities
// get the range of stream priorities for this device
int priority_high, priority_low;
cudaDeviceGetStreamPriorityRange(&priority_low, &priority_high);
// create streams with highest and lowest available priorities
cudaStream_t st_high, st_low;
cudaStreamCreateWithPriority(&st_high, cudaStreamNonBlocking, &priority_high);
cudaStreamCreateWithPriority(&st_low, cudaStreamNonBlocking, &priority_low);

3.2.5.6. Events
The runtime also provides a way to closely monitor the device's progress, as well as
perform accurate timing, by letting the application asynchronously record events at
any point in the program and query when these events are completed. An event has
completed when all tasks - or optionally, all commands in a given stream - preceding the
event have completed. Events in stream zero are completed after all preceding tasks and
commands in all streams are completed.

3.2.5.6.1. Creation and Destruction

The following code sample creates two events:
cudaEvent_t start, stop;
cudaEventCreate(&start);
cudaEventCreate(&stop);

They are destroyed this way:
cudaEventDestroy(start);
cudaEventDestroy(stop);

3.2.5.6.2. Elapsed Time

The events created in Creation and Destruction can be used to time the code sample of
Creation and Destruction the following way:
cudaEventRecord(start, 0);
for (int i = 0; i < 2; ++i) {
    cudaMemcpyAsync(inputDev + i * size, inputHost + i * size,
                    size, cudaMemcpyHostToDevice, stream[i]);
    MyKernel<<<100, 512, 0, stream[i]>>>
               (outputDev + i * size, inputDev + i * size, size);
    cudaMemcpyAsync(outputHost + i * size, outputDev + i * size,
                    size, cudaMemcpyDeviceToHost, stream[i]);
}
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float elapsedTime;
cudaEventElapsedTime(&elapsedTime, start, stop);
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3.2.5.7. Synchronous Calls
When a synchronous function is called, control is not returned to the host thread before
the device has completed the requested task. Whether the host thread will then yield,
block, or spin can be specified by calling cudaSetDeviceFlags()with some specific
flags (see reference manual for details) before any other CUDA call is performed by the
host thread.

3.2.6. Multi-Device System

3.2.6.1. Device Enumeration
A host system can have multiple devices. The following code sample shows how to
enumerate these devices, query their properties, and determine the number of CUDA-
enabled devices.
int deviceCount;
cudaGetDeviceCount(&deviceCount);
int device;
for (device = 0; device < deviceCount; ++device) {
    cudaDeviceProp deviceProp;
    cudaGetDeviceProperties(&deviceProp, device);
    printf("Device %d has compute capability %d.%d.\n",
           device, deviceProp.major, deviceProp.minor);
}

3.2.6.2. Device Selection
A host thread can set the device it operates on at any time by calling cudaSetDevice().
Device memory allocations and kernel launches are made on the currently set device;
streams and events are created in association with the currently set device. If no call to
cudaSetDevice() is made, the current device is device 0.

The following code sample illustrates how setting the current device affects memory
allocation and kernel execution.
size_t size = 1024 * sizeof(float);
cudaSetDevice(0);            // Set device 0 as current
float* p0;
cudaMalloc(&p0, size);       // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0); // Launch kernel on device 0
cudaSetDevice(1);            // Set device 1 as current
float* p1;
cudaMalloc(&p1, size);       // Allocate memory on device 1
MyKernel<<<1000, 128>>>(p1); // Launch kernel on device 1
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3.2.6.3. Stream and Event Behavior
A kernel launch will fail if it is issued to a stream that is not associated to the current
device as illustrated in the following code sample.
cudaSetDevice(0);               // Set device 0 as current
cudaStream_t s0;
cudaStreamCreate(&s0);          // Create stream s0 on device 0
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 0 in s0
cudaSetDevice(1);               // Set device 1 as current
cudaStream_t s1;
cudaStreamCreate(&s1);          // Create stream s1 on device 1
MyKernel<<<100, 64, 0, s1>>>(); // Launch kernel on device 1 in s1

// This kernel launch will fail:
MyKernel<<<100, 64, 0, s0>>>(); // Launch kernel on device 1 in s0

A memory copy will succeed even if it is issued to a stream that is not associated to the
current device.

cudaEventRecord() will fail if the input event and input stream are associated to
different devices.

cudaEventElapsedTime() will fail if the two input events are associated to different
devices.

cudaEventSynchronize() and cudaEventQuery() will succeed even if the input
event is associated to a device that is different from the current device.

cudaStreamWaitEvent() will succeed even if the input stream and input event are
associated to different devices. cudaStreamWaitEvent() can therefore be used to
synchronize multiple devices with each other.

Each device has its own default stream (see Default Stream), so commands issued to
the default stream of a device may execute out of order or concurrently with respect to
commands issued to the default stream of any other device.

3.2.6.4. Peer-to-Peer Memory Access
When the application is run as a 64-bit process, devices of compute capability 2.0
and higher from the Tesla series may address each other's memory (i.e., a kernel
executing on one device can dereference a pointer to the memory of the other
device). This peer-to-peer memory access feature is supported between two devices if
cudaDeviceCanAccessPeer() returns true for these two devices.

Peer-to-peer memory access must be enabled between two devices by calling
cudaDeviceEnablePeerAccess() as illustrated in the following code sample.
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A unified address space is used for both devices (see Unified Virtual Address Space),
so the same pointer can be used to address memory from both devices as shown in the
code sample below.
cudaSetDevice(0);                   // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);              // Allocate memory on device 0
MyKernel<<<1000, 128>>>(p0);        // Launch kernel on device 0
cudaSetDevice(1);                   // Set device 1 as current
cudaDeviceEnablePeerAccess(0, 0);   // Enable peer-to-peer access
                                    // with device 0

// Launch kernel on device 1
// This kernel launch can access memory on device 0 at address p0
MyKernel<<<1000, 128>>>(p0);

3.2.6.5. Peer-to-Peer Memory Copy
Memory copies can be performed between the memories of two different devices.

When a unified address space is used for both devices (see Unified Virtual Address
Space), this is done using the regular memory copy functions mentioned in Device
Memory.

Otherwise, this is done using cudaMemcpyPeer(), cudaMemcpyPeerAsync(),
cudaMemcpy3DPeer(), or cudaMemcpy3DPeerAsync() as illustrated in the following
code sample.
cudaSetDevice(0);                   // Set device 0 as current
float* p0;
size_t size = 1024 * sizeof(float);
cudaMalloc(&p0, size);              // Allocate memory on device 0
cudaSetDevice(1);                   // Set device 1 as current
float* p1;
cudaMalloc(&p1, size);              // Allocate memory on device 1
cudaSetDevice(0);                   // Set device 0 as current
MyKernel<<<1000, 128>>>(p0);        // Launch kernel on device 0
cudaSetDevice(1);                   // Set device 1 as current
cudaMemcpyPeer(p1, 1, p0, 0, size); // Copy p0 to p1
MyKernel<<<1000, 128>>>(p1);        // Launch kernel on device 1

A copy (in the implicit NULL stream) between the memories of two different devices:

‣ does not start until all commands previously issued to either device have completed
and

‣ runs to completion before any commands (see Asynchronous Concurrent Execution)
issued after the copy to either device can start.

Consistent with the normal behavior of streams, an asynchronous copy between the
memories of two devices may overlap with copies or kernels in another stream.

Note that if peer-to-peer access is enabled between two devices via
cudaDeviceEnablePeerAccess() as described in Peer-to-Peer Memory Access, peer-
to-peer memory copy between these two devices no longer needs to be staged through
the host and is therefore faster.
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3.2.7. Unified Virtual Address Space
When the application is run as a 64-bit process, a single address space is used for the
host and all the devices of compute capability 2.0 and higher. This address space is used
for all allocations made in host memory via cudaHostAlloc()and in any of the device
memories via cudaMalloc*(). Which memory a pointer points to - host memory or
any of the device memories - can be determined from the value of the pointer using
cudaPointerGetAttributes(). As a consequence:

‣ When copying from or to the memory of one of the devices for which the unified
address space is used, the cudaMemcpyKind parameter of cudaMemcpy*() becomes
useless and can be set to cudaMemcpyDefault;

‣ Allocations via cudaHostAlloc() are automatically portable (see Portable
Memory) across all the devices for which the unified address space is used, and
pointers returned by cudaHostAlloc() can be used directly from within kernels
running on these devices (i.e., there is no need to obtain a device pointer via
cudaHostGetDevicePointer() as described in Mapped Memory.

Applications may query if the unified address space is used for a particular device by
checking that the unifiedAddressing device property (see Device Enumeration) is
equal to 1.

3.2.8. Interprocess Communication
Any device memory pointer or event handle created by a host thread can be directly
referenced by any other thread within the same process. It is not valid outside this
process however, and therefore cannot be directly referenced by threads belonging to a
different process.

To share device memory pointers and events across processes, an application must
use the Inter Process Communication API, which is described in detail in the reference
manual. The IPC API is only supported for 64-bit processes on Linux and for devices of
compute capability 2.0 and higher.

Using this API, an application can get the IPC handle for a given device memory
pointer using cudaIpcGetMemHandle(), pass it to another process using
standard IPC mechanisms (e.g., interprocess shared memory or files), and use
cudaIpcOpenMemHandle() to retrieve a device pointer from the IPC handle that is a
valid pointer within this other process. Event handles can be shared using similar entry
points.

An example of using the IPC API is where a single master process generates a batch
of input data, making the data available to multiple slave processes without requiring
regeneration or copying.

3.2.9. Error Checking
All runtime functions return an error code, but for an asynchronous function (see
Asynchronous Concurrent Execution), this error code cannot possibly report any of the
asynchronous errors that could occur on the device since the function returns before the
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device has completed the task; the error code only reports errors that occur on the host
prior to executing the task, typically related to parameter validation; if an asynchronous
error occurs, it will be reported by some subsequent unrelated runtime function call.

The only way to check for asynchronous errors just after some asynchronous
function call is therefore to synchronize just after the call by calling
cudaDeviceSynchronize() (or by using any other synchronization mechanisms
described in Asynchronous Concurrent Execution) and checking the error code returned
by cudaDeviceSynchronize().

The runtime maintains an error variable for each host thread that is initialized to
cudaSuccess and is overwritten by the error code every time an error occurs (be it
a parameter validation error or an asynchronous error). cudaPeekAtLastError()
returns this variable. cudaGetLastError() returns this variable and resets it to
cudaSuccess.

Kernel launches do not return any error code, so cudaPeekAtLastError() or
cudaGetLastError() must be called just after the kernel launch to retrieve any
pre-launch errors. To ensure that any error returned by cudaPeekAtLastError()
or cudaGetLastError() does not originate from calls prior to the kernel launch,
one has to make sure that the runtime error variable is set to cudaSuccess just before
the kernel launch, for example, by calling cudaGetLastError() just before the
kernel launch. Kernel launches are asynchronous, so to check for asynchronous
errors, the application must synchronize in-between the kernel launch and the call to
cudaPeekAtLastError() or cudaGetLastError().

Note that cudaErrorNotReady that may be returned by cudaStreamQuery() and
cudaEventQuery() is not considered an error and is therefore not reported by
cudaPeekAtLastError() or cudaGetLastError().

3.2.10. Call Stack
On devices of compute capability 2.x and higher, the size of the call stack can be queried
using cudaDeviceGetLimit() and set using cudaDeviceSetLimit().

When the call stack overflows, the kernel call fails with a stack overflow error if the
application is run via a CUDA debugger (cuda-gdb, Nsight) or an unspecified launch
error, otherwise.

3.2.11. Texture and Surface Memory
CUDA supports a subset of the texturing hardware that the GPU uses for graphics
to access texture and surface memory. Reading data from texture or surface memory
instead of global memory can have several performance benefits as described in Device
Memory Accesses.

There are two different APIs to access texture and surface memory:

‣ The texture reference API that is supported on all devices,
‣ The texture object API that is only supported on devices of compute capability 3.x.

The texture reference API has limitations that the texture object API does not have. They
are mentioned in Texture Reference API.
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3.2.11.1. Texture Memory
Texture memory is read from kernels using the device functions described in Texture
Functions. The process of reading a texture calling one of these functions is called a
texture fetch. Each texture fetch specifies a parameter called a texture object for the texture
object API or a texture reference for the texture reference API.

The texture object or the texture reference specifies:

‣ The texture, which is the piece of texture memory that is fetched. Texture objects are
created at runtime and the texture is specified when creating the texture object as
described in Texture Object API. Texture references are created at compile time and
the texture is specified at runtime by bounding the texture reference to the texture
through runtime functions as described in Texture Reference API; several distinct
texture references might be bound to the same texture or to textures that overlap in
memory. A texture can be any region of linear memory or a CUDA array (described
in CUDA Arrays).

‣ Its dimensionality that specifies whether the texture is addressed as a one
dimensional array using one texture coordinate, a two-dimensional array using two
texture coordinates, or a three-dimensional array using three texture coordinates.
Elements of the array are called texels, short for texture elements. The texture width,
height, and depth refer to the size of the array in each dimension. Table 12 lists the
maximum texture width, height, and depth depending on the compute capability of
the device.

‣ The type of a texel, which is restricted to the basic integer and single-precision
floating-point types and any of the 1-, 2-, and 4-component vector types defined in
char, short, int, long, longlong, float, double that are derived from the basic integer
and single-precision floating-point types.

‣ The read mode, which is equal to cudaReadModeNormalizedFloat or
cudaReadModeElementType. If it is cudaReadModeNormalizedFloat and the
type of the texel is a 16-bit or 8-bit integer type, the value returned by the texture
fetch is actually returned as floating-point type and the full range of the integer type
is mapped to [0.0, 1.0] for unsigned integer type and [-1.0, 1.0] for signed integer
type; for example, an unsigned 8-bit texture element with the value 0xff reads as 1. If
it is cudaReadModeElementType, no conversion is performed.

‣ Whether texture coordinates are normalized or not. By default, textures
are referenced (by the functions of Texture Functions) using floating-point
coordinates in the range [0, N-1] where N is the size of the texture in the dimension
corresponding to the coordinate. For example, a texture that is 64x32 in size will
be referenced with coordinates in the range [0, 63] and [0, 31] for the x and y
dimensions, respectively. Normalized texture coordinates cause the coordinates
to be specified in the range [0.0, 1.0-1/N] instead of [0, N-1], so the same 64x32
texture would be addressed by normalized coordinates in the range [0, 1-1/N] in
both the x and y dimensions. Normalized texture coordinates are a natural fit to
some applications' requirements, if it is preferable for the texture coordinates to be
independent of the texture size.

‣ The addressing mode. It is valid to call the device functions of Section B.8 with
coordinates that are out of range. The addressing mode defines what happens
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in that case. The default addressing mode is to clamp the coordinates to the
valid range: [0, N) for non-normalized coordinates and [0.0, 1.0) for normalized
coordinates. If the border mode is specified instead, texture fetches with out-
of-range texture coordinates return zero. For normalized coordinates, the warp
mode and the mirror mode are also available. When using the wrap mode, each
coordinate x is converted to frac(x)=x floor(x) where floor(x) is the largest integer
not greater than x. When using the mirror mode, each coordinate x is converted
to frac(x) if floor(x) is even and 1-frac(x) if floor(x) is odd. The addressing mode is
specified as an array of size three whose first, second, and third elements specify the
addressing mode for the first, second, and third texture coordinates, respectively;
the addressing mode are cudaAddressModeBorder, cudaAddressModeClamp,
cudaAddressModeWrap, and cudaAddressModeMirror; cudaAddressModeWrap
and cudaAddressModeMirror are only supported for normalized texture
coordinates

‣ The filtering mode which specifies how the value returned when fetching the texture
is computed based on the input texture coordinates. Linear texture filtering may be
done only for textures that are configured to return floating-point data. It performs
low-precision interpolation between neighboring texels. When enabled, the texels
surrounding a texture fetch location are read and the return value of the texture
fetch is interpolated based on where the texture coordinates fell between the texels.
Simple linear interpolation is performed for one-dimensional textures, bilinear
interpolation for two-dimensional textures, and trilinear interpolation for three-
dimensional textures. Texture Fetching gives more details on texture fetching. The
filtering mode is equal to cudaFilterModePoint or cudaFilterModeLinear. If it
is cudaFilterModePoint, the returned value is the texel whose texture coordinates
are the closest to the input texture coordinates. If it is cudaFilterModeLinear, the
returned value is the linear interpolation of the two (for a one-dimensional texture),
four (for a two dimensional texture), or eight (for a three dimensional texture)
texels whose texture coordinates are the closest to the input texture coordinates.
cudaFilterModeLinear is only valid for returned values of floating-point type.

Texture Object API introduces the texture object API.

Texture Reference API introduces the texture reference API.

16-Bit Floating-Point Textures explains how to deal with 16-bit floating-point textures.

Textures can also be layered as described in Layered Textures.

Cubemap Textures and Cubemap Layered Textures describe a special type of texture,
the cubemap texture.

Texture Gather describes a special texture fetch, texture gather.
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3.2.11.1.1. Texture Object API

A texture object is created using cudaCreateTextureObject() from a resource
description of type struct cudaResourceDesc, which specifies the texture, and from a
texture description defined as such:
struct cudaTextureDesc
{
    enum cudaTextureAddressMode addressMode[3];
    enum cudaTextureFilterMode  filterMode;
    enum cudaTextureReadMode    readMode;
    int                         sRGB;
    int                         normalizedCoords;
    unsigned int                maxAnisotropy;
    enum cudaTextureFilterMode  mipmapFilterMode;
    float                       mipmapLevelBias;
    float                       minMipmapLevelClamp;
    float                       maxMipmapLevelClamp;
};

‣ addressMode specifies the addressing mode;
‣ filterMode specifies the filter mode;
‣ readMode specifies the read mode;
‣ normalizedCoords specifies whether texture coordinates are normalized or not;
‣ See reference manual for sRGB, maxAnisotropy, mipmapFilterMode,

mipmapLevelBias, minMipmapLevelClamp, and maxMipmapLevelClamp.
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The following code sample applies some simple transformation kernel to a texture.
// Simple transformation kernel
__global__ void transformKernel(float* output,
                                cudaTextureObject_t texObj,
                                int width, int height,
                                float theta) 
{
    // Calculate normalized texture coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    float u = x / (float)width;
    float v = y / (float)height;

    // Transform coordinates
    u -= 0.5f;
    v -= 0.5f;
    float tu = u * cosf(theta) - v * sinf(theta) + 0.5f;
    float tv = v * cosf(theta) + u * sinf(theta) + 0.5f;

    // Read from texture and write to global memory
    output[y * width + x] = tex2D<float>(texObj, tu, tv);
}

// Host code
int main()
{
    // Allocate CUDA array in device memory
    cudaChannelFormatDesc channelDesc =
               cudaCreateChannelDesc(32, 0, 0, 0,
                                     cudaChannelFormatKindFloat);
    cudaArray* cuArray;
    cudaMallocArray(&cuArray, &channelDesc, width, height);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Specify texture
    struct cudaResourceDesc resDesc;
    memset(&resDesc, 0, sizeof(resDesc));
    resDesc.resType = cudaResourceTypeArray;
    resDesc.res.array.array = cuArray;

    // Specify texture object parameters
    struct cudaTextureDesc texDesc;
    memset(&texDesc, 0, sizeof(texDesc));
    texDesc.addressMode[0]   = cudaAddressModeWrap;
    texDesc.addressMode[1]   = cudaAddressModeWrap;
    texDesc.filterMode       = cudaFilterModeLinear;
    texDesc.readMode         = cudaReadModeElementType;
    texDesc.normalizedCoords = 1;

    // Create texture object
    cudaTextureObject_t texObj = 0;
    cudaCreateTextureObject(&texObj, &resDesc, &texDesc, NULL);

    // Allocate result of transformation in device memory
    float* output;
    cudaMalloc(&output, width * height * sizeof(float));

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    transformKernel<<<dimGrid, dimBlock>>>(output,
                                           texObj, width, height,
                                           angle);

    // Destroy texture object
    cudaDestroyTextureObject(texObj);

    // Free device memory
    cudaFreeArray(cuArray);
    cudaFree(output);

    return 0;
}
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3.2.11.1.2. Texture Reference API

Some of the attributes of a texture reference are immutable and must be known at
compile time; they are specified when declaring the texture reference. A texture
reference is declared at file scope as a variable of type texture:
texture<DataType, Type, ReadMode> texRef;

where:

‣ DataType specifies the type of the texel;
‣ Type specifies the type of the texture reference and is equal to

cudaTextureType1D, cudaTextureType2D, or cudaTextureType3D, for a
one-dimensional, two-dimensional, or three-dimensional texture, respectively,
or cudaTextureType1DLayered or cudaTextureType2DLayered for a one-
dimensional or two-dimensional layered texture respectively; Type is an optional
argument which defaults to cudaTextureType1D;

‣ ReadMode specifies the read mode; it is an optional argument which defaults to
cudaReadModeElementType.

A texture reference can only be declared as a static global variable and cannot be passed
as an argument to a function.

The other attributes of a texture reference are mutable and can be changed at runtime
through the host runtime. As explained in the reference manual, the runtime API
has a low-level C-style interface and a high-level C++-style interface. The texture
type is defined in the high-level API as a structure publicly derived from the
textureReference type defined in the low-level API as such:
struct textureReference {
    int                          normalized;
    enum cudaTextureFilterMode   filterMode;
    enum cudaTextureAddressMode  addressMode[3];
    struct cudaChannelFormatDesc channelDesc;
    int                          sRGB;
    unsigned int                 maxAnisotropy;
    enum cudaTextureFilterMode   mipmapFilterMode;
    float                        mipmapLevelBias;
    float                        minMipmapLevelClamp;
    float                        maxMipmapLevelClamp;
}

‣ normalized specifies whether texture coordinates are normalized or not;
‣ filterMode specifies the filtering mode;
‣ addressMode specifies the addressing mode;
‣ channelDesc describes the format of the texel; it must match the DataType

argument of the texture reference declaration; channelDesc is of the following
type:
struct cudaChannelFormatDesc {
  int x, y, z, w;
  enum cudaChannelFormatKind f;
};

where x, y, z, and w are equal to the number of bits of each component of the
returned value and f is:
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‣ cudaChannelFormatKindSigned if these components are of signed integer
type,

‣ cudaChannelFormatKindUnsigned if they are of unsigned integer type,
‣ cudaChannelFormatKindFloat if they are of floating point type.

‣ See reference manual for sRGB, maxAnisotropy, mipmapFilterMode,
mipmapLevelBias, minMipmapLevelClamp, and maxMipmapLevelClamp.

normalized, addressMode, and filterMode may be directly modified in host code.

Before a kernel can use a texture reference to read from texture memory, the
texture reference must be bound to a texture using cudaBindTexture() or
cudaBindTexture2D() for linear memory, or cudaBindTextureToArray() for CUDA
arrays. cudaUnbindTexture() is used to unbind a texture reference. Once a texture
reference has been unbound, it can be safely rebound to another array, even if kernels
that use the previously bound texture have not completed. It is recommended to allocate
two-dimensional textures in linear memory using cudaMallocPitch() and use the
pitch returned by cudaMallocPitch() as input parameter to cudaBindTexture2D().

The following code samples bind a 2D texture reference to linear memory pointed to by
devPtr:

‣ Using the low-level API:
texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, &texRef);
cudaChannelFormatDesc channelDesc =
                             cudaCreateChannelDesc<float>();
size_t offset;
cudaBindTexture2D(&offset, texRefPtr, devPtr, &channelDesc,
                  width, height, pitch);

‣ Using the high-level API:
texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
cudaChannelFormatDesc channelDesc =
                             cudaCreateChannelDesc<float>();
size_t offset;
cudaBindTexture2D(&offset, texRef, devPtr, channelDesc,
                  width, height, pitch);

The following code samples bind a 2D texture reference to a CUDA array cuArray:

‣ Using the low-level API:
texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
textureReference* texRefPtr;
cudaGetTextureReference(&texRefPtr, &texRef);
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, cuArray);
cudaBindTextureToArray(texRef, cuArray, &channelDesc);

‣ Using the high-level API:
texture<float, cudaTextureType2D,
texture<float, cudaTextureType2D,
        cudaReadModeElementType> texRef;
cudaBindTextureToArray(texRef, cuArray);
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The format specified when binding a texture to a texture reference must match the
parameters specified when declaring the texture reference; otherwise, the results of
texture fetches are undefined.

There is a limit to the number of textures that can be bound to a kernel as specified in
Table 12.
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The following code sample applies some simple transformation kernel to a texture.
// 2D float texture
texture<float, cudaTextureType2D, cudaReadModeElementType> texRef;

// Simple transformation kernel
__global__ void transformKernel(float* output,
                                int width, int height,
                                float theta) 
{
    // Calculate normalized texture coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    float u = x / (float)width;
    float v = y / (float)height;

    // Transform coordinates
    u -= 0.5f;
    v -= 0.5f;
    float tu = u * cosf(theta) - v * sinf(theta) + 0.5f;
    float tv = v * cosf(theta) + u * sinf(theta) + 0.5f;

    // Read from texture and write to global memory
    output[y * width + x] = tex2D(texRef, tu, tv);
}

// Host code
int main()
{
    // Allocate CUDA array in device memory
    cudaChannelFormatDesc channelDesc =
               cudaCreateChannelDesc(32, 0, 0, 0,
                                     cudaChannelFormatKindFloat);
    cudaArray* cuArray;
    cudaMallocArray(&cuArray, &channelDesc, width, height);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Set texture reference parameters
    texRef.addressMode[0] = cudaAddressModeWrap;
    texRef.addressMode[1] = cudaAddressModeWrap;
    texRef.filterMode     = cudaFilterModeLinear;
    texRef.normalized     = true;

    // Bind the array to the texture reference
    cudaBindTextureToArray(texRef, cuArray, channelDesc);

    // Allocate result of transformation in device memory
    float* output;
    cudaMalloc(&output, width * height * sizeof(float));

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    transformKernel<<<dimGrid, dimBlock>>>(output, width, height,
                                           angle);

    // Free device memory
    cudaFreeArray(cuArray);
    cudaFree(output);

    return 0;
}
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3.2.11.1.3. 16-Bit Floating-Point Textures

The 16-bit floating-point or half format supported by CUDA arrays is the same as the
IEEE 754-2008 binary2 format.

CUDA C does not support a matching data type, but provides intrinsic functions to
convert to and from the 32-bit floating-point format via the unsigned short type:
__float2half_rn(float) and __half2float(unsigned short). These functions
are only supported in device code. Equivalent functions for the host code can be found
in the OpenEXR library, for example.

16-bit floating-point components are promoted to 32 bit float during texture fetching
before any filtering is performed.

A channel description for the 16-bit floating-point format can be created by calling one
of the cudaCreateChannelDescHalf*() functions.

3.2.11.1.4. Layered Textures

A one-dimensional or two-dimensional layered texture (also known as texture array in
Direct3D and array texture in OpenGL) is a texture made up of a sequence of layers, all of
which are regular textures of same dimensionality, size, and data type.

A one-dimensional layered texture is addressed using an integer index and a floating-
point texture coordinate; the index denotes a layer within the sequence and the
coordinate addresses a texel within that layer. A two-dimensional layered texture is
addressed using an integer index and two floating-point texture coordinates; the index
denotes a layer within the sequence and the coordinates address a texel within that layer.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the
cudaArrayLayered flag (and a height of zero for one-dimensional layered texture).

Layered textures are fetched using the device functions described in tex1DLayered(),
tex1DLayered(), tex2DLayered(), and tex2DLayered(). Texture filtering (see Texture
Fetching) is done only within a layer, not across layers.

Layered textures are only supported on devices of compute capability 2.0 and higher.

3.2.11.1.5. Cubemap Textures

A cubemap texture is a special type of two-dimensional layered texture that has six layers
representing the faces of a cube:

‣ The width of a layer is equal to its height.
‣ The cubemap is addressed using three texture coordinates x, y, and z that are

interpreted as a direction vector emanating from the center of the cube and pointing
to one face of the cube and a texel within the layer corresponding to that face. More
specifically, the face is selected by the coordinate with largest magnitude m and the
corresponding layer is addressed using coordinates (s/m+1)/2 and (t/m+1)/2 where s
and t are defined in Table 1.
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Table 1 Cubemap Fetch

face m s t

x > 0 0 x -z -y
|x| > |y| and |x| > |z|

x < 0 1 -x z -y

y > 0 2 y x z
|y| > |x| and |y| > |z|

y < 0 3 -y x -z

z > 0 4 z x -y
|z| > |x| and |z| > |y|

z < 0 5 -z -x -y

A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the
cudaArrayCubemap flag.

Cubemap textures are fetched using the device function described in texCubemap() and
texCubemap().

Cubemap textures are only supported on devices of compute capability 2.0 and higher.

3.2.11.1.6. Cubemap Layered Textures

A cubemap layered texture is a layered texture whose layers are cubemaps of same
dimension.

A cubemap layered texture is addressed using an integer index and three floating-
point texture coordinates; the index denotes a cubemap within the sequence and the
coordinates address a texel within that cubemap.

A layered texture can only be a CUDA array by calling cudaMalloc3DArray() with the
cudaArrayLayered and cudaArrayCubemap flags.

Cubemap layered textures are fetched using the device function described in
texCubemapLayered() and texCubemapLayered(). Texture filtering (see Texture
Fetching) is done only within a layer, not across layers.

Cubemap layered textures are only supported on devices of compute capability 2.0 and
higher.

3.2.11.1.7. Texture Gather

Texture gather is a special texture fetch that is available for two-dimensional textures
only. It is performed by the tex2Dgather() function, which has the same parameters
as tex2D(), plus an additional comp parameter equal to 0, 1, 2, or 3 (see tex2Dgather()
and tex2Dgather()). It returns four 32-bit numbers that correspond to the value of the
component comp of each of the four texels that would have been used for bilinear
filtering during a regular texture fetch. For example, if these texels are of values
(253, 20, 31, 255), (250, 25, 29, 254), (249, 16, 37, 253), (251, 22, 30, 250), and comp is 2,
tex2Dgather() returns (31, 29, 37, 30).

Texture gather is only supported for CUDA arrays created with the
cudaArrayTextureGather flag and of width and height less than the maximum
specified in Table 12 for texture gather, which is smaller than for regular texture fetch.
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Texture gather is only supported on devices of compute capability 2.0 and higher.

3.2.11.2. Surface Memory
For devices of compute capability 2.0 and higher, a CUDA array (described in Cubemap
Surfaces), created with the cudaArraySurfaceLoadStore flag, can be read and written
via a surface object or surface reference using the functions described in Surface Functions.

Table 12 lists the maximum surface width, height, and depth depending on the compute
capability of the device.

3.2.11.2.1. Surface Object API

A surface object is created using cudaCreateSurfaceObject() from a resource
description of type struct cudaResourceDesc.
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The following code sample applies some simple transformation kernel to a texture.
// Simple copy kernel
__global__ void copyKernel(cudaSurfaceObject_t inputSurfObj,
                           cudaSurfaceObject_t outputSurfObj,
                           int width, int height) 
{
    // Calculate surface coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
    if (x < width && y < height) {
        uchar4 data;
        // Read from input surface
        surf2Dread(&data,  inputSurfObj, x * 4, y);
        // Write to output surface
        surf2Dwrite(data, outputSurfObj, x * 4, y);
    }
}

// Host code
int main()
{
    // Allocate CUDA arrays in device memory
    cudaChannelFormatDesc channelDesc =
             cudaCreateChannelDesc(8, 8, 8, 8,
                                   cudaChannelFormatKindUnsigned);
    cudaArray* cuInputArray;
    cudaMallocArray(&cuInputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);
    cudaArray* cuOutputArray;
    cudaMallocArray(&cuOutputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuInputArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Specify surface
    struct cudaResourceDesc resDesc;
    memset(&resDesc, 0, sizeof(resDesc));
    resDesc.resType = cudaResourceTypeArray;

    // Create the surface objects
    resDesc.res.array.array = cuInputArray;
    cudaSurfaceObject_t inputSurfObj = 0;
    cudaCreateSurfaceObject(&inputSurfObj, &resDesc);
    resDesc.res.array.array = cuOutputArray;
    cudaSurfaceObject_t outputSurfObj = 0;
    cudaCreateSurfaceObject(&outputSurfObj, &resDesc);

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    copyKernel<<<dimGrid, dimBlock>>>(inputSurfObj,
                                      outputSurfObj,
                                      width, height);

    // Destroy surface objects
    cudaDestroySurfaceObject(inputSurfObj);
    cudaDestroySurfaceObject(outputSurfObj);

    // Free device memory
    cudaFreeArray(cuInputArray);
    cudaFreeArray(cuOutputArray);

    return 0;
}



Programming Interface

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 54

3.2.11.2.2. Surface Reference API

A surface reference is declared at file scope as a variable of type surface:
surface<void, Type> surfRef;

where Type specifies the type of the surface reference and is equal to
cudaSurfaceType1D, cudaSurfaceType2D, cudaSurfaceType3D,
cudaSurfaceTypeCubemap, cudaSurfaceType1DLayered,
cudaSurfaceType2DLayered, or cudaSurfaceTypeCubemapLayered; Type is an
optional argument which defaults to cudaSurfaceType1D. A surface reference can only
be declared as a static global variable and cannot be passed as an argument to a function.

Before a kernel can use a surface reference to access a CUDA array, the surface reference
must be bound to the CUDA array using cudaBindSurfaceToArray().

The following code samples bind a surface reference to a CUDA array cuArray:

‣ Using the low-level API:
surface<void, cudaSurfaceType2D> surfRef;
surfaceReference* surfRefPtr;
cudaGetSurfaceReference(&surfRefPtr, "surfRef");
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, cuArray);
cudaBindSurfaceToArray(surfRef, cuArray, &channelDesc);

‣ Using the high-level API:
surface<void, cudaSurfaceType2D> surfRef;
cudaBindSurfaceToArray(surfRef, cuArray);

A CUDA array must be read and written using surface functions of matching
dimensionality and type and via a surface reference of matching dimensionality;
otherwise, the results of reading and writing the CUDA array are undefined.

Unlike texture memory, surface memory uses byte addressing. This means that
the x-coordinate used to access a texture element via texture functions needs to be
multiplied by the byte size of the element to access the same element via a surface
function. For example, the element at texture coordinate x of a one-dimensional
floating-point CUDA array bound to a texture reference texRef and a surface reference
surfRef is read using tex1d(texRef, x) via texRef, but surf1Dread(surfRef,
4*x) via surfRef. Similarly, the element at texture coordinate x and y of a two-
dimensional floating-point CUDA array bound to a texture reference texRef and a
surface reference surfRef is accessed using tex2d(texRef, x, y) via texRef, but
surf2Dread(surfRef, 4*x, y) via surfRef (the byte offset of the y-coordinate is
internally calculated from the underlying line pitch of the CUDA array).
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The following code sample applies some simple transformation kernel to a texture.
// 2D surfaces
surface<void, 2> inputSurfRef;
surface<void, 2> outputSurfRef;
            
// Simple copy kernel
__global__ void copyKernel(int width, int height) 
{
    // Calculate surface coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
    if (x < width && y < height) {
        uchar4 data;
        // Read from input surface
        surf2Dread(&data,  inputSurfRef, x * 4, y);
        // Write to output surface
        surf2Dwrite(data, outputSurfRef, x * 4, y);
    }
}

// Host code
int main()
{
    // Allocate CUDA arrays in device memory
    cudaChannelFormatDesc channelDesc =
             cudaCreateChannelDesc(8, 8, 8, 8,
                                   cudaChannelFormatKindUnsigned);
    cudaArray* cuInputArray;
    cudaMallocArray(&cuInputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);
    cudaArray* cuOutputArray;
    cudaMallocArray(&cuOutputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuInputArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Bind the arrays to the surface references
    cudaBindSurfaceToArray(inputSurfRef, cuInputArray);
    cudaBindSurfaceToArray(outputSurfRef, cuOutputArray);

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    copyKernel<<<dimGrid, dimBlock>>>(width, height);

    // Free device memory
    cudaFreeArray(cuInputArray);
    cudaFreeArray(cuOutputArray);

    return 0;
}

3.2.11.2.3. Cubemap Surfaces

Cubemap surfaces are accessed usingsurfCubemapread() and surfCubemapwrite()
(surfCubemapread and surfCubemapwrite) as a two-dimensional layered surface,
i.e., using an integer index denoting a face and two floating-point texture coordinates
addressing a texel within the layer corresponding to this face. Faces are ordered as
indicated in Table 1.
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3.2.11.2.4. Cubemap Layered Surfaces

Cubemap layered surfaces are accessed using surfCubemapLayeredread()
and surfCubemapLayeredwrite() (surfCubemapLayeredread() and
surfCubemapLayeredwrite()) as a two-dimensional layered surface, i.e., using an integer
index denoting a face of one of the cubemaps and two floating-point texture coordinates
addressing a texel within the layer corresponding to this face. Faces are ordered as
indicated in Table 1, so index ((2 * 6) + 3), for example, accesses the fourth face of the
third cubemap.

3.2.11.3. CUDA Arrays
CUDA arrays are opaque memory layouts optimized for texture fetching. They are one
dimensional, two dimensional, or three-dimensional and composed of elements, each of
which has 1, 2 or 4 components that may be signed or unsigned 8 , 16 or 32 bit integers,
16 bit floats, or 32 bit floats. CUDA arrays are only accessible by kernels through texture
fetching as described in Texture Memory or surface reading and writing as described in
Surface Memory .

3.2.11.4. Read/Write Coherency
The texture and surface memory is cached (see Device Memory Accesses) and within
the same kernel call, the cache is not kept coherent with respect to global memory
writes and surface memory writes, so any texture fetch or surface read to an address
that has been written to via a global write or a surface write in the same kernel call
returns undefined data. In other words, a thread can safely read some texture or surface
memory location only if this memory location has been updated by a previous kernel
call or memory copy, but not if it has been previously updated by the same thread or
another thread from the same kernel call.

3.2.12. Graphics Interoperability
Some resources from OpenGL and Direct3D may be mapped into the address space of
CUDA, either to enable CUDA to read data written by OpenGL or Direct3D, or to enable
CUDA to write data for consumption by OpenGL or Direct3D.

A resource must be registered to CUDA before it can be mapped using the
functions mentioned in OpenGL Interoperability and Direct3D Interoperability.
These functions return a pointer to a CUDA graphics resource of type struct
cudaGraphicsResource. Registering a resource is potentially high-overhead and
therefore typically called only once per resource. A CUDA graphics resource is
unregistered using cudaGraphicsUnregisterResource().

Once a resource is registered to CUDA, it can be mapped and unmapped
as many times as necessary using cudaGraphicsMapResources() and
cudaGraphicsUnmapResources(). cudaGraphicsResourceSetMapFlags() can be
called to specify usage hints (write-only, read-only) that the CUDA driver can use to
optimize resource management.
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A mapped resource can be read from or written to by kernels using the device memory
address returned by cudaGraphicsResourceGetMappedPointer() for buffers and
cudaGraphicsSubResourceGetMappedArray() for CUDA arrays.

Accessing a resource through OpenGL or Direct3D while it is mapped to CUDA
produces undefined results. OpenGL Interoperability and Direct3D Interoperability
give specifics for each graphics API and some code samples. SLI Interoperability gives
specifics for when the system is in SLI mode.

3.2.12.1. OpenGL Interoperability
Interoperability with OpenGL requires that the CUDA device be specified by
cudaGLSetGLDevice() before any other runtime calls. Note that cudaSetDevice()
and cudaGLSetGLDevice() are mutually exclusive.

The OpenGL resources that may be mapped into the address space of CUDA are
OpenGL buffer, texture, and renderbuffer objects.

A buffer object is registered using cudaGraphicsGLRegisterBuffer(). In CUDA,
it appears as a device pointer and can therefore be read and written by kernels or via
cudaMemcpy() calls.

A texture or renderbuffer object is registered using
cudaGraphicsGLRegisterImage(). In CUDA, it appears as a CUDA array. Kernels
can read from the array by binding it to a texture or surface reference. They can also
write to it via the surface write functions if the resource has been registered with
the cudaGraphicsRegisterFlagsSurfaceLoadStore flag. The array can also be
read and written via cudaMemcpy2D() calls. cudaGraphicsGLRegisterImage()
supports all texture formats with 1, 2, or 4 components and an internal type of float
(e.g., GL_RGBA_FLOAT32), normalized integer (e.g., GL_RGBA8, GL_INTENSITY16), and
unnormalized integer (e.g., GL_RGBA8UI) (please note that since unnormalized integer
formats require OpenGL 3.0, they can only be written by shaders, not the fixed function
pipeline).

The OpenGL context whose resources are being shared has to be current to the host
thread making any OpenGL interoperability API calls.
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The following code sample uses a kernel to dynamically modify a 2D width x height
grid of vertices stored in a vertex buffer object:
GLuint positionsVBO;
struct cudaGraphicsResource* positionsVBO_CUDA;

int main()
{
    // Initialize OpenGL and GLUT for device 0
    // and make the OpenGL context current
    ...
    glutDisplayFunc(display);

    // Explicitly set device 0
    cudaGLSetGLDevice(0);

    // Create buffer object and register it with CUDA
    glGenBuffers(1, &positionsVBO);
    glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);
    unsigned int size = width * height * 4 * sizeof(float);
    glBufferData(GL_ARRAY_BUFFER, size, 0, GL_DYNAMIC_DRAW);
    glBindBuffer(GL_ARRAY_BUFFER, 0);
    cudaGraphicsGLRegisterBuffer(&positionsVBO_CUDA,
                                 positionsVBO,
                                 cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    glutMainLoop();

    ...
}

void display()
{
    // Map buffer object for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVBO_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVBO_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap buffer object
    cudaGraphicsUnmapResources(1, &positionsVBO_CUDA, 0);

    // Render from buffer object
    glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
    glBindBuffer(GL_ARRAY_BUFFER, positionsVBO);
    glVertexPointer(4, GL_FLOAT, 0, 0);
    glEnableClientState(GL_VERTEX_ARRAY);
    glDrawArrays(GL_POINTS, 0, width * height);
    glDisableClientState(GL_VERTEX_ARRAY);

    // Swap buffers
    glutSwapBuffers();
    glutPostRedisplay();
}

void deleteVBO()
{
    cudaGraphicsUnregisterResource(positionsVBO_CUDA);
    glDeleteBuffers(1, &positionsVBO);
}

__global__ void createVertices(float4* positions, float time,
                               unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;

    // Write positions
    positions[y * width + x] = make_float4(u, w, v, 1.0f);
}
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On Windows and for Quadro GPUs, cudaWGLGetDevice() can be used to retrieve the
CUDA device associated to the handle returned by wglEnumGpusNV(). Quadro GPUs
offer higher performance OpenGL interoperability than GeForce and Tesla GPUs in a
multi-GPU configuration where OpenGL rendering is performed on the Quadro GPU
and CUDA computations are performed on other GPUs in the system.

3.2.12.2. Direct3D Interoperability
Direct3D interoperability is supported for Direct3D 9, Direct3D 10, and Direct3D 11.

A CUDA context may interoperate with only one Direct3D device at a time and the
CUDA context and Direct3D device must be created on the same GPU. In addition the
following considerations must be taken when creating the device: Direct3D 9 devices
must be created with DeviceType set to D3DDEVTYPE_HAL and BehaviorFlags with
the D3DCREATE_HARDWARE_VERTEXPROCESSING flag. Direct3D 10 and Direct3D 11
devices must be created with DriverType set to D3D_DRIVER_TYPE_HARDWARE.

Interoperability with Direct3D requires that the Direct3D device be specified
by cudaD3D9SetDirect3DDevice(), cudaD3D10SetDirect3DDevice()
and cudaD3D11SetDirect3DDevice(), before any other runtime calls.
cudaD3D9GetDevice(), cudaD3D10GetDevice(), and cudaD3D11GetDevice() can
be used to retrieve the CUDA device associated to some adapter.

A set of calls is also available to allow the creation of CUDA contexts with
interoperability with Direct3D devices that use NVIDIA SLI in AFR (Alternate Frame
Rendering) mode: cudaD3D[9|10|11]GetDevices(). A call to cudaD3D[9|10|
11]GetDevices()can be used to obtain a list of CUDA device handles that can be
passed as the (optional) last parameter to cudaD3D[9|10|11]SetDirect3DDevice().

The application has the choice to either create multiple CPU threads, each using
a different CUDA context, or a single CPU thread using multiple CUDA context.
If using separate CPU threads for each GPU each of the CUDA contexts would be
created by the CUDA runtime by calling in a separate CPU thread cudaD3D[9|10|
11]SetDirect3DDevice() using one of the CUDA device handles returned by
cudaD3D[9|10|11]GetDevices().

If using a single CPU thread the CUDA contexts would have to be created using the
CUDA driver API context creation functions for interoperability with Direct3D devices
that use NVIDIA SLI (cuD3D[9|10|11]CtxCreateOnDevice()). The application
relies on the interoperability between CUDA driver and runtime APIs (Interoperability
between Runtime and Driver APIs), which allows it to call cuCtxPushCurrent() and
cuCtxPopCurrent() to change the CUDA context active at a given time.

The Direct3D resources that may be mapped into the address space of
CUDA are Direct3D buffers, textures, and surfaces. These resources
are registered using cudaGraphicsD3D9RegisterResource(),
cudaGraphicsD3D10RegisterResource(), and
cudaGraphicsD3D11RegisterResource().

The following code sample uses a kernel to dynamically modify a 2D width x height
grid of vertices stored in a vertex buffer object.
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3.2.12.2.1. Direct3D 9 Version
IDirect3D9* D3D;
IDirect3DDevice9* device;
struct CUSTOMVERTEX {
    FLOAT x, y, z;
    DWORD color;
};
IDirect3DVertexBuffer9* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
    // Initialize Direct3D
    D3D = Direct3DCreate9(D3D_SDK_VERSION);

    // Get a CUDA-enabled adapter
    unsigned int adapter = 0;
    for (; adapter < g_pD3D->GetAdapterCount(); adapter++) {
        D3DADAPTER_IDENTIFIER9 adapterId;
        g_pD3D->GetAdapterIdentifier(adapter, 0, &adapterId);
        int dev;
        if (cudaD3D9GetDevice(&dev, adapterId.DeviceName)
            == cudaSuccess)
            break;
    }

     // Create device
    ...
    D3D->CreateDevice(adapter, D3DDEVTYPE_HAL, hWnd,
                      D3DCREATE_HARDWARE_VERTEXPROCESSING,
                      &params, &device);

    // Register device with CUDA
    cudaD3D9SetDirect3DDevice(device);

    // Create vertex buffer and register it with CUDA
    unsigned int size = width * height * sizeof(CUSTOMVERTEX);
    device->CreateVertexBuffer(size, 0, D3DFVF_CUSTOMVERTEX,
                               D3DPOOL_DEFAULT, &positionsVB, 0);
    cudaGraphicsD3D9RegisterResource(&positionsVB_CUDA,
                                     positionsVB,
                                     cudaGraphicsRegisterFlagsNone);
    cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
                                    cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    while (...) {
        ...
        Render();
        ...
    }
    ...
}

void Render()
{
    // Map vertex buffer for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVB_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap vertex buffer
    cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

    // Draw and present
    ...
}

void releaseVB()
{
    cudaGraphicsUnregisterResource(positionsVB_CUDA);
    positionsVB->Release();
}

__global__ void createVertices(float4* positions, float time,
                               unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // Calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;

    // Write positions
    positions[y * width + x] =
                make_float4(u, w, v, __int_as_float(0xff00ff00));
}
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3.2.12.2.2. Direct3D 10 Version
ID3D10Device* device;
struct CUSTOMVERTEX {
    FLOAT x, y, z;
    DWORD color;
};
ID3D10Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;
            
int main()
{
    // Get a CUDA-enabled adapter
    IDXGIFactory* factory;
    CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
    IDXGIAdapter* adapter = 0;
    for (unsigned int i = 0; !adapter; ++i) {
        if (FAILED(factory->EnumAdapters(i, &adapter))
            break;
        int dev;
        if (cudaD3D10GetDevice(&dev, adapter) == cudaSuccess)
            break;
        adapter->Release();
    }
    factory->Release();
            
    // Create swap chain and device
    ...
    D3D10CreateDeviceAndSwapChain(adapter, 
                                  D3D10_DRIVER_TYPE_HARDWARE, 0, 
                                  D3D10_CREATE_DEVICE_DEBUG,
                                  D3D10_SDK_VERSION, 
                                  &swapChainDesc, &swapChain,
                                  &device);
    adapter->Release();

    // Register device with CUDA
    cudaD3D10SetDirect3DDevice(device);

    // Create vertex buffer and register it with CUDA
    unsigned int size = width * height * sizeof(CUSTOMVERTEX);
    D3D10_BUFFER_DESC bufferDesc;
    bufferDesc.Usage          = D3D10_USAGE_DEFAULT;
    bufferDesc.ByteWidth      = size;
    bufferDesc.BindFlags      = D3D10_BIND_VERTEX_BUFFER;
    bufferDesc.CPUAccessFlags = 0;
    bufferDesc.MiscFlags      = 0;
    device->CreateBuffer(&bufferDesc, 0, &positionsVB);
    cudaGraphicsD3D10RegisterResource(&positionsVB_CUDA,
                                      positionsVB,
                                      cudaGraphicsRegisterFlagsNone);
                                     
 cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
                                      cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    while (...) {
        ...
        Render();
        ...
    }
    ...
}

void Render()
{
    // Map vertex buffer for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVB_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap vertex buffer
    cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

    // Draw and present
    ...
}

void releaseVB()
{
    cudaGraphicsUnregisterResource(positionsVB_CUDA);
    positionsVB->Release();
}

__global__ void createVertices(float4* positions, float time,
                               unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

    // Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // Calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;
            
    // Write positions
    positions[y * width + x] =
                make_float4(u, w, v, __int_as_float(0xff00ff00));
}
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3.2.12.2.3. Direct3D 11 Version
ID3D11Device* device;
struct CUSTOMVERTEX {
    FLOAT x, y, z;
    DWORD color;
};
ID3D11Buffer* positionsVB;
struct cudaGraphicsResource* positionsVB_CUDA;

int main()
{
    // Get a CUDA-enabled adapter
    IDXGIFactory* factory;
    CreateDXGIFactory(__uuidof(IDXGIFactory), (void**)&factory);
    IDXGIAdapter* adapter = 0;
    for (unsigned int i = 0; !adapter; ++i) {
        if (FAILED(factory->EnumAdapters(i, &adapter))
            break;
        int dev;
        if (cudaD3D11GetDevice(&dev, adapter) == cudaSuccess)
            break;
        adapter->Release();
    }
    factory->Release();

    // Create swap chain and device
    ...
    sFnPtr_D3D11CreateDeviceAndSwapChain(adapter, 
                                         D3D11_DRIVER_TYPE_HARDWARE,
                                         0, 
                                         D3D11_CREATE_DEVICE_DEBUG,
                                         featureLevels, 3,
                                         D3D11_SDK_VERSION, 
                                         &swapChainDesc, &swapChain,
                                         &device,
                                         &featureLevel,
                                         &deviceContext);
    adapter->Release();

    // Register device with CUDA
    cudaD3D11SetDirect3DDevice(device);

    // Create vertex buffer and register it with CUDA
    unsigned int size = width * height * sizeof(CUSTOMVERTEX);
    D3D11_BUFFER_DESC bufferDesc;
    bufferDesc.Usage          = D3D11_USAGE_DEFAULT;
    bufferDesc.ByteWidth      = size;
    bufferDesc.BindFlags      = D3D11_BIND_VERTEX_BUFFER;
    bufferDesc.CPUAccessFlags = 0;
    bufferDesc.MiscFlags      = 0;
    device->CreateBuffer(&bufferDesc, 0, &positionsVB);
    cudaGraphicsD3D11RegisterResource(&positionsVB_CUDA,
                                      positionsVB,
                                      cudaGraphicsRegisterFlagsNone);
    cudaGraphicsResourceSetMapFlags(positionsVB_CUDA,
                                    cudaGraphicsMapFlagsWriteDiscard);

    // Launch rendering loop
    while (...) {
        ...
        Render();
        ...
    }
    ...
}

void Render()
{
    // Map vertex buffer for writing from CUDA
    float4* positions;
    cudaGraphicsMapResources(1, &positionsVB_CUDA, 0);
    size_t num_bytes; 
    cudaGraphicsResourceGetMappedPointer((void**)&positions,
                                         &num_bytes,  
                                         positionsVB_CUDA));

    // Execute kernel
    dim3 dimBlock(16, 16, 1);
    dim3 dimGrid(width / dimBlock.x, height / dimBlock.y, 1);
    createVertices<<<dimGrid, dimBlock>>>(positions, time,
                                          width, height);

    // Unmap vertex buffer
    cudaGraphicsUnmapResources(1, &positionsVB_CUDA, 0);

    // Draw and present
    ...
}

void releaseVB()
{
    cudaGraphicsUnregisterResource(positionsVB_CUDA);
    positionsVB->Release();
}

    __global__ void createVertices(float4* positions, float time,
                          unsigned int width, unsigned int height)
{
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;

// Calculate uv coordinates
    float u = x / (float)width;
    float v = y / (float)height;
    u = u * 2.0f - 1.0f;
    v = v * 2.0f - 1.0f;

    // Calculate simple sine wave pattern
    float freq = 4.0f;
    float w = sinf(u * freq + time)
            * cosf(v * freq + time) * 0.5f;

    // Write positions
    positions[y * width + x] =
                make_float4(u, w, v, __int_as_float(0xff00ff00));
}
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3.2.12.3. SLI Interoperability
In a system with multiple GPUs, all CUDA-enabled GPUs are accessible via the CUDA
driver and runtime as separate devices. There are however special considerations as
described below when the system is in SLI mode.

First, an allocation in one CUDA device on one GPU will consume memory on other
GPUs that are part of the SLI configuration of the Direct3D or OpenGL device. Because
of this, allocations may fail earlier than otherwise expected.

Second, applications have to create multiple CUDA contexts, one for each GPU in the
SLI configuration and deal with the fact that a different GPU is used for rendering by the
Direct3D or OpenGL device at every frame. The application can use the cudaD3D[9|10|
11]GetDevices() for Direct3D and cudaGLGetDevices() for OpenGL set of calls to
identify the CUDA device handle(s) for the device(s) that are performing the rendering
in the current and next frame. Given this information the application will typically
map Direct3D or OpenGL resources to the CUDA context corresponding to the CUDA
device returned by cudaD3D[9|10|11]GetDevices() or cudaGLGetDevices() when
the deviceList parameter is set to CU_D3D10_DEVICE_LIST_CURRENT_FRAME or
cudaGLDeviceListCurrentFrame.

See Direct3D Interoperability and OpenGL Interoperability for details on how the
CUDA runtime interoperate with Direct3D and OpenGL, respectively.

3.3. Versioning and Compatibility
There are two version numbers that developers should care about when developing a
CUDA application: The compute capability that describes the general specifications and
features of the compute device (see Compute Capability) and the version of the CUDA
driver API that describes the features supported by the driver API and runtime.

The version of the driver API is defined in the driver header file as CUDA_VERSION. It
allows developers to check whether their application requires a newer device driver
than the one currently installed. This is important, because the driver API is backward
compatible, meaning that applications, plug-ins, and libraries (including the C runtime)
compiled against a particular version of the driver API will continue to work on
subsequent device driver releases as illustrated in Figure 11. The driver API is not
forward compatible, which means that applications, plug-ins, and libraries (including the
C runtime) compiled against a particular version of the driver API will not work on
previous versions of the device driver.

It is important to note that mixing and matching versions is not supported; specifically:

‣ All applications, plug-ins, and libraries on a system must use the same version of
the CUDA driver API, since only one version of the CUDA device driver can be
installed on a system.

‣ All plug-ins and libraries used by an application must use the same version of the
runtime.

‣ All plug-ins and libraries used by an application must use the same version of any
libraries that use the runtime (such as cuFFT, cuBLAS, ...).
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Figure 11 The Driver API Is Backward, but Not Forward Compatible

3.4. Compute Modes
On Tesla solutions running Windows Server 2008 and later or Linux, one can set
any device in a system in one of the three following modes using NVIDIA's System
Management Interface (nvidia-smi), which is a tool distributed as part of the driver:

‣ Default compute mode: Multiple host threads can use the device (by calling
cudaSetDevice() on this device, when using the runtime API, or by making
current a context associated to the device, when using the driver API) at the same
time.

‣ Exclusive-process compute mode: Only one CUDA context may be created on the
device across all processes in the system and that context may be current to as many
threads as desired within the process that created that context.

‣ Exclusive-process-and-thread compute mode: Only one CUDA context may be created
on the device across all processes in the system and that context may only be current
to one thread at a time.

‣ Prohibited compute mode: No CUDA context can be created on the device.

This means, in particular, that a host thread using the runtime API without explicitly
calling cudaSetDevice() might be associated with a device other than device 0 if
device 0 turns out to be in the exclusive-process mode and used by another process, or
in the exclusive-process-and-thread mode and used by another thread, or in prohibited
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mode. cudaSetValidDevices() can be used to set a device from a prioritized list of
devices.

Applications may query the compute mode of a device by checking the computeMode
device property (see Device Enumeration).

3.5. Mode Switches
GPUs that have a display output dedicate some DRAM memory to the so-called primary
surface, which is used to refresh the display device whose output is viewed by the user.
When users initiate a mode switch of the display by changing the resolution or bit depth
of the display (using NVIDIA control panel or the Display control panel on Windows),
the amount of memory needed for the primary surface changes. For example, if the
user changes the display resolution from 1280x1024x32-bit to 1600x1200x32-bit, the
system must dedicate 7.68 MB to the primary surface rather than 5.24 MB. (Full-screen
graphics applications running with anti-aliasing enabled may require much more
display memory for the primary surface.) On Windows, other events that may initiate
display mode switches include launching a full-screen DirectX application, hitting Alt
+Tab to task switch away from a full-screen DirectX application, or hitting Ctrl+Alt+Del
to lock the computer.

If a mode switch increases the amount of memory needed for the primary surface, the
system may have to cannibalize memory allocations dedicated to CUDA applications.
Therefore, a mode switch results in any call to the CUDA runtime to fail and return an
invalid context error.

3.6. Tesla Compute Cluster Mode for Windows
Using NVIDIA's System Management Interface (nvidia-smi), the Windows device driver
can be put in TCC (Tesla Compute Cluster) mode for devices of the Tesla and Quadro
Series of compute capability 2.0 and higher.

This mode has the following primary benefits:

‣ It makes it possible to use these GPUs in cluster nodes with non-NVIDIA integrated
graphics;

‣ It makes these GPUs available via Remote Desktop, both directly and via cluster
management systems that rely on Remote Desktop;

‣ It makes these GPUs available to applications running as a Windows service (i.e., in
Session 0).

However, the TCC mode removes support for any graphics functionality.
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Chapter 4.
HARDWARE IMPLEMENTATION

The NVIDIA GPU architecture is built around a scalable array of multithreaded
Streaming Multiprocessors (SMs). When a CUDA program on the host CPU invokes a
kernel grid, the blocks of the grid are enumerated and distributed to multiprocessors
with available execution capacity. The threads of a thread block execute concurrently
on one multiprocessor, and multiple thread blocks can execute concurrently on one
multiprocessor. As thread blocks terminate, new blocks are launched on the vacated
multiprocessors.

A multiprocessor is designed to execute hundreds of threads concurrently. To manage
such a large amount of threads, it employs a unique architecture called SIMT (Single-
Instruction, Multiple-Thread) that is described in SIMT Architecture. The instructions
are pipelined to leverage instruction-level parallelism within a single thread, as well as
thread-level parallelism extensively through simultaneous hardware multithreading
as detailed in Hardware Multithreading. Unlike CPU cores they are issued in order
however and there is no branch prediction and no speculative execution.

SIMT Architecture and Hardware Multithreading describe the architecture features of
the streaming multiprocessor that are common to all devices. Compute Capability 1.x,
Compute Capability 2.x, Compute Capability 3.x provide the specifics for devices of
compute capabilities 1.x, 2.x, 3.x, respectively.

The NVIDIA GPU architecture uses a little-endian representation.

4.1. SIMT Architecture
The multiprocessor creates, manages, schedules, and executes threads in groups of 32
parallel threads called warps. Individual threads composing a warp start together at
the same program address, but they have their own instruction address counter and
register state and are therefore free to branch and execute independently. The term warp
originates from weaving, the first parallel thread technology. A half-warp is either the
first or second half of a warp. A quarter-warp is either the first, second, third, or fourth
quarter of a warp.

When a multiprocessor is given one or more thread blocks to execute, it partitions
them into warps and each warp gets scheduled by a warp scheduler for execution. The
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way a block is partitioned into warps is always the same; each warp contains threads
of consecutive, increasing thread IDs with the first warp containing thread 0. Thread
Hierarchy describes how thread IDs relate to thread indices in the block.

A warp executes one common instruction at a time, so full efficiency is realized when
all 32 threads of a warp agree on their execution path. If threads of a warp diverge via a
data-dependent conditional branch, the warp serially executes each branch path taken,
disabling threads that are not on that path, and when all paths complete, the threads
converge back to the same execution path. Branch divergence occurs only within a
warp; different warps execute independently regardless of whether they are executing
common or disjoint code paths.

The SIMT architecture is akin to SIMD (Single Instruction, Multiple Data) vector
organizations in that a single instruction controls multiple processing elements. A key
difference is that SIMD vector organizations expose the SIMD width to the software,
whereas SIMT instructions specify the execution and branching behavior of a single
thread. In contrast with SIMD vector machines, SIMT enables programmers to write
thread-level parallel code for independent, scalar threads, as well as data-parallel code
for coordinated threads. For the purposes of correctness, the programmer can essentially
ignore the SIMT behavior; however, substantial performance improvements can be
realized by taking care that the code seldom requires threads in a warp to diverge. In
practice, this is analogous to the role of cache lines in traditional code: Cache line size
can be safely ignored when designing for correctness but must be considered in the code
structure when designing for peak performance. Vector architectures, on the other hand,
require the software to coalesce loads into vectors and manage divergence manually.

Notes

The threads of a warp that are on that warp's current execution path are called the active
threads, whereas threads not on the current path are inactive (disabled). Threads can be
inactive because they have exited earlier than other threads of their warp, or because
they are on a different branch path than the branch path currently executed by the warp,
or because they are the last threads of a block whose number of threads is not a multiple
of the warp size.

If a non-atomic instruction executed by a warp writes to the same location in global or
shared memory for more than one of the threads of the warp, the number of serialized
writes that occur to that location varies depending on the compute capability of the
device (see Compute Capability 1.x, Compute Capability 2.x, Compute Capability 3.x),
and which thread performs the final write is undefined.

If an atomic instruction executed by a warp reads, modifies, and writes to the same
location in global memory for more than one of the threads of the warp, each read/
modify/write to that location occurs and they are all serialized, but the order in which
they occur is undefined.
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4.2. Hardware Multithreading
The execution context (program counters, registers, etc.) for each warp processed by a
multiprocessor is maintained on-chip during the entire lifetime of the warp. Therefore,
switching from one execution context to another has no cost, and at every instruction
issue time, a warp scheduler selects a warp that has threads ready to execute its next
instruction (the active threads of the warp) and issues the instruction to those threads.

In particular, each multiprocessor has a set of 32-bit registers that are partitioned among
the warps, and a parallel data cache or shared memory that is partitioned among the thread
blocks.

The number of blocks and warps that can reside and be processed together on the
multiprocessor for a given kernel depends on the amount of registers and shared
memory used by the kernel and the amount of registers and shared memory available
on the multiprocessor. There are also a maximum number of resident blocks and a
maximum number of resident warps per multiprocessor. These limits as well the amount
of registers and shared memory available on the multiprocessor are a function of the
compute capability of the device and are given in Appendix F. If there are not enough
registers or shared memory available per multiprocessor to process at least one block,
the kernel will fail to launch.

The total number of warps in a block is as follows:

‣ T is the number of threads per block,
‣ Wsize is the warp size, which is equal to 32,
‣ ceil(x, y) is equal to x rounded up to the nearest multiple of y.

The total number of registers and total amount of shared memory allocated for a block
are documented in the CUDA Occupancy Calculator provided in CUDA Software
Development Kit.
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Chapter 5.
PERFORMANCE GUIDELINES

5.1. Overall Performance Optimization Strategies
Performance optimization revolves around three basic strategies:

‣ Maximize parallel execution to achieve maximum utilization;
‣ Optimize memory usage to achieve maximum memory throughput;
‣ Optimize instruction usage to achieve maximum instruction throughput.

Which strategies will yield the best performance gain for a particular portion of an
application depends on the performance limiters for that portion; optimizing instruction
usage of a kernel that is mostly limited by memory accesses will not yield any significant
performance gain, for example. Optimization efforts should therefore be constantly
directed by measuring and monitoring the performance limiters, for example using the
CUDA profiler. Also, comparing the floating-point operation throughput or memory
throughput - whichever makes more sense - of a particular kernel to the corresponding
peak theoretical throughput of the device indicates how much room for improvement
there is for the kernel.

5.2. Maximize Utilization
To maximize utilization the application should be structured in a way that it exposes
as much parallelism as possible and efficiently maps this parallelism to the various
components of the system to keep them busy most of the time.

5.2.1. Application Level
At a high level, the application should maximize parallel execution between the host, the
devices, and the bus connecting the host to the devices, by using asynchronous functions
calls and streams as described in Asynchronous Concurrent Execution. It should assign
to each processor the type of work it does best: serial workloads to the host; parallel
workloads to the devices.
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For the parallel workloads, at points in the algorithm where parallelism is broken
because some threads need to synchronize in order to share data with each other,
there are two cases: Either these threads belong to the same block, in which case they
should use __syncthreads() and share data through shared memory within the same
kernel invocation, or they belong to different blocks, in which case they must share
data through global memory using two separate kernel invocations, one for writing to
and one for reading from global memory. The second case is much less optimal since it
adds the overhead of extra kernel invocations and global memory traffic. Its occurrence
should therefore be minimized by mapping the algorithm to the CUDA programming
model in such a way that the computations that require inter-thread communication are
performed within a single thread block as much as possible.

5.2.2. Device Level
At a lower level, the application should maximize parallel execution between the
multiprocessors of a device.

For devices of compute capability 1.x, only one kernel can execute on a device at one
time, so the kernel should be launched with at least as many thread blocks as there are
multiprocessors in the device.

For devices of compute capability 2.x and higher, multiple kernels can execute
concurrently on a device, so maximum utilization can also be achieved by using
streams to enable enough kernels to execute concurrently as described in Asynchronous
Concurrent Execution.

5.2.3. Multiprocessor Level
At an even lower level, the application should maximize parallel execution between the
various functional units within a multiprocessor.

As described in Hardware Multithreading, a GPU multiprocessor relies on thread-
level parallelism to maximize utilization of its functional units. Utilization is therefore
directly linked to the number of resident warps. At every instruction issue time, a warp
scheduler selects a warp that is ready to execute its next instruction, if any, and issues
the instruction to the active threads of the warp. The number of clock cycles it takes for
a warp to be ready to execute its next instruction is called the latency, and full utilization
is achieved when all warp schedulers always have some instruction to issue for some
warp at every clock cycle during that latency period, or in other words, when latency is
completely "hidden". The number of instructions required to hide a latency of L clock
cycles depends on the respective throughputs of these instructions (see Arithmetic
Instructions for the throughputs of various arithmetic instructions); assuming maximum
throughput for all instructions, it is:

‣ L/4 (rounded up to nearest integer) for devices of compute capability 1.x since a
multiprocessor issues one instruction per warp over four clock cycles, as mentioned
in Compute Capability 1.x,

‣ L for devices of compute capability 2.0 since a multiprocessor issues one instruction
per warp over two clock cycles for two warps at a time, as mentioned in Compute
Capability 2.x,
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‣ 2L for devices of compute capability 2.1 since a multiprocessor issues a pair of
instructions per warp over two clock cycles for two warps at a time, as mentioned in
Compute Capability 2.x,

‣ 8L for devices of compute capability 3.x since a multiprocessor issues a pair of
instructions per warp over one clock cycle for four warps at a time, as mentioned in
Compute Capability 3.x.

For devices of compute capability 2.0, the two instructions issued every other cycle are
for two different warps. For devices of compute capability 2.1, the four instructions
issued every other cycle are two pairs for two different warps, each pair being for the
same warp.

For devices of compute capability 3.x, the eight instructions issued every cycle are four
pairs for four different warps, each pair being for the same warp.

The most common reason a warp is not ready to execute its next instruction is that the
instruction's input operands are not available yet.

If all input operands are registers, latency is caused by register dependencies, i.e., some
of the input operands are written by some previous instruction(s) whose execution has
not completed yet. In the case of a back-to-back register dependency (i.e., some input
operand is written by the previous instruction), the latency is equal to the execution
time of the previous instruction and the warp schedulers must schedule instructions for
different warps during that time. Execution time varies depending on the instruction,
but it is typically about 22 clock cycles for devices of compute capability 1.x and 2.x
and about 11 clock cycles for devices of compute capability 3.x, which translates to 6
warps for devices of compute capability 1.x, 22 warps for devices of compute capability
2.x, and 44 warps for devices of compute capability 3.x and higher (still assuming
that warps execute instructions with maximum throughput, otherwise fewer warps
are needed). For devices of compute capability 2.1 and higher, this is also assuming
enough instruction-level parallelism so that schedulers are always able to issue pairs of
instructions for each warp.

If some input operand resides in off-chip memory, the latency is much higher: 400 to
800 clock cycles for devices of compute capability 1.x and 2.x and about 200 to 400 clock
cycles for devices of compute capability 3.x. The number of warps required to keep the
warp schedulers busy during such high latency periods depends on the kernel code and
its degree of instruction-level parallelism. In general, more warps are required if the
ratio of the number of instructions with no off-chip memory operands (i.e., arithmetic
instructions most of the time) to the number of instructions with off-chip memory
operands is low (this ratio is commonly called the arithmetic intensity of the program).
For example, assume this ratio is 30, also assume the latencies are 600 cycles on devices
of compute capability 1.x and 2.x and 300 cycles on devices of compute capability 3.x.
Then about 5 warps are required for devices of compute capability 1.x, about 20 for
devices of compute capability 2.x and about 40 for devices of compute capability 3.x
(with the same assumptions as in the previous paragraph).

Another reason a warp is not ready to execute its next instruction is that it is waiting
at some memory fence (Memory Fence Functions) or synchronization point (Memory
Fence Functions). A synchronization point can force the multiprocessor to idle as
more and more warps wait for other warps in the same block to complete execution of
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instructions prior to the synchronization point. Having multiple resident blocks per
multiprocessor can help reduce idling in this case, as warps from different blocks do not
need to wait for each other at synchronization points.

The number of blocks and warps residing on each multiprocessor for a given kernel
call depends on the execution configuration of the call (Execution Configuration),
the memory resources of the multiprocessor, and the resource requirements of the
kernel as described in Hardware Multithreading. To assist programmers in choosing
thread block size based on register and shared memory requirements, the CUDA
Software Development Kit provides a spreadsheet, called the CUDA Occupancy
Calculator, where occupancy is defined as the ratio of the number of resident warps to
the maximum number of resident warps (given in Compute Capabilities for various
compute capabilities).

Register, local, shared, and constant memory usages are reported by the compiler when
compiling with the -ptxas-options=-v option.

The total amount of shared memory required for a block is equal to the sum of the
amount of statically allocated shared memory, the amount of dynamically allocated
shared memory, and for devices of compute capability 1.x, the amount of shared
memory used to pass the kernel's arguments (see __noinline__ and __forceinline__).

The number of registers used by a kernel can have a significant impact on the number
of resident warps. For example, for devices of compute capability 1.2, if a kernel uses
16 registers and each block has 512 threads and requires very little shared memory,
then two blocks (i.e., 32 warps) can reside on the multiprocessor since they require
2x512x16 registers, which exactly matches the number of registers available on the
multiprocessor. But as soon as the kernel uses one more register, only one block (i.e.,
16 warps) can be resident since two blocks would require 2x512x17 registers, which are
more registers than are available on the multiprocessor. Therefore, the compiler attempts
to minimize register usage while keeping register spilling (see Device Memory Accesses)
and the number of instructions to a minimum. Register usage can be controlled using
the maxrregcount compiler option or launch bounds as described in Launch Bounds.

Each double variable (on devices that supports native double precision, i.e., devices
of compute capability 1.2 and higher) and each long long variable uses two registers.
However, devices of compute capability 1.2 and higher have at least twice as many
registers per multiprocessor as devices with lower compute capability.

The effect of execution configuration on performance for a given kernel call generally
depends on the kernel code. Experimentation is therefore recommended. Applications
can also parameterize execution configurations based on register file size and shared
memory size, which depends on the compute capability of the device, as well as on the
number of multiprocessors and memory bandwidth of the device, all of which can be
queried using the runtime (see reference manual).

The number of threads per block should be chosen as a multiple of the warp size to
avoid wasting computing resources with under-populated warps as much as possible.
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5.3. Maximize Memory Throughput
The first step in maximizing overall memory throughput for the application is to
minimize data transfers with low bandwidth.

That means minimizing data transfers between the host and the device, as detailed in
Data Transfer between Host and Device, since these have much lower bandwidth than
data transfers between global memory and the device.

That also means minimizing data transfers between global memory and the device by
maximizing use of on-chip memory: shared memory and caches (i.e., L1 cache available
on devices of compute capability 2.x and 3.x, L2 cache available on devices of compute
capability 2.x and higher, texture cache and constant cache available on all devices).

Shared memory is equivalent to a user-managed cache: The application explicitly
allocates and accesses it. As illustrated in CUDA C Runtime, a typical programming
pattern is to stage data coming from device memory into shared memory; in other
words, to have each thread of a block:

‣ Load data from device memory to shared memory,
‣ Synchronize with all the other threads of the block so that each thread can safely

read shared memory locations that were populated by different threads,
‣ Process the data in shared memory,
‣ Synchronize again if necessary to make sure that shared memory has been updated

with the results,
‣ Write the results back to device memory.

For some applications (e.g., for which global memory access patterns are data-
dependent), a traditional hardware-managed cache is more appropriate to exploit data
locality. As mentioned in Compute Capability 2.x and Compute Capability 3.x, for
devices of compute capability 2.x and 3.x, the same on-chip memory is used for both L1
and shared memory, and how much of it is dedicated to L1 versus shared memory is
configurable for each kernel call.

The throughput of memory accesses by a kernel can vary by an order of magnitude
depending on access pattern for each type of memory. The next step in maximizing
memory throughput is therefore to organize memory accesses as optimally as possible
based on the optimal memory access patterns described in Device Memory Accesses.
This optimization is especially important for global memory accesses as global memory
bandwidth is low, so non-optimal global memory accesses have a higher impact on
performance.

5.3.1. Data Transfer between Host and Device
Applications should strive to minimize data transfer between the host and the device.
One way to accomplish this is to move more code from the host to the device, even
if that means running kernels with low parallelism computations. Intermediate data
structures may be created in device memory, operated on by the device, and destroyed
without ever being mapped by the host or copied to host memory.
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Also, because of the overhead associated with each transfer, batching many small
transfers into a single large transfer always performs better than making each transfer
separately.

On systems with a front-side bus, higher performance for data transfers between host
and device is achieved by using page-locked host memory as described in Page-Locked
Host Memory.

In addition, when using mapped page-locked memory (Mapped Memory), there is
no need to allocate any device memory and explicitly copy data between device and
host memory. Data transfers are implicitly performed each time the kernel accesses the
mapped memory. For maximum performance, these memory accesses must be coalesced
as with accesses to global memory (see Device Memory Accesses). Assuming that they
are and that the mapped memory is read or written only once, using mapped page-
locked memory instead of explicit copies between device and host memory can be a win
for performance.

On integrated systems where device memory and host memory are physically the same,
any copy between host and device memory is superfluous and mapped page-locked
memory should be used instead. Applications may query a device is integrated by
checking that the integrated device property (see Device Enumeration) is equal to 1.

5.3.2. Device Memory Accesses
An instruction that accesses addressable memory (i.e., global, local, shared, constant,
or texture memory) might need to be re-issued multiple times depending on the
distribution of the memory addresses across the threads within the warp. How the
distribution affects the instruction throughput this way is specific to each type of
memory and described in the following sections. For example, for global memory, as a
general rule, the more scattered the addresses are, the more reduced the throughput is.

Global Memory

Global memory resides in device memory and device memory is accessed via 32-, 64-,
or 128-byte memory transactions. These memory transactions must be naturally aligned:
Only the 32-, 64-, or 128-byte segments of device memory that are aligned to their size
(i.e., whose first address is a multiple of their size) can be read or written by memory
transactions.

When a warp executes an instruction that accesses global memory, it coalesces the
memory accesses of the threads within the warp into one or more of these memory
transactions depending on the size of the word accessed by each thread and the
distribution of the memory addresses across the threads. In general, the more
transactions are necessary, the more unused words are transferred in addition to the
words accessed by the threads, reducing the instruction throughput accordingly. For
example, if a 32-byte memory transaction is generated for each thread's 4-byte access,
throughput is divided by 8.

How many transactions are necessary and how much throughput is ultimately affected
varies with the compute capability of the device. For devices of compute capability 1.0
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and 1.1, the requirements on the distribution of the addresses across the threads to get
any coalescing at all are very strict. They are much more relaxed for devices of higher
compute capabilities. For devices of compute capability 2.x and higher, the memory
transactions are cached, so data locality is exploited to reduce impact on throughput.
Compute Capability 1.x, Compute Capability 2.x, Compute Capability 3.x give more
details on how global memory accesses are handled for various compute capabilities.

To maximize global memory throughput, it is therefore important to maximize
coalescing by:

‣ Following the most optimal access patterns based on Compute Capability 1.x,
Compute Capability 2.x and Compute Capability 3.x,

‣ Using data types that meet the size and alignment requirement detailed in Device
Memory Accesses,

‣ Padding data in some cases, for example, when accessing a two-dimensional array
as described in Device Memory Accesses.

Size and Alignment Requirement

Global memory instructions support reading or writing words of size equal to 1, 2, 4, 8,
or 16 bytes. Any access (via a variable or a pointer) to data residing in global memory
compiles to a single global memory instruction if and only if the size of the data type
is 1, 2, 4, 8, or 16 bytes and the data is naturally aligned (i.e., its address is a multiple of
that size).

If this size and alignment requirement is not fulfilled, the access compiles to multiple
instructions with interleaved access patterns that prevent these instructions from fully
coalescing. It is therefore recommended to use types that meet this requirement for data
that resides in global memory.

The alignment requirement is automatically fulfilled for the built-in types of char, short,
int, long, longlong, float, double like float2 or float4.

For structures, the size and alignment requirements can be enforced by the compiler
using the alignment specifiers __align__(8) or __align__(16), such as
struct __align__(8) {
    float x;
    float y;
};

or
struct __align__(16) {
    float x;
    float y;
    float z;
};

Any address of a variable residing in global memory or returned by one of the memory
allocation routines from the driver or runtime API is always aligned to at least 256 bytes.
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Reading non-naturally aligned 8-byte or 16-byte words produces incorrect results (off by
a few words), so special care must be taken to maintain alignment of the starting address
of any value or array of values of these types. A typical case where this might be easily
overlooked is when using some custom global memory allocation scheme, whereby the
allocations of multiple arrays (with multiple calls to cudaMalloc() or cuMemAlloc())
is replaced by the allocation of a single large block of memory partitioned into multiple
arrays, in which case the starting address of each array is offset from the block's starting
address.

Two-Dimensional Arrays

A common global memory access pattern is when each thread of index (tx,ty) uses the
following address to access one element of a 2D array of width width, located at address
BaseAddress of type type* (where type meets the requirement described in Maximize
Utilization):
BaseAddress + width * ty + tx

For these accesses to be fully coalesced, both the width of the thread block and the width
of the array must be a multiple of the warp size (or only half the warp size for devices of
compute capability 1.x).

In particular, this means that an array whose width is not a multiple of this size will be
accessed much more efficiently if it is actually allocated with a width rounded up to the
closest multiple of this size and its rows padded accordingly. The cudaMallocPitch()
and cuMemAllocPitch() functions and associated memory copy functions described in
the reference manual enable programmers to write non-hardware-dependent code to
allocate arrays that conform to these constraints.

Local Memory

Local memory accesses only occur for some automatic variables as mentioned in
Variable Type Qualifiers. Automatic variables that the compiler is likely to place in local
memory are:

‣ Arrays for which it cannot determine that they are indexed with constant quantities,
‣ Large structures or arrays that would consume too much register space,
‣ Any variable if the kernel uses more registers than available (this is also known as

register spilling).

Inspection of the PTX assembly code (obtained by compiling with the -ptx or-
keep option) will tell if a variable has been placed in local memory during the first
compilation phases as it will be declared using the .local mnemonic and accessed
using the ld.local and st.local mnemonics. Even if it has not, subsequent
compilation phases might still decide otherwise though if they find it consumes too
much register space for the targeted architecture: Inspection of the cubin object using
cuobjdump will tell if this is the case. Also, the compiler reports total local memory
usage per kernel (lmem) when compiling with the --ptxas-options=-v option. Note



Performance Guidelines

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 77

that some mathematical functions have implementation paths that might access local
memory.

The local memory space resides in device memory, so local memory accesses have
same high latency and low bandwidth as global memory accesses and are subject to the
same requirements for memory coalescing as described in Device Memory Accesses.
Local memory is however organized such that consecutive 32-bit words are accessed
by consecutive thread IDs. Accesses are therefore fully coalesced as long as all threads
in a warp access the same relative address (e.g., same index in an array variable, same
member in a structure variable).

On devices of compute capability 2.x and 3.x, local memory accesses are always cached
in L1 and L2 in the same way as global memory accesses (see Compute Capability 2.x
and Compute Capability 3.x).

Shared Memory

Because it is on-chip, shared memory has much higher bandwidth and much lower
latency than local or global memory.

To achieve high bandwidth, shared memory is divided into equally-sized memory
modules, called banks, which can be accessed simultaneously. Any memory read or
write request made of n addresses that fall in n distinct memory banks can therefore be
serviced simultaneously, yielding an overall bandwidth that is n times as high as the
bandwidth of a single module.

However, if two addresses of a memory request fall in the same memory bank, there is a
bank conflict and the access has to be serialized. The hardware splits a memory request
with bank conflicts into as many separate conflict-free requests as necessary, decreasing
throughput by a factor equal to the number of separate memory requests. If the number
of separate memory requests is n, the initial memory request is said to cause n-way bank
conflicts.

To get maximum performance, it is therefore important to understand how memory
addresses map to memory banks in order to schedule the memory requests so as
to minimize bank conflicts. This is described in Compute Capability 1.x,Compute
Capability 2.x, Compute Capability 3.x for devices of compute capability 1.x, 2.x, 3.x,
respectively.

Constant Memory

The constant memory space resides in device memory and is cached in the constant
cache mentioned in Compute Capability 1.x and Compute Capability 2.x.

For devices of compute capability 1.x, a constant memory request for a warp is first split
into two requests, one for each half-warp, that are issued independently.
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A request is then split into as many separate requests as there are different memory
addresses in the initial request, decreasing throughput by a factor equal to the number
of separate requests.

The resulting requests are then serviced at the throughput of the constant cache in case
of a cache hit, or at the throughput of device memory otherwise.

Texture and Surface Memory

The texture and surface memory spaces reside in device memory and are cached in
texture cache, so a texture fetch or surface read costs one memory read from device
memory only on a cache miss, otherwise it just costs one read from texture cache. The
texture cache is optimized for 2D spatial locality, so threads of the same warp that read
texture or surface addresses that are close together in 2D will achieve best performance.
Also, it is designed for streaming fetches with a constant latency; a cache hit reduces
DRAM bandwidth demand but not fetch latency.

Reading device memory through texture or surface fetching present some benefits
that can make it an advantageous alternative to reading device memory from global or
constant memory:

‣ If the memory reads do not follow the access patterns that global or constant
memory reads must follow to get good performance, higher bandwidth can be
achieved providing that there is locality in the texture fetches or surface reads;

‣ Addressing calculations are performed outside the kernel by dedicated units;
‣ Packed data may be broadcast to separate variables in a single operation;
‣ 8-bit and 16-bit integer input data may be optionally converted to 32 bit floating-

point values in the range [0.0, 1.0] or [-1.0, 1.0] (see Texture Memory).

5.4. Maximize Instruction Throughput
To maximize instruction throughput the application should:

‣ Minimize the use of arithmetic instructions with low throughput; this includes
trading precision for speed when it does not affect the end result, such as using
intrinsic instead of regular functions (intrinsic functions are listed in Intrinsic
Functions), single-precision instead of double-precision, or flushing denormalized
numbers to zero;

‣ Minimize divergent warps caused by control flow instructions as detailed in Control
Flow Instructions

‣ Reduce the number of instructions, for example, by optimizing out synchronization
points whenever possible as described in Synchronization Instruction or by using
restricted pointers as described in __restrict__.

In this section, throughputs are given in number of operations per clock cycle per
multiprocessor. For a warp size of 32, one instruction corresponds to 32 operations,
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so if N is the number of operations per clock cycle, the instruction throughput is N/32
instructions per clock cycle.

All throughputs are for one multiprocessor. They must be multiplied by the number of
multiprocessors in the device to get throughput for the whole device.

5.4.1. Arithmetic Instructions
Table 2 gives the throughputs of the arithmetic instructions that are natively supported
in hardware for devices of various compute capabilities.

Table 2 Throughput of Native Arithmetic Instructions

(Number of Operations per Clock Cycle per Multiprocessor)

Compute Capability

1.0

1.1

1.2

1.3 2.0 2.1 3.0 3.5

32-bit floating-point
add, multiply, multiply-
add

8 8 32 48 192 192

64-bit floating-point
add, multiply, multiply-
add

N/A 1 161 4 8 642

32-bit floating-point
reciprocal, reciprocal
square root, base-2
logarithm (__log2f),
base 2 exponential
(exp2f), sine (__sinf),
cosine (__cosf)

2 2 4 8 32 32

32-bit integer add,
extended-precision add,
subtract, extended-
precision subtract

10 10 32 48 160 160

32-bit integer multiply,
multiply-add, extended-
precision multiply-add

Multiple
instructions

Multiple
instructions 16 16 32 32

24-bit integer multiply
(__[u]mul24) 8 8 Multiple

instructions
Multiple

instructions
Multiple

instructions
Multiple
instructions

32-bit integer shift 8 8 16 16 32 643

compare, minimum,
maximum 10 10 32 48 160 160

1 4 for GeForce GPUs
2 8 for GeForce GPUs
3 32 for GeForce GPUs
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Compute Capability

1.0

1.1

1.2

1.3 2.0 2.1 3.0 3.5

32-bit integer bit
reverse, bit field
extract/insert

Multiple
instructions

Multiple
instructions 16 16 32 32

32-bit bitwise AND, OR,
XOR 8 8 32 48 160 160

count of leading zeros,
most significant non-
sign bit

Multiple
instructions

Multiple
instructions 16 16 32 32

population count Multiple
instructions

Multiple
instructions 16 16 32 32

warp shuffle N/A N/A N/A N/A 32 32

sum of absolute
difference

Multiple
instructions

Multiple
instructions 16 16 32 32

SIMD video instructions
vabsdiff2

N/A N/A N/A N/A 160 160

SIMD video instructions
vabsdiff4

N/A N/A N/A N/A 160 160

All other SIMD video
instructions N/A N/A 16 16 32 32

Type conversions from
8-bit and 16-bit integer
to 32-bit types

8 8 16 16 128 128

Type conversions from
and to 64-bit types

Multiple
instructions 1 164 4 8 325

All other type
conversions 8 8 16 16 32 32

Other instructions and functions are implemented on top of the native instructions.
The implementation may be different for devices of different compute capabilities, and
the number of native instructions after compilation may fluctuate with every compiler
version. For complicated functions, there can be multiple code paths depending on
input. cuobjdump can be used to inspect a particular implementation in a cubin object.

The implementation of some functions are readily available on the CUDA header files
(math_functions.h, device_functions.h, ...).

In general, code compiled with -ftz=true (denormalized numbers are flushed to zero)
tends to have higher performance than code compiled with -ftz=false. Similarly,
code compiled with -prec div=false (less precise division) tends to have higher
performance code than code compiled with -prec div=true, and code compiled

4 4 for GeForce GPUs
5 8 for GeForce GPUs
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with -prec-sqrt=false (less precise square root) tends to have higher performance
than code compiled with -prec-sqrt=true. The nvcc user manual describes these
compilation flags in more details.

Single-Precision Floating-Point Addition and Multiplication Intrinsics

__fadd_r[d,u], __fsub_r[d,u], __fmul_r[d,u], and __fmaf_r[n,z,d,u] (see
Intrinsic Functions) compile to tens of instructions for devices of compute capability 1.x,
but map to a single native instruction for devices of compute capability 2.x and higher.

Single-Precision Floating-Point Division

__fdividef(x, y) (see Intrinsic Functions) provides faster single-precision floating-
point division than the division operator.

Single-Precision Floating-Point Reciprocal Square Root

To preserve IEEE-754 semantics the compiler can optimize 1.0/sqrtf() into rsqrtf()
only when both reciprocal and square root are approximate, (i.e., with -prec-
div=false and -prec-sqrt=false). It is therefore recommended to invoke rsqrtf()
directly where desired.

Single-Precision Floating-Point Square Root

Single-precision floating-point square root is implemented as a reciprocal square root
followed by a reciprocal instead of a reciprocal square root followed by a multiplication
so that it gives correct results for 0 and infinity.

Sine and Cosine

sinf(x), cosf(x), tanf(x), sincosf(x), and corresponding double-precision
instructions are much more expensive and even more so if the argument x is large in
magnitude.

More precisely, the argument reduction code (see Mathematical Functions for
implementation) comprises two code paths referred to as the fast path and the slow
path, respectively.

The fast path is used for arguments sufficiently small in magnitude and essentially
consists of a few multiply-add operations. The slow path is used for arguments large in
magnitude and consists of lengthy computations required to achieve correct results over
the entire argument range.

At present, the argument reduction code for the trigonometric functions selects the fast
path for arguments whose magnitude is less than 48039.0f for the single-precision
functions, and less than 2147483648.0 for the double-precision functions.

As the slow path requires more registers than the fast path, an attempt has been made
to reduce register pressure in the slow path by storing some intermediate variables in
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local memory, which may affect performance because of local memory high latency and
bandwidth (see Device Memory Accesses). At present, 28 bytes of local memory are
used by single-precision functions, and 44 bytes are used by double-precision functions.
However, the exact amount is subject to change.

Due to the lengthy computations and use of local memory in the slow path, the
throughput of these trigonometric functions is lower by one order of magnitude when
the slow path reduction is required as opposed to the fast path reduction.

Integer Arithmetic

On devices of compute capability 1.x, 32-bit integer multiplication is implemented using
multiple instructions as it is not natively supported. 24-bit integer multiplication is
natively supported however via the __[u]mul24 intrinsic. Using __[u]mul24 instead of
the 32-bit multiplication operator whenever possible usually improves performance for
instruction bound kernels. It can have the opposite effect however in cases where the use
of __[u]mul24 inhibits compiler optimizations.

On devices of compute capability 2.x and beyond, 32-bit integer multiplication is
natively supported, but 24-bit integer multiplication is not. __[u]mul24 is therefore
implemented using multiple instructions and should not be used.

Integer division and modulo operation are costly: tens of instructions on devices of
compute capability 1.x, below 20 instructions on devices of compute capability 2.x and
higher. They can be replaced with bitwise operations in some cases: If n is a power
of 2, (i/n) is equivalent to (i>>log2(n)) and (i%n) is equivalent to (i&(n-1)); the
compiler will perform these conversions if n is literal.

__brev, __brevll, __popc, and __popcll compile to tens of instructions for devices of
compute capability 1.x, but __brev and __popc map to a single instruction for devices
of compute capability 2.x and higher and __brevll and __popcll to just a few.

__clz, __clzll, __ffs, and __ffsll compile to fewer instructions for devices of
compute capability 2.x and higher than for devices of compute capability 1.x.

Type Conversion

Sometimes, the compiler must insert conversion instructions, introducing additional
execution cycles. This is the case for:

‣ Functions operating on variables of type char or short whose operands generally
need to be converted to int,

‣ Double-precision floating-point constants (i.e., those constants defined without
any type suffix) used as input to single-precision floating-point computations (as
mandated by C/C++ standards).

This last case can be avoided by using single-precision floating-point constants, defined
with an f suffix such as 3.141592653589793f, 1.0f, 0.5f.
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5.4.2. Control Flow Instructions
Any flow control instruction (if, switch, do, for, while) can significantly impact the
effective instruction throughput by causing threads of the same warp to diverge (i.e., to
follow different execution paths). If this happens, the different executions paths have to
be serialized, increasing the total number of instructions executed for this warp. When
all the different execution paths have completed, the threads converge back to the same
execution path.

To obtain best performance in cases where the control flow depends on the thread
ID, the controlling condition should be written so as to minimize the number of
divergent warps. This is possible because the distribution of the warps across the block
is deterministic as mentioned in SIMT Architecture. A trivial example is when the
controlling condition only depends on (threadIdx / warpSize) where warpSize is
the warp size. In this case, no warp diverges since the controlling condition is perfectly
aligned with the warps.

Sometimes, the compiler may unroll loops or it may optimize out if or switch
statements by using branch predication instead, as detailed below. In these cases, no
warp can ever diverge. The programmer can also control loop unrolling using the
#pragma unroll directive (see #pragma unroll).

When using branch predication none of the instructions whose execution depends on
the controlling condition gets skipped. Instead, each of them is associated with a per-
thread condition code or predicate that is set to true or false based on the controlling
condition and although each of these instructions gets scheduled for execution, only
the instructions with a true predicate are actually executed. Instructions with a false
predicate do not write results, and also do not evaluate addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the
number of instructions controlled by the branch condition is less or equal to a certain
threshold: If the compiler determines that the condition is likely to produce many
divergent warps, this threshold is 7, otherwise it is 4.

5.4.3. Synchronization Instruction
Throughput for __syncthreads() is 8 operations per clock cycle for devices of
compute capability 1.x, 16 operations per clock cycle for devices of compute capability
2.x, and 128 operations per clock cycle for devices of compute capability 3.x.

Note that __syncthreads() can impact performance by forcing the multiprocessor to
idle as detailed in Device Memory Accesses.
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Appendix A.
CUDA-ENABLED GPUS

http://developer.nvidia.com/cuda-gpus lists all CUDA-enabled devices with their
compute capability.

The compute capability, number of multiprocessors, clock frequency, total amount of
device memory, and other properties can be queried using the runtime (see reference
manual).

http://developer.nvidia.com/cuda-gpus
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Appendix B.
C LANGUAGE EXTENSIONS

B.1. Function Type Qualifiers
Function type qualifiers specify whether a function executes on the host or on the device
and whether it is callable from the host or from the device.

B.1.1. __device__
The __device__ qualifier declares a function that is:

‣ Executed on the device,
‣ Callable from the device only.

B.1.2. __global__
The __global__ qualifier declares a function as being a kernel. Such a function is:

‣ Executed on the device,
‣ Callable from the host,
‣ Callable from the device for devices of compute capability 3.x (see CUDA Dynamic

Parallelism for more details).

__global__ functions must have void return type.

Any call to a __global__ function must specify its execution configuration as described
in Execution Configuration.

A call to a __global__ function is asynchronous, meaning it returns before the device
has completed its execution.

B.1.3. __host__
The __host__ qualifier declares a function that is:
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‣ Executed on the host,
‣ Callable from the host only.

It is equivalent to declare a function with only the __host__ qualifier or to declare it
without any of the __host__, __device__, or __global__ qualifier; in either case the
function is compiled for the host only.

The __global__ and __host__ qualifiers cannot be used together.

The __device__ and __host__ qualifiers can be used together however, in which case
the function is compiled for both the host and the device. The __CUDA_ARCH__ macro
introduced in Application Compatibility can be used to differentiate code paths between
host and device:
__host__ __device__ func()
{
#if __CUDA_ARCH__ >= 300
    // Device code path for compute capability 3.x
#elif __CUDA_ARCH__ >= 200
    // Device code path for compute capability 2.x
#elif __CUDA_ARCH__ >= 100
   // Device code path for compute capability 1.x
#elif !defined(__CUDA_ARCH__) 
   // Host code path
#endif 
}

B.1.4. __noinline__ and __forceinline__
When compiling code for devices of compute capability 1.x, a __device__ function is
always inlined by default. When compiling code for devices of compute capability 2.x
and higher, a __device__ function is only inlined when deemed appropriate by the
compiler.

The __noinline__ function qualifier can be used as a hint for the compiler not to inline
the function if possible. The function body must still be in the same file where it is called.
For devices of compute capability 1.x, the compiler will not honor the __noinline__
qualifier for functions with pointer parameters and for functions with large parameter
lists. For devices of compute capability 2.x and higher, the compiler will always honor
the __noinline__ qualifier.

The __forceinline__ function qualifier can be used to force the compiler to inline the
function.

B.2. Variable Type Qualifiers
Variable type qualifiers specify the memory location on the device of a variable.

An automatic variable declared in device code without any of the __device__,
__shared__ and __constant__ qualifiers described in this section generally resides in
a register. However in some cases the compiler might choose to place it in local memory,
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which can have adverse performance consequences as detailed in Device Memory
Accesses.

B.2.1. __device__
The __device__ qualifier declares a variable that resides on the device.

At most one of the other type qualifiers defined in the next two sections may be used
together with __device__ to further specify which memory space the variable belongs
to. If none of them is present, the variable:

‣ Resides in global memory space.
‣ Has the lifetime of an application.
‣ Is accessible from all the threads within the grid and from the host through

the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() /
cudaMemcpyToSymbol() / cudaMemcpyFromSymbol()).

‣ May be additionally qualified with the __managed__ qualifier. Such a variable can
be directly referenced from host code, e.g., its address can be taken or it can read
or written directly from a host function. As a convenience, __managed__ implies
__managed__ __device__ i.e., the __device__ qualifier is implicit when the
__managed__ qualifier is specified.

B.2.2. __constant__
The __constant__ qualifier, optionally used together with __device__, declares a
variable that:

‣ Resides in constant memory space,
‣ Has the lifetime of an application,
‣ Is accessible from all the threads within the grid and from the host through

the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() /
cudaMemcpyToSymbol() / cudaMemcpyFromSymbol()).

B.2.3. __shared__
The __shared__ qualifier, optionally used together with __device__, declares a variable
that:

‣ Resides in the shared memory space of a thread block,
‣ Has the lifetime of the block,
‣ Is only accessible from all the threads within the block.

When declaring a variable in shared memory as an external array such as
extern __shared__ float shared[];

the size of the array is determined at launch time (see Execution Configuration). All
variables declared in this fashion, start at the same address in memory, so that the layout
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of the variables in the array must be explicitly managed through offsets. For example, if
one wants the equivalent of
short array0[128];
float array1[64];
int   array2[256];

in dynamically allocated shared memory, one could declare and initialize the arrays the
following way:
extern __shared__ float array[];
__device__ void func()      // __device__ or __global__ function
{
    short* array0 = (short*)array; 
    float* array1 = (float*)&array0[128];
    int*   array2 =   (int*)&array1[64];
}

Note that pointers need to be aligned to the type they point to, so the following code, for
example, does not work since array1 is not aligned to 4 bytes.
extern __shared__ float array[];
__device__ void func()      // __device__ or __global__ function
{
    short* array0 = (short*)array; 
    float* array1 = (float*)&array0[127];
}

Alignment requirements for the built-in vector types are listed in Table 3.

B.2.4. __restrict__
nvcc supports restricted pointers via the __restrict__ keyword.

Restricted pointers were introduced in C99 to alleviate the aliasing problem that exists in
C-type languages, and which inhibits all kind of optimization from code re-ordering to
common sub-expression elimination.

Here is an example subject to the aliasing issue, where use of restricted pointer can help
the compiler to reduce the number of instructions:
void foo(const float* a,
         const float* b,
         float* c)
{
    c[0] = a[0] * b[0];
    c[1] = a[0] * b[0];
    c[2] = a[0] * b[0] * a[1];
    c[3] = a[0] * a[1];
    c[4] = a[0] * b[0];
    c[5] = b[0];
    ...
}

In C-type languages, the pointers a, b, and c may be aliased, so any write through c
could modify elements of a or b. This means that to guarantee functional correctness, the
compiler cannot load a[0] and b[0] into registers, multiply them, and store the result
to both c[0] and c[1], because the results would differ from the abstract execution
model if, say, a[0] is really the same location as c[0]. So the compiler cannot take
advantage of the common sub-expression. Likewise, the compiler cannot just reorder the
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computation of c[4] into the proximity of the computation of c[0] and c[1] because
the preceding write to c[3] could change the inputs to the computation of c[4].

By making a, b, and c restricted pointers, the programmer asserts to the compiler that
the pointers are in fact not aliased, which in this case means writes through c would
never overwrite elements of a or b. This changes the function prototype as follows:
void foo(const float* __restrict__ a,
         const float* __restrict__ b,
         float* __restrict__ c);

Note that all pointer arguments need to be made restricted for the compiler optimizer
to derive any benefit. With the __restrict__ keywords added, the compiler can now
reorder and do common sub-expression elimination at will, while retaining functionality
identical with the abstract execution model:
void foo(const float* __restrict__ a,
         const float* __restrict__ b,
         float* __restrict__ c)
{
    float t0 = a[0];
    float t1 = b[0];
    float t2 = t0 * t2;
    float t3 = a[1];
    c[0] = t2;
    c[1] = t2;
    c[4] = t2;
    c[2] = t2 * t3;
    c[3] = t0 * t3;
    c[5] = t1;
    ...
}

The effects here are a reduced number of memory accesses and reduced number of
computations. This is balanced by an increase in register pressure due to "cached" loads
and common sub-expressions.

Since register pressure is a critical issue in many CUDA codes, use of restricted pointers
can have negative performance impact on CUDA code, due to reduced occupancy.

B.3. Built-in Vector Types

B.3.1. char, short, int, long, longlong, float, double
These are vector types derived from the basic integer and floating-point types. They
are structures and the 1st, 2nd, 3rd, and 4th components are accessible through the
fields x, y, z, and w, respectively. They all come with a constructor function of the form
make_<type name>; for example,

int2 make_int2(int x, int y);

which creates a vector of type int2 with value(x, y).
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In host code, the alignment requirement of a vector type is equal to the alignment
requirement of its base type. This is not always the case in device code as detailed in
Table 3.

Table 3 Alignment Requirements in Device Code

Type Alignment

char1, uchar1 1

char2, uchar2 2

char3, uchar3 1

char4, uchar4 4

short1, ushort1 2

short2, ushort2 4

short3, ushort3 2

short4, ushort4 8

int1, uint1 4

int2, uint2 8

int3, uint3 4

int4, uint4 16

long1, ulong1 4 if sizeof(long) is equal to sizeof(int) 8, otherwise

long2, ulong2 8 if sizeof(long) is equal to sizeof(int), 16, otherwise

long3, ulong3 4 if sizeof(long) is equal to sizeof(int), 8, otherwise

long4, ulong4 16

longlong1, ulonglong1 8

longlong2, ulonglong2 16

float1 4

float2 8

float3 4

float4 16

double1 8

double2 16
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B.3.2. dim3
This type is an integer vector type based on uint3 that is used to specify dimensions.
When defining a variable of type dim3, any component left unspecified is initialized to 1.

B.4. Built-in Variables
Built-in variables specify the grid and block dimensions and the block and thread
indices. They are only valid within functions that are executed on the device.

B.4.1. gridDim
This variable is of type dim3 (see dim3) and contains the dimensions of the grid.

B.4.2. blockIdx
This variable is of type uint3 (see char, short, int, long, longlong, float, double) and
contains the block index within the grid.

B.4.3. blockDim
This variable is of type dim3 (see dim3) and contains the dimensions of the block.

B.4.4. threadIdx
This variable is of type uint3 (see char, short, int, long, longlong, float, double ) and
contains the thread index within the block.

B.4.5. warpSize
This variable is of type int and contains the warp size in threads (see SIMT Architecture
for the definition of a warp).

B.5. Memory Fence Functions
The CUDA programming model assumes a device with a weakly-ordered memory
model, that is:

‣ The order in which a CUDA thread writes data to shared memory, global memory,
page-locked host memory, or the memory of a peer device is not necessarily the
order in which the data is observed being written by another CUDA or host thread;

‣ The order in which a CUDA thread reads data from shared memory, global memory,
page-locked host memory, or the memory of a peer device is not necessarily the
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order in which the read instructions appear in the program for instructions that are
independent of each other.

For example, if thread 0 executes writeXY() and thread 1 executes readXY() as
defined in the following code sample

__device__ int X = 1, Y = 2;
__device__ void writeXY()
{
    X = 10;
    Y = 20;
}

__device__ void readXY()
{
    int A = X;
    int B = Y;
}
      

it is possible that A ends up equal to 1 and B equal to 20 for thread 1:

‣ either because at the time thread 1 reads X and Y, thread 0's write to Y has happened
from thread 1's perspective, but thread 0's write to X has not,

‣ or because thread 1 reads Y before X and thread 0's writes to X and Y happen after
thread 1's read of Y and before thread 1's read of X.

In a strongly-ordered memory model, the only possibilities would be:

‣ A equal to 1 and B equal to 2 (thread 0's writes to X and Y happen after thread 1's
read of X and Y),

‣ A equal to 10 and B equal to 2 (thread 0's write to X happens before thread 1's read of
X and thread 0's write to Y happens after thread 1's read of Y),

‣ A equal to 10 and B equal to 20 (thread 0's writes to X and Y happen before thread 1's
read of X and Y),

Memory fence functions can be used to enforce some ordering:
void __threadfence_block();

ensures that:

‣ All writes to shared and global memory made by the calling thread before the call
to __threadfence_block() are observed by all threads in the block of the calling
thread as occurring before all writes to shared memory and global memory made by
the calling thread after the call to __threadfence_block();

‣ All reads from shared memory and global memory made by the calling thread
before the call to __threadfence_block() are performed before all reads from
shared memory and global memory made by the calling thread after the call to
__threadfence_block().

void __threadfence();
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acts as __threadfence_block() for all threads in the block of the calling thread and
also ensures that all writes to global memory made by the calling thread before the call
to __threadfence() are observed by all threads in the device as occurring before all
writes to global memory made by the calling thread after the call to __threadfence().
void __threadfence_system();

acts as __threadfence_block() for all threads in the block of the calling thread and
also ensures that:

‣ All writes to global memory, page-locked host memory, and the memory of a peer
device made by the calling thread before the call to __threadfence_system()
are observed by all threads in the device, host threads, and all threads in peer
devices as occurring before all writes to global memory, page-locked host memory,
and the memory of a peer device made by the calling thread after the call to
__threadfence_system().

‣ All reads from shared memory, global memory, page-locked host memory,
and the memory of a peer device made by the calling thread before the call to
__threadfence_system() are performed before all reads from shared memory,
global memory, page-locked host memory, and the memory of a peer device made
by the calling thread after the call to __threadfence_system().

__threadfence_system() is only supported by devices of compute capability 2.x and
higher.

In the previous code sample, inserting a fence function call between X = 10; and Y
= 20; and between int A = X; and int B = Y; would ensure that for thread 1, A
will always be equal to 10 if B is equal to 20. If thread 0 and 1 belong to the same block,
it is enough to use __threadfence_block(). If thread 0 and 1 do not belong to the
same block, __threadfence() must be used if they are CUDA threads from the same
device and __threadfence_system() must be used if they are CUDA threads from
two different devices.

A common use case is when threads consume some data produced by other threads as
illustrated by the following code sample of a kernel that computes the sum of an array
of N numbers in one call. Each block first sums a subset of the array and stores the result
in global memory. When all blocks are done, the last block done reads each of these
partial sums from global memory and sums them to obtain the final result. In order to
determine which block is finished last, each block atomically increments a counter to
signal that it is done with computing and storing its partial sum (see Atomic Functions
about atomic functions). The last block is the one that receives the counter value equal
to gridDim.x-1. If no fence is placed between storing the partial sum and incrementing
the counter, the counter might increment before the partial sum is stored and therefore,
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might reach gridDim.x-1 and let the last block start reading partial sums before they
have been actually updated in memory.

__device__ unsigned int count = 0;
__shared__ bool isLastBlockDone;
__global__ void sum(const float* array, unsigned int N,
                    float* result)
{
    // Each block sums a subset of the input array
    float partialSum = calculatePartialSum(array, N);

    if (threadIdx.x == 0) {

        // Thread 0 of each block stores the partial sum
        // to global memory
        result[blockIdx.x] = partialSum;

        // Thread 0 makes sure that the threads of the
        // last block will read its correct partial sum
        __threadfence();

        // Thread 0 of each block signals that it is done
        unsigned int value = atomicInc(&count, gridDim.x);

        // Thread 0 of each block determines if its block is
        // the last block to be done
        isLastBlockDone = (value == (gridDim.x - 1));
    }

    // Synchronize to make sure that each thread reads
    // the correct value of isLastBlockDone
    __syncthreads();

    if (isLastBlockDone) {

        // The last block sums the partial sums
        // stored in result[0 .. gridDim.x-1]
        float totalSum = calculateTotalSum(result);

        if (threadIdx.x == 0) {

            // Thread 0 of last block stores total sum
            // to global memory and resets count so that
            // next kernel call works properly
            result[0] = totalSum;
            count = 0;
        }
    }
}

B.6. Synchronization Functions
void __syncthreads();

waits until all threads in the thread block have reached this point and all global and
shared memory accesses made by these threads prior to __syncthreads() are visible
to all threads in the block.

__syncthreads() is used to coordinate communication between the threads of the
same block. When some threads within a block access the same addresses in shared
or global memory, there are potential read-after-write, write-after-read, or write-after-
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write hazards for some of these memory accesses. These data hazards can be avoided by
synchronizing threads in-between these accesses.

__syncthreads() is allowed in conditional code but only if the conditional evaluates
identically across the entire thread block, otherwise the code execution is likely to hang
or produce unintended side effects.

Devices of compute capability 2.x and higher support three variations of
__syncthreads() described below.
int __syncthreads_count(int predicate);

is identical to __syncthreads() with the additional feature that it evaluates predicate
for all threads of the block and returns the number of threads for which predicate
evaluates to non-zero.
int __syncthreads_and(int predicate);

is identical to __syncthreads() with the additional feature that it evaluates predicate
for all threads of the block and returns non-zero if and only if predicate evaluates to non-
zero for all of them.
int __syncthreads_or(int predicate);

is identical to __syncthreads() with the additional feature that it evaluates predicate
for all threads of the block and returns non-zero if and only if predicate evaluates to non-
zero for any of them.

B.7. Mathematical Functions
The reference manual lists all C/C++ standard library mathematical functions that are
supported in device code and all intrinsic functions that are only supported in device
code.

Mathematical Functions provides accuracy information for some of these functions
when relevant.

B.8. Texture Functions
Texture objects are described in Texture Object API

Texture references are described in Texture Reference API

Texture fetching is described in Texture Fetching.

B.8.1. Texture Object API

B.8.1.1. tex1Dfetch()
template<class T>
T tex1Dfetch(cudaTextureObject_t texObj, int x);
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fetches the region of linear memory specified by the one-dimensional texture object
texObj using integer texture coordinate x. tex1Dfetch() only works with non-
normalized coordinates, so only the border and clamp addressing modes are supported.
It does not perform any texture filtering. For integer types, it may optionally promote
the integer to single-precision floating point.

B.8.1.2. tex1D()
template<class T>
T tex1D(cudaTextureObject_t texObj, float x);
template<class T>
T tex1D(cudaTextureObject_t texObj, float x);

fetches the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x.

B.8.1.3. tex2D()
template<class T>
T tex2D(cudaTextureObject_t texObj, float x, float y);

fetches the CUDA array or the region of linear memory specified by the two-
dimensional texture object texObj using texture coordinates x and y.

B.8.1.4. tex3D()
template<class T>
T tex3D(cudaTextureObject_t texObj, float x, float y, float z);

fetches the CUDA array specified by the three-dimensional texture object texObj using
texture coordinates x, y, and z.

B.8.1.5. tex1DLayered()
template<class T>
T tex1DLayered(cudaTextureObject_t texObj, float x, int layer);

fetches the CUDA array specified by the one-dimensional texture object texObj using
texture coordinate x and index layer, as described in Layered Textures

B.8.1.6. tex2DLayered()
template<class T>
T tex2DLayered(cudaTextureObject_t texObj,
               float x, float y, int layer);

fetches the CUDA array specified by the two-dimensional texture object texObj using
texture coordinates x and y, and index layer, as described in Layered Textures.

B.8.1.7. texCubemap()
template<class T>
T texCubemap(cudaTextureObject_t texObj, float x, float y, float z);
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fetches the CUDA array specified by the three-dimensional texture object texObj using
texture coordinates x, y, and z, as described in Section Cubemap Textures.

B.8.1.8. texCubemapLayered()
template<class T>
T texCubemapLayered(cudaTextureObject_t texObj,
                    float x, float y, float z, int layer);

fetches the CUDA array specified by the cubemap layered texture object texObj using
texture coordinates x, y, and z, and index layer, as described in Cubemap Layered
Textures.

B.8.1.9. tex2Dgather()
template<class T>
T tex2Dgather(cudaTextureObject_t texObj,
              float x, float y, int comp = 0);

fetches the CUDA array specified by the 2D texture object texObj using texture
coordinates x and y and the comp parameter as described in Texture Gather.

B.8.2. Texture Reference API

B.8.2.1. tex1Dfetch()
template<class DataType>
Type tex1Dfetch(
   texture<DataType, cudaTextureType1D,
           cudaReadModeElementType> texRef,
   int x);

float tex1Dfetch(
   texture<unsigned char, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

float tex1Dfetch(
   texture<signed char, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

float tex1Dfetch(
   texture<unsigned short, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

float tex1Dfetch(
   texture<signed short, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

fetches the region of linear memory bound to the one-dimensional texture reference
texRef using integer texture coordinate x. tex1Dfetch() only works with non-
normalized coordinates, so only the border and clamp addressing modes are supported.
It does not perform any texture filtering. For integer types, it may optionally promote
the integer to single-precision floating point.



C Language Extensions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 98

Besides the functions shown above, 2-, and 4-tuples are supported; for example:
float4 tex1Dfetch(
   texture<uchar4, cudaTextureType1D,
           cudaReadModeNormalizedFloat> texRef,
   int x);

fetches the region of linear memory bound to texture reference texRef using texture
coordinate x.

B.8.2.2. tex1D()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex1D(texture<DataType, cudaTextureType1D, readMode> texRef,
           float x);

fetches the CUDA array bound to the one-dimensional texture reference texRef using
texture coordinate x. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is
equal to the matching floating-point type.

B.8.2.3. tex2D()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2D(texture<DataType, cudaTextureType2D, readMode> texRef,
           float x, float y);

fetches the CUDA array or the region of linear memory bound to the two-dimensional
texture reference texRef using texture coordinates x and y. Type is equal to DataType
except when readMode is equal to cudaReadModeNormalizedFloat (see Texture
Reference API), in which case Type is equal to the matching floating-point type.

B.8.2.4. tex3D()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex3D(texture<DataType, cudaTextureType3D, readMode> texRef,
           float x, float y, float z);

fetches the CUDA array bound to the three-dimensional texture reference texRef using
texture coordinates x, y, and z. Type is equal to DataType except when readMode is
equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case
Type is equal to the matching floating-point type.

B.8.2.5. tex1DLayered()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex1DLayered(
     texture<DataType, cudaTextureType1DLayered, readMode> texRef,
     float x, int layer);

fetches the CUDA array bound to the one-dimensional layered texture reference
texRef using texture coordinate x and index layer, as described in Layered
Textures. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is
equal to the matching floating-point type.
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B.8.2.6. tex2DLayered()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2DLayered(
     texture<DataType, cudaTextureType2DLayered, readMode> texRef,
     float x, float y, int layer);

fetches the CUDA array bound to the two-dimensional layered texture reference
texRef using texture coordinates x and y, and index layer, as described in
Texture Memory. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is
equal to the matching floating-point type.

B.8.2.7. texCubemap()
template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemap(
     texture<DataType, cudaTextureTypeCubemap, readMode> texRef,
     float x, float y, float z);

fetches the CUDA array bound to the cubemap texture reference texRef using texture
coordinates x, y, and z, as described in Cubemap Textures. Type is equal to DataType
except when readMode is equal to cudaReadModeNormalizedFloat (see Texture
Reference API), in which case Type is equal to the matching floating-point type.

B.8.2.8. texCubemapLayered()
template<class DataType, enum cudaTextureReadMode readMode>
Type texCubemapLayered(
texture<DataType, cudaTextureTypeCubemapLayered, readMode> texRef,
float x, float y, float z, int layer);

fetches the CUDA array bound to the cubemap layered texture reference texRef
using texture coordinates x, y, and z, and index layer, as described in Cubemap
Layered Textures. Type is equal to DataType except when readMode is equal to
cudaReadModeNormalizedFloat (see Texture Reference API), in which case Type is
equal to the matching floating-point type.

B.8.2.9. tex2Dgather()
template<class DataType, enum cudaTextureReadMode readMode>
Type tex2Dgather(
     texture<DataType, cudaTextureType2D, readMode> texRef,
     float x, float y, int comp = 0);

fetches the CUDA array bound to the 2D texture reference texRef using texture
coordinates x and y and the comp parameter as described in Texture Gather. Type is a 4-
component vector type. It is based on the base type of DataType except when readMode
is equal to cudaReadModeNormalizedFloat (see Texture Reference API), in which case
it is always float4.
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B.9. Surface Functions
Surface functions are only supported by devices of compute capability 2.0 and higher.

Surface objects are described in described in Surface Object API

Surface references are described in Surface Reference API.

In the sections below, boundaryMode specifies the boundary mode, that is how out-of-
range surface coordinates are handled; it is equal to either cudaBoundaryModeClamp,
in which case out-of-range coordinates are clamped to the valid range, or
cudaBoundaryModeZero, in which case out-of-range reads return zero and out-of-range
writes are ignored, or cudaBoundaryModeTrap, in which case out-of-range accesses
cause the kernel execution to fail.

B.9.1. Surface Object API

B.9.1.1. surf1Dread()
template<class T>
T surf1Dread(cudaSurfaceObject_t surfObj, int x,
               boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the one-dimensional surface object surfObj using
coordinate x.

B.9.1.2. surf1Dwrite
template<class T>
void surf1Dwrite(T data,
                  cudaSurfaceObject_t surfObj,
                  int x,
                  boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the one-dimensional surface object
surfObj at coordinate x.

B.9.1.3. surf2Dread()
template<class T>
T surf2Dread(cudaSurfaceObject_t surfObj,
              int x, int y,
              boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf2Dread(T* data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the two-dimensional surface object surfObj using
coordinates x and y.
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B.9.1.4. surf2Dwrite()
template<class T>
void surf2Dwrite(T data,
                  cudaSurfaceObject_t surfObj,
                  int x, int y,
                  boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the two-dimensional surface object
surfObj at coordinate x and y.

B.9.1.5. surf3Dread()
template<class T>
T surf3Dread(cudaSurfaceObject_t surfObj,
              int x, int y, int z,
              boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf3Dread(T* data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int z,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the three-dimensional surface object surfObj using
coordinates x, y, and z.

B.9.1.6. surf3Dwrite()
template<class T>
void surf3Dwrite(T data,
                  cudaSurfaceObject_t surfObj,
                  int x, int y, int z,
                  boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the three-dimensional object surfObj
at coordinate x, y, and z.

B.9.1.7. surf1DLayeredread()
template<class T>
T surf1DLayeredread(
                 cudaSurfaceObject_t surfObj,
                 int x, int layer,
                 boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf1DLayeredread(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int layer,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the one-dimensional layered surface object surfObj
using coordinate x and index layer.
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B.9.1.8. surf1DLayeredwrite()
template<class Type>
void surf1DLayeredwrite(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int layer,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the two-dimensional layered surface
object surfObj at coordinate x and index layer.

B.9.1.9. surf2DLayeredread()
template<class T>
T surf2DLayeredread(
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int layer,
                 boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surf2DLayeredread(T data,
                         cudaSurfaceObject_t surfObj,
                         int x, int y, int layer, 
                         boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the two-dimensional layered surface object surfObj
using coordinate x and y, and index layer.

B.9.1.10. surf2DLayeredwrite()
template<class T>
void surf2DLayeredwrite(T data,
                          cudaSurfaceObject_t surfObj,
                          int x, int y, int layer,
                          boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the one-dimensional layered surface
object surfObj at coordinate x and y, and index layer.

B.9.1.11. surfCubemapread()
template<class T>
T surfCubemapread(
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int face,
                 boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfCubemapread(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int face,
                 boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the cubemap surface object surfObj using
coordinate x and y, and face index face.
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B.9.1.12. surfCubemapwrite()
template<class T>
void surfCubemapwrite(T data,
                 cudaSurfaceObject_t surfObj,
                 int x, int y, int face,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the cubemap object surfObj at
coordinate x and y, and face index face.

B.9.1.13. surfCubemapLayeredread()
template<class T>
T surfCubemapLayeredread(
             cudaSurfaceObject_t surfObj,
             int x, int y, int layerFace,
             boundaryMode = cudaBoundaryModeTrap);
template<class T>
void surfCubemapLayeredread(T data,
             cudaSurfaceObject_t surfObj,
             int x, int y, int layerFace,
             boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array specified by the cubemap layered surface object surfObj using
coordinate x and y, and index layerFace.

B.9.1.14. surfCubemapLayeredwrite()
template<class T>
void surfCubemapLayeredwrite(T data,
             cudaSurfaceObject_t surfObj,
             int x, int y, int layerFace,
             boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array specified by the cubemap layered object surfObj at
coordinate x and y, and index layerFace.

B.9.2. Surface Reference API
A surface reference is declared at file scope as a variable of type surface:
surface<void, Type> surfRef;

where Type specifies the type of the surface reference and is equal to
cudaSurfaceType1D, cudaSurfaceType2D, cudaSurfaceType3D,
cudaSurfaceTypeCubemap, cudaSurfaceType1DLayered,
cudaSurfaceType2DLayered, or cudaSurfaceTypeCubemapLayered; Type is an
optional argument which defaults to cudaSurfaceType1D. A surface reference can only
be declared as a static global variable and cannot be passed as an argument to a function.

Before a kernel can use a surface reference to access a CUDA array, the surface reference
must be bound to the CUDA array using cudaBindSurfaceToArray().

The following code samples bind a surface reference to a CUDA array cuArray:
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‣ Using the low-level API:
surface<void, cudaSurfaceType2D> surfRef;
surfaceReference* surfRefPtr;
cudaGetSurfaceReference(&surfRefPtr, "surfRef");
cudaChannelFormatDesc channelDesc;
cudaGetChannelDesc(&channelDesc, cuArray);
cudaBindSurfaceToArray(surfRef, cuArray, &channelDesc);

‣ Using the high-level API:
surface<void, cudaSurfaceType2D> surfRef;
cudaBindSurfaceToArray(surfRef, cuArray);

A CUDA array must be read and written using surface functions of matching
dimensionality and type and via a surface reference of matching dimensionality;
otherwise, the results of reading and writing the CUDA array are undefined.

Unlike texture memory, surface memory uses byte addressing. This means that
the x-coordinate used to access a texture element via texture functions needs to be
multiplied by the byte size of the element to access the same element via a surface
function. For example, the element at texture coordinate x of a one-dimensional
floating-point CUDA array bound to a texture reference texRef and a surface reference
surfRef is read using tex1d(texRef, x) via texRef, but surf1Dread(surfRef,
4*x) via surfRef. Similarly, the element at texture coordinate x and y of a two-
dimensional floating-point CUDA array bound to a texture reference texRef and a
surface reference surfRef is accessed using tex2d(texRef, x, y) via texRef, but
surf2Dread(surfRef, 4*x, y) via surfRef (the byte offset of the y-coordinate is
internally calculated from the underlying line pitch of the CUDA array).
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The following code sample applies some simple transformation kernel to a texture.
// 2D surfaces
surface<void, 2> inputSurfRef;
surface<void, 2> outputSurfRef;
            
// Simple copy kernel
__global__ void copyKernel(int width, int height) 
{
    // Calculate surface coordinates
    unsigned int x = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int y = blockIdx.y * blockDim.y + threadIdx.y;
    if (x < width && y < height) {
        uchar4 data;
        // Read from input surface
        surf2Dread(&data,  inputSurfRef, x * 4, y);
        // Write to output surface
        surf2Dwrite(data, outputSurfRef, x * 4, y);
    }
}

// Host code
int main()
{
    // Allocate CUDA arrays in device memory
    cudaChannelFormatDesc channelDesc =
             cudaCreateChannelDesc(8, 8, 8, 8,
                                   cudaChannelFormatKindUnsigned);
    cudaArray* cuInputArray;
    cudaMallocArray(&cuInputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);
    cudaArray* cuOutputArray;
    cudaMallocArray(&cuOutputArray, &channelDesc, width, height,
                    cudaArraySurfaceLoadStore);

    // Copy to device memory some data located at address h_data
    // in host memory 
    cudaMemcpyToArray(cuInputArray, 0, 0, h_data, size,
                      cudaMemcpyHostToDevice);

    // Bind the arrays to the surface references
    cudaBindSurfaceToArray(inputSurfRef, cuInputArray);
    cudaBindSurfaceToArray(outputSurfRef, cuOutputArray);

    // Invoke kernel
    dim3 dimBlock(16, 16);
    dim3 dimGrid((width  + dimBlock.x - 1) / dimBlock.x,
                 (height + dimBlock.y - 1) / dimBlock.y);
    copyKernel<<<dimGrid, dimBlock>>>(width, height);

    // Free device memory
    cudaFreeArray(cuInputArray);
    cudaFreeArray(cuOutputArray);

    return 0;
}



C Language Extensions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 106

B.9.2.1. surf1Dread()
template<class Type>
Type surf1Dread(surface<void, cudaSurfaceType1D> surfRef,
                int x,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf1Dread(Type data,
                surface<void, cudaSurfaceType1D> surfRef,
                int x,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the one-dimensional surface reference surfRef using
coordinate x.

B.9.2.2. surf1Dwrite
template<class Type>
void surf1Dwrite(Type data,
                 surface<void, cudaSurfaceType1D> surfRef,
                 int x,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the one-dimensional surface reference
surfRef at coordinate x.

B.9.2.3. surf2Dread()
template<class Type>
Type surf2Dread(surface<void, cudaSurfaceType2D> surfRef,
                int x, int y,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf2Dread(Type* data,
                surface<void, cudaSurfaceType2D> surfRef,
                int x, int y,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the two-dimensional surface reference surfRef using
coordinates x and y.

B.9.2.4. surf2Dwrite()
template<class Type>
void surf3Dwrite(Type data,
                 surface<void, cudaSurfaceType3D> surfRef,
                 int x, int y, int z,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the two-dimensional surface reference
surfRef at coordinate x and y.
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B.9.2.5. surf3Dread()
template<class Type>
Type surf3Dread(surface<void, cudaSurfaceType3D> surfRef,
                int x, int y, int z,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf3Dread(Type* data,
                surface<void, cudaSurfaceType3D> surfRef,
                int x, int y, int z,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the three-dimensional surface reference surfRef using
coordinates x, y, and z.

B.9.2.6. surf3Dwrite()
template<class Type>
void surf3Dwrite(Type data,
                 surface<void, cudaSurfaceType3D> surfRef,
                 int x, int y, int z,
                 boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the three-dimensional surface reference
surfRef at coordinate x, y, and z.

B.9.2.7. surf1DLayeredread()
template<class Type>
Type surf1DLayeredread(
                surface<void, cudaSurfaceType1DLayered> surfRef,
                int x, int layer,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf1DLayeredread(Type data,
                surface<void, cudaSurfaceType1DLayered> surfRef,
                int x, int layer,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the one-dimensional layered surface reference surfRef
using coordinate x and index layer.

B.9.2.8. surf1DLayeredwrite()
template<class Type>
void surf1DLayeredwrite(Type data,
                surface<void, cudaSurfaceType1DLayered> surfRef,
                int x, int layer,
                boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the two-dimensional layered surface
reference surfRef at coordinate x and index layer.
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B.9.2.9. surf2DLayeredread()
template<class Type>
Type surf2DLayeredread(
                surface<void, cudaSurfaceType2DLayered> surfRef,
                int x, int y, int layer,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surf2DLayeredread(Type data,
                surface<void, cudaSurfaceType2DLayered> surfRef,
                int x, int y, int layer,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the two-dimensional layered surface reference surfRef
using coordinate x and y, and index layer.

B.9.2.10. surf2DLayeredwrite()
template<class Type>
void surf2DLayeredwrite(Type data,
                surface<void, cudaSurfaceType2DLayered> surfRef,
                int x, int y, int layer,
                boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the one-dimensional layered surface
reference surfRef at coordinate x and y, and index layer.

B.9.2.11. surfCubemapread()
template<class Type>
Type surfCubemapread(
                surface<void, cudaSurfaceTypeCubemap> surfRef,
                int x, int y, int face,
                boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surfCubemapread(Type data,
                surface<void, cudaSurfaceTypeCubemap> surfRef,
                int x, int y, int face,
                boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the cubemap surface reference surfRef using
coordinate x and y, and face index face.

B.9.2.12. surfCubemapwrite()
template<class Type>
void surfCubemapwrite(Type data,
                surface<void, cudaSurfaceTypeCubemap> surfRef,
                int x, int y, int face,
                boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the cubemap reference surfRef at
coordinate x and y, and face index face.
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B.9.2.13. surfCubemapLayeredread()
template<class Type>
Type surfCubemapLayeredread(
            surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
            int x, int y, int layerFace,
            boundaryMode = cudaBoundaryModeTrap);
template<class Type>
void surfCubemapLayeredread(Type data,
            surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
            int x, int y, int layerFace,
            boundaryMode = cudaBoundaryModeTrap);

reads the CUDA array bound to the cubemap layered surface reference surfRef using
coordinate x and y, and index layerFace.

B.9.2.14. surfCubemapLayeredwrite()
template<class Type>
void surfCubemapLayeredwrite(Type data,
            surface<void, cudaSurfaceTypeCubemapLayered> surfRef,
            int x, int y, int layerFace,
            boundaryMode = cudaBoundaryModeTrap);

writes value data to the CUDA array bound to the cubemap layered reference surfRef
at coordinate x and y, and index layerFace.

B.10. Read-Only Data Cache Load Function
The read-only data cache load function is only supported by devices of compute
capability 3.5 and higher.
T __ldg(const T* address);

returns the data of type T located at address address, where T is char, short, int,
long long unsigned char, unsigned short, unsigned int, unsigned long
long, int2, int4, uint2, uint4, float, float2, float4, double, or double2. The
operation is cached in the read-only data cache (see Global Memory).

B.11. Time Function
clock_t clock();
long long int clock64();

when executed in device code, returns the value of a per-multiprocessor counter that is
incremented every clock cycle. Sampling this counter at the beginning and at the end of
a kernel, taking the difference of the two samples, and recording the result per thread
provides a measure for each thread of the number of clock cycles taken by the device to
completely execute the thread, but not of the number of clock cycles the device actually
spent executing thread instructions. The former number is greater that the latter since
threads are time sliced.
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B.12. Atomic Functions
An atomic function performs a read-modify-write atomic operation on one 32-bit or 64-
bit word residing in global or shared memory. For example, atomicAdd() reads a word
at some address in global or shared memory, adds a number to it, and writes the result
back to the same address. The operation is atomic in the sense that it is guaranteed to be
performed without interference from other threads. In other words, no other thread can
access this address until the operation is complete. Atomic functions can only be used
in device functions and atomic functions operating on mapped page-locked memory
(Mapped Memory) are not atomic from the point of view of the host or other devices.

As mentioned in Table 11, the support for atomic operations varies with the compute
capability:

‣ Atomic functions are only available for devices of compute capability 1.1 and higher.
‣ Atomic functions operating on 32-bit integer values in shared memory and atomic

functions operating on 64-bit integer values in global memory are only available for
devices of compute capability 1.2 and higher.

‣ Atomic functions operating on 64-bit integer values in shared memory are only
available for devices of compute capability 2.x and higher.

‣ Only atomicExch() and atomicAdd() can operate on 32-bit floating-point values:

‣ in global memory for atomicExch() and devices of compute capability 1.1 and
higher.

‣ in shared memory for atomicExch() and devices of compute capability 1.2 and
higher.

‣ in global and shared memory for atomicAdd() and devices of compute
capability 2.x and higher.

Note however that any atomic operation can be implemented based on atomicCAS()
(Compare And Swap). For example, atomicAdd() for double-precision floating-point
numbers can be implemented as follows:
__device__ double atomicAdd(double* address, double val)
{
    unsigned long long int* address_as_ull =
                              (unsigned long long int*)address;
    unsigned long long int old = *address_as_ull, assumed;
    do {
        assumed = old;
        old = atomicCAS(address_as_ull, assumed,
                        __double_as_longlong(val +
                               __longlong_as_double(assumed)));
    } while (assumed != old);
    return __longlong_as_double(old);
}
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B.12.1. Arithmetic Functions

B.12.1.1. atomicAdd()
int atomicAdd(int* address, int val);
unsigned int atomicAdd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAdd(unsigned long long int* address,
                                 unsigned long long int val);
float atomicAdd(float* address, float val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old + val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns old.

The floating-point version of atomicAdd() is only supported by devices of compute
capability 2.x and higher.

B.12.1.2. atomicSub()
int atomicSub(int* address, int val);
unsigned int atomicSub(unsigned int* address,
                       unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory,
computes (old - val), and stores the result back to memory at the same address.
These three operations are performed in one atomic transaction. The function returns
old.

B.12.1.3. atomicExch()
int atomicExch(int* address, int val);
unsigned int atomicExch(unsigned int* address,
                        unsigned int val);
unsigned long long int atomicExch(unsigned long long int* address,
                                  unsigned long long int val);
float atomicExch(float* address, float val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory and stores val back to memory at the same address. These two operations are
performed in one atomic transaction. The function returns old.

B.12.1.4. atomicMin()
int atomicMin(int* address, int val);
unsigned int atomicMin(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMin(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes the minimum of old and val, and stores the result back to memory



C Language Extensions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 112

at the same address. These three operations are performed in one atomic transaction.
The function returns old.

The 64-bit version of atomicMin() is only supported by devices of compute capability
3.5 and higher.

B.12.1.5. atomicMax()
int atomicMax(int* address, int val);
unsigned int atomicMax(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicMax(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes the maximum of old and val, and stores the result back to memory
at the same address. These three operations are performed in one atomic transaction.
The function returns old.

The 64-bit version of atomicMax() is only supported by devices of compute capability
3.5 and higher.

B.12.1.6. atomicInc()
unsigned int atomicInc(unsigned int* address,
                       unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory,
computes ((old >= val) ? 0 : (old+1)), and stores the result back to memory at
the same address. These three operations are performed in one atomic transaction. The
function returns old.

B.12.1.7. atomicDec()
unsigned int atomicDec(unsigned int* address,
                       unsigned int val);

reads the 32-bit word old located at the address address in global or shared memory,
computes (((old == 0) | (old > val)) ? val : (old-1)  ), and stores the
result back to memory at the same address. These three operations are performed in one
atomic transaction. The function returns old.

B.12.1.8. atomicCAS()
int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,
                       unsigned int compare,
                       unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,
                                 unsigned long long int compare,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old == compare ? val : old) , and stores the result back
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to memory at the same address. These three operations are performed in one atomic
transaction. The function returns old (Compare And Swap).

B.12.2. Bitwise Functions

B.12.2.1. atomicAnd()
int atomicAnd(int* address, int val);
unsigned int atomicAnd(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicAnd(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old & val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicAnd() is only supported by devices of compute capability
3.5 and higher.

B.12.2.2. atomicOr()
int atomicOr(int* address, int val);
unsigned int atomicOr(unsigned int* address,
                      unsigned int val);
unsigned long long int atomicOr(unsigned long long int* address,
                                unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old | val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicOr() is only supported by devices of compute capability
3.5 and higher.

B.12.2.3. atomicXor()
int atomicXor(int* address, int val);
unsigned int atomicXor(unsigned int* address,
                       unsigned int val);
unsigned long long int atomicXor(unsigned long long int* address,
                                 unsigned long long int val);

reads the 32-bit or 64-bit word old located at the address address in global or shared
memory, computes (old ^ val), and stores the result back to memory at the same
address. These three operations are performed in one atomic transaction. The function
returns old.

The 64-bit version of atomicXor() is only supported by devices of compute capability
3.5 and higher.
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B.13. Warp Vote Functions
int __all(int predicate);
int __any(int predicate);
unsigned int __ballot(int predicate);

The warp vote functions allow the threads of a given warp to perform a reduction-and-
broadcast operation. These functions take as input an integer predicate from each
thread in the warp and compare those values with zero. The results of the comparisons
are combined (reduced) across the active threads of the warp in one of the following
ways, broadcasting a single return value to each participating thread:
__all(predicate):

Evaluate predicate for all active threads of the warp and return non-zero if and
only if predicate evaluates to non-zero for all of them. Supported by devices of
compute capability 1.2 and higher.

__any(predicate):
Evaluate predicate for all active threads of the warp and return non-zero if and
only if predicate evaluates to non-zero for any of them. Supported by devices of
compute capability 1.2 and higher.

__ballot(predicate):
Evaluate predicate for all active threads of the warp and return an integer whose
Nth bit is set if and only if predicate evaluates to non-zero for the Nth thread of the
warp and the Nth thread is active. Supported by devices of compute capability 2.0
and higher.

Notes

For each of these warp vote operations, the result excludes threads that are inactive (e.g.,
due to warp divergence). Inactive threads are represented by 0 bits in the value returned
by __ballot() and are not considered in the reductions performed by __all() and
__any().

B.14. Warp Shuffle Functions
__shfl, __shfl_up, __shfl_down, __shfl_xor exchange a variable between threads
within a warp.

Supported by devices of compute capability 3.x.
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B.14.1. Synopsis
int __shfl(int var, int srcLane, int width=warpSize);
int __shfl_up(int var, unsigned int delta, int width=warpSize);
int __shfl_down(int var, unsigned int delta, int width=warpSize);
int __shfl_xor(int var, int laneMask, int width=warpSize);

float __shfl(float var, int srcLane, int width=warpSize);
float __shfl_up(float var, unsigned int delta,
                int width=warpSize);
float __shfl_down(float var, unsigned int delta,
                  int width=warpSize);
float __shfl_xor(float var, int laneMask, int width=warpSize);

B.14.2. Description
The __shfl() intrinsics permit exchanging of a variable between threads within
a warp without use of shared memory. The exchange occurs simultaneously for all
active threads within the warp, moving 4 bytes of data per thread. Exchange of 8-byte
quantities must be broken into two separate invocations of __shfl().

Threads within a warp are referred to as lanes, and for devices of compute capability 3.x
may have an index between 0 and warpSize-1 (inclusive). Four source-lane addressing
modes are supported:
__shfl()

Direct copy from indexed lane
__shfl_up()

Copy from a lane with lower ID relative to caller
__shfl_down()

Copy from a lane with higher ID relative to caller
__shfl_xor()

Copy from a lane based on bitwise XOR of own lane ID

Threads may only read data from another thread which is actively participating in the
__shfl() command. If the target thread is inactive, the retrieved value is undefined.

All the __shfl() intrinsics take an optional width parameter which permits sub-
division of the warp into segments - for example to exchange data between 4 groups of
8 lanes in a SIMD manner. If width is less than warpSize then each subsection of the
warp behaves as a separate entity with a starting logical lane ID of 0. A thread may only
exchange data with others in its own subsection. width must have a value which is a
power of 2 so that the warp can be subdivided equally; results are undefined if width is
not a power of 2, or is a number greater than warpSize.

__shfl() returns the value of var held by the thread whose ID is given by srcLane.
If srcLane is outside the range [0:width-1], then the thread's own value of var is
returned.

__shfl_up() calculates a source lane ID by subtracting delta from the caller's lane ID.
The value of var held by the resulting lane ID is returned: in effect, var is shifted up the



C Language Extensions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 116

warp by delta lanes. The source lane index will not wrap around the value of width, so
effectively the lower delta lanes will be unchanged.

__shfl_down() calculates a source lane ID by adding delta to the caller's lane ID.
The value of var held by the resulting lane ID is returned: this has the effect of shifting
var down the warp by delta lanes. As for __shfl_up(), the ID number of the source
lane will not wrap around the value of width and so the upper delta lanes will remain
unchanged.

__shfl_xor() calculates a source line ID by performing a bitwise XOR of the caller's
lane ID with laneMask: the value of var held by the resulting lane ID is returned. If the
resulting lane ID falls outside the range permitted by width, the thread's own value of
var is returned. This mode implements a butterfly addressing pattern such as is used in
tree reduction and broadcast.

B.14.3. Return Value
All __shfl() intrinsics return the 4-byte word referenced by var from the source lane
ID as an unsigned integer. If the source lane ID is out of range or the source thread has
exited, the calling thread's own var is returned.

B.14.4. Notes
All __shfl() intrinsics share the same semantics with respect to code motion as the
vote intrinsics __any() and __all().

Threads may only read data from another thread which is actively participating in the
__shfl() command. If the target thread is inactive, the retrieved value is undefined.

width must be a power-of-2 (i.e., 2, 4, 8, 16 or 32). Results are unspecified for other
values.

Types other than int or float must first be cast in order to use the __shfl() intrinsics.

B.14.5. Examples

B.14.5.1. Broadcast of a single value across a warp

      __global__ void bcast(int arg) {
    int laneId = threadIdx.x & 0x1f;
    int value;
    if (laneId == 0)        // Note unused variable for
        value = arg;        // all threads except lane 0
    value = __shfl(value, 0);   // Get "value" from lane 0
    if (value != arg)
        printf("Thread %d failed.\n", threadIdx.x);
}

void main() {
    bcast<<< 1, 32 >>>(1234);
    cudaDeviceSynchronize();
}
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B.14.5.2. Inclusive plus-scan across sub-partitions of 8 threads
__global__ void scan4() {
    int laneId = threadIdx.x & 0x1f;
    // Seed sample starting value (inverse of lane ID)
    int value = 31 - laneId;

    // Loop to accumulate scan within my partition.
    // Scan requires log2(n) == 3 steps for 8 threads
    // It works by an accumulated sum up the warp
    // by 1, 2, 4, 8 etc. steps.
    for (int i=1; i<=4; i*=2) {
        // Note: shfl requires all threads being
        // accessed to be active. Therefore we do
        // the __shfl unconditionally so that we
        // can read even from threads which won't do a
        // sum, and then conditionally assign the result.
        int n = __shfl_up(value, i, 8);
        if (laneId >= i)
            value += n;
    }

    printf("Thread %d final value = %d\n", threadIdx.x, value);
}

void main() {
    scan4<<< 1, 32 >>>();
    cudaDeviceSynchronize();
}

B.14.5.3. Reduction across a warp
__global__ void warpReduce() {
    int laneId = threadIdx.x & 0x1f;
    // Seed starting value as inverse lane ID
    int value = 31 - laneId;

    // Use XOR mode to perform butterfly reduction
    for (int i=16; i>=1; i/=2)
        value += __shfl_xor(value, i, 32);

    // "value" now contains the sum across all threads
    printf("Thread %d final value = %d\n", threadIdx.x, value);
}

void main() {
    warpReduce<<< 1, 32 >>>();
    cudaDeviceSynchronize();
}

B.15. Profiler Counter Function
Each multiprocessor has a set of sixteen hardware counters that an application can
increment with a single instruction by calling the __prof_trigger() function.
[void __prof_trigger(int counter);

increments by one per warp the per-multiprocessor hardware counter of index counter.
Counters 8 to 15 are reserved and should not be used by applications.
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The value of counters 0, 1, ..., 7 can be obtained via nvprof by nvprof --events
prof_trigger_0x where x is 0, 1, ..., 7. The value of those counters for the first
multiprocessor can also be obtained via the old CUDA command-line profiler by listing
prof_trigger_00, prof_trigger_01, ..., prof_trigger_07 , etc. in the
profiler.conf file (see the profiler manual for more details). All counters are reset
before each kernel launch (note that when collecting counters, kernel launches are
synchronous as mentioned in Concurrent Execution between Host and Device).

B.16. Assertion
Assertion is only supported by devices of compute capability 2.x and higher. It is not
supported on MacOS, regardless of the device, and loading a module that references the
assert function on Mac OS will fail.
void assert(int expression);

stops the kernel execution if expression is equal to zero. If the program is run within a
debugger, this triggers a breakpoint and the debugger can be used to inspect the current
state of the device. Otherwise, each thread for which expression is equal to zero prints
a message to stderr after synchronization with the host via cudaDeviceSynchronize(),
cudaStreamSynchronize(), or cudaEventSynchronize(). The format of this
message is as follows:
<filename>:<line number>:<function>:
block: [blockId.x,blockId.x,blockIdx.z],
thread: [threadIdx.x,threadIdx.y,threadIdx.z]
Assertion `<expression>` failed.

Any subsequent host-side synchronization calls made for the same device will
return cudaErrorAssert. No more commands can be sent to this device until
cudaDeviceReset() is called to reinitialize the device.

If expression is different from zero, the kernel execution is unaffected.
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For example, the following program from source file test.cu
#include <assert.h>

// assert() is only supported
// for devices of compute capability 2.0 and higher
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 200)
#undef  assert
#define assert(arg)
#endif

__global__ void testAssert(void)
{
    int is_one = 1;
    int should_be_one = 0;

    // This will have no effect
    assert(is_one);

    // This will halt kernel execution 
    assert(should_be_one);
}

int main(int argc, char* argv[])
{
    testAssert<<<1,1>>>();
    cudaDeviceSynchronize();
    return 0;
}

will output:
test.cu:19: void testAssert(): block: [0,0,0], thread: [0,0,0] Assertion
 `should_be_one` failed.

Assertions are for debugging purposes. They can affect performance and it is therefore
recommended to disable them in production code. They can be disabled at compile
time by defining the NDEBUG preprocessor macro before including assert.h. Note that
expression should not be an expression with side effects (something like (++i > 0),
for example), otherwise disabling the assertion will affect the functionality of the code.

B.17. Formatted Output
Formatted output is only supported by devices of compute capability 2.x and higher.
int printf(const char *format[, arg, ...]);

prints formatted output from a kernel to a host-side output stream.

The in-kernel printf() function behaves in a similar way to the standard C-library
printf() function, and the user is referred to the host system's manual pages for a
complete description of printf() behavior. In essence, the string passed in as format is
output to a stream on the host, with substitutions made from the argument list wherever
a format specifier is encountered. Supported format specifiers are listed below.

The printf() command is executed as any other device-side function: per-thread, and
in the context of the calling thread. From a multi-threaded kernel, this means that a
straightforward call to printf() will be executed by every thread, using that thread's
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data as specified. Multiple versions of the output string will then appear at the host
stream, once for each thread which encountered the printf().

It is up to the programmer to limit the output to a single thread if only a single output
string is desired (see Examples for an illustrative example).

Unlike the C-standard printf(), which returns the number of characters printed,
CUDA's printf() returns the number of arguments parsed. If no arguments follow the
format string, 0 is returned. If the format string is NULL, -1 is returned. If an internal
error occurs, -2 is returned.

B.17.1. Format Specifiers
As for standard printf(), format specifiers take the form: %[flags][width]
[.precision][size]type

The following fields are supported (see widely-available documentation for a complete
description of all behaviors):

‣ Flags: `#' ` ' `0' `+' `-'
‣ Width: `*' `0-9'
‣ Precision: `0-9'
‣ Size: `h' `l' `ll'
‣ Type: `%cdiouxXpeEfgGaAs'

Note that CUDA's printf()will accept any combination of flag, width, precision, size
and type, whether or not overall they form a valid format specifier. In other words, "%hd"
will be accepted and printf will expect a double-precision variable in the corresponding
location in the argument list.

B.17.2. Limitations
Final formatting of the printf() output takes place on the host system. This means
that the format string must be understood by the host-system's compiler and C library.
Every effort has been made to ensure that the format specifiers supported by CUDA's
printf function form a universal subset from the most common host compilers, but exact
behavior will be host-OS-dependent.

As described in Format Specifiers, printf() will accept all combinations of valid flags
and types. This is because it cannot determine what will and will not be valid on the
host system where the final output is formatted. The effect of this is that output may be
undefined if the program emits a format string which contains invalid combinations.

The printf() command can accept at most 32 arguments in addition to the format
string. Additional arguments beyond this will be ignored, and the format specifier
output as-is.



C Language Extensions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 121

Owing to the differing size of the long type on 64-bit Windows platforms (four bytes
on 64-bit Windows platforms, eight bytes on other 64-bit platforms), a kernel which is
compiled on a non-Windows 64-bit machine but then run on a win64 machine will see
corrupted output for all format strings which include "%ld". It is recommended that the
compilation platform matches the execution platform to ensure safety.

The output buffer for printf() is set to a fixed size before kernel launch (see
Associated Host-Side API). It is circular and if more output is produced during kernel
execution than can fit in the buffer, older output is overwritten. It is flushed only when
one of these actions is performed:

‣ Kernel launch via <<<>>> or cuLaunchKernel() (at the start of the launch, and if
the CUDA_LAUNCH_BLOCKING environment variable is set to 1, at the end of the
launch as well),

‣ Synchronization via cudaDeviceSynchronize(), cuCtxSynchronize(),
cudaStreamSynchronize(), cuStreamSynchronize(),
cudaEventSynchronize(), or cuEventSynchronize(),

‣ Memory copies via any blocking version of cudaMemcpy*() or cuMemcpy*(),
‣ Module loading/unloading via cuModuleLoad() or cuModuleUnload(),
‣ Context destruction via cudaDeviceReset() or cuCtxDestroy().

Note that the buffer is not flushed automatically when the program exits. The user must
call cudaDeviceReset() or cuCtxDestroy() explicitly, as shown in the examples
below.

Internally printf() uses a shared data structure and so it is possible that calling
printf() might change the order of execution of threads. In particular, a thread
which calls printf() might take a longer execution path than one which does not call
printf(), and that path length is dependent upon the parameters of the printf().
Note, however, that CUDA makes no guarantees of thread execution order except at
explicit __syncthreads() barriers, so it is impossible to tell whether execution order
has been modified by printf() or by other scheduling behaviour in the hardware.

B.17.3. Associated Host-Side API
The following API functions get and set the size of the buffer used to transfer the
printf() arguments and internal metadata to the host (default is 1 megabyte):

‣ cudaDeviceGetLimit(size_t* size,cudaLimitPrintfFifoSize)

‣ cudaDeviceSetLimit(cudaLimitPrintfFifoSize, size_t size)
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B.17.4. Examples
The following code sample:

#include "stdio.h"

// printf() is only supported
// for devices of compute capability 2.0 and higher
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 200)
  # error printf is only supported on devices of compute capability 2.0 and
 higher, please compile with -arch=sm_20 or higher    
#endif

__global__ void helloCUDA(float f)
{
    printf("Hello thread %d, f=%f\n", threadIdx.x, f);
}

int main()
{
    helloCUDA<<<1, 5>>>(1.2345f);
    cudaDeviceSynchronize();
    return 0;
}

will output:

Hello thread 2, f=1.2345
Hello thread 1, f=1.2345
Hello thread 4, f=1.2345
Hello thread 0, f=1.2345
Hello thread 3, f=1.2345

Notice how each thread encounters the printf() command, so there are as many lines
of output as there were threads launched in the grid. As expected, global values (i.e.,
float f) are common between all threads, and local values (i.e., threadIdx.x) are
distinct per-thread.

The following code sample:

#include "stdio.h"

// printf() is only supported
// for devices of compute capability 2.0 and higher
#if defined(__CUDA_ARCH__) && (__CUDA_ARCH__ < 200)
     # error printf is only supported on devices of compute capability 2.0 and
 higher, please compile with -arch=sm_20 or higher
#endif

__global__ void helloCUDA(float f)
{
    if (threadIdx.x == 0)
        printf("Hello thread %d, f=%f\n", threadIdx.x, f) ;
}

int main()
{
    helloCUDA<<<1, 5>>>(1.2345f);
    cudaDeviceSynchronize();
    return 0;
}
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will output:

Hello thread 0, f=1.2345

Self-evidently, the if() statement limits which threads will call printf, so that only a
single line of output is seen.

B.18. Dynamic Global Memory Allocation and
Operations
Dynamic global memory allocation and operations are only supported by devices of
compute capability 2.x and higher.
void* malloc(size_t size);
void free(void* ptr);

allocate and free memory dynamically from a fixed-size heap in global memory.
void* memcpy(void* dest, const void* src, size_t size);

copy size bytes from the memory location pointed by src to the memory location
pointed by dest.
void* memset(void* ptr, int value, size_t size);

set size bytes of memory block pointed by ptr to value (interpreted as an unsigned
char).

The CUDA in-kernel malloc() function allocates at least size bytes from the device
heap and returns a pointer to the allocated memory or NULL if insufficient memory
exists to fulfill the request. The returned pointer is guaranteed to be aligned to a 16-byte
boundary.

The CUDA in-kernel free() function deallocates the memory pointed to by ptr, which
must have been returned by a previous call to malloc(). If ptr is NULL, the call to
free() is ignored. Repeated calls to free() with the same ptr has undefined behavior.

The memory allocated by a given CUDA thread via malloc() remains allocated for the
lifetime of the CUDA context, or until it is explicitly released by a call to free(). It can
be used by any other CUDA threads even from subsequent kernel launches. Any CUDA
thread may free memory allocated by another thread, but care should be taken to ensure
that the same pointer is not freed more than once.

B.18.1. Heap Memory Allocation
The device memory heap has a fixed size that must be specified before any program
using malloc() or free() is loaded into the context. A default heap of eight megabytes
is allocated if any program uses malloc() without explicitly specifying the heap size.

The following API functions get and set the heap size:

‣ cudaDeviceGetLimit(size_t* size, cudaLimitMallocHeapSize)
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‣ cudaDeviceSetLimit(cudaLimitMallocHeapSize, size_t size)

The heap size granted will be at least size bytes. cuCtxGetLimit()and
cudaDeviceGetLimit() return the currently requested heap size.

The actual memory allocation for the heap occurs when a module is loaded into the
context, either explicitly via the CUDA driver API (see Module), or implicitly via the
CUDA runtime API (see CUDA C Runtime). If the memory allocation fails, the module
load will generate a CUDA_ERROR_SHARED_OBJECT_INIT_FAILED error.

Heap size cannot be changed once a module load has occurred and it does not resize
dynamically according to need.

Memory reserved for the device heap is in addition to memory allocated through host-
side CUDA API calls such as cudaMalloc().

B.18.2. Interoperability with Host Memory API
Memory allocated via malloc() cannot be freed using the runtime (i.e., by calling any
of the free memory functions from Device Memory).

Similarly, memory allocated via the runtime (i.e., by calling any of the memory
allocation functions from Device Memory) cannot be freed via free().

B.18.3. Examples

B.18.3.1. Per Thread Allocation

The following code sample:

  #include <stdlib.h>
#include <stdio.h>

__global__ void mallocTest()
{
    size_t size = 123;
    char* ptr = (char*)malloc(size);
    memset(ptr, 0, size);
    printf("Thread %d got pointer: %p\n", threadIdx.x, ptr);
    free(ptr);
}

int main()
{
    // Set a heap size of 128 megabytes. Note that this must
    // be done before any kernel is launched.
    cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024);
    mallocTest<<<1, 5>>>();
    cudaDeviceSynchronize();
    return 0;
}
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will output:
Thread 0 got pointer: 00057020
Thread 1 got pointer: 0005708c
Thread 2 got pointer: 000570f8
Thread 3 got pointer: 00057164
Thread 4 got pointer: 000571d0

Notice how each thread encounters the malloc() and memset() commands and so
receives and initializes its own allocation. (Exact pointer values will vary: these are
illustrative.)

B.18.3.2. Per Thread Block Allocation

      #include <stdlib.h>

__global__ void mallocTest()
{
    __shared__ int* data;

    // The first thread in the block does the allocation and initialization
    // and then shares the pointer with all other threads through shared memory,
    // so that access can easily be coalesced.
    // 64 bytes per thread are allocated.
    if (threadIdx.x == 0) {
        size_t size = blockDim.x * 64;
        data = (int*)malloc(size);
        memset(data, 0, size);
    }
    __syncthreads();

    // Check for failure
    if (data == NULL)
        return;

    // Threads index into the memory, ensuring coalescence
    int* ptr = data;
    for (int i = 0; i < 64; ++i)
        ptr[i * blockDim.x + threadIdx.x] = threadIdx.x;

    // Ensure all threads complete before freeing 
    __syncthreads();

    // Only one thread may free the memory!
    if (threadIdx.x == 0)
        free(data);
}

int main()
{
    cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024);
    mallocTest<<<10, 128>>>();
    cudaDeviceSynchronize();
    return 0;
}
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B.18.3.3. Allocation Persisting Between Kernel Launches
#include <stdlib.h>
#include <stdio.h>

#define NUM_BLOCKS 20

__device__ int* dataptr[NUM_BLOCKS]; // Per-block pointer

__global__ void allocmem()
{
    // Only the first thread in the block does the allocation
    // since we want only one allocation per block.
    if (threadIdx.x == 0)
        dataptr[blockIdx.x] = (int*)malloc(blockDim.x * 4);
    __syncthreads();

    // Check for failure
    if (dataptr[blockIdx.x] == NULL)
        return;

    // Zero the data with all threads in parallel
    dataptr[blockIdx.x][threadIdx.x] = 0;
}

// Simple example: store thread ID into each element
__global__ void usemem()
{
    int* ptr = dataptr[blockIdx.x];
    if (ptr != NULL)
        ptr[threadIdx.x] += threadIdx.x;
}

// Print the content of the buffer before freeing it
__global__ void freemem()
{
    int* ptr = dataptr[blockIdx.x];
    if (ptr != NULL)
        printf("Block %d, Thread %d: final value = %d\n",
                      blockIdx.x, threadIdx.x, ptr[threadIdx.x]);

    // Only free from one thread!
    if (threadIdx.x == 0)
        free(ptr);
}

int main()
{
    cudaDeviceSetLimit(cudaLimitMallocHeapSize, 128*1024*1024);

    // Allocate memory
    allocmem<<< NUM_BLOCKS, 10 >>>();

    // Use memory
    usemem<<< NUM_BLOCKS, 10 >>>();
    usemem<<< NUM_BLOCKS, 10 >>>();
    usemem<<< NUM_BLOCKS, 10 >>>();

    // Free memory
    freemem<<< NUM_BLOCKS, 10 >>>();

    cudaDeviceSynchronize();

    return 0;
}
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B.19. Execution Configuration
Any call to a __global__ function must specify the execution configuration for that call.
The execution configuration defines the dimension of the grid and blocks that will be
used to execute the function on the device, as well as the associated stream (see CUDA C
Runtime for a description of streams).

The execution configuration is specified by inserting an expression of the form <<<
Dg, Db, Ns, S >>> between the function name and the parenthesized argument list,
where:

‣ Dg is of type dim3 (see dim3) and specifies the dimension and size of the grid, such
that Dg.x * Dg.y * Dg.z equals the number of blocks being launched; Dg.z must
be equal to 1 for devices of compute capability 1.x;

‣ Db is of type dim3 (see dim3) and specifies the dimension and size of each block,
such that Db.x * Db.y * Db.z equals the number of threads per block;

‣ Ns is of type size_t and specifies the number of bytes in shared memory that is
dynamically allocated per block for this call in addition to the statically allocated
memory; this dynamically allocated memory is used by any of the variables
declared as an external array as mentioned in __shared__; Ns is an optional
argument which defaults to 0;

‣ S is of type cudaStream_t and specifies the associated stream; S is an optional
argument which defaults to 0.

As an example, a function declared as
__global__ void Func(float* parameter);

must be called like this:
Func<<< Dg, Db, Ns >>>(parameter);

The arguments to the execution configuration are evaluated before the actual function
arguments. For devices of compute capability 1.x, they are passed via shared memory to
the device.

The function call will fail if Dg or Db are greater than the maximum sizes allowed for
the device as specified in Compute Capabilities, or if Ns is greater than the maximum
amount of shared memory available on the device, minus the amount of shared memory
required for static allocation. For devices of compute capability 1.x, the execution
configuration and the function arguments also consume shared memory.
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B.20. Launch Bounds
As discussed in detail in Multiprocessor Level, the fewer registers a kernel uses, the
more threads and thread blocks are likely to reside on a multiprocessor, which can
improve performance.

Therefore, the compiler uses heuristics to minimize register usage while keeping
register spilling (see Device Memory Accesses) and instruction count to a minimum.
An application can optionally aid these heuristics by providing additional
information to the compiler in the form of launch bounds that are specified using the
__launch_bounds__() qualifier in the definition of a __global__ function:
__global__ void
__launch_bounds__(maxThreadsPerBlock, minBlocksPerMultiprocessor)
MyKernel(...)
{
    ...
}

‣ maxThreadsPerBlock specifies the maximum number of threads per block with
which the application will ever launch MyKernel(); it compiles to the .maxntid
PTX directive;

‣ minBlocksPerMultiprocessor is optional and specifies the desired minimum
number of resident blocks per multiprocessor; it compiles to the .minnctapersm
PTX directive.

If launch bounds are specified, the compiler first derives from them
the upper limit L on the number of registers the kernel should use to
ensure that minBlocksPerMultiprocessor blocks (or a single block if
minBlocksPerMultiprocessor is not specified) of maxThreadsPerBlock threads
can reside on the multiprocessor (see Hardware Multithreading for the relationship
between the number of registers used by a kernel and the number of registers allocated
per block). The compiler then optimizes register usage in the following way:

‣ If the initial register usage is higher than L, the compiler reduces it further until it
becomes less or equal to L, usually at the expense of more local memory usage and/
or higher number of instructions;

‣ If the initial register usage is lower than L

‣ If maxThreadsPerBlock is specified and minBlocksPerMultiprocessor is
not, the compiler uses maxThreadsPerBlock to determine the register usage
thresholds for the transitions between n and n+1 resident blocks (i.e., when
using one less register makes room for an additional resident block as in the
example of Multiprocessor Level) and then applies similar heuristics as when no
launch bounds are specified;
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‣ If both minBlocksPerMultiprocessor and maxThreadsPerBlock are
specified, the compiler may increase register usage as high as L to reduce the
number of instructions and better hide single thread instruction latency.

A kernel will fail to launch if it is executed with more threads per block than its launch
bound maxThreadsPerBlock.

Optimal launch bounds for a given kernel will usually differ across major architecture
revisions. The sample code below shows how this is typically handled in device code
using the __CUDA_ARCH__ macro introduced in Application Compatibility
#define THREADS_PER_BLOCK          256
#if __CUDA_ARCH__ >= 200
    #define MY_KERNEL_MAX_THREADS  (2 * THREADS_PER_BLOCK)
    #define MY_KERNEL_MIN_BLOCKS   3
#else
    #define MY_KERNEL_MAX_THREADS  THREADS_PER_BLOCK
    #define MY_KERNEL_MIN_BLOCKS   2
#endif

// Device code
__global__ void
__launch_bounds__(MY_KERNEL_MAX_THREADS, MY_KERNEL_MIN_BLOCKS)
MyKernel(...)
{
    ...
}

In the common case where MyKernel is invoked with the maximum number of threads
per block (specified as the first parameter of __launch_bounds__()), it is tempting
to use MY_KERNEL_MAX_THREADS as the number of threads per block in the execution
configuration:
// Host code
MyKernel<<<blocksPerGrid, MY_KERNEL_MAX_THREADS>>>(...);

This will not work however since __CUDA_ARCH__ is undefined in host code as
mentioned in Application Compatibility, so MyKernel will launch with 256 threads
per block even when __CUDA_ARCH__ is greater or equal to 200. Instead the number of
threads per block should be determined:

‣ Either at compile time using a macro that does not depend on __CUDA_ARCH__, for
example
// Host code
MyKernel<<<blocksPerGrid, THREADS_PER_BLOCK>>>(...);

‣ Or at runtime based on the compute capability
// Host code
cudaGetDeviceProperties(&deviceProp, device);
int threadsPerBlock =
          (deviceProp.major >= 2 ?
                    2 * THREADS_PER_BLOCK : THREADS_PER_BLOCK);
MyKernel<<<blocksPerGrid, threadsPerBlock>>>(...);

Register usage is reported by the --ptxas options=-v compiler option. The number
of resident blocks can be derived from the occupancy reported by the CUDA profiler
(see Device Memory Accessesfor a definition of occupancy).
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Register usage can also be controlled for all __global__ functions in a file using the
maxrregcount compiler option. The value of maxrregcount is ignored for functions
with launch bounds.

B.21. #pragma unroll
By default, the compiler unrolls small loops with a known trip count. The #pragma
unroll  directive however can be used to control unrolling of any given loop. It must
be placed immediately before the loop and only applies to that loop. It is optionally
followed by a number that specifies how many times the loop must be unrolled.

For example, in this code sample:
#pragma unroll 5
for (int i = 0; i < n; ++i)

the loop will be unrolled 5 times. The compiler will also insert code to ensure correctness
(in the example above, to ensure that there will only be n iterations if n is less than 5,
for example). It is up to the programmer to make sure that the specified unroll number
gives the best performance.

#pragma unroll 1  will prevent the compiler from ever unrolling a loop.

If no number is specified after #pragma unroll, the loop is completely unrolled if its
trip count is constant, otherwise it is not unrolled at all.

B.22. SIMD Video Instructions
PTX ISA version 3.0 includes SIMD (Single Instruction, Multiple Data) video instructions
which operate on pairs of 16-bit values and quads of 8-bit values. These are available on
devices of compute capability 3.0.

The SIMD video instructions are:

‣ vadd2, vadd4
‣ vsub2, vsub4
‣ vavrg2, vavrg4
‣ vabsdiff2, vabsdiff4
‣ vmin2, vmin4
‣ vmax2, vmax4
‣ vset2, vset4

PTX instructions, such as the SIMD video instructions, can be included in CUDA
programs by way of the assembler, asm(), statement.

The basic syntax of an asm() statement is:
asm("template-string" : "constraint"(output) : "constraint"(input)"));
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An example of using the vabsdiff4 PTX instruction is:
asm("vabsdiff4.u32.u32.u32.add" " %0, %1, %2, %3;": "=r" (result):"r" (A), "r"
 (B), "r" (C));

This uses the vabsdiff4 instruction to compute an integer quad byte SIMD sum of
absolute differences. The absolute difference value is computed for each byte of the
unsigned integers A and B in SIMD fashion. The optional accumulate operation (.add)
is specified to sum these differences.

Refer to the document "Using Inline PTX Assembly in CUDA" for details on using
the assembly statement in your code. Refer to the PTX ISA documentation ("Parallel
Thread Execution ISA Version 3.0" for example) for details on the PTX instructions for
the version of PTX that you are using.
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Appendix C.
CUDA DYNAMIC PARALLELISM

C.1. Introduction

C.1.1. Overview
Dynamic Parallelism is an extension to the CUDA programming model enabling a CUDA
kernel to create and synchronize with new work directly on the GPU. The creation of
parallelism dynamically at whichever point in a program that it is needed offers exciting
new capabilities.

The ability to create work directly from the GPU can reduce the need to transfer
execution control and data between host and device, as launch configuration decisions
can now be made at runtime by threads executing on the device. Additionally,
data-dependent parallel work can be generated inline within a kernel at run-time,
taking advantage of the GPU's hardware schedulers and load balancers dynamically
and adapting in response to data-driven decisions or workloads. Algorithms and
programming patterns that had previously required modifications to eliminate
recursion, irregular loop structure, or other constructs that do not fit a flat, single-level of
parallelism may more transparently be expressed.

This document describes the extended capabilities of CUDA which enable Dynamic
Parallelism, including the modifications and additions to the CUDA programming
model necessary to take advantage of these, as well as guidelines and best practices for
exploiting this added capacity.

Dynamic Parallelism is only supported by devices of compute capability 3.5 and higher.

C.1.2. Glossary
Definitions for terms used in this guide.
Grid

A Grid is a collection of Threads. Threads in a Grid execute a Kernel Function and are
divided into Thread Blocks.
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Thread Block
A Thread Block is a group of threads which execute on the same multiprocessor
(SMX). Threads within a Thread Block have access to shared memory and can be
explicitly synchronized.

Kernel Function
A Kernel Function is an implicitly parallel subroutine that executes under the CUDA
execution and memory model for every Thread in a Grid.

Host
The Host refers to the execution environment that initially invoked CUDA. Typically
the thread running on a system's CPU processor.

Parent
A Parent Thread, Thread Block, or Grid is one that has launched new grid(s), the Child
Grid(s). The Parent is not considered completed until all of its launched Child Grids
have also completed.

Child
A Child thread, block, or grid is one that has been launched by a Parent grid. A Child
grid must complete before the Parent Thread, Thread Block, or Grid are considered
complete.

Thread Block Scope
Objects with Thread Block Scope have the lifetime of a single Thread Block. They only
have defined behavior when operated on by Threads in the Thread Block that created
the object and are destroyed when the Thread Block that created them is complete.

Device Runtime
The Device Runtime refers to the runtime system and APIs available to enable Kernel
Functions to use Dynamic Parallelism.

C.2. Execution Environment and Memory Model

C.2.1. Execution Environment
The CUDA execution model is based on primitives of threads, thread blocks, and
grids, with kernel functions defining the program executed by individual threads
within a thread block and grid. When a kernel function is invoked the grid's properties
are described by an execution configuration, which has a special syntax in CUDA.
Support for dynamic parallelism in CUDA extends the ability to configure, launch, and
synchronize upon new grids to threads that are running on the device.

C.2.1.1. Parent and Child Grids
A device thread that configures and launches a new grid belongs to the parent grid, and
the grid created by the invocation is a child grid.

The invocation and completion of child grids is properly nested, meaning that the
parent grid is not considered complete until all child grids created by its threads have
completed. Even if the invoking threads do not explicitly synchronize on the child grids
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launched, the runtime guarantees an implicit synchronization between the parent and
child.

Time

CPU Thread

Grid A -  Parent

Grid B -  Child

Grid A Threads

Grid B Threads

Grid A Launch

Grid B Launch

Grid A Complete

Grid B Complete

Figure 12 Parent-Child Launch Nesting

C.2.1.2. Scope of CUDA Primitives
On both host and device, the CUDA runtime offers an API for launching kernels,
for waiting for launched work to complete, and for tracking dependencies between
launches via streams and events. On the host system, the state of launches and the
CUDA primitives referencing streams and events are shared by all threads within a
process; however processes execute independently and may not share CUDA objects.

A similar hierarchy exists on the device: launched kernels and CUDA objects are visible
to all threads in a thread block, but are independent between thread blocks. This means
for example that a stream may be created by one thread and used by any other thread in
the same thread block, but may not be shared with threads in any other thread block.

C.2.1.3. Synchronization
CUDA runtime operations from any thread, including kernel launches, are visible across
a thread block. This means that an invoking thread in the parent grid may perform
synchronization on the grids launched by that thread, by other threads in the thread
block, or on streams created within the same thread block. Execution of a thread block
is not considered complete until all launches by all threads in the block have completed.
If all threads in a block exit before all child launches have completed, a synchronization
operation will automatically be triggered.

C.2.1.4. Streams and Events
CUDA Streams and Events allow control over dependencies between grid launches:
grids launched into the same stream execute in-order, and events may be used to create
dependencies between streams. Streams and events created on the device serve this
exact same purpose.
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Streams and events created within a grid exist within thread block scope but have
undefined behavior when used outside of the thread block where they were created. As
described above, all work launched by a thread block is implicitly synchronized when
the block exits; work launched into streams is included in this, with all dependencies
resolved appropriately. The behavior of operations on a stream that has been modified
outside of thread block scope is undefined.

Streams and events created on the host have undefined behavior when used within any
kernel, just as streams and events created by a parent grid have undefined behavior if
used within a child grid.

C.2.1.5. Ordering and Concurrency
The ordering of kernel launches from the device runtime follows CUDA Stream
ordering semantics. Within a thread block, all kernel launches into the same stream are
executed in-order. With multiple threads in the same thread block launching into the
same stream, the ordering within the stream is dependent on the thread scheduling
within the block, which may be controlled with synchronization primitives such as
__syncthreads().

Note that because streams are shared by all threads within a thread block, the implicit
NULL stream is also shared. If multiple threads in a thread block launch into the implicit
stream, then these launches will be executed in-order. If concurrency is desired, explicit
named streams should be used.

Dynamic Parallelism enables concurrency to be expressed more easily within a program;
however, the device runtime introduces no new concurrency guarantees within the
CUDA execution model. There is no guarantee of concurrent execution between any
number of different thread blocks on a device.

The lack of concurrency guarantee extends to parent thread blocks and their child grids.
When a parent thread block launches a child grid, the child is not guaranteed to begin
execution until the parent thread block reaches an explicit synchronization point (e.g.
cudaDeviceSynchronize()).

While concurrency will often easily be achieved, it may vary as a function of
deviceconfiguration, application workload, and runtime scheduling. It is therefore
unsafe to depend upon any concurrency between different thread blocks.

C.2.1.6. Device Management
There is no multi-GPU support from the device runtime; the device runtime is only
capable of operating on the device upon which it is currently executing. It is permitted,
however, to query properties for any CUDA capable device in the system.

C.2.2. Memory Model
Parent and child grids share the same global and constant memory storage, but have
distinct local and shared memory.
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C.2.2.1. Coherence and Consistency

C.2.2.1.1. Global Memory

Parent and child grids have coherent access to global memory, with weak consistency
guarantees between child and parent. There are two points in the execution of a child
grid when its view of memory is fully consistent with the parent thread: when the
child grid is invoked by the parent, and when the child grid completes as signaled by a
synchronization API invocation in the parent thread.

All global memory operations in the parent thread prior to the child grid's invocation are
visible to the child grid. All memory operations of the child grid are visible to the parent
after the parent has synchronized on the child grid's completion.

In the following example, the child grid executing child_launch is only guaranteed
to see the modifications to data made before the child grid was launched. Since thread
0 of the parent is performing the launch, the child will be consistent with the memory
seen by thread 0 of the parent. Due to the first __syncthreads() call, the child will see
data[0]=0, data[1]=1, ..., data[255]=255 (without the __syncthreads() call, only
data[0] would be guaranteed to be seen by the child). When the child grid returns,
thread 0 is guaranteed to see modifications made by the threads in its child grid. Those
modifications become available to the other threads of the parent grid only after the
second __syncthreads() call:
__global__ void child_launch(int *data) {
   data[threadIdx.x] = data[threadIdx.x]+1;
}

__global__ void parent_launch(int *data) {
   data[threadIdx.x] = threadIdx.x;

   __syncthreads();

   if (threadIdx.x == 0) {
       child_launch<<< 1, 256 >>>(data);
       cudaDeviceSynchronize();
   }

   __syncthreads();
}

void host_launch(int *data) {
    parent_launch<<< 1, 256 >>>(data);
}

C.2.2.1.2. Zero Copy Memory

Zero-copy system memory has identical coherence and consistency guarantees to global
memory, and follows the semantics detailed above. A kernel may not allocate or free
zero-copy memory, but may use pointers to zero-copy passed in from the host program.

C.2.2.1.3. Constant Memory

Constants are immutable and may not be modified from the device, even between
parent and child launches. That is to say, the value of all __constant__ variables must
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be set from the host prior to launch. Constant memory is inherited automatically by all
child kernels from their respective parents.

Taking the address of a constant memory object from within a kernel thread has the
same semantics as for all CUDA programs, and passing that pointer from parent to child
or from a child to parent is naturally supported.

C.2.2.1.4. Shared and Local Memory

Shared and Local memory is private to a thread block or thread, respectively, and is not
visible or coherent between parent and child. Behavior is undefined when an object in
one of these locations is referenced outside of the scope within which it belongs, and
may cause an error.

The NVIDIA compiler will attempt to warn if it can detect that a pointer to local or
shared memory is being passed as an argument to a kernel launch. At runtime, the
programmer may use the __isGlobal() intrinsic to determine whether a pointer
references global memory and so may safely be passed to a child launch.

Note that calls to cudaMemcpy*Async() or cudaMemset*Async() may invoke new
child kernels on the device in order to preserve stream semantics. As such, passing
shared or local memory pointers to these APIs is illegal and will return an error.

C.2.2.1.5. Local Memory

Local memory is private storage for an executing thread, and is not visible outside of
that thread. It is illegal to pass a pointer to local memory as a launch argument when
launching a child kernel. The result of dereferencing such a local memory pointer from a
child will be undefined.

For example the following is illegal, with undefined behavior if x_array is accessed by
child_launch:
int x_array[10];       // Creates x_array in parent's local memory 
child_launch<<< 1, 1 >>>(x_array);

It is sometimes difficult for a programmer to be aware of when a variable is placed into
local memory by the compiler. As a general rule, all storage passed to a child kernel
should be allocated explicitly from the global-memory heap, either with cudaMalloc(),
new() or by declaring __device__ storage at global scope. For example:
// Correct - "value" is global storage
__device__ int value; 
__device__ void x() { 
    value = 5; 
    child<<< 1, 1 >>>(&value); 
}

// Invalid - "value" is local storage
__device__ void y() { 
    int value = 5; 
    child<<< 1, 1 >>>(&value); 
}

C.2.2.1.6. Texture Memory

Writes to the global memory region over which a texture is mapped are incoherent with
respect to texture accesses. Coherence for texture memory is enforced at the invocation
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of a child grid and when a child grid completes. This means that writes to memory prior
to a child kernel launch are reflected in texture memory accesses of the child. Similarly,
writes to memory by a child will be reflected in the texture memory accesses by a parent,
but only after the parent synchronizes on the child's completion. Concurrent accesses by
parent and child may result in inconsistent data.

C.3. Programming Interface

C.3.1. CUDA C/C++ Reference
This section describes changes and additions to the CUDA C/C++ language extensions
for supporting Dynamic Parallelism.

The language interface and API available to CUDA kernels using CUDA C/C++ for
Dynamic Parallelism, referred to as the Device Runtime, is substantially like that of the
CUDA Runtime API available on the host. Where possible the syntax and semantics of
the CUDA Runtime API have been retained in order to facilitate ease of code reuse for
routines that may run in either the host or device environments.

As with all code in CUDA C/C++, the APIs and code outlined here is per-thread code.
This enables each thread to make unique, dynamic decisions regarding what kernel or
operation to execute next. There are no synchronization requirements between threads
within a block to execute any of the provided device runtime APIs, which enables the
device runtime API functions to be called in arbitrarily divergent kernel code without
deadlock.

C.3.1.1. Device-Side Kernel Launch
Kernels may be launched from the device using the standard CUDA <<< >>> syntax:
kernel_name<<< Dg, Db, Ns, S >>>([kernel arguments]);

‣ Dg is of type dim3 and specifies the dimensions and size of the grid
‣ Db is of type dim3 and specifies the dimensions and size of each thread block
‣ Ns is of type size_t and specifies the number of bytes of shared memory that

is dynamically allocated per thread block for this call and addition to statically
allocated memory. Ns is an optional argument that defaults to 0.

‣ S is of type cudaStream_t and specifies the stream associated with this call. The
stream must have been allocated in the same thread block where the call is being
made. S is an optional argument that defaults to 0.

C.3.1.1.1. Launches are Asynchronous

Identical to host-side launches, all device-side kernel launches are asynchronous with
respect to the launching thread. That is to say, the <<<>>> launch command will return
immediately and the launching thread will continue to execute until it hits an explicit
launch-synchronization point such as cudaDeviceSynchronize(). The grid launch is
posted to the device and will execute independently of the parent thread. The child grid
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may begin execution at any time after launch, but is not guaranteed to begin execution
until the launching thread reaches an explicit launch-synchronization point.

C.3.1.1.2. Launch Environment Configuration

All global device configuration settings (e.g., shared memory and L1 cache size as
returned from cudaDeviceGetCacheConfig(), and device limits returned from
cudaDeviceGetLimit()) will be inherited from the parent. That is to say if, when the
parent is launched, execution is configured globally for 16k of shared memory and 48k
of L1 cache, then the child's execution state will be configured identically. Likewise,
device limits such as stack size will remain as-configured.

For host-launched kernels, per-kernel configurations set from the host will take
precedence over the global setting. These configurations will be used when the kernel is
launched from the device as well. It is not possible to reconfigure a kernel's environment
from the device.

C.3.1.1.3. Launch from __host__ __device__ Functions

Although the device runtime enables kernel launches from either the host or device,
kernel launches from __host__ __device__ functions are unsupported. The compiler
will fail to compile if a __host__ device__ function is used to launch a kernel.

C.3.1.2. Streams
Both named and unnamed (NULL) streams are available from the device runtime.
Named streams may be used by any thread within a thread-block, but stream handles
may not be passed to other blocks or child/parent kernels. In other words, a stream
should be treated as private to the block in which it is created. Stream handles are not
guaranteed to be unique between blocks, so using a stream handle within a block that
did not allocate it will result in undefined behavior.

Similar to host-side launch, work launched into separate streams may run concurrently,
but actual concurrency is not guaranteed. Programs that depend upon concurrency
between child kernels are not supported by the CUDA programming model and will
have undefined behavior.

The host-side NULL stream's cross-stream barrier semantic is not supported on the
device (see below for details). In order to retain semantic compatibility with the host
runtime, all device streams must be created using the cudaStreamCreateWithFlags()
API, passing the cudaStreamNonBlocking flag. The cudaStreamCreate() call is a
host-runtime- only API and will fail to compile for the device.

As cudaStreamSynchronize() and cudaStreamQuery() are unsupported by
the device runtime, cudaDeviceSynchronize() should be used instead when the
application needs to know that stream-launched child kernels have completed.

C.3.1.2.1. The Implicit (NULL) Stream

Within a host program, the unnamed (NULL) stream has additional barrier
synchronization semantics with other streams (see Default Stream for details). The
device runtime offers a single implicit, unnamed stream shared between all threads in
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a block, but as all named streams must be created with the cudaStreamNonBlocking
flag, work launched into the NULL stream will not insert an implicit dependency on
pending work in any other streams.

C.3.1.3. Events
Only the inter-stream synchronization capabilities of CUDA events are
supported. This means that cudaStreamWaitEvent() is supported, but
cudaEventSynchronize(), cudaEventElapsedTime(), and cudaEventQuery() are
not. As cudaEventElapsedTime() is not supported, cudaEvents must be created via
cudaEventCreateWithFlags(), passing the cudaEventDisableTiming flag.

As for all device runtime objects, event objects may be shared between all threads
withinthe thread-block which created them but are local to that block and may not be
passed to other kernels, or between blocks within the same kernel. Event handles are not
guaranteed to be unique between blocks, so using an event handle within a block that
did not create it will result in undefined behavior.

C.3.1.4. Synchronization
The cudaDeviceSynchronize() function will synchronize on all work launched by
any thread in the thread-block up to the point where cudaDeviceSynchronize() was
called. Note that cudaDeviceSynchronize() may be called from within divergent
code (see Block Wide Synchronization).

It is up to the program to perform sufficient additional inter-thread synchronization, for
example via a call to __syncthreads(), if the calling thread is intended to synchronize
with child grids invoked from other threads.

C.3.1.4.1. Block Wide Synchronization

The cudaDeviceSynchronize() function does not imply intra-block synchronization.
In particular, without explicit synchronization via a __syncthreads() directive
the calling thread can make no assumptions about what work has been launched by
any thread other than itself. For example if multiple threads within a block are each
launching work and synchronization is desired for all this work at once (perhaps
because of event-based dependencies), it is up to the program to guarantee that this
work is submitted by all threads before calling cudaDeviceSynchronize().

Because the implementation is permitted to synchronize on launches from any thread in
the block, it is quite possible that simultaneous calls to cudaDeviceSynchronize() by
multiple threads will drain all work in the first call and then have no effect for the later
calls.

C.3.1.5. Device Management
Only the device on which a kernel is running will be controllable from that kernel.
This means that device APIs such as cudaSetDevice() are not supported by
the device runtime. The active device as seen from the GPU (returned from
cudaGetDevice()) will have the same device number as seen from the host system.
The cudaGetDeviceProperty() call may request information about another device
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as this API allows specification of a device ID as a parameter of the call. Note that the
catch-all cudaGetDeviceProperties() API is not offered by the device runtime -
properties must be queried individually.

C.3.1.6. Memory Declarations

C.3.1.6.1. Device and Constant Memory

Memory declared at file scope with __device__ or __constant__ qualifiers behave
identically when using the device runtime. All kernels may read or write device
variables, whether the kernel was initially launched by the host or device runtime.
Equivalently, all kernels will have the same view of __constant__s as declared at the
module scope.

C.3.1.6.2. Textures & Surfaces

CUDA supports dynamically created texture and surface objects1, where a texture
reference may be created on the host, passed to a kernel, used by that kernel, and then
destroyed from the host. The device runtime does not allow creation or destruction
of texture or surface objects from within device code, but texture and surface objects
created from the host may be used and passed around freely on the device. Regardless
of where they are created, dynamically created texture objects are always valid and may
be passed to child kernels from a parent.

The device runtime does not support legacy module-scope (i.e., Fermi-style) textures
and surfaces within a kernel launched from the device. Module-scope (legacy)
textures may be created from the host and used in device code as for any kernel,
but may only be used by a top-level kernel (i.e., the one which is launched from the
host).

C.3.1.6.3. Shared Memory Variable Declarations

In CUDA C/C++ shared memory can be declared either as a statically sized file-scope or
function-scoped variable, or as an extern variable with the size determined at runtime
by the kernel's caller via a launch configuration argument. Both types of declarations are
valid under the device runtime.

1 Dynamically created texture and surface objects are an addition to the CUDA memory model introduced with CUDA
5.0. Please see the CUDA Programming Guide for details.
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__global__ void permute(int n, int *data) {
   extern __shared__ int smem[];
   if (n <= 1)
       return;

   smem[threadIdx.x] = data[threadIdx.x];
   __syncthreads();

   permute_data(smem, n);
   __syncthreads();

   // Write back to GMEM since we can't pass SMEM to children.
   data[threadIdx.x] = smem[threadIdx.x];
   __syncthreads();

   if (threadIdx.x == 0) {
       permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data);
       permute<<< 1, 256, n/2*sizeof(int) >>>(n/2, data+n/2);
   }
}

void host_launch(int *data) {
    permute<<< 1, 256, 256*sizeof(int) >>>(256, data);
}

C.3.1.6.4. Symbol Addresses

Device-side symbols (i.e., those marked __device__) may be referenced from within a
kernel simply via the & operator, as all global-scope device variables are in the kernel's
visible address space. This also applies to __constant__ symbols, although in this case
the pointer will reference read-only data.

Given that device-side symbols can be referenced directly, those CUDA
runtime APIs which reference symbols (e.g., cudaMemcpyToSymbol() or
cudaGetSymbolAddress()) are redundant and hence not supported by the device
runtime. Note this implies that constant data cannot be altered from within a running
kernel, even ahead of a child kernel launch, as references to __constant__ space are
read-only.

C.3.1.7. API Errors and Launch Failures
As usual for the CUDA runtime, any function may return an error code. The last error
code returned is recorded and may be retrieved via the cudaGetLastError() call.
Errors are recorded per-thread, so that each thread can identify the most recent error
that it has generated. The error code is of type cudaError_t.

Similar to a host-side launch, device-side launches may fail for many reasons (invalid
arguments, etc). The user must call cudaGetLastError() to determine if a launch
generated an error, however lack of an error after launch does not imply the child kernel
completed successfully.

For device-side exceptions, e.g., access to an invalid address, an error in a child
grid will be returned to the host instead of being returned by the parent's call to
cudaDeviceSynchronize().
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C.3.1.7.1. Launch Setup APIs

Kernel launch is a system-level mechanism exposed through the device
runtime library, and as such is available directly from PTX via the underlying
cudaGetParameterBuffer() and cudaLaunchDevice() APIs. It is permitted for
a CUDA application to call these APIs itself, with the same requirements as for PTX.
In both cases, the user is then responsible for correctly populating all necessary data
structures in the correct format according to specification. Backwards compatibility is
guaranteed in these data structures.

As with host-side launch, the device-side operator <<<>>> maps to underlying kernel
launch APIs. This is so that users targeting PTX will be able to enact a launch, and so
that the compiler front-end can translate <<<>>> into these calls.

Table 4 New Device-only Launch Implementation Functions

Runtime API Launch Functions

Description of Difference From Host
Runtime Behaviour (behaviour is identical if
no description)

cudaGetParameterBuffer Generated automatically from <<<>>>. Note
different API to host equivalent.

cudaLaunchDevice Generated automatically from <<<>>>. Note
different API to host equivalent.

The APIs for these launch functions are different to those of the CUDA Runtime API,
and are defined as follows:
extern   device   cudaError_t cudaGetParameterBuffer(void **params);
extern __device__ cudaError_t cudaLaunchDevice(void *kernel,
                                        void *params, dim3 gridDim,
                                        dim3 blockDim,
                                        unsigned int sharedMemSize = 0,
                                        cudaStream_t stream = 0);

C.3.1.8. API Reference
The portions of the CUDA Runtime API supported in the device runtime are detailed
here. Host and device runtime APIs have identical syntax; semantics are the same except
where indicated. The table below provides an overview of the API relative to the version
available from the host.

Table 5 Supported API Functions

Runtime API Functions Details

cudaDeviceSynchronize Synchronizes on work launched from thread's own
block only

cudaDeviceGetCacheConfig

cudaDeviceGetLimit

cudaGetLastError Last error is per-thread state, not per-block state
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Runtime API Functions Details

cudaPeekAtLastError

cudaGetErrorString

cudaGetDeviceCount

cudaGetDeviceProperty Will return properties for any device

cudaGetDevice Always returns current device ID as would be seen
from host

cudaStreamCreateWithFlags Must pass cudaStreamNonBlocking flag

cudaStreamDestroy

cudaStreamWaitEvent

cudaEventCreateWithFlags Must pass cudaEventDisableTiming flag

cudaEventRecord

cudaEventDestroy

cudaFuncGetAttributes

cudaMemcpyAsync

cudaMemcpy2DAsync

cudaMemcpy3DAsync

cudaMemsetAsync

Notes about all memcpy/memset functions:

‣ Only async memcpy/set functions are
supported

‣ Only device-to-device memcpy is permitted
‣ May not pass in local or shared memory

pointers

cudaMemset2DAsync

cudaMemset3DAsync

cudaRuntimeGetVersion

cudaMalloc

cudaFree

May not call cudaFree on the device on a pointer
created on the host, and vice-versa

C.3.2. Device-side Launch from PTX
This section is for the programming language and compiler implementers who target
Parallel Thread Execution (PTX) and plan to support Dynamic Parallelism in their language.
It provides the low-level details related to supporting kernel launches at the PTX level.

C.3.2.1. Kernel Launch APIs
Device-side kernel launches can be implemented using the following two APIs
accessible from PTX: cudaLaunchDevice() and cudaGetParameterBuffer().
cudaLaunchDevice() launches the specified kernel with the parameter buffer that
is obtained by calling cudaGetParameterBuffer() and filled with the parameters
to the launched kernel. The parameter buffer can be NULL, i.e., no need to invoke
cudaGetParameterBuffer(), if the launched kernel does not take any parameters.
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C.3.2.1.1. cudaLaunchDevice

At the PTX level, cudaLaunchDevice()needs to be declared in one of the two forms
shown below before it is used.
// PTX-level Declaration of cudaLaunchDevice() when .address_size is 64
.extern .func(.param .b32 func_retval0) cudaLaunchDevice 
( 
  .param .b64 func, 
  .param .b64 parameterBuffer, 
  .param .align 4 .b8 gridDimension[12], 
  .param .align 4 .b8 blockDimension[12], 
  .param .b32 sharedMemSize, 
  .param .b64 stream 
) 
;

// PTX-level Declaration of cudaLaunchDevice() when .address_size is 32
.extern .func(.param .b32 func_retval0) cudaLaunchDevice
(
  .param .b32 func,
  .param .b32 parameterBuffer,
  .param .align 4 .b8 gridDimension[12],
  .param .align 4 .b8 blockDimension[12],
  .param .b32 sharedMemSize,
  .param .b32 stream
)
;

The CUDA-level declaration below is mapped to one of the aforementioned PTX-level
declarations and is found in the system header file cuda_device_runtime_api.h.
The function is defined in the cudadevrt system library, which must be linked with a
program in order to use device-side kernel launch functionality.
// CUDA-level declaration of cudaLaunchDevice()
extern "C" __device__ 
cudaError_t cudaLaunchDevice(void *func, void *parameterBuffer, 
                             dim3 gridDimension, dim3 blockDimension, 
                             unsigned int sharedMemSize, 
                             cudaStream_t stream);

The first parameter is a pointer to the kernel to be is launched, and the second parameter
is the parameter buffer that holds the actual parameters to the launched kernel. The
layout of the parameter buffer is explained in Parameter Buffer Layout, below. Other
parameters specify the launch configuration, i.e., as grid dimension, block dimension,
shared memory size, and the stream associated with the launch (please refer to
Execution Configuration for the detailed description of launch configuration.
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C.3.2.1.2. cudaGetParameterBuffer

cudaGetParameterBuffer() needs to be declared at the PTX level before it's used.
The PTX-level declaration must be in one of the two forms given below, depending on
address size:
// PTX-level Declaration of cudaGetParameterBuffer() when .address_size is 64
// When .address_size is 64
.extern .func(.param .b64 func_retval0) cudaGetParameterBuffer
(
  .param .b64 alignment,
  .param .b64 size
)
;

// PTX-level Declaration of cudaGetParameterBuffer() when .address_size is 32
.extern .func(.param .b32 func_retval0) cudaGetParameterBuffer
(
  .param .b32 alignment,
  .param .b32 size
)
;

The following CUDA-level declaration of cudaGetParameterBuffer() is mapped to
the aforementioned PTX-level declaration:
// CUDA-level Declaration of cudaGetParameterBuffer()
extern "C" __device__
void *cudaGetParameterBuffer(size_t alignment, size_t size);

The first parameter specifies the alignment requirement of the parameter buffer and
the second parameter the size requirement in bytes. In the current implementation, the
parameter buffer returned by cudaGetParameterBuffer() is always guaranteed to
be 64- byte aligned, and the alignment requirement parameter is ignored. However,
it is recommended to pass the correct alignment requirement value - which is
the largest alignment of any parameter to be placed in the parameter buffer - to
cudaGetParameterBuffer() to ensure portability in the future.

C.3.2.2. Parameter Buffer Layout
Parameter reordering in the parameter buffer is prohibited, and each individual
parameter placed in the parameter buffer is required to be aligned. That is, each
parameter must be placed at the nth byte in the parameter buffer, where n is the smallest
multiple of the parameter size that is greater than the offset of the last byte taken by the
preceding parameter. The maximum size of the parameter buffer is 4KB.

For a more detailed description of PTX code generated by the CUDA compiler, please
refer to the PTX-3.5 specification.

C.3.3. Toolkit Support for Dynamic Parallelism

C.3.3.1. Including Device Runtime API in CUDA Code
Similar to the host-side runtime API, prototypes for the CUDA device runtime API
are included automatically during program compilation. There is no need to include
cuda_device_runtime_api.h explicitly.
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C.3.3.2. Compiling and Linking
CUDA programs are automatically linked with the host runtime library when compiled
with nvcc, but the device runtime is shipped as a static library which must explicitly be
linked with a program which wishes to use it.

The device runtime is offered as a static library (cudadevrt.lib on Windows,
libcudadevrt.a under Linux and MacOS), against which a GPU application that uses
the device runtime must be linked. Linking of device libraries can be accomplished
through nvcc and/or nvlink. Two simple examples are shown below.

A device runtime program may be compiled and linked in a single step, if all required
source files can be specified from the command line:

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt

It is also possible to compile CUDA .cu source files first to object files, and then link
these together in a two-stage process:

$ nvcc -arch=sm_35 -dc hello_world.cu -o hello_world.o
$ nvcc -arch=sm_35 -rdc=true hello_world.o -o hello -lcudadevrt

Please see the Using Separate Compilation section of The CUDA Driver Compiler NVCC
guide for more details.

C.4. Programming Guidelines

C.4.1. Basics
The device runtime is a functional subset of the host runtime. API level device
management, kernel launching, device memcpy, stream management, and event
management are exposed from the device runtime.

Programming for the device runtime should be familiar to someone who already has
experience with CUDA. Device runtime syntax and semantics are largely the same as
that of the host API, with any exceptions detailed earlier in this document.
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The following example shows a simple Hello World program incorporating dynamic
parallelism:
#include <stdio.h> 

__global__ void childKernel() 
{ 
    printf("Hello "); 
} 

__global__ void parentKernel() 
{ 
    // launch child 
    childKernel<<<1,1>>>(); 
    if (cudaSuccess != cudaGetLastError()) { 
        return; 
    }

    // wait for child to complete 
    if (cudaSuccess != cudaDeviceSynchronize()) { 
        return; 
    } 

    printf("World!\n"); 
} 

int main(int argc, char *argv[]) 
{ 
    // launch parent 
    parentKernel<<<1,1>>>(); 
    if (cudaSuccess != cudaGetLastError()) { 
        return 1; 
    } 

    // wait for parent to complete 
    if (cudaSuccess != cudaDeviceSynchronize()) { 
        return 2; 
    } 

    return 0; 
}

This program may be built in a single step from the command line as follows:

$ nvcc -arch=sm_35 -rdc=true hello_world.cu -o hello -lcudadevrt

C.4.2. Performance

C.4.2.1. Synchronization
Synchronization by one thread may impact the performance of other threads in the same
Thread Block, even when those other threads do not call cudaDeviceSynchronize()
themselves. This impact will depend upon the underlying implementation.

C.4.2.2. Dynamic-parallelism-enabled Kernel Overhead
System software which is active when controlling dynamic launches may impose an
overhead on any kernel which is running at the time, whether or not it invokes kernel
launches of its own. This overhead arises from the device runtime's execution tracking
and management software and may result in decreased performance for e.g., library
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calls when made from the device compared to from the host side. This overhead is, in
general, incurred for applications that link against the device runtime library.

C.4.3. Implementation Restrictions and Limitations
Dynamic Parallelism guarantees all semantics described in this document, however,
certain hardware and software resources are implementation-dependent and limit the
scale, performance and other properties of a program which uses the device runtime.

C.4.3.1. Runtime

C.4.3.1.1. Memory Footprint

The device runtime system software reserves memory for various management
purposes, in particular one reservation which is used for saving parent-grid state
during synchronization, and a second reservation for tracking pending grid launches.
Configuration controls are available to reduce the size of these reservations in exchange
for certain launch limitations. See Configuration Options, below, for details.

The majority of reserved memory is allocated as backing-store for parent kernel state, for
use when synchronizing on a child launch. Conservatively, this memory must support
storing of state for the maximum number of live threads possible on the device. This
means that each parent generation at which cudaDeviceSynchronize() is callable
may require up to 150MB of device memory, depending on the device configuration,
which will be unavailable for program use even if it is not all consumed.

C.4.3.1.2. Nesting and Synchronization Depth

Using the device runtime, one kernel may launch another kernel, and that kernel may
launch another, and so on. Each subordinate launch is considered a new nesting level,
and the total number of levels is the nesting depth of the program. The synchronization
depth is defined as the deepest level at which the program will explicitly synchronize
on a child launch. Typically this is one less than the nesting depth of the program, but
if the program does not need to call cudaDeviceSynchronize() at all levels then the
synchronization depth might be substantially different to the nesting depth.

The overall maximum nesting depth is limited to 24, but practically speaking the real
limit will be the amount of memory required by the system for each new level (see
Memory Footprint above). Any launch which would result in a kernel at a deeper level
than the maximum will fail. Note that this may also apply to cudaMemcpyAsync(),
which might itself generate a kernel launch. See Configuration Options for details.

By default, sufficient storage is reserved for two levels of synchronization. This
maximum synchronization depth (and hence reserved storage) may be controlled by
calling cudaDeviceSetLimit() and specifying cudaLimitDevRuntimeSyncDepth.
The number of levels to be supported must be configured before the top-level kernel is
launched from the host, in order to guarantee successful execution of a nested program.
Calling cudaDeviceSynchronize() at a depth greater than the specified maximum
synchronization depth will return an error.
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An optimization is permitted where the system detects that it need not
reserve space for the parent's state in cases where the parent kernel never calls
cudaDeviceSynchronize(). In this case, because explicit parent/child synchronization
never occurs, the memory footprint required for a program will be much less than
the conservative maximum. Such a program could specify a shallower maximum
synchronization depth to avoid over-allocation of backing store.

C.4.3.1.3. Pending Kernel Launches

When a kernel is launched, all associated configuration and parameter data is tracked
until the kernel completes. This data is stored within a system-managed launch pool.

The launch pool is divided into a fixed-size pool and a virtualized pool with lower
performance. The device runtime system software will try to track launch data in the
fixed-size pool first. The virtualized pool will be used to track new launches when the
fixed-size pool is full.

The size of the fixed-size launch pool is configurable by
calling cudaDeviceSetLimit() from the host and specifying
cudaLimitDevRuntimePendingLaunchCount.

C.4.3.1.4. Configuration Options

Resource allocation for the device runtime system software is controlled via the
cudaDeviceSetLimit() API from the host program. Limits must be set before
any kernel is launched, and may not be changed while the GPU is actively running
programs.

The following named limits may be set:

Limit Behavior

cudaLimitDevRuntimeSyncDepth Sets the maximum depth at which
cudaDeviceSynchronize() may be
called. Launches may be performed deeper
than this, but explicit synchronization
deeper than this limit will return the
cudaErrorLaunchMaxDepthExceeded. The
default maximum sync depth is 2.

cudaLimitDevRuntimePendingLaunchCount Controls the amount of memory set aside for
buffering kernel launches which have not yet
begun to execute, due either to unresolved
dependencies or lack of execution resources.
When the buffer is full, the device runtime
system software will attempt to track new
pending launches in a lower performance
virtualized buffer. If the virtualized buffer
is also full, i.e. when all available heap
space is consumed, launches will not occur,
and the thread's last error will be set to
cudaErrorLaunchPendingCountExceeded.
The default pending launch count is 2048
launches.
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C.4.3.1.5. Memory Allocation and Lifetime

cudaMalloc() and cudaFree() have distinct semantics between the host and device
environments. When invoked from the host, cudaMalloc() allocates a new region from
unused device memory. When invoked from the device runtime these functions map
to device-side malloc() and free(). This implies that within the device environment
the total allocatable memory is limited to the device malloc() heap size, which may
be smaller than the available unused device memory. Also, it is an error to invoke
cudaFree() from the host program on a pointer which was allocated by cudaMalloc()
on the device or vice-versa.

cudaMalloc() on Host cudaMalloc() on Device

cudaFree() on Host Supported Not Supported

cudaFree() on Device Not Supported Supported

Allocation limit Free device memory cudaLimitMallocHeapSize

C.4.3.1.6. SM Id and Warp Id

Note that in PTX %smid and %warpid are defined as volatile values. The device runtime
may reschedule thread blocks onto different SMs in order to more efficiently manage
resources. As such, it is unsafe to rely upon %smid or %warpid remaining unchanged
across the lifetime of a thread or thread block.

C.4.3.1.7. ECC Errors

No notification of ECC errors is available to code within a CUDA kernel. ECC errors
are reported at the host side once the entire launch tree has completed. Any ECC errors
which arise during execution of a nested program will either generate an exception or
continue execution (depending upon error and configuration).
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Appendix D.
MATHEMATICAL FUNCTIONS

The reference manual lists, along with their description, all the functions of the C/C++
standard library mathematical functions that are supported in device code, as well as all
intrinsic functions (that are only supported in device code).

This appendix provides accuracy information for some of these functions when
applicable.

D.1. Standard Functions
The functions from this section can be used in both host and device code.

This section specifies the error bounds of each function when executed on the device and
also when executed on the host in the case where the host does not supply the function.

The error bounds are generated from extensive but not exhaustive tests, so they are not
guaranteed bounds.

Single-Precision Floating-Point Functions

Addition and multiplication are IEEE-compliant, so have a maximum error of
0.5 ulp. However, on the device, the compiler often combines them into a single
multiply-add instruction (FMAD) and for devices of compute capability 1.x, FMAD
truncates the intermediate result of the multiplication as mentioned in Floating-Point
Standard.This combination can be avoided by using the __fadd_[rn,rz,ru,rd]()
and __fmul_[rn,rz,ru,rd]() intrinsic functions (see Intrinsic Functions).

The recommended way to round a single-precision floating-point operand to an
integer, with the result being a single-precision floating-point number is rintf(),
not roundf(). The reason is that roundf() maps to an 8-instruction sequence on
the device, whereas rintf() maps to a single instruction. truncf(), ceilf(), and
floorf() each map to a single instruction as well.
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Table 6 Single-Precision Mathematical Standard Library Functions with
Maximum ULP Error

The maximum error is stated as the absolute value of the difference in ulps between a
correctly rounded single-precision result and the result returned by the CUDA library
function.

Function Maximum ulp error

x+y 0 (IEEE-754 round-to-nearest-even)

(except for devices of compute capability 1.x when addition

is merged into an FMAD)

x*y 0 (IEEE-754 round-to-nearest-even)

(except for devices of compute capability 1.x when

multiplication is merged into an FMAD)

x/y 0 for compute capability ≥ 2 when compiled with -prec-

div=true

2 (full range), otherwise

1/x 0 for compute capability ≥ 2 when compiled with -prec-

div=true

1 (full range), otherwise

rsqrtf(x)

1/sqrtf(x)

2 (full range)

Applies to 1/sqrtf(x) only when it is converted to

rsqrtf(x) by the compiler.

sqrtf(x) 0 for compute capability ≥ 2 when compiled with -prec-

sqrt=true

3 (full range), otherwise

cbrtf(x) 1 (full range)

rcbrtf(x) 2 (full range)

hypotf(x,y) 3 (full range)

rhypotf(x,y) 4 (full range)

expf(x) 2 (full range)

exp2f(x) 2 (full range)

exp10f(x) 2 (full range)

expm1f(x) 1 (full range)
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Function Maximum ulp error

logf(x) 1 (full range)

log2f(x) 3 (full range)

log10f(x) 3 (full range)

log1pf(x) 2 (full range)

sinf(x) 2 (full range)

cosf(x) 2 (full range)

tanf(x) 4 (full range)

sincosf(x,sptr,cptr) 2 (full range)

sinpif(x) 2 (full range)

cospif(x) 2 (full range)

sincospif(x,sptr,cptr) 2 (full range)

asinf(x) 4 (full range)

acosf(x) 3 (full range)

atanf(x) 2 (full range)

atan2f(y,x) 3 (full range)

sinhf(x) 3 (full range)

coshf(x) 2 (full range)

tanhf(x) 2 (full range)

asinhf(x) 3 (full range)

acoshf(x) 4 (full range)

atanhf(x) 3 (full range)

powf(x,y) 8 (full range)

erff(x) 2 (full range)

erfcf(x) 6 (full range)

erfinvf(x) 3 (full range)

erfcinvf(x) 4 (full range)

erfcxf(x) 6 (full range)

normcdff(x) 6 (full range)



Mathematical Functions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 155

Function Maximum ulp error

normcdfinvf(x) 5 (full range)

lgammaf(x) 6 (outside interval -10.001 ... -2.264; larger inside)

tgammaf(x) 11 (full range)

fmaf(x,y,z) 0 (full range)

frexpf(x,exp) 0 (full range)

ldexpf(x,exp) 0 (full range)

scalbnf(x,n) 0 (full range)

scalblnf(x,l) 0 (full range)

logbf(x) 0 (full range)

ilogbf(x) 0 (full range)

j0f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

j1f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

jnf(x) For n = 128, the maximum absolute error is 2.2 x 10-6

y0f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

y1f(x) 9 for |x| < 8

otherwise, the maximum absolute error is 2.2 x 10-6

ynf(x) ceil(2 + 2.5n) for |x| < n

otherwise, the maximum absolute error is 2.2 x 10-6

fmodf(x,y) 0 (full range)

remainderf(x,y) 0 (full range)

remquof(x,y,iptr) 0 (full range)

modff(x,iptr) 0 (full range)

fdimf(x,y) 0 (full range)

truncf(x) 0 (full range)

roundf(x) 0 (full range)
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Function Maximum ulp error

rintf(x) 0 (full range)

nearbyintf(x) 0 (full range)

ceilf(x) 0 (full range)

floorf(x) 0 (full range)

lrintf(x) 0 (full range)

lroundf(x) 0 (full range)

llrintf(x) 0 (full range)

llroundf(x) 0 (full range)

Double-Precision Floating-Point Functions

The errors listed below only apply when compiling for devices with native double-
precision support. When compiling for devices without such support, such as devices
of compute capability 1.2 and lower, the double type gets demoted to float by
default and the double-precision math functions are mapped to their single-precision
equivalents.

The recommended way to round a double-precision floating-point operand to an
integer, with the result being a double-precision floating-point number is rint(), not
round(). The reason is that round() maps to an 8-instruction sequence on the device,
whereas rint() maps to a single instruction. trunc(), ceil(), and floor() each map
to a single instruction as well.

Table 7 Double-Precision Mathematical Standard Library Functions with
Maximum ULP Error

The maximum error is stated as the absolute value of the difference in ulps between a
correctly rounded double-precision result and the result returned by the CUDA library
function.

Function Maximum ulp error

x+y 0 (IEEE-754 round-to-nearest-even)

x*y 0 (IEEE-754 round-to-nearest-even)

x/y 0 (IEEE-754 round-to-nearest-even)

1/x 0 (IEEE-754 round-to-nearest-even)

sqrt(x) 0 (IEEE-754 round-to-nearest-even)
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Function Maximum ulp error

rsqrt(x) 1 (full range)

cbrt(x) 1 (full range)

rcbrt(x) 1 (full range)

hypot(x,y) 2 (full range)

rhypot(x,y) 1 (full range)

exp(x) 1 (full range)

exp2(x) 1 (full range)

exp10(x) 1 (full range)

expm1(x) 1 (full range)

log(x) 1 (full range)

log2(x) 1 (full range)

log10(x) 1 (full range)

log1p(x) 1 (full range)

sin(x) 1 (full range)

cos(x) 1 (full range)

tan(x) 2 (full range)

sincos(x,sptr,cptr) 1 (full range)

sinpi(x) 1 (full range)

cospi(x) 1 (full range)

sincospi(x,sptr,cptr) 1 (full range)

asin(x) 2 (full range)

acos(x) 2 (full range)

atan(x) 2 (full range)

atan2(y,x) 2 (full range)

sinh(x) 1 (full range)

cosh(x) 1 (full range)

tanh(x) 1 (full range)

asinh(x) 2 (full range)
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Function Maximum ulp error

acosh(x) 2 (full range)

atanh(x) 2 (full range)

pow(x,y) 2 (full range)

erf(x) 2 (full range)

erfc(x) 4 (full range)

erfinv(x) 5 (full range)

erfcinv(x) 6 (full range)

erfcx(x) 3 (full range)

normcdf(x) 5 (full range)

normcdfinv(x) 7 (full range)

lgamma(x) 4 (outside interval -11.0001 ... -2.2637; larger

inside)

tgamma(x) 8 (full range)

fma(x,y,z) 0 (IEEE-754 round-to-nearest-even)

frexp(x,exp) 0 (full range)

ldexp(x,exp) 0 (full range)

scalbn(x,n) 0 (full range)

scalbln(x,l) 0 (full range)

logb(x) 0 (full range)

ilogb(x) 0 (full range)

j0(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x

10-12

j1(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x

10-12

jn(x) For n = 128, the maximum absolute error is 5 x

10-12

y0(x) 7 for |x| < 8
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Function Maximum ulp error

otherwise, the maximum absolute error is 5 x

10-12

y1(x) 7 for |x| < 8

otherwise, the maximum absolute error is 5 x

10-12

yn(x) For |x| > 1.5n, the maximum absolute error is 5

x 10-12

fmod(x,y) 0 (full range)

remainder(x,y) 0 (full range)

remquo(x,y,iptr) 0 (full range)

mod(x,iptr) 0 (full range)

fdim(x,y) 0 (full range)

trunc(x) 0 (full range)

round(x) 0 (full range)

rint(x) 0 (full range)

nearbyint(x) 0 (full range)

ceil(x) 0 (full range)

floor(x) 0 (full range)

lrint(x) 0 (full range)

lround(x) 0 (full range)

llrint(x) 0 (full range)

llround(x) 0 (full range)

D.2. Intrinsic Functions
The functions from this section can only be used in device code.

Among these functions are the less accurate, but faster versions of some of the functions
of Standard Functions .They have the same name prefixed with __ (such as __sinf(x)).
They are faster as they map to fewer native instructions. The compiler has an option
(-use_fast_math) that forces each function in Table 8 to compile to its intrinsic
counterpart. In addition to reducing the accuracy of the affected functions, it may
also cause some differences in special case handling. A more robust approach is to
selectively replace mathematical function calls by calls to intrinsic functions only where
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it is merited by the performance gains and where changed properties such as reduced
accuracy and different special case handling can be tolerated.

Table 8 Functions Affected by -use_fast_math

Operator/Function Device Function

x/y __fdividef(x,y)

sinf(x) __sinf(x)

cosf(x) __cosf(x)

tanf(x) __tanf(x)

sincosf(x,sptr,cptr) __sincosf(x,sptr,cptr)

logf(x) __logf(x)

log2f(x) __log2f(x)

log10f(x) __log10f(x)

expf(x) __expf(x)

exp10f(x) __exp10f(x)

powf(x,y) __powf(x,y)

Functions suffixed with _rn operate using the round to nearest even rounding mode.

Functions suffixed with _rz operate using the round towards zero rounding mode.

Functions suffixed with _ru operate using the round up (to positive infinity) rounding
mode.

Functions suffixed with _rd operate using the round down (to negative infinity)
rounding mode.

Single-Precision Floating-Point Functions

__fadd_[rn,rz,ru,rd]() and __fmul_[rn,rz,ru,rd]() map to addition and
multiplication operations that the compiler never merges into FMADs. By contrast,
additions and multiplications generated from the '*' and '+' operators will frequently be
combined into FMADs.

The accuracy of floating-point division varies depending on the compute capability
of the device and whether the code is compiled with -prec-div=false or -prec-
div=true. For devices of compute capability 2.x and higher when the code is compiled
with -prec-div=false or for devices of compute capability 1.x, both the regular
division / operator and __fdividef(x,y) have the same accuracy, but for 2126 < y
< 2128, __fdividef(x,y) delivers a result of zero, whereas the / operator delivers
the correct result to within the accuracy stated in Table 9. Also, for 2126 < y < 2128, if
x is infinity, __fdividef(x,y) delivers a NaN (as a result of multiplying infinity by
zero), while the / operator returns infinity. On the other hand, the / operator is IEEE-
compliant on devices of compute capability 2.x and higher when the code is compiled
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with -prec-div=true or without any -prec-div option at all since its default value is
true.

Table 9 Single-Precision Floating-Point Intrinsic Functions

(Supported by the CUDA Runtime Library with Respective Error Bounds)

Function Error bounds

__fadd_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fsub_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fmul_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fmaf_[rn,rz,ru,rd](x,y,z) IEEE-compliant.

__frcp_[rn,rz,ru,rd](x) IEEE-compliant.

__fsqrt_[rn,rz,ru,rd](x) IEEE-compliant.

__frsqrt_rn(x) IEEE-compliant.

__fdiv_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fdividef(x,y) For y in [2-126, 2126], the maximum ulp error is 2.

__expf(x) The maximum ulp error is 2 + floor(abs(1.16

* x)).

__exp10f(x) The maximum ulp error is 2+ floor(abs(2.95 *

x)).

__logf(x) For x in [0.5, 2], the maximum absolute error is

2-21.41, otherwise, the maximum ulp error is 3.

__log2f(x) For x in [0.5, 2], the maximum absolute error is

2-22, otherwise, the maximum ulp error is 2.

__log10f(x) For x in [0.5, 2], the maximum absolute error is

2-24, otherwise, the maximum ulp error is 3.

__sinf(x) For x in [-π,π], the maximum absolute error is

2-21.41, and larger otherwise.

__cosf(x) For x in [-π,π], the maximum absolute error is

2-21.19, and larger otherwise.

__sincosf(x,sptr,cptr) Same as __sinf(x) and __cosf(x).

__tanf(x) Derived from its implementation as __sinf(x) *

(1/__cosf(x)).



Mathematical Functions

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 162

Function Error bounds

__powf(x, y) Derived from its implementation as exp2f(y *

__log2f(x)).

Double-Precision Floating-Point Functions

__dadd_rn() and __dmul_rn() map to addition and multiplication operations that
the compiler never merges into FMADs. By contrast, additions and multiplications
generated from the '*' and '+' operators will frequently be combined into FMADs.

Table 10 Double-Precision Floating-Point Intrinsic Functions

(Supported by the CUDA Runtime Library with Respective Error Bounds)

Function Error bounds

__dadd_[rn,rz,ru,rd](x,y) IEEE-compliant.

__dsub_[rn,rz,ru,rd](x,y) IEEE-compliant.

__dmul_[rn,rz,ru,rd](x,y) IEEE-compliant.

__fma_[rn,rz,ru,rd](x,y,z) IEEE-compliant.

__ddiv_[rn,rz,ru,rd](x,y)(x,y) IEEE-compliant.

Requires compute capability > 2.

__drcp_[rn,rz,ru,rd](x) IEEE-compliant.

Requires compute capability > 2.

__dsqrt_[rn,rz,ru,rd](x) IEEE-compliant.

Requires compute capability > 2.
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Appendix E.
C/C++ LANGUAGE SUPPORT

As described in Compilation with NVCC, source files compiled with nvcc can include a
mix of host code and device code.

For the host code, nvcc supports whatever part of the C++ ISO/IEC 14882:2003
specification the host c++ compiler supports.

For the device code, nvcc supports the features illustrated in Code Samples with some
restrictions described in Restrictions; it does not support run time type information
(RTTI), exception handling, and the C++ Standard Library.

E.1. Code Samples

E.1.1. Data Aggregation Class
class PixelRGBA {
public:
    __device__ PixelRGBA(): r_(0), g_(0), b_(0), a_(0) { }
    
    __device__ PixelRGBA(unsigned char r, unsigned char g,
                         unsigned char b, unsigned char a = 255):
                         r_(r), g_(g), b_(b), a_(a) { }
    
private:
    unsigned char r_, g_, b_, a_;
    
    friend PixelRGBA operator+(const PixelRGBA const PixelRGBA&);
};

__device__ 
PixelRGBA operator+(const PixelRGBA& p1, const PixelRGBA& p2)
{
    return PixelRGBA(p1.r_ + p2.r_, p1.g_ + p2.g_, 
                     p1.b_ + p2.b_, p1.a_ + p2.a_);
}

__device__ void func(void)
{
    PixelRGBA p1, p2;
    // ...      // Initialization of p1 and p2 here
    PixelRGBA p3 = p1 + p2;
}
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E.1.2. Derived Class
__device__ void* operator new(size_t bytes, MemoryPool& p);
__device__ void operator delete(void*, MemoryPool& p);
class Shape {
public:
    __device__ Shape(void) { }
    __device__ void putThis(PrintBuffer *p) const;
    __device__ virtual void Draw(PrintBuffer *p) const {
         p->put("Shapeless"); 
    }
    __device__ virtual ~Shape() {}
};
class Point : public Shape {
public:
    __device__ Point() : x(0), y(0) {}
    __device__ Point(int ix, int iy) : x(ix), y(iy) { }
    __device__ void PutCoord(PrintBuffer *p) const;
    __device__ void Draw(PrintBuffer *p) const;
    __device__ ~Point() {}
private:
    int x, y;
};
__device__ Shape* GetPointObj(MemoryPool& pool)
{
    Shape* shape = new(pool) Point(rand(-20,10), rand(-100,-20));
    return shape;
}

E.1.3. Class Template
template <class T>
class myValues {
    T values[MAX_VALUES];
public:
    __device__ myValues(T clear) { ... }
    __device__ void setValue(int Idx, T value) { ... }
    __device__ void putToMemory(T* valueLocation) { ... }
};

template <class T>
void __global__ useValues(T* memoryBuffer) {
    myValues<T> myLocation(0);
    ...
}

__device__ void* buffer;

int main()
{
    ...
    useValues<int><<<blocks, threads>>>(buffer);
    ...
}
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E.1.4. Function Template
template <typename T> 
__device__ bool func(T x) 
{
   ...
   return (...);
}

template <> 
__device__ bool func<int>(T x) // Specialization
{
   return true;
}

// Explicit argument specification
bool result = func<double>(0.5);

// Implicit argument deduction
int x = 1;
bool result = func(x);

E.1.5. Functor Class
class Add {
public:
    __device__  float operator() (float a, float b) const
    {
        return a + b;
    }
};

class Sub {
public:
    __device__  float operator() (float a, float b) const
    {
        return a - b;
    }
};

// Device code
template<class O> __global__ 
void VectorOperation(const float * A, const float * B, float * C,
                     unsigned int N, O op)
{
    unsigned int iElement = blockDim.x * blockIdx.x + threadIdx.x;
    if (iElement < N)
        C[iElement] = op(A[iElement], B[iElement]);
}

// Host code
int main()
{
    ...
    VectorOperation<<<blocks, threads>>>(v1, v2, v3, N, Add());
    ...
}
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E.2. Restrictions

E.2.1. Preprocessor Symbols

E.2.1.1. __CUDA_ARCH__
 1. The type signature of the following entities shall not depend on whether

__CUDA_ARCH__ is defined or not, or on a particular value of __CUDA_ARCH__:

‣ __global__ functions and function templates
‣ __device__ and __constant__ variables
‣ textures and surfaces

Example:

#if !defined(__CUDA_ARCH__)
typedef int mytype;
#else
typedef double mytype;
#endif

__device__ mytype xxx;         // error: xxx's type depends on __CUDA_ARCH__
__global__ void foo(mytype in, // error: foo's type depends on __CUDA_ARCH__
                    mytype *ptr)
{
  *ptr = in;
}

 2. If a __global__ function template is instantiated and launched from the host,
then the function template must be instantiated with the same template arguments
irrespective of whether __CUDA_ARCH__ is defined and regardless of the value of
__CUDA_ARCH__.

Example:

__device__ int result;
template <typename T>
__global__ void kern(T in)
{
  result = in;
}

__host__ __device__ void foo(void)
{
#if !defined(__CUDA_ARCH__)
  kern<<<1,1>>>(1);      // error: "kern<int>" instantiation only
                         // when __CUDA_ARCH__ is undefined!
#endif
}

int main(void)
{
  foo();
  cudaDeviceSynchronize();
  return 0;
}
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 3. In separate compilation mode, the presence or absence of a definition of a function
or variable with external linkage shall not depend on whether __CUDA_ARCH__ is
defined or on a particular value of __CUDA_ARCH__ 6.

Example:

#if !defined(__CUDA_ARCH__)
void foo(void) { }                  // error: The definition of foo()
                                    // is only present when __CUDA_ARCH__
                                    // is undefined
#endif

The compiler does not guarantee that a diagnostic will be generated for the unsupported
uses of __CUDA_ARCH__ described above.

E.2.2. Qualifiers

E.2.2.1. Device Memory Qualifiers
The __device__, __shared__ and __constant__ qualifiers are not allowed on:

‣ class, struct, and union data members,
‣ formal parameters,
‣ local variables within a function that executes on the host.

__shared__ and __constant__ variables have implied static storage.

__device__ and __constant__ variable definitions are only allowed in namespace
scope (including global namespace scope).

__device__, __constant__ and __shared__ variables defined in namespace scope,
that are of class type, cannot have a non-empty constructor or a non-empty destructor. A
constructor for a class type is considered empty at a point in the translation unit, if it is
either a trivial constructor or it satisfies all of the following conditions:

‣ The constructor function has been defined.
‣ The constructor function has no parameters, the initializer list is empty and the

function body is an empty compound statement.
‣ Its class has no virtual functions and no virtual base classes.
‣ The default constructors of all base classes of its class can be considered empty.
‣ For all the nonstatic data members of its class that are of class type (or array thereof),

the default constructors can be considered empty.

A destructor for a class is considered empty at a point in the translation unit, if it is
either a trivial destructor or it satisfies all of the following conditions:

‣ The destructor function has been defined.
‣ The destructor function body is an empty compound statement.
‣ Its class has no virtual functions and no virtual base classes.
‣ The destructors of all base classes of its class can be considered empty.

6 This does not apply to entities that may be defined in more than one translation unit, such as compiler generated
template instantiations.
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‣ For all the nonstatic data members of its class that are of class type (or array thereof),
the destructor can be considered empty.

When compiling in the whole program compilation mode (see the nvcc user manual for
a description of this mode), __device__, __shared__, and __constant__ variables
cannot be defined as external using the extern keyword. The only exception is for
dynamically allocated __shared__ variables as described in __shared__.

When compiling in the separate compilation mode (see the nvcc user manual for a
description of this mode), __device__, __shared__, and __constant__ variables can
be defined as external using the extern keyword. nvlink will generate an error when
it cannot find a definition for an external variable (unless it is a dynamically allocated
__shared__ variable).

E.2.2.2. __managed__ Qualifier
Variables marked with the __managed__ qualifier ("managed" variables) have the
following restrictions:

‣ The address of a managed variable is not a constant expression.
‣ A managed variable shall not have a const qualified type.
‣ A managed variable shall not have a reference type.
‣ The address or value of a managed variable shall not be used when the CUDA

runtime may not be in a valid state, including the following cases:

‣ In static/dynamic initialization or destruction of an object with static or thread
local storage duration.

‣ In code that executes after exit() has been called (e.g., a function marked with
gcc's "attribute((destructor))").

‣ In code that executes when CUDA runtime may not be initialized (e.g., a
function marked with gcc's "attribute((constructor))").

‣ Managed variables have the same coherence and consistency behavior as specified
for dynamically allocated managed memory.

‣ When a CUDA program containing managed variables is run on an execution
platform with multiple GPUs, the variables are allocated only once, and not per
GPU.



C/C++ Language Support

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 169

Here are examples of legal and illegal uses of managed variables:
__device__ __managed__ int xxx = 10;         // OK

int *ptr = &xxx;                             // error: use of managed variable 
                                             // (xxx) in static initialization
struct S1_t {
  int field;
  S1_t(void) : field(xxx) { };
};
struct S2_t {
  ~S2_t(void) { xxx = 10; }
};

S1_t temp1;                                 // error: use of managed variable 
                                            // (xxx) in dynamic initialization

S2_t temp2;                                 // error: use of managed variable
                                            // (xxx) in the destructor of 
                                            // object with static storage 
                                            // duration

__device__ __managed__ const int yyy = 10;  // error: const qualified type

__device__ __managed__ int &zzz = xxx;      // error: reference type

template <int *addr> struct S3_t { };
S3_t<&xxx> temp;                            // error: address of managed 
                                            // variable(xxx) not a 
                                            // constant expression

__global__ void kern(int *ptr)
{
  assert(ptr == &xxx);                      // OK
  xxx = 20;                                 // OK
}
int main(void) 
{
  int *ptr = &xxx;                          // OK
  kern<<<1,1>>>(ptr);
  cudaDeviceSynchronize();
  xxx++;                                    // OK
}

E.2.2.3. Volatile Qualifier
Only after the execution of a __threadfence_block(), __threadfence(), or
__syncthreads() (Memory Fence Functions and Synchronization Functions) are prior
writes to global or shared memory guaranteed to be visible by other threads. As long
as this requirement is met, the compiler is free to optimize reads and writes to global or
shared memory.

This behavior can be changed using the volatile keyword: If a variable located in
global or shared memory is declared as volatile, the compiler assumes that its value can
be changed or used at any time by another thread and therefore any reference to this
variable compiles to an actual memory read or write instruction.

E.2.3. Pointers
For devices of compute capability 1.x, pointers in code that is executed on the device
are supported as long as the compiler is able to resolve whether they point to either the
shared memory space, the global memory space, or the local memory space, otherwise
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they are restricted to only point to memory allocated or declared in the global memory
space. For devices of compute capability 2.x and higher, pointers are supported without
any restriction.

Dereferencing a pointer either to global or shared memory in code that is executed
on the host, or to host memory in code that is executed on the device results in an
undefined behavior, most often in a segmentation fault and application termination.

The address obtained by taking the address of a __device__, __shared__ or
__constant__ variable can only be used in device code. The address of a __device__
or __constant__ variable obtained through cudaGetSymbolAddress() as described
in Device Memory can only be used in host code.

As a consequence of the use of C++ syntax rules, void pointers (e.g., returned by
malloc()) cannot be assigned to non-void pointers without a typecast.

E.2.4. Operators

E.2.4.1. Assignment Operator
__constant__ variables can only be assigned from the host code through runtime
functions (Device Memory); they cannot be assigned from the device code.

__shared__ variables cannot have an initialization as part of their declaration.

It is not allowed to assign values to any of the built-in variables defined in Built-in
Variables.

E.2.4.2. Address Operator
It is not allowed to take the address of any of the built-in variables defined in Built-in
Variables.

E.2.5. Functions

E.2.5.1. External Linkage
A call within some device code of a function declared with the extern qualifier is only
allowed if the function is defined within the same compilation unit as the device code,
i.e., a single file or several files linked together with relocatable device code and nvlink.

E.2.5.2. Compiler generated functions
The execution space qualifiers (__host__, __device__) for a compiler generated
function are the union of the execution space qualifiers of all the functions that invoke it
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(note that a __global__ caller will be treated as a __device__  caller for this analysis).
For example:
class Base {
  int x;
public:  
  __host__ __device__ Base(void) : x(10) {}
};

class Derived : public Base {
  int y;
};

class Other: public Base {
  int z;
};

__device__ void foo(void)
{
  Derived D1;
  Other D2;
}

__host__ void bar(void)
{
  Other D3;
}

Here, the compiler generated constructor function "Derived::Derived" will be treated
as a __device__ function, since it is invoked only from the __device__ function
"foo". The compiler generated constructor function "Other::Other" will be treated as a
__host__ __device__ function, since it is invoked both from a __device__ function
"foo" and a __host__ function "bar".

E.2.5.3. Function Parameters
__global__ function parameters are passed to the device:

‣ via shared memory and are limited to 256 bytes on devices of compute capability
1.x,

‣ via constant memory and are limited to 4 KB on devices of compute capability 2.x
and higher.

__device__ and __global__ functions cannot have a variable number of arguments.

E.2.5.4. Static Variables within Function
Within the body of a __device__ or __global__ function, only __shared__ variables
may be declared with static storage class.

E.2.5.5. Function Pointers
Function pointers to __global__ functions are supported in host code, but not in device
code.

Function pointers to __device__ functions are only supported in device code compiled
for devices of compute capability 2.x and higher.

It is not allowed to take the address of a __device__ function in host code.
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E.2.5.6. Function Recursion
__global__ functions do not support recursion.

__device__ functions only support recursion in device code compiled for devices of
compute capability 2.x and higher.

E.2.6. Classes

E.2.6.1. Data Members
Static data members are not supported.

The layout of bit-fields in device code may currently not match the layout in host code
on Windows.

E.2.6.2. Function Members
Static member functions cannot be __global__ functions.

E.2.6.3. Virtual Functions
When a function in a derived class overrides a virtual function in a base class, the
execution space qualifiers (i.e., __host__, __device__) on the overridden and
overriding functions must match.

It is not allowed to pass as an argument to a __global__ function an object of a class
with virtual functions.

The virtual function table is placed in global or constant memory by the compiler.

E.2.6.4. Virtual Base Classes
It is not allowed to pass as an argument to a __global__ function an object of a class
derived from virtual base classes.

Use of virtual base class members is unsupported on devices of compute capability
1.x. For example, nvcc gives an error when the code below is compiled with -arch
compute_10.
class Base {
public:
  int x;
};

class Derived : public virtual Base {
public:
  int y;
};

__global__ void k(Derived *d)
{
  int v = d->x; // Unsupported on compute capability 1.x.
  ...
}
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Casting an object to its virtual base type is also unsupported on devices of compute
capability 1.x. An example of such cases is shown below.
class Base { };

class Derived : public virtual Base { };

__device__ Base *get(Derived *x)
{
  return static_cast<Base *>(x); // Unsupported on compute capability 1.x
}

E.2.6.5. Anonymous Unions
Member variables of a namespace scope anonymous union cannot be referenced in a
__global__ or __device__ function.

E.2.6.6. Windows-Specific
On Windows, the CUDA compiler may produce a different memory layout, compared
to the host Microsoft compiler, for a C++ object of class type T that satisfies any of the
following conditions:

‣ T has virtual functions or derives from a direct or indirect base class that has virtual
functions;

‣ T has a direct or indirect virtual base class;
‣ T has multiple inheritance with more than one direct or indirect empty base class.

The size for such an object may also be different in host and device code. As long as type
T is used exclusively in host or device code, the program should work correctly. Do not
pass objects of type T between host and device code (e.g., as arguments to __global__
functions or through cudaMemcpy*() calls).
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E.2.7. Templates
A __global__ function template cannot be instantiated with a type or typedef that
is defined within a function or is private to a class or structure, as illustrated in the
following code sample:
template <typename T>
__global__ void myKernel1(void) { }

template <typename T>
__global__ void myKernel2(T par) { }

class myClass {
private:
    struct inner_t { }; 
public:
    static void launch(void) 
    {
       // Both kernel launches below are disallowed
       // as myKernel1 and myKernel2 are instantiated
       // with private type inner_t

       myKernel1<inner_t><<<1,1>>>();

       inner_t var; 
       myKernel2<<<1,1>>>(var);
    }
};
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Appendix F.
TEXTURE FETCHING

This appendix gives the formula used to compute the value returned by the texture
functions of Texture Functions depending on the various attributes of the texture
reference (see Texture and Surface Memory).

The texture bound to the texture reference is represented as an array T of

‣ N texels for a one-dimensional texture,
‣ N x M texels for a two-dimensional texture,
‣ N x M x L texels for a three-dimensional texture.

It is fetched using non-normalized texture coordinates x, y, and z, or the normalized
texture coordinates x/N, y/M, and z/L as described in Texture Memory. In this appendix,
the coordinates are assumed to be in the valid range. Texture Memory explained how
out-of-range coordinates are remapped to the valid range based on the addressing
mode.

F.1. Nearest-Point Sampling
In this filtering mode, the value returned by the texture fetch is

‣ tex(x)=T[i] for a one-dimensional texture,
‣ tex(x,y)=T[i,j] for a two-dimensional texture,
‣ tex(x,y,z)=T[i,j,k] for a three-dimensional texture,

where i=floor(x), j=floor(y), and k=floor(z).

Figure 13 illustrates nearest-point sampling for a one-dimensional texture with N=4.

For integer textures, the value returned by the texture fetch can be optionally remapped
to [0.0, 1.0] (see Texture Memory).



Texture Fetching

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 176

0 41 2 3

T[0]

T[1]

T[2]

T[3]

x

0 10.25 0.5 0.75

Non- Normalized

Normalized

tex(x)

Figure 13 Nearest-Point Sampling Filtering Mode
Nearest-point sampling of a one-dimensional texture of four texels.

F.2. Linear Filtering
In this filtering mode, which is only available for floating-point textures, the value
returned by the texture fetch is

‣ tex(x)=(1−α)T[i]+αT[i+1] for a one-dimensional texture,
‣ tex(x,y)=(1−α)(1−β)T[i,j]+α(1−β)T[i+1,j]+(1−α)βT[i,j+1]+αβT[i+1,j+1] for a two-

dimensional texture,
‣ tex(x,y,z) =

(1−α)(1−β)(1−γ)T[i,j,k]+α(1−β)(1−γ)T[i+1,j,k]+

(1−α)β(1−γ)T[i,j+1,k]+αβ(1−γ)T[i+1,j+1,k]+

(1−α)(1−β)γT[i,j,k+1]+α(1−β)γT[i+1,j,k+1]+

(1−α)βγT[i,j+1,k+1]+αβγT[i+1,j+1,k+1]

for a three-dimensional texture,

where:

‣ i=floor(xB), α=frac(xB), xB=x-0.5,
‣ j=floor(yB), β=frac(yB), yB=y-0.5,
‣ k=floor(zB), γ=frac(zB), zB= z-0.5,

α, β, and γ are stored in 9-bit fixed point format with 8 bits of fractional value (so 1.0 is
exactly represented).

Figure 14 illustrates linear filtering of a one-dimensional texture with N=4.
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Figure 14 Linear Filtering Mode
Linear filtering of a one-dimensional texture of four texels in clamp addressing mode.

F.3. Table Lookup
A table lookup TL(x) where x spans the interval [0,R] can be implemented as
TL(x)=tex((N-1)/R)x+0.5) in order to ensure that TL(0)=T[0] and TL(R)=T[N-1].

Figure 15 illustrates the use of texture filtering to implement a table lookup with R=4 or
R=1 from a one-dimensional texture with N=4.
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Figure 15 One-Dimensional Table Lookup Using Linear Filtering
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Appendix G.
COMPUTE CAPABILITIES

The general specifications and features of a compute device depend on its compute
capability (see Compute Capability).

Table 11 gives the features and technical specifications associated to each compute
capability.

Floating-Point Standard reviews the compliance with the IEEE floating-point standard.

Section Compute Capability 1.x, Compute Capability 2.x, Compute Capability 3.x
give more details on the architecture of devices of compute capability 1.x, 2.x, and 3.x,
respectively.

G.1. Features and Technical Specifications
Table 11 Feature Support per Compute Capability

Feature Support Compute Capability

(Unlisted features are supported for
all compute capabilities) 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Atomic functions operating on 32-bit
integer values in global memory (Atomic
Functions)

atomicExch() operating on 32-bit
floating point values in global memory
(atomicExch())

No Yes

Atomic functions operating on 32-bit
integer values in shared memory (Atomic
Functions)

atomicExch() operating on 32-bit
floating point values in shared memory
(atomicExch())

Atomic functions operating on 64-bit
integer values in global memory (Atomic
Functions)

No Yes
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Feature Support Compute Capability

(Unlisted features are supported for
all compute capabilities) 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Warp vote functions (Warp Vote
Functions)

Double-precision floating-point numbers No Yes

Atomic functions operating on 64-bit
integer values in shared memory (Atomic
Functions)

Atomic addition operating on 32-bit
floating point values in global and shared
memory (atomicAdd())

__ballot() (Warp Vote Functions)

__threadfence_system() (Memory Fence
Functions)

__syncthreads_count(),

__syncthreads_and(),

__syncthreads_or() (Synchronization
Functions)

Surface functions (Surface Functions)

3D grid of thread blocks

No Yes

Unified Memory Programming No Yes

Funnel shift (see reference manual)

Dynamic Parallelism

No Yes

Table 12 Technical Specifications per Compute Capability

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum dimensionality of grid of thread
blocks 2 3

Maximum x-dimension of a grid of thread
blocks 65535 231-1

Maximum y- or z-dimension of a grid of
thread blocks 65535

Maximum dimensionality of thread block 3

Maximum x- or y-dimension of a block 512 1024

Maximum z-dimension of a block 64

Maximum number of threads per block 512 1024

Warp size 32



Compute Capabilities

www.nvidia.com
CUDA C Programming Guide PG-02829-001_v6.0 | 181

Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum number of resident blocks per
multiprocessor 8 16

Maximum number of resident warps per
multiprocessor 24 32 48 64

Maximum number of resident threads per
multiprocessor 768 1024 1536 2048

Number of 32-bit registers per
multiprocessor 8 K 16 K 32 K 64 K

Maximum number of 32-bit registers per
thread

128 63 255

Maximum amount of shared memory per
multiprocessor 16 KB 48 KB

Maximum amount of shared memory per
thread block 16 KB 48 KB

Number of shared memory banks 16 32

Amount of local memory per thread 16 KB 512 KB

Constant memory size 64 KB

Cache working set per multiprocessor for
constant memory 8 KB

Cache working set per multiprocessor for
texture memory

Device dependent,
between 6 KB and 8 KB 12 KB

Between
12 KB
and

48 KB

Maximum width for a 1D texture
reference bound to a CUDA array 8192 65536

Maximum width for a 1D texture
reference bound to linear memory 227

Maximum width and number of layers for
a 1D layered texture reference 8192 x 512 16384 x 2048

Maximum width and height for a 2D
texture reference bound to a CUDA array 65536 x 32768 65536 x 65535

Maximum width and height for a 2D
texture reference bound to linear memory 65000 x 65000 65000 x 65000

Maximum width and height for a 2D
texture reference bound to a CUDA array
supporting texture gather

N/A 16384 x 16384

Maximum width, height, and number of
layers for a 2D layered texture reference 8192 x 8192 x 512 16384 x 16384 x 2048

Maximum width, height, and depth for
a 3D texture reference bound to a CUDA
array

2048 x 2048 x 2048 4096 x 4096
x 4096
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Compute Capability

Technical Specifications 1.0 1.1 1.2 1.3 2.x 3.0 3.5

Maximum width (and height) for a
cubemap texture reference N/A 16384

Maximum width (and height) and number
of layers for a cubemap layered texture
reference

N/A 16384 x 2046

Maximum number of textures that can be
bound to a kernel 128 256

Maximum width for a 1D surface
reference bound to a CUDA array 65536

Maximum width and number of layers for
a 1D layered surface reference 65536 x 2048

Maximum width and height for a 2D
surface reference bound to a CUDA array 65536 x 32768

Maximum width, height, and number of
layers for a 2D layered surface reference 65536 x 32768 x 2048

Maximum width, height, and depth for
a 3D surface reference bound to a CUDA
array

65536 x 32768 x 2048

Maximum width (and height) for a
cubemap surface reference bound to a
CUDA array

32768

Maximum width (and height) and number
of layers for a cubemap layered surface
reference

32768 x 2046

Maximum number of surfaces that can be
bound to a kernel

N/A

8 16

Maximum number of instructions per
kernel 2 million 512 million

G.2. Floating-Point Standard
All compute devices follow the IEEE 754-2008 standard for binary floating-point
arithmetic with the following deviations:

‣ There is no dynamically configurable rounding mode; however, most of the
operations support multiple IEEE rounding modes, exposed via device intrinsics;

‣ There is no mechanism for detecting that a floating-point exception has occurred
and all operations behave as if the IEEE-754 exceptions are always masked, and
deliver the masked response as defined by IEEE-754 if there is an exceptional event;
for the same reason, while SNaN encodings are supported, they are not signaling
and are handled as quiet;

‣ The result of a single-precision floating-point operation involving one or more input
NaNs is the quiet NaN of bit pattern 0x7fffffff;
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‣ Double-precision floating-point absolute value and negation are not compliant with
IEEE-754 with respect to NaNs; these are passed through unchanged;

‣ For single-precision floating-point numbers on devices of compute capability 1.x:

‣ Denormalized numbers are not supported; floating-point arithmetic and
comparison instructions convert denormalized operands to zero prior to the
floating-point operation;

‣ Underflowed results are flushed to zero;
‣ Some instructions are not IEEE-compliant:

‣ Addition and multiplication are often combined into a single multiply-
add instruction (FMAD), which truncates (i.e., without rounding) the
intermediate mantissa of the multiplication;

‣ Division is implemented via the reciprocal in a non-standard-compliant
way;

‣ Square root is implemented via the reciprocal square root in a non-
standard-compliant way;

‣ For addition and multiplication, only round-to-nearest-even and round-
towards-zero are supported via static rounding modes; directed rounding
towards +/- infinity is not supported.

To mitigate the impact of these restrictions, IEEE-compliant software (and
therefore slower) implementations are provided through the following intrinsics
(c.f. Intrinsic Functions):

‣ __fmaf_r{n,z,u,d}(float, float, float): single-precision fused
multiply-add with IEEE rounding modes,

‣ __frcp_r[n,z,u,d](float): single-precision reciprocal with IEEE
rounding modes,

‣ __fdiv_r[n,z,u,d](float, float): single-precision division with IEEE
rounding modes,

‣ __fsqrt_r[n,z,u,d](float): single-precision square root with IEEE
rounding modes,

‣ __fadd_r[u,d](float, float): single-precision addition with IEEE
directed rounding,

‣ __fsub_r[u,d](float, float): single-precision subtraction with IEEE
directed rounding,

‣ __fmul_r[u,d](float, float): single-precision multiplication with
IEEE directed rounding;

‣ For double-precision floating-point numbers on devices of compute capability 1.x:

‣ Round-to-nearest-even is the only supported IEEE rounding mode for
reciprocal, division, and square root.

When compiling for devices without native double-precision floating-point support, i.e.,
devices of compute capability 1.2 and lower, each double variable is converted to single-
precision floating-point format (but retains its size of 64 bits) and double-precision
floating-point arithmetic gets demoted to single-precision floating-point arithmetic.
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For devices of compute capability 2.x and higher, code must be compiled with -
ftz=false, -prec-div=true, and -prec-sqrt=true to ensure IEEE compliance (this
is the default setting; see the nvcc user manual for description of these compilation
flags); code compiled with -ftz=true, -prec-div=false, and -prec-sqrt=false
comes closest to the code generated for devices of compute capability 1.x.

Addition and multiplication are often combined into a single multiply-add instruction:

‣ FMAD for single precision on devices of compute capability 1.x,
‣ FFMA for single precision on devices of compute capability 2.x and higher.

As mentioned above, FMAD truncates the mantissa prior to use it in the addition.
FFMA, on the other hand, is an IEEE-754(2008) compliant fused multiply-add
instruction, so the full-width product is being used in the addition and a single rounding
occurs during generation of the final result. While FFMA in general has superior
numerical properties compared to FMAD, the switch from FMAD to FFMA can cause
slight changes in numeric results and can in rare circumstances lead to slightly larger
error in final results.

In accordance to the IEEE-754R standard, if one of the input parameters to fminf(),
fmin(), fmaxf(), or fmax() is NaN, but not the other, the result is the non-NaN
parameter.

The conversion of a floating-point value to an integer value in the case where the
floating-point value falls outside the range of the integer format is left undefined by
IEEE-754. For compute devices, the behavior is to clamp to the end of the supported
range. This is unlike the x86 architecture behavior.

The behavior of integer division by zero and integer overflow is left undefined by
IEEE-754. For compute devices, there is no mechanism for detecting that such integer
operation exceptions have occurred. Integer division by zero yields an unspecified,
machine-specific value.

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-
compliance-nvidia-gpus includes more information on the floating point accuracy and
compliance of NVIDIA GPUs.

G.3. Compute Capability 1.x

G.3.1. Architecture
For devices of compute capability 1.x, a multiprocessor consists of:

‣ 8 CUDA cores for arithmetic operations (see Arithmetic Instructions for throughputs
of arithmetic operations),

‣ 1 double-precision floating-point unit for double-precision floating-point arithmetic
operations (this is only for devices of compute capability 1.3 and above),

‣ 2 special function units for single-precision floating-point transcendental functions
(these units can also handle single-precision floating-point multiplications),

‣ 1 warp scheduler.

http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
http://developer.nvidia.com/content/precision-performance-floating-point-and-ieee-754-compliance-nvidia-gpus
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To execute an instruction for all threads of a warp, the warp scheduler must therefore
issue the instruction over:

‣ 4 clock cycles for an integer or single-precision floating-point arithmetic instruction,
‣ 32 clock cycles for a double-precision floating-point arithmetic instruction (this is

only for devices of compute capability 1.3 and above),
‣ 16 clock cycles for a single-precision floating-point transcendental instruction.

A multiprocessor also has a read-only constant cache that is shared by all functional
units and speeds up reads from the constant memory space, which resides in device
memory.

Multiprocessors are grouped into Texture Processor Clusters (TPCs). The number of
multiprocessors per TPC is:

‣ 2 for devices of compute capabilities 1.0 and 1.1,
‣ 3 for devices of compute capabilities 1.2 and 1.3.

Each TPC has a read-only texture cache that is shared by all multiprocessors and
speeds up reads from the texture memory space, which resides in device memory. Each
multiprocessor accesses the texture cache via a texture unit that implements the various
addressing modes and data filtering mentioned in Texture and Surface Memory.

The local and global memory spaces reside in device memory and are not cached.

G.3.2. Global Memory
A global memory request for a warp is split into two memory requests, one for each half-
warp, that are issued independently. Devices of Compute Capability 1.0 and 1.1 and
Devices of Compute Capability 1.2 and 1.3 describe how the memory accesses of threads
within a half-warp are coalesced into one or more memory transactions depending on
the compute capability of the device. Figure 16 shows some examples of global memory
accesses and corresponding memory transactions based on compute capability.

The resulting memory transactions are serviced at the throughput of device memory.

Devices of Compute Capability 1.0 and 1.1

To coalesce, the memory request for a half-warp must satisfy the following conditions:

‣ The size of the words accessed by the threads must be 4, 8, or 16 bytes;
‣ If this size is:

‣ 4, all 16 words must lie in the same 64-byte segment,
‣ 8, all 16 words must lie in the same 128-byte segment,
‣ 16, the first 8 words must lie in the same 128-byte segment and the last 8 words

in the following 128-byte segment;
‣ Threads must access the words in sequence: The kth thread in the half-warp must

access the kth word.

If the half-warp meets these requirements, a 64-byte memory transaction, a 128-byte
memory transaction, or two 128-byte memory transactions are issued if the size of the
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words accessed by the threads is 4, 8, or 16, respectively. Coalescing is achieved even
if the warp is divergent, i.e., there are some inactive threads that do not actually access
memory.

If the half-warp does not meet these requirements, 16 separate 32-byte memory
transactions are issued.

Devices of Compute Capability 1.2 and 1.3

Threads can access any words in any order, including the same words, and a single
memory transaction for each segment addressed by the half-warp is issued. This is in
contrast with devices of compute capabilities 1.0 and 1.1 where threads need to access
words in sequence and coalescing only happens if the half-warp addresses a single
segment.

More precisely, the following protocol is used to determine the memory transactions
necessary to service all threads in a half-warp:

‣ Find the memory segment that contains the address requested by the active thread
with the lowest thread ID. The segment size depends on the size of the words
accessed by the threads:

‣ 32 bytes for 1-byte words,
‣ 64 bytes for 2 byte words,
‣ 128 bytes for 4-, 8- and 16-byte words.

‣ Find all other active threads whose requested address lies in the same segment.
‣ Reduce the transaction size, if possible:

‣ If the transaction size is 128 bytes and only the lower or upper half is used,
reduce the transaction size to 64 bytes;

‣ If the transaction size is 64 bytes (originally or after reduction from 128 bytes)
and only the lower or upper half is used, reduce the transaction size to 32 bytes.

‣ Carry out the transaction and mark the serviced threads as inactive.
‣ Repeat until all threads in the half-warp are serviced.

G.3.3. Shared Memory
Shared memory has 16 banks that are organized such that successive 32-bit words map
to successive banks. Each bank has a bandwidth of 32 bits per two clock cycles.

A shared memory request for a warp is split into two memory requests, one for each
half-warp, that are issued independently. As a consequence, there can be no bank
conflict between a thread belonging to the first half of a warp and a thread belonging to
the second half of the same warp.

If a non-atomic instruction executed by a warp writes to the same location in shared
memory for more than one of the threads of the warp, only one thread per half-warp
performs a write and which thread performs the final write is undefined.
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32-Bit Strided Access

A common access pattern is for each thread to access a 32-bit word from an array
indexed by the thread ID tid and with some stride s:
extern __shared__ float shared[];
float data = shared[BaseIndex + s * tid];

In this case, threads tid and tid+n access the same bank whenever s*n is a multiple of
the number of banks (i.e., 16) or, equivalently, whenever n is a multiple of 16/d where
d is the greatest common divisor of 16 and s. As a consequence, there will be no bank
conflict only if half the warp size (i.e., 16) is less than or equal to 16/d, i.e., only if d is
equal to 1, i.e., s is odd.

#unique_340/unique_340_Connect_42_examples-of-strided-shared-memory-accesses
shows some examples of strided access for devices of compute capability 3.x. The same
examples apply for devices of compute capability 1.x, but with 16 banks instead of 32.
Also, the access pattern for the example in the middle generates 2-way bank conflicts for
devices of compute capability 1.x.

32-Bit Broadcast Access

Shared memory features a broadcast mechanism whereby a 32-bit word can be read and
broadcast to several threads simultaneously when servicing one memory read request.
This reduces the number of bank conflicts when several threads read from an address
within the same 32-bit word. More precisely, a memory read request made of several
addresses is serviced in several steps over time by servicing one conflict-free subset of
these addresses per step until all addresses have been serviced; at each step, the subset
is built from the remaining addresses that have yet to be serviced using the following
procedure:

‣ Select one of the words pointed to by the remaining addresses as the broadcast
word;

‣ Include in the subset:

‣ All addresses that are within the broadcast word,
‣ One address for each bank (other than the broadcasting bank) pointed to by the

remaining addresses.

Which word is selected as the broadcast word and which address is picked up for each
bank at each cycle are unspecified.

A common conflict-free case is when all threads of a half-warp read from an address
within the same 32-bit word.

#unique_340/unique_340_Connect_42_examples-of-irregular-shared-memory-accesses
shows some examples of memory read accesses that involve the broadcast mechanism
for devices of compute capability 3.x. The same examples apply for devices of compute
capability 1.x, but with 16 banks instead of 32. Also, the access pattern for the example at
the right generates 2-way bank conflicts for devices of compute capability 1.x.
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8-Bit and 16-Bit Access

8-bit and 16-bit accesses typically generate bank conflicts. For example, there are bank
conflicts if an array of char is accessed the following way:
extern __shared__ char shared[];
char data = shared[BaseIndex + tid];

because shared[0], shared[1], shared[2], and shared[3], for example, belong to
the same bank. There are no bank conflicts however, if the same array is accessed the
following way:
char data = shared[BaseIndex + 4 * tid];

Larger Than 32-Bit Access

Accesses that are larger than 32-bit per thread are split into 32-bit accesses that typically
generate bank conflicts.

For example, there are 2-way bank conflicts for arrays of doubles accessed as follows:
extern __shared__ double shared[];
double data = shared[BaseIndex + tid];

as the memory request is compiled into two separate 32-bit requests with a stride of two.
One way to avoid bank conflicts in this case is two split the double operands like in the
following sample code:
__shared__ int shared_lo[32];
__shared__ int shared_hi[32];

double dataIn;
shared_lo[BaseIndex + tid] = __double2loint(dataIn);
shared_hi[BaseIndex + tid] = __double2hiint(dataIn);

double dataOut =
            __hiloint2double(shared_hi[BaseIndex + tid],
                             shared_lo[BaseIndex + tid]);

This might not always improve performance however and does perform worse on
devices of compute capabilities 2.x and higher.

The same applies to structure assignments. The following code, for example:
extern __shared__ struct type shared[];
struct type data = shared[BaseIndex + tid];

results in:

‣ Three separate reads without bank conflicts if type is defined as
struct type {
 float x, y, z;
};

since each member is accessed with an odd stride of three 32-bit words;
‣ Two separate reads with bank conflicts if type is defined as

struct type {
    float x, y;
};

since each member is accessed with an even stride of two 32-bit words.
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G.4. Compute Capability 2.x

G.4.1. Architecture
For devices of compute capability 2.x, a multiprocessor consists of:

‣ For devices of compute capability 2.0:

‣ 32 CUDA cores for arithmetic operations (see Arithmetic Instructions for
throughputs of arithmetic operations),

‣ 4 special function units for single-precision floating-point transcendental
functions,

‣ For devices of compute capability 2.1:

‣ 48 CUDA cores for arithmetic operations (see Arithmetic Instructions for
throughputs of arithmetic operations),

‣ 8 special function units for single-precision floating-point transcendental
functions,

‣ 2 warp schedulers.

At every instruction issue time, each scheduler issues:

‣ One instruction for devices of compute capability 2.0,
‣ Two independent instructions for devices of compute capability 2.1,

for some warp that is ready to execute, if any. The first scheduler is in charge of the
warps with an odd ID and the second scheduler is in charge of the warps with an even
ID. Note that when a scheduler issues a double-precision floating-point instruction, the
other scheduler cannot issue any instruction.

A warp scheduler can issue an instruction to only half of the CUDA cores. To execute
an instruction for all threads of a warp, a warp scheduler must therefore issue the
instruction over two clock cycles for an integer or floating-point arithmetic instruction.

A multiprocessor also has a read-only constant cache that is shared by all functional
units and speeds up reads from the constant memory space, which resides in device
memory.

There is an L1 cache for each multiprocessor and an L2 cache shared by all
multiprocessors, both of which are used to cache accesses to local or global memory,
including temporary register spills. The cache behavior (e.g., whether reads are cached
in both L1 and L2 or in L2 only) can be partially configured on a per-access basis using
modifiers to the load or store instruction.
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The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory and 48
KB of L1 cache, using cudaFuncSetCacheConfig()/cuFuncSetCacheConfig():

      // Device code
      __global__ void MyKernel(int* foo, int* bar, int a)
      {
      ...
      }

      // Host code

      // Runtime API
      // cudaFuncCachePreferShared: shared memory is 48 KB
      // cudaFuncCachePreferL1: shared memory is 16 KB
      // cudaFuncCachePreferNone: no preference
      cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared)

      // Or via a function pointer:
      void (*funcPtr)(int*, int*, int);
      funcPtr = MyKernel;
      cudaFuncSetCacheConfig(*funcPtr, cudaFuncCachePreferShared);
    

The default cache configuration is "prefer none," meaning "no preference."
If a kernel is configured to have no preference, then it will default
to the preference of the current thread/context, which is set using
cudaDeviceSetCacheConfig()/cuCtxSetCacheConfig() (see the reference manual
for details). If the current thread/context also has no preference (which is again the
default setting), then whichever cache configuration was most recently used for any
kernel will be the one that is used, unless a different cache configuration is required to
launch the kernel (e.g., due to shared memory requirements). The initial configuration is
48 KB of shared memory and 16 KB of L1 cache.

Applications may query the L2 cache size by checking the l2CacheSize device
property (see Device Enumeration). The maximum L2 cache size is 768 KB.

Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes
four multiprocessors.

Each multiprocessor has a read-only texture cache to speed up reads from the texture
memory space, which resides in device memory. It accesses the texture cache via a
texture unit that implements the various addressing modes and data filtering mentioned
in Texture and Surface Memory.

G.4.2. Global Memory
Global memory accesses are cached. Using the -dlcm compilation flag, they can be
configured at compile time to be cached in both L1 and L2 (-Xptxas -dlcm=ca) (this is
the default setting) or in L2 only (-Xptxas -dlcm=cg).

A cache line is 128 bytes and maps to a 128 byte aligned segment in device memory.
Memory accesses that are cached in both L1 and L2 are serviced with 128-byte memory
transactions whereas memory accesses that are cached in L2 only are serviced with
32-byte memory transactions. Caching in L2 only can therefore reduce over-fetch, for
example, in the case of scattered memory accesses.
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If the size of the words accessed by each thread is more than 4 bytes, a memory
request by a warp is first split into separate 128-byte memory requests that are issued
independently:

‣ Two memory requests, one for each half-warp, if the size is 8 bytes,
‣ Four memory requests, one for each quarter-warp, if the size is 16 bytes.

Each memory request is then broken down into cache line requests that are issued
independently. A cache line request is serviced at the throughput of L1 or L2 cache in
case of a cache hit, or at the throughput of device memory, otherwise.

Note that threads can access any words in any order, including the same words.

If a non-atomic instruction executed by a warp writes to the same location in global
memory for more than one of the threads of the warp, only one thread performs a write
and which thread does it is undefined.

Figure 16 shows some examples of global memory accesses and corresponding memory
transactions based on compute capability.

G.4.3. Shared Memory
Shared memory has 32 banks that are organized such that successive 32-bit words map
to successive banks. Each bank has a bandwidth of 32 bits per two clock cycles.

A shared memory request for a warp does not generate a bank conflict between two
threads that access any address within the same 32-bit word (even though the two
addresses fall in the same bank): In that case, for read accesses, the word is broadcast to
the requesting threads (and unlike for devices of compute capability 1.x, multiple words
can be broadcast in a single transaction) and for write accesses, each address is written
by only one of the threads (which thread performs the write is undefined).

This means, in particular, that unlike for devices of compute capability 1.x, there are no
bank conflicts if an array of char is accessed as follows, for example:
extern __shared__ char shared[];
char data = shared[BaseIndex + tid];

Also, unlike for devices of compute capability 1.x, there may be bank conflicts between a
thread belonging to the first half of a warp and a thread belonging to the second half of
the same warp.

#unique_340/unique_340_Connect_42_examples-of-irregular-shared-memory-accesses
shows some examples of memory read accesses that involve the broadcast mechanism
for devices of compute capability 3.x. The same examples apply for devices of compute
capability 2.x.

32-Bit Strided Access

A common access pattern is for each thread to access a 32-bit word from an array
indexed by the thread ID tid and with some stride s:
extern __shared__ float shared[];
float data = shared[BaseIndex + s * tid];
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In this case, threads tid and tid+n access the same bank whenever s*n is a multiple of
the number of banks (i.e., 32) or, equivalently, whenever n is a multiple of 32/d where
d is the greatest common divisor of 32 and s. As a consequence, there will be no bank
conflict only if the warp size (i.e., 32) is less than or equal to 32/d, i.e., only if d is equal
to 1, i.e., s is odd.

#unique_340/unique_340_Connect_42_examples-of-strided-shared-memory-accesses
shows some examples of strided access for devices of compute capability 3.x. The same
examples apply for devices of compute capability 2.x. However, the access pattern
for the example in the middle generates 2-way bank conflicts for devices of compute
capability 2.x.

Larger Than 32-Bit Access

64-bit and 128-bit accesses are specifically handled to minimize bank conflicts as
described below.

Other accesses larger than 32-bit are split into 32-bit, 64-bit, or 128-bit accesses. The
following code, for example:
struct type {
       float x, y, z;
};

extern __shared__ struct type shared[];
struct type data = shared[BaseIndex + tid];

results in three separate 32-bit reads without bank conflicts since each member is
accessed with a stride of three 32-bit words.

64-Bit Accesses: For 64-bit accesses, a bank conflict only occurs if two threads in either of
the half-warps access different addresses belonging to the same bank.

Unlike for devices of compute capability 1.x, there are no bank conflicts for arrays of
doubles accessed as follows, for example:
extern __shared__ double shared[];
double data = shared[BaseIndex + tid];

128-Bit Accesses: The majority of 128-bit accesses will cause 2-way bank conflicts, even if
no two threads in a quarter-warp access different addresses belonging to the same bank.
Therefore, to determine the ways of bank conflicts, one must add 1 to the maximum
number of threads in a quarter-warp that access different addresses belonging to the
same bank.

G.4.4. Constant Memory
In addition to the constant memory space supported by devices of all compute
capabilities (where __constant__ variables reside), devices of compute capability
2.x support the LDU (LoaD Uniform) instruction that the compiler uses to load any
variable that is:

‣ pointing to global memory,
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‣ read-only in the kernel (programmer can enforce this using the const keyword),
‣ not dependent on thread ID.

G.5. Compute Capability 3.x

G.5.1. Architecture
A multiprocessor consists of:

‣ 192 CUDA cores for arithmetic operations (see Arithmetic Instructions for
throughputs of arithmetic operations),

‣ 32 special function units for single-precision floating-point transcendental functions,
‣ 4 warp schedulers.

When a multiprocessor is given warps to execute, it first distributes them among
the four schedulers. Then, at every instruction issue time, each scheduler issues two
independent instructions for one of its assigned warps that is ready to execute, if any.

A multiprocessor has a read-only constant cache that is shared by all functional units
and speeds up reads from the constant memory space, which resides in device memory.

There is an L1 cache for each multiprocessor and an L2 cache shared by all
multiprocessors, both of which are used to cache accesses to local or global memory,
including temporary register spills. The cache behavior (e.g., whether reads are cached
in both L1 and L2 or in L2 only) can be partially configured on a per-access basis using
modifiers to the load or store instruction.

The same on-chip memory is used for both L1 and shared memory: It can be configured
as 48 KB of shared memory and 16 KB of L1 cache or as 16 KB of shared memory
and 48 KB of L1 cache or as 32 KB of shared memory and 32 KB of L1 cache, using
cudaFuncSetCacheConfig()/cuFuncSetCacheConfig():
// Device code
__global__ void MyKernel()
{
    ...
}

// Host code

// Runtime API
// cudaFuncCachePreferShared: shared memory is 48 KB
// cudaFuncCachePreferEqual: shared memory is 32 KB
// cudaFuncCachePreferL1: shared memory is 16 KB
// cudaFuncCachePreferNone: no preference
cudaFuncSetCacheConfig(MyKernel, cudaFuncCachePreferShared)

The default cache configuration is "prefer none," meaning "no preference."
If a kernel is configured to have no preference, then it will default
to the preference of the current thread/context, which is set using
cudaDeviceSetCacheConfig()/cuCtxSetCacheConfig() (see the reference manual
for details). If the current thread/context also has no preference (which is again the
default setting), then whichever cache configuration was most recently used for any
kernel will be the one that is used, unless a different cache configuration is required to
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launch the kernel (e.g., due to shared memory requirements). The initial configuration is
48 KB of shared memory and 16 KB of L1 cache.

Applications may query the L2 cache size by checking the l2CacheSize device property
(see Device Enumeration). The maximum L2 cache size is 1.5 MB.

Multiprocessors are grouped into Graphics Processor Clusters (GPCs). A GPC includes
three multiprocessors.

Each multiprocessor has a read-only data cache of 48 KB to speed up reads from device
memory. It accesses this cache either directly (for devices of compute capability 3.5 only),
or via a texture unit that implements the various addressing modes and data filtering
mentioned in Texture and Surface Memory. When accessed via the texture unit, the
read-only data cache is also referred to as texture cache.

G.5.2. Global Memory
Global memory accesses for devices of compute capability 3.x are cached in L2 and
for devices of compute capability 3.5, may also be cached in the read-only data cache
described in the previous section; they are not cached in L1.

Caching in L2 behaves in the same way as for devices of compute capability 2.x (see
Global Memory).

A global memory read performed using the __ldg() function (see Read-Only Data
Cache Load Function) is always cached in the read-only data cache. When applicable,
the compiler will also compile any regular global memory read to __ldg(). A
requirement for data to be cached in the read-only cache is that it must be read-only for
the entire lifetime of the kernel. In order to make it easier for the compiler to detect that
this condition is satisfied, pointers used for loading such data should be marked with
both the const and __restrict__ qualifiers.

Figure 16 shows some examples of global memory accesses and corresponding memory
transactions based on compute capability.
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Mis- aligned and sequential

Addresses: 96 128 160 192 224 256 288

Threads: 0 ... 31

Compute capability:

Memory transactions:

1.0 and 1.1 1.2 and 1.3 2.x and 3.x

Uncached Uncached Cached

7x 32B at 128

8x 32B at 160

8x 32B at 192

8x 32B at 224

1x 32B at 256

1x 128B at 128

1x 64B at 192

1x 32B at 256

1x 32B at 128

1x 32B at 160

1x 32B at 192

1x 32B at 224

1x 32B at 256

1x 128B at 128

1x 128B at 256

Aligned and non- sequential

Addresses: 96 128 160 192 224 256 288

Threads: 0 ... 31

Compute capability:

Memory transactions:

1.0 and 1.1 1.2 and 1.3 2.x and 3.x

Uncached Uncached Cached

8x 32B at 128

8x 32B at 160

8x 32B at 192

8x 32B at 224

1x 64B at 128

1x 64B at 192

1x 32B at 128

1x 32B at 160

1x 32B at 192

1x 32B at 224

1x 128B at 128

Aligned and sequential

Addresses: 96 128 160 192 224 256 288

Threads: 0 ... 31

Compute capability:

Memory transactions:

1.0 and 1.1 1.2 and 1.3 2.x and 3.x

Uncached Uncached Cached

1x 64B at 128

1x 64B at 192

1x 64B at 128

1x 64B at 192

1x 32B at 128

1x 32B at 160

1x 32B at 192

1x 32B at 224

1x 128B at 128

Figure 16 Examples of Global Memory Accesses
Examples of Global Memory Accesses by a Warp, 4-Byte Word per Thread, and Associated
Memory Transactions Based on Compute Capability
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G.5.3. Shared Memory
Shared memory has 32 banks with two addressing modes that are described below.

The addressing mode can be queried using cudaDeviceGetSharedMemConfig() and
set using cudaDeviceSetSharedMemConfig() (see reference manual for more details).
Each bank has a bandwidth of 64 bits per clock cycle.

#unique_340/unique_340_Connect_42_examples-of-strided-shared-memory-accesses
shows some examples of strided access.

#unique_340/unique_340_Connect_42_examples-of-irregular-shared-memory-accesses
shows some examples of memory read accesses that involve the broadcast mechanism.

64-Bit Mode

Successive 64-bit words map to successive banks.

A shared memory request for a warp does not generate a bank conflict between two
threads that access any sub-word within the same 64-bit word (even though the
addresses of the two sub-words fall in the same bank): In that case, for read accesses, the
64-bit word is broadcast to the requesting threads and for write accesses, each sub-word
is written by only one of the threads (which thread performs the write is undefined).

In this mode, the same access pattern generates fewer bank conflicts than on devices of
compute capability 2.x for 64-bit accesses and as many or fewer for 32-bit accesses.

32-Bit Mode

Successive 32-bit words map to successive banks.

A shared memory request for a warp does not generate a bank conflict between two
threads that access any sub-word within the same 32-bit word or within two 32-bit
words whose indices i and j are in the same 64-word aligned segment (i.e., a segment
whose first index is a multiple of 64) and such that j=i+32 (even though the addresses of
the two sub-words fall in the same bank): In that case, for read accesses, the 32-bit words
are broadcast to the requesting threads and for write accesses, each sub-word is written
by only one of the threads (which thread performs the write is undefined).

In this mode, the same access pattern generates as many or fewer bank conflicts than on
devices of compute capability 2.x.
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Appendix H.
DRIVER API

This appendix assumes knowledge of the concepts described in CUDA C Runtime.

The driver API is implemented in the cuda dynamic library (cuda.dll or cuda.so)
which is copied on the system during the installation of the device driver. All its entry
points are prefixed with cu.

It is a handle-based, imperative API: Most objects are referenced by opaque handles that
may be specified to functions to manipulate the objects.

The objects available in the driver API are summarized in Table 13.

Table 13 Objects Available in the CUDA Driver API

Object Handle Description

Device CUdevice CUDA-enabled device

Context CUcontext Roughly equivalent to a CPU process

Module CUmodule Roughly equivalent to a dynamic library

Function CUfunction Kernel

Heap memory CUdeviceptr Pointer to device memory

CUDA array CUarray Opaque container for one-dimensional or two-
dimensional data on the device, readable via
texture or surface references

Texture reference CUtexref Object that describes how to interpret texture
memory data

Surface reference CUsurfref Object that describes how to read or write CUDA
arrays

Event CUevent Object that describes a CUDA event

The driver API must be initialized with cuInit() before any function from the driver
API is called. A CUDA context must then be created that is attached to a specific device
and made current to the calling host thread as detailed in Context.

Within a CUDA context, kernels are explicitly loaded as PTX or binary objects by the
host code as described in Module. Kernels written in C must therefore be compiled
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separately into PTX or binary objects. Kernels are launched using API entry points as
described in Kernel Execution.

Any application that wants to run on future device architectures must load PTX,
not binary code. This is because binary code is architecture-specific and therefore
incompatible with future architectures, whereas PTX code is compiled to binary code at
load time by the device driver.
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Here is the host code of the sample from Kernels written using the driver API:
int main()
{
    int N = ...;
    size_t size = N * sizeof(float);

    // Allocate input vectors h_A and h_B in host memory
    float* h_A = (float*)malloc(size);
    float* h_B = (float*)malloc(size);

    // Initialize input vectors
    ...

    // Initialize
    cuInit(0);

    // Get number of devices supporting CUDA
    int deviceCount = 0;
    cuDeviceGetCount(&deviceCount);
    if (deviceCount == 0) {
        printf("There is no device supporting CUDA.\n");
        exit (0);
    }

    // Get handle for device 0
    CUdevice cuDevice;
    cuDeviceGet(&cuDevice, 0);

    // Create context
    CUcontext cuContext;
    cuCtxCreate(&cuContext, 0, cuDevice);

    // Create module from binary file
    CUmodule cuModule;
    cuModuleLoad(&cuModule, "VecAdd.ptx");

    // Allocate vectors in device memory
    CUdeviceptr d_A;
    cuMemAlloc(&d_A, size);
    CUdeviceptr d_B;
    cuMemAlloc(&d_B, size);
    CUdeviceptr d_C;
    cuMemAlloc(&d_C, size);

    // Copy vectors from host memory to device memory
    cuMemcpyHtoD(d_A, h_A, size);
    cuMemcpyHtoD(d_B, h_B, size);

    // Get function handle from module
    CUfunction vecAdd;
    cuModuleGetFunction(&vecAdd, cuModule, "VecAdd");

    // Invoke kernel
    int threadsPerBlock = 256;
    int blocksPerGrid =
            (N + threadsPerBlock - 1) / threadsPerBlock;
    void* args[] = { &d_A, &d_B, &d_C, &N };
    cuLaunchKernel(vecAdd,
                   blocksPerGrid, 1, 1, threadsPerBlock, 1, 1,
                   0, 0, args, 0);

    ...
}

Full code can be found in the vectorAddDrv CUDA sample.
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H.1. Context
A CUDA context is analogous to a CPU process. All resources and actions performed
within the driver API are encapsulated inside a CUDA context, and the system
automatically cleans up these resources when the context is destroyed. Besides objects
such as modules and texture or surface references, each context has its own distinct
address space. As a result, CUdeviceptr values from different contexts reference
different memory locations.

A host thread may have only one device context current at a time. When a context
is created with cuCtxCreate(), it is made current to the calling host thread. CUDA
functions that operate in a context (most functions that do not involve device
enumeration or context management) will return CUDA_ERROR_INVALID_CONTEXT if a
valid context is not current to the thread.

Each host thread has a stack of current contexts. cuCtxCreate() pushes the new
context onto the top of the stack. cuCtxPopCurrent() may be called to detach the
context from the host thread. The context is then "floating" and may be pushed as the
current context for any host thread. cuCtxPopCurrent() also restores the previous
current context, if any.

A usage count is also maintained for each context. cuCtxCreate() creates a
context with a usage count of 1. cuCtxAttach() increments the usage count and
cuCtxDetach() decrements it. A context is destroyed when the usage count goes to 0
when calling cuCtxDetach() or cuCtxDestroy().

Usage count facilitates interoperability between third party authored code operating in
the same context. For example, if three libraries are loaded to use the same context, each
library would call cuCtxAttach() to increment the usage count and cuCtxDetach()
to decrement the usage count when the library is done using the context. For most
libraries, it is expected that the application will have created a context before loading
or initializing the library; that way, the application can create the context using its
own heuristics, and the library simply operates on the context handed to it. Libraries
that wish to create their own contexts - unbeknownst to their API clients who may or
may not have created contexts of their own - would use cuCtxPushCurrent() and
cuCtxPopCurrent() as illustrated in Figure 17.
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Library Init ializat ion Call

cuCtxCreate()
Init ialize
context cuCtxPopCurrent()

Library Call

cuCtxPushCurrent()
Use

context cuCtxPopCurrent()

Figure 17 Library Context Management

H.2. Module
Modules are dynamically loadable packages of device code and data, akin to DLLs in
Windows, that are output by nvcc (see Compilation with NVCC). The names for all
symbols, including functions, global variables, and texture or surface references, are
maintained at module scope so that modules written by independent third parties may
interoperate in the same CUDA context.

This code sample loads a module and retrieves a handle to some kernel:
CUmodule cuModule;
cuModuleLoad(&cuModule, "myModule.ptx");
CUfunction myKernel;
cuModuleGetFunction(&myKernel, cuModule, "MyKernel");

This code sample compiles and loads a new module from PTX code and parses
compilation errors:

  
#define BUFFER_SIZE 8192
CUmodule cuModule;
CUjit_option options[3];
void* values[3];
char* PTXCode = "some PTX code";
char error_log[BUFFER_SIZE];
int err;
options[0] = CU_JIT_ERROR_LOG_BUFFER;
values[0]  = (void*)error_log;
options[1] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
values[1]  = (void*)BUFFER_SIZE;
options[2] = CU_JIT_TARGET_FROM_CUCONTEXT;
values[2]  = 0;
err = cuModuleLoadDataEx(&cuModule, PTXCode, 3, options, values);
if (err != CUDA_SUCCESS)
    printf("Link error:\n%s\n", error_log);
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This code sample compiles, links, and loads a new module from multiple PTX codes and
parses link and compilation errors:

        
#define BUFFER_SIZE 8192
CUmodule cuModule;
CUjit_option options[6];
void* values[6];
float walltime;
char error_log[BUFFER_SIZE], info_log[BUFFER_SIZE];
char* PTXCode0 = "some PTX code";
char* PTXCode1 = "some other PTX code";
CUlinkState linkState;
int err;
void* cubin;
size_t cubinSize;
options[0] = CU_JIT_WALL_TIME;
values[0] = (void*)&walltime;
options[1] = CU_JIT_INFO_LOG_BUFFER;
values[1] = (void*)info_log;
options[2] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
values[2] = (void*)BUFFER_SIZE;
options[3] = CU_JIT_ERROR_LOG_BUFFER;
values[3] = (void*)error_log;
options[4] = CU_JIT_ERROR_LOG_BUFFER_SIZE_BYTES;
values[4] = (void*)BUFFER_SIZE;
options[5] = CU_JIT_LOG_VERBOSE;
values[5] = (void*)1;
cuLinkCreate(6, options, values, &linkState);
err = cuLinkAddData(linkState, CU_JIT_INPUT_PTX,
                    (void*)PTXCode0, strlen(PTXCode0) + 1, 0, 0, 0, 0);
if (err != CUDA_SUCCESS)
    printf("Link error:\n%s\n", error_log);
err = cuLinkAddData(linkState, CU_JIT_INPUT_PTX,
                    (void*)PTXCode1, strlen(PTXCode1) + 1, 0, 0, 0, 0);
if (err != CUDA_SUCCESS)
    printf("Link error:\n%s\n", error_log);
cuLinkComplete(linkState, &cubin, &cubinSize);
printf("Link completed in %fms. Linker Output:\n%s\n", walltime, info_log);
cuModuleLoadData(cuModule, cubin);
cuLinkDestroy(linkState);

      

Full code can be found in the ptxjit CUDA sample.

H.3. Kernel Execution
cuLaunchKernel() launches a kernel with a given execution configuration.

Parameters are passed either as an array of pointers (next to last parameter of
cuLaunchKernel()) where the nth pointer corresponds to the nth parameter and
points to a region of memory from which the parameter is copied, or as one of the extra
options (last parameter of cuLaunchKernel()).

When parameters are passed as an extra option (the
CU_LAUNCH_PARAM_BUFFER_POINTER option), they are passed as a pointer to a single
buffer where parameters are assumed to be properly offset with respect to each other by
matching the alignment requirement for each parameter type in device code.
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Alignment requirements in device code for the built-in vector types are listed in Table
3. For all other basic types, the alignment requirement in device code matches the
alignment requirement in host code and can therefore be obtained using __alignof().
The only exception is when the host compiler aligns double and long long (and
long on a 64-bit system) on a one-word boundary instead of a two-word boundary (for
example, using gcc's compilation flag -mno-align-double) since in device code these
types are always aligned on a two-word boundary.

CUdeviceptr is an integer, but represents a pointer, so its alignment requirement is
__alignof(void*).

The following code sample uses a macro (ALIGN_UP()) to adjust the offset
of each parameter to meet its alignment requirement and another macro
(ADD_TO_PARAM_BUFFER()) to add each parameter to the parameter buffer passed to
the CU_LAUNCH_PARAM_BUFFER_POINTER option.
#define ALIGN_UP(offset, alignment) \
      (offset) = ((offset) + (alignment) - 1) & ~((alignment) - 1)

char paramBuffer[1024];
size_t paramBufferSize = 0;

#define ADD_TO_PARAM_BUFFER(value, alignment)                   \
    do {                                                        \
        paramBufferSize = ALIGN_UP(paramBufferSize, alignment); \
        memcpy(paramBuffer + paramBufferSize,                   \
               &(value), sizeof(value));                        \
        paramBufferSize += sizeof(value);                       \
    } while (0)

int i;
ADD_TO_PARAM_BUFFER(i, __alignof(i));
float4 f4;
ADD_TO_PARAM_BUFFER(f4, 16); // float4's alignment is 16
char c;
ADD_TO_PARAM_BUFFER(c, __alignof(c));
float f;
ADD_TO_PARAM_BUFFER(f, __alignof(f));
CUdeviceptr devPtr;
ADD_TO_PARAM_BUFFER(devPtr, __alignof(devPtr));
float2 f2;
ADD_TO_PARAM_BUFFER(f2, 8); // float2's alignment is 8

void* extra[] = {
    CU_LAUNCH_PARAM_BUFFER_POINTER, paramBuffer,
    CU_LAUNCH_PARAM_BUFFER_SIZE,    &paramBufferSize,
    CU_LAUNCH_PARAM_END
};
cuLaunchKernel(cuFunction,
               blockWidth, blockHeight, blockDepth,
               gridWidth, gridHeight, gridDepth,
               0, 0, 0, extra);

The alignment requirement of a structure is equal to the maximum of the alignment
requirements of its fields. The alignment requirement of a structure that contains built-
in vector types, CUdeviceptr, or non-aligned double and long long, might therefore
differ between device code and host code. Such a structure might also be padded
differently. The following structure, for example, is not padded at all in host code, but it
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is padded in device code with 12 bytes after field f since the alignment requirement for
field f4 is 16.
typedef struct {
    float  f;
    float4 f4;
} myStruct;

H.4. Interoperability between Runtime and Driver
APIs
An application can mix runtime API code with driver API code.

If a context is created and made current via the driver API, subsequent runtime calls will
pick up this context instead of creating a new one.

If the runtime is initialized (implicitly as mentioned in CUDA C Runtime),
cuCtxGetCurrent() can be used to retrieve the context created during initialization.
This context can be used by subsequent driver API calls.

Device memory can be allocated and freed using either API. CUdeviceptr can be cast to
regular pointers and vice-versa:
CUdeviceptr devPtr;
float* d_data;

// Allocation using driver API
cuMemAlloc(&devPtr, size);
d_data = (float*)devPtr;

// Allocation using runtime API
cudaMalloc(&d_data, size);
devPtr = (CUdeviceptr)d_data;

In particular, this means that applications written using the driver API can invoke
libraries written using the runtime API (such as cuFFT, cuBLAS, ...).

All functions from the device and version management sections of the reference manual
can be used interchangeably.
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Appendix I.
CUDA ENVIRONMENT VARIABLES

Environment variables related to the Multi-Process Service are documented in the Multi-
Process Service section of the GPU Deployment and Management guide.

Table 14 CUDA Environment Variables

Category Variable Values Description

Device
Enumeration

CUDA_VISIBLE_DEVICES A comma-
separated
sequence of
integers

Only the devices whose
index is present in the
sequence are visible to
CUDA applications and
they are enumerated in
the order of the sequence.
If one of the indices is
invalid, only the devices
whose index precedes the
invalid index are visible
to CUDA applications.
For example, setting
CUDA_VISIBLE_DEVICES
to 2,1 causes device 0 to
be invisible and device
2 to be enumerated
before device 1. Setting
CUDA_VISIBLE_DEVICES to
0,2,-1,1 causes devices
0 and 2 to be visible and
device 1 to be invisible.

CUDA_CACHE_DISABLE 0 or 1 (default is
0)

Disables caching (when set
to 1) or enables caching
(when set to 0) for just-in-
time-compilation. When
disabled, no binary code is
added to or retrieved from
the cache.

Compilation

CUDA_CACHE_PATH filepath Specifies the folder where
the just-in-time compiler
caches binary codes; the
default values are:
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Category Variable Values Description

‣ on Windows,
%APPDATA%\NVIDIA
\ComputeCache,

‣ on MacOS,
$HOME/Library/
Application\
Support/NVIDIA/
ComputeCache,

‣ on Linux, ~/.nv/
ComputeCache

CUDA_CACHE_MAXSIZE integer (default
is 33554432
(32 MB) and
maximum is
4294967296 (4
GB))

Specifies the size in bytes
of the cache used by the
just-in-time compiler.
Binary codes whose size
exceeds the cache size are
not cached. Older binary
codes are evicted from
the cache to make room
for newer binary codes if
needed.

CUDA_FORCE_PTX_JIT 0 or 1 (default is
0)

When set to 1, forces the
device driver to ignore any
binary code embedded
in an application (see
Application Compatibility)
and to just-in-time
compile embedded PTX
code instead. If a kernel
does not have embedded
PTX code, it will fail to
load. This environment
variable can be used
to validate that PTX
code is embedded in an
application and that its
just-in-time compilation
works as expected to
guarantee application
forward compatibility with
future architectures (see
Just-in-Time Compilation).

CUDA_LAUNCH_BLOCKING 0 or 1 (default is
0)

Disables (when set to 1)
or enables (when set to
0) asynchronous kernel
launches.

Execution

CUDA_DEVICE_MAX_CONNECTIONS 1 to 32 (default
is 8)

Sets the number of
compute and copy engine
concurrent connections
(work queues) from the
host to each device of
compute capability 3.5
and above.
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Category Variable Values Description

cuda-gdb (on
Mac and Linux
platforms)

CUDA_DEVICE_WAITS_ON_EXCEPTION 0 or 1 (default is
0)

When set to 1, a CUDA
application will halt when
a device exception occurs,
allowing a debugger to
be attached for further
debugging.

CUDA_DEVICE Integer (default
is 0)

Specifies the index of the
device to profile.

COMPUTE_PROFILE 0 or 1 (default is
0)

Disables profiling (when
set to 0) or enables
profiling (when set to 1).

COMPUTE_PROFILE_CONFIG Path Specifies the configuration
file to set profiling options
and select performance
counters.

COMPUTE_PROFILE_LOG Path Specifies the file used
to save the profiling
output. In case of multiple
contexts, use '%d' in the
COMPUTE_PROFILE_LOG to
generate separate output
files for each context -
with '%d' substituted by
the context number.

Driver-Based
Profiler (these
variables have
no impact on the
Visual Profiler
or the command
line profiler
nvprof)

COMPUTE_PROFILE_CSV 0 or 1 (default is
0)

When set to 1, the
output will be in comma-
separated format.
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Appendix J.
UNIFIED MEMORY PROGRAMMING

J.1. Unified Memory Introduction
Unified Memory is a component of the CUDA programming model, first introduced in
CUDA 6.0, that defines a new managed memory space in which all processors see a single
coherent memory image with a common address space.

A processor refers to any independent execution unit with a dedicated MMU. This
includes both CPUs and GPUs of any type and architecture.

The underlying system manages data access and locality within a CUDA program
without need for explicit memory copy calls. This benefits GPU programming in two
primary ways:

‣ GPU programming is simplified by unifying memory spaces coherently across all
GPUs and CPUs in the system and by providing tighter and more straightforward
language integration for CUDA programmers.

‣ Data access speed is maximized by transparently migrating data towards the
processor using it.

In simple terms, Unified Memory eliminates the need for explicit data movement via the
cudaMemcpy*() routines without the performance penalty incurred by placing all data
into zero-copy memory. Data movement, of course, still takes place, so a program’s run
time typically does not decrease; Unified Memory instead enables the writing of simpler
and more maintainable code.

Unified Memory offers a “single-pointer-to-data” model that is conceptually similar to
CUDA’s zero-copy memory. One key difference between the two is that with zero-copy
allocations the physical location of memory is pinned in CPU system memory such that
a program may have fast or slow access to it depending on where it is being accessed
from. Unified Memory, on the other hand, decouples memory and execution spaces so
that all data accesses are fast.

The term Unified Memory describes as a system that provides memory management
services to a wide range of programs, from those targeting the Runtime API down to
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those using the Virtual ISA (PTX). Part of this system defines the managed memory
space that opts in to Unified Memory services.

Managed memory is interoperable and interchangeable with device-specific allocations,
such as those created using the cudaMalloc() routine. All CUDA operations that are
valid on device memory are also valid on managed memory; the primary difference is
that the host portion of a program is able to reference and access the memory as well.

J.1.1. Simplifying GPU Programming
Unification of memory spaces means that there is no longer any need for explicit
memory transfers between host and device. Any allocation created in the managed
memory space is automatically migrated to where it is needed.

A program allocates managed memory in one of two ways: via the new
cudaMallocManaged() routine, which is semantically similar to cudaMalloc(); or by
defining a global __managed__ variable, which is semantically similar to a __device__
variable. Precise definitions of these are found later in this document.

The following code examples illustrate how the use of managed memory can change the
way in which host code is written. First, a simple program written without the benefit of
unified memory:
__global__  void  AplusB( int  *ret,  int  a,  int  b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {
    int *ret;
    cudaMalloc(&ret, 1000 * sizeof(int));

    AplusB<<< 1, 1000 >>>(ret, 10, 100);

    int *host_ret = (int *)malloc(1000 * sizeof(int));
    cudaMemcpy(host_ret, ret, 1000 * sizeof(int), cudaMemcpyDefault);

    for(int i=0; i<1000; i++)
        printf("%d: A+B = %d\n", i, host_ret[i]); 

    free(host_ret);
    cudaFree(ret); 
 return  0;
}

This first example combines two numbers together on the GPU with a per-thread ID and
returns the values in an array. Without managed memory, both host- and device-side
storage for the return values is required (host_ret and ret in the example), as is an
explicit copy between the two using cudaMemcpy().

Compare this with the Unified Memory version of the program, which allows direct
access of GPU data from the host. Notice the new cudaMallocManaged() routine,
which returns a pointer valid from both host and device code. This allows ret to be
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used without a separate host_ret copy, greatly simplifying and reducing the size of the
program.
__global__ void AplusB(int *ret, int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {
    int *ret;
    cudaMallocManaged(&ret, 1000 * sizeof(int));

    AplusB<<< 1, 1000 >>>(ret, 10, 100);
        cudaDeviceSynchronize();

    for(int i=0; i<1000; i++)
        printf("%d: A+B = %d\n", i, ret[i]);

    cudaFree(ret); 
 return  0;
}

Finally, language integration allows direct reference of a GPU-declared __managed__
variable and simplifies a program further when global variables are used.
__device__ __managed__  int  ret[1000];
__global__ void AplusB(int a, int b) {
    ret[threadIdx.x] = a + b + threadIdx.x;
}

int main() {
    AplusB<<< 1, 1000 >>>(10, 100);
    cudaDeviceSynchronize();

    for(int i=0; i<1000; i++)
        printf("%d: A+B = %d\n", i, ret[i]);
 return  0;
}

Note the absence of explicit cudaMemcpy() commands and the fact that the return array
ret is visible on both CPU and GPU.

It is worth a comment on the synchronization between host and device. Notice how in
the non-managed example, the synchronous cudaMemcpy() routine is used both to
synchronize the kernel (that is, to wait for it to finish running), and to transfer the data
to the host. The Unified Memory examples do not call cudaMemcpy() and so require an
explicit cudaDeviceSynchronize() before the host program can safely use the output
from the GPU.

An alternative here would be to set the environment variable
CUDA_LAUNCH_BLOCKING=1, ensuring that all kernel launches complete
synchronously. This simplifies the code by eliminating all explicit synchronization, but
obviously has broader impact on execution behavior as a whole.

J.1.2. Data Migration and Coherency
Unified Memory attempts to optimize memory performance by migrating data towards
the device where it is being accessed (that is, moving data to host memory if the CPU
is accessing it and to device memory if the GPU will access it). Data migration is
fundamental to Unified Memory, but is transparent to a program. The system will try
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to place data in the location where it can most efficiently be accessed without violating
coherency.

The physical location of data is invisible to a program and may be changed at any
time, but accesses to the data’s virtual address will remain valid and coherent from
any processor regardless of locality. Note that maintaining coherence is the primary
requirement, ahead of performance; within the constraints of the host operating system,
the system is permitted to either fail accesses or move data in order to maintain global
coherence between processors.

J.1.3. Multi-GPU Support
Multi-GPU systems are able to use managed memory, but data does not migrate
between GPUs. Managed memory allocation behaves identically to unmanaged memory
allocated using cudaMalloc(): the current active device is the home for the physical
allocation, and all other GPUs receive peer mappings to the memory. This means that
other GPUs in the system will access the memory at reduced bandwidth over the PCIe
bus.

If peer mappings are not supported between the GPUs in the system, then the managed
memory pages are placed in CPU system memory (“zero-copy” memory), and all GPUs
will experience PCIe bandwidth restrictions. See Managed Memory with Multi-GPU
Programs for details.

J.1.4. System Requirements
Unified Memory has three basic requirements:

‣ a GPU with SM architecture 3.0 or higher (Kepler class or newer)
‣ a 64-bit host application and operating system, except on Android
‣ Linux or Windows

J.2. Programming Model

J.2.1. Managed Memory Opt In
CUDA requires a program to opt in to automatic data management by either annotating
a __device__ variable with the new __managed__ keyword (see the Language
Integration section) or by using a new cudaMallocManaged() call to allocate data.

Managed memory must always be allocated on the heap, either with an allocator or
by declaring global storage. It is not possible either to associate previously allocated
memory with Unified Memory, or to have the Unified Memory system manage a CPU or
a GPU stack pointer.
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J.2.1.1. Explicit Allocation Using cudaMallocManaged()
Unified memory is most commonly created using an allocation function that is
semantically and syntactically similar to the standard CUDA allocator, cudaMalloc().
The function description is as follows:
    cudaError_t cudaMallocManaged(void **devPtr,
                                  size_t size,
                                  unsigned int flags=0);

The cudaMallocManaged() function allocates size bytes of managed memory on the
GPU and returns a pointer in devPtr. The pointer is valid on all GPUs and the CPU in
the system, although program accesses to this pointer must obey the concurrency rules
of the Unified Memory programming model (see Coherency and Concurrency). Below is
a simple example, showing the use of cudaMallocManaged():
__global__ void printme(char *str) {
    printf(str);
}

int main() {
    // Allocate 100 bytes of memory, accessible to both Host and Device code
    char *s;
    cudaMallocManaged(&s, 100);

    // Note direct Host-code use of "s"
    strncpy(s, "Hello Unified Memory\n", 99);

    // Here we pass "s" to a kernel without explicitly copying
    printme<<< 1, 1 >>>(s);
    cudaDeviceSynchronize();

    // Free as for normal CUDA allocations
    cudaFree(s); 
 return  0;
}

A program’s behavior is functionally unchanged when cudaMalloc() is replaced
with cudaMallocManaged(); however, the program should go on to eliminate explicit
memory copies and take advantage of automatic migration. Additionally, dual pointers
(one to host and one to device memory) can be eliminated.

In CUDA 6.0, device code is not able to call cudaMallocManaged(). All managed
memory must be allocated from the host or at global scope (see the next section).
Allocations on the device heap using malloc() in a kernel will not be created in the
managed memory space, and so will not be accessible to CPU code.
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J.2.1.2. Global-Scope Managed Variables Using __managed__
File-scope and global-scope CUDA __device__ variables may also opt-in to Unified
Memory management by adding a new __managed__ annotation to the declaration.
These may then be referenced directly from either host or device code, as follows:
__device__ __managed__ int x[2];
__device__ __managed__ int y;

__global__ void kernel() {
    x[1] = x[0] + y;
}

int main() {
    x[0] = 3;
    y = 5;

    kernel<<< 1, 1 >>>();
    cudaDeviceSynchronize();

    printf("result = %d\n", x[1]); 
 return  0;
}

All semantics of the original __device__ memory space, along with some additional
unified-memory-specific constraints, are inherited by the managed variable. See
Compilation with NVCC) in the CUDA C Programming Guide for details.

Note that variables marked __constant__ may not also be marked as __managed__;
this annotation is reserved for __device__ variables only. Constant memory must be set
either statically at compile time or by using cudaMemcpyToSymbol() as usual in CUDA.

J.2.2. Coherency and Concurrency

J.2.2.1. GPU Exclusive Access To Managed Memory
To ensure coherency, the Unified Memory programming model puts constraints on data
accesses while both the CPU and GPU are executing concurrently. In effect, the GPU has
exclusive access to all managed data while any kernel operation is executing, regardless
of whether the specific kernel is actively using the data. When managed data is used
with cudaMemcpy*() or cudaMemset*(), the system may choose to access the source
or destination from the host or the device, which will put constraints on concurrent
CPU access to that data while the cudaMemcpy*() or cudaMemset*() is executing. See
Memcpy()/Memset() Behavior With Managed Memory for further details.

In general, it is not permitted for the CPU to access any managed allocations or variables
while the GPU is active. Concurrent CPU/GPU accesses, even to different managed
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memory allocations, will cause a segmentation fault because the page is considered
inaccessible to the CPU.
__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}

int main() {
    kernel<<< 1, 1 >>>();

    y = 20;   // ERROR: CPU access concurrent with GPU
    cudaDeviceSynchronize();

 return  0;
}

In example above, the GPU program kernel is still active when the CPU touches y.
(Note how it occurs before cudaDeviceSynchronize().) This access is invalid even
though the CPU is accessing different data than the GPU. The program must explicitly
synchronize with the GPU before accessing y:
__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}

int main() {
    kernel<<< 1, 1 >>>();
    cudaDeviceSynchronize();

    y = 20;   //  Success – GPU is idle so access is OK
 return  0;
}

As this example shows, a CPU thread may not access any managed data in between
performing a kernel launch and a subsequent synchronization call, regardless of
whether the GPU kernel actually touches that same data (or any managed data at all).
The mere potential for concurrent CPU and GPU access is sufficient for a process-level
exception to be raised.

J.2.2.2. Explicit Synchronization and Logical GPU Activity
Note that explicit synchronization is required even if kernel runs quickly and finishes
before the CPU touches y in the above example. Unified Memory uses logical activity
to determine whether the GPU is idle. This aligns with the CUDA programming
model, which specifies that a kernel can run at any time following a launch and is not
guaranteed to have finished until the host issues a synchronization call.

Any function call that logically guarantees the GPU completes its work is valid.
This includes cudaDeviceSynchronize(); cudaStreamSynchronize() and
cudaStreamQuery() (provided it returns cudaSuccess and not cudaErrorNotReady)
where the specified stream is the only stream still executing on the GPU;
cudaEventSynchronize() and cudaEventQuery() in cases where the specified
event is not followed by any device work; as well as uses of cudaMemcpy() and
cudaMemset() that are documented as being fully synchronous with respect to the host.
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Dependencies created between streams will be followed to infer completion of other
streams by synchronizing on a stream or event. Dependencies can be created via
cudaStreamWaitEvent() or implicitly when using the default (NULL) stream.

It is legal for the CPU to access managed data from within a stream callback, provided
no other stream that could potentially be accessing managed data is active on the
GPU. In addition, a callback that is not followed by any device work can be used for
synchronization: for example, by signaling a condition variable from inside the callback;
otherwise, CPU access is valid only for the duration of the callback(s).

There are several important points of note:

‣ It is always permitted for the CPU to access non-managed zero-copy data while the
GPU is active.

‣ The GPU is considered active when it is running any kernel, even if that kernel does
not make use of managed data. If a kernel might use data, then access is forbidden.

‣ There are no constraints on concurrent inter-GPU access of managed memory, other
than those that apply to multi-GPU access of non-managed memory.

‣ There are no constraints on concurrent GPU kernels accessing managed data.

Note how the last point allows for races between GPU kernels, as is currently the case
for non-managed GPU memory. As mentioned previously, managed memory functions
identically to non-managed memory from the perspective of the GPU. The following
code example illustrates these points:
int main() {
    cudaStream_t stream1, stream2;
    cudaStreamCreate(&stream1);
    cudaStreamCreate(&stream2);

    int *non_managed, *managed, *also_managed;
    cudaMallocHost(&non_managed, 4);    // Non-managed, CPU-accessible memory
    cudaMallocManaged(&managed, 4);
    cudaMallocManaged(&also_managed, 4);

    // Point 1: CPU can access non-managed data.
    kernel<<< 1, 1, 0, stream1 >>>(managed);
    *non_managed = 1;

    // Point 2: CPU cannot access any managed data while GPU is busy.
    // Note we have not yet synchronized, so "kernel" is still active.
    *also_managed = 2;      // Will issue segmentation fault

    // Point 3: Concurrent GPU kernels can access the same data.
    kernel<<< 1, 1, 0, stream2 >>>(managed);

    // Point 4: Multi-GPU concurrent access is also permitted.
    cudaSetDevice(1);
    kernel<<< 1, 1 >>>(managed);

 return  0;
}

J.2.2.3. Managing Data Visibility and Concurrent CPU + GPU Access
Until now it was assumed that any active kernel may use any managed memory and
that it was invalid to use managed memory from the CPU while a kernel is active. Here
we present a system for finer-grained control of managed memory.
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The CUDA programming model provides streams as a mechanism for programs to
indicate dependence and independence among kernel launches. Kernels launched into
the same stream are guaranteed to execute consecutively, while kernels launched into
different streams are permitted to execute concurrently. Streams describe independence
between work items and hence allow potentially greater efficiency through concurrency.

Unified Memory builds upon the stream-independence model by allowing a CUDA
program to explicitly associate managed allocations with a CUDA stream. In this way,
the programmer indicates the use of data by kernels based on whether they are launched
into a specified stream or not. This enables opportunities for concurrency based on
program-specific data access patterns. A new function exists to control this:
    cudaError_t cudaStreamAttachMemAsync(cudaStream_t stream,
                                         void *ptr,
                                         size_t length=0,
                                         unsigned int flags=0);

The cudaStreamAttachMemAsync() function associates length bytes of memory
starting from ptr with the specified stream. (Currently, length must always be
0 to indicate that the entire region should be attached.) Because of this association,
the Unified Memory system allows CPU access to this memory region so long as all
operations in stream have completed, regardless of whether other streams are active. In
effect, this constrains exclusive ownership of the managed memory region by an active
GPU to per-stream activity instead of whole-GPU activity.

Most importantly, if an allocation is not associated with a specific stream, it is visible
to all running kernels regardless of their stream. This is the default visibility for a
cudaMallocManaged() allocation or a __managed__ variable; hence, the simple-case
rule that the CPU may not touch the data while any kernel is running.

By associating an allocation with a specific stream, the program makes a guarantee
that only kernels launched into that stream will touch that data. No error checking is
performed by the Unified Memory system: it is the programmer’s responsibility to
ensure that guarantee is honored.

In addition to allowing greater concurrency, the use of cudaStreamAttachMemAsync()
can (and typically does) enable data transfer optimizations within the Unified Memory
system that may affect latencies and other overhead.
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J.2.2.4. Stream Association Examples
Associating data with a stream allows fine-grained control over CPU + GPU
concurrency, but what data is visible to which streams must be kept in mind. Looking at
the earlier synchronization example:
__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}

int main() {
    cudaStream_t stream1;
    cudaStreamCreate(&stream1);

    cudaStreamAttachMemAsync(stream1, &y, 0, cudaMemAttachHost);
    cudaDeviceSynchronize();          // Wait for Host attachment to occur.

    kernel<<< 1, 1, 0, stream1 >>>(); // Note: Launches into stream1.
    y = 20;                  // Success – a kernel is running but “y” 
                                      // has been associated with no stream.
 return  0;
}

Here we explicitly associate y with host accessibility, thus enabling access at all times
from the CPU. (As before, note the absence of cudaDeviceSynchronize() before the
access.) Accesses to y by the GPU running kernel will now produce undefined results.

Now, here's an example of where things can go wrong. This may seem like it should be
okay, but it’s not:
__device__ __managed__ int x, y=2;
__global__  void  kernel() {
    x = 10;
}

int main() {
    cudaStream_t stream1;
    cudaStreamCreate(&stream1);

    cudaStreamAttachMemAsync(stream1, &x);// Associate “x” with stream1.
    cudaDeviceSynchronize();              // Wait for “x” attachment to occur.

    kernel<<< 1, 1, 0, stream1 >>>();     // Note: Launches into stream1.
    y = 20;                      // ERROR: “y” is still associated globally 
                                          // with all streams by default
 return  0;
}

Note how the access to y will cause an error because, even though x has been associated
with a stream, we have told the system nothing about who can see y. The system
therefore conservatively assumes that kernel might access it and prevents the CPU
from doing so.

J.2.2.5. Stream Attach With Multithreaded Host Programs
The primary use for cudaStreamAttachMemAsync() is to enable independent task
parallelism using CPU threads. Typically in such a program, a CPU thread creates its
own stream for all work that it generates because using CUDA’s NULL stream would
cause dependencies between threads.
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The default global visibility of managed data to any GPU stream can make it difficult
to avoid interactions between CPU threads in a multi-threaded program. Function
cudaStreamAttachMemAsync() is therefore used to associate a thread’s managed
allocations with that thread’s own stream, and the association is typically not changed
for the life of the thread.

Such a program would simply add a single call to cudaStreamAttachMemAsync() to
use unified memory for its data accesses:
// This function performs some task, in its own private stream.
void run_task(int *in, int *out, int length) {
    // Create a stream for us to use.
    cudaStream_t stream;
    cudaStreamCreate(&amp;stream);

    // Allocate some managed data and associate with our stream.
    // Note the use of the host-attach flag to cudaMallocManaged();
    // we then associate the allocation with our stream so that
    // our GPU kernel launches can access it.
    int *data;
    cudaMallocManaged((void **)&data, length, cudaMemAttachHost);
    cudaStreamAttachMemAsync(stream, data);
    cudaStreamSynchronize(stream);

    // Iterate on the data in some way, using both Host & Device.
    for(int i=0; i<N; i++) {
        transform<<< 100, 256, 0, stream >>>(in, data, length);
        cudaStreamSynchronize(stream);

        host_process(data, length); // CPU uses managed data.

        convert<<< 100, 256, 0, stream >>>(out, data, length);
    }

    cudaStreamSynchronize(stream);
    cudaStreamDestroy(stream);
    cudaFree(data);
}

In this example, the allocation-stream association is established just once, and then data
is used repeatedly by both the host and device. The result is much simpler code than
occurs with explicitly copying data between host and device, although the result is the
same.

J.2.2.6. Advanced Topic: Modular Programs and Data Access
Constraints
In the previous example cudaMallocManaged() specifies the cudaMemAttachHost
flag, which creates an allocation that is initially invisible to device-side execution. (The
default allocation would be visible to all GPU kernels on all streams.) This ensures that
there is no accidental interaction with another thread’s execution in the interval between
the data allocation and when the data is acquired for a specific stream.

Without this flag, a new allocation would be considered in-use on the GPU if a kernel
launched by another thread happens to be running. This might impact the thread’s
ability to access the newly allocated data from the CPU (for example, within a base-
class constructor) before it is able to explicitly attach it to a private stream. To enable safe
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independence between threads, therefore, allocations should be made specifying this
flag.

An alternative would be to place a process-wide barrier across all threads after
the allocation has been attached to the stream. This would ensure that all threads
complete their data/stream associations before any kernels are launched, avoiding
the hazard. A second barrier would be needed before the stream is destroyed
because stream destruction causes allocations to revert to their default visibility. The
cudaMemAttachHost flag exists both to simplify this process, and because it is not
always possible to insert global barriers where required.

J.2.2.7. Memcpy()/Memset() Behavior With Managed Memory
Since managed memory can be accessed from either the host or the device,
cudaMemcpy*() relies on the type of transfer, specified using cudaMemcpyKind, to
determine whether the data should be accessed as a host pointer or a device pointer.

If cudaMemcpyHostTo*() is specified and the source data is managed, then it will be
accessed from the device if it has global visibility or if it’s associated with the stream
being used for the copy operation; otherwise, it will be accessed from the host. Similar
rules apply to the destination when cudaMemcpy*ToHost() is specified and the
destination is managed memory. Note that a segmentation fault can occur during the
copy operation if data is being accessed from the host and its associated stream is active
on the GPU.

If cudaMemcpyDeviceTo*() is specified and the source data is managed, then it will
be accessed from the device. The source must either have global visibility or it must be
associated with the copy stream; otherwise, an error is returned. Similar rules apply
to the destination when cudaMemcpy*ToDevice() is specified and the destination is
managed memory.

If cudaMemcpyDefault() is specified, then managed data will be accessed from the
device if it has global visibility or if it’s associated with the copy stream; otherwise, it
will be accessed from the host.

When using cudaMemset*() with managed memory, the data is always accessed from
the device. The data must either have global visibility, or it must be associated with the
stream being used for the Memset() operation; otherwise, an error is returned.

When data is accessed from the device either by cudaMemcpy*() or cudaMemset*(),
the stream of operation is considered to be active on the GPU. During this time, any
CPU access of data that is associated with that stream or data that has global visibility,
will result in a segmentation fault. The program must synchronize appropriately to
ensure the operation has completed before accessing any associated data from the CPU.

J.2.3. Language Integration
Users of the CUDA Runtime API who compile their host code using nvcc have access to
additional language integration features, such as shared symbol names and inline kernel
launch via the <<<...>>> operator. Unified Memory adds one additional element to
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CUDA’s language integration: variables annotated with the __managed__ keyword can
be referenced directly from both host and device code.

The following example, seen earlier in Simplifying GPU Programming, illustrates a
simple use of __managed__ global declarations:
// Managed variable declaration is an extra annotation with __device__
__device__ __managed__  int  x;

__global__  void  kernel() {
    // Reference "x" directly - it's a normal variable on the GPU.
 printf( "GPU sees: x = %d\n" , x);
} 

int  main() {
    // Set "x" from Host code. Note it's just a normal variable on the CPU.
 x = 1234;
 
    // Launch a kernel which uses "x" from the GPU.
 kernel<<< 1, 1 >>>(); 
 cudaDeviceSynchronize(); 

 return  0;
}

The new capability introduced with __managed__ variables is that the symbol is
available in both device code and in host code without the need to dereference a pointer,
and the data is shared by all. This makes it particularly easy to exchange data between
host and device programs without the need for explicit allocations or copying.

Semantically, the behavior of __managed__ variables is identical to that of
storage allocated via cudaMallocManaged(). Data is hosted in physical GPU
storage and is visible to all GPUs in the system as well as the CPU. Stream
visibility defaults to cudaMemAttachGlobal, but may be constrained using
cudaStreamAttachMemAsync().

A valid CUDA context is necessary for the correct operation of __managed__ variables.
Accessing __managed__ variables can trigger CUDA context creation if a context for
the current device hasn’t already been created. In the example above, accessing x before
the kernel launch triggers context creation on device 0. In the absence of that access, the
kernel launch would have triggered context creation.

C++ objects declared as __managed__ are subject to certain specific constraints,
particularly where static initializers are concerned. Please refer to C/C++ Language
Support in the CUDA C Programming Guide for a list of these constraints.

J.2.3.1. Host Program Errors with __managed__ Variables
The use of __managed__ variables depends upon the underlying Unified Memory
system functioning correctly. Incorrect functioning can occur if, for example, the CUDA
installation failed or if the CUDA context creation was unsuccessful.

When CUDA-specific operations fail, typically an error is returned that indicates the
source of the failure. Using __managed__ variables introduces a new failure mode
whereby a non-CUDA operation (for example, CPU access to what should be a valid
host memory address) can fail if the Unified Memory system is not operating correctly.
Such invalid memory accesses cannot easily be attributed to the underlying CUDA
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subsystem, although a debugger such as cuda-gdb will indicate that a managed
memory address is the source of the failure.

J.2.4. Querying Unified Memory Support

J.2.4.1. Device Properties
Unified Memory is supported only on devices with compute capability 3.0
or higher. A program may query whether a GPU device supports managed
memory by using cudaGetDeviceProperties() and checking the new
managedMemSupported property. The capability can also be determined using the
individual attribute query function cudaDeviceGetAttribute() with the attribute
cudaDevAttrManagedMemSupported.

Either property will be set to 1 if managed memory allocations are permitted on
the GPU and under the current operating system. Note that Unified Memory is not
supported for 32-bit applications or for operating systems other than Android, even if a
GPU is of sufficient capability.

J.2.4.2. Pointer Attributes
To determine if a given pointer refers to managed memory, a program can call
cudaPointerGetAttributes() and check the value of the isManaged attribute. This
attribute is set to 1 if the pointer refers to managed memory and to 0 if not.

J.2.5. Advanced Topics

J.2.5.1. Managed Memory with Multi-GPU Programs
Managed allocations are automatically visible to all GPUs in a system via the peer-to-
peer capabilities of the GPUs. If peer mappings are not available (for example, between
GPUs of different architectures), then the system will fall back to using zero-copy
memory in order to guarantee data visibility. This fallback happens automatically,
regardless of whether both GPUs are actually used by a program.

If only one GPU is actually going to be used, it is necessary to set the
CUDA_VISIBLE_DEVICES environment variable before launching the program. This
constrains which GPUs are visible and allows managed memory to be allocated in GPU
memory. On a system with more than two GPUs, so long as peer mapping is supported
between all visible GPUs, managed allocations will not fall back to zero-copy memory.

J.2.5.2. Using fork() with Managed Memory
The Unified Memory system does not allow sharing of managed memory pointers
between processes. It will not correctly manage memory handles that have been
duplicated via a fork() operation. Results will be undefined if either the child or parent
accesses managed data following a fork().
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It is safe, however, to fork() a child process that then immediately exits via an exec()
call, because the child drops the memory handles and the parent becomes the sole owner
once again. It is not safe for the parent to exit and leave the child to access the handles.
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