

September 2013

Hyper-Q Example

Thomas Bradley

September 2013 ii

Document Change History

Version Date Responsible Reason for Change

1.0 August, 2012 Thomas Bradley Initial release

1.1 February, 2013 Thomas Bradley Updated example output

Month 2007 1

 Abstract

Hyper‐Q enables multiple CPU threads or processes to launch work on a single
GPU simultaneously, thereby dramatically increasing GPU utilization and
significantly reducing CPU idle times. Applications that previously encountered false
serialization across tasks, thereby limiting achieved GPU utilization, can see up to
dramatic performance increase without changing any existing code.

This simple example demonstrates how false dependencies can arise even within a
single CPU thread when Hyper-Q is not available, and shows how Hyper-Q
eliminates the false dependencies to improve utilization of the GPU.

Eigenvalue Computation using Bisection

September 2013 2

Stream Queue Management

C

B

A

C

B

A

C

B

A

SM SM SM SM

Work Distributor
(16 active grids)

Background

Hyper-Q enables multiple CPU threads or processes to launch work on a single GPU
simultaneously, thereby dramatically increasing GPU utilization and slashing CPU idle times.
This feature increases the total number of “connections” between the host and GPU by
allowing 32 simultaneous, hardware-managed connections, compared to the single
connection available with GPUs without Hyper-Q (e.g. Fermi GPUs).

Hyper-Q is a flexible solution that allows connections for both CUDA streams and Message
Passing Interface (MPI) processes, or even threads from within a process. Existing
applications that were previously limited by false dependencies can see a dramatic
performance increase without changing any existing code.

False Dependencies before Kepler
On Fermi, when a CPU thread dispatched work
into a CUDA stream, the work was joined into a
single pipeline to the Work Distributor. The Work
Distributor takes work from the front of the
pipeline, checks all dependencies are satisfied, and
farms the work to the available SMs.

Consider three CUDA streams, each containing a
sequence of kernels A, B, C as shown in the
adjacent figure.

for (int i = 0 ; i < 3 ; i++)
{
 A<<<gdim,bdim,smem,streams[i]>>>();
 B<<<gdim,bdim,smem,streams[i]>>>();
 C<<<gdim,bdim,smem,streams[i]>>>();
}

Using CUDA streams, we have declared the dependency chains A0-B0-C0 and A1-B1-C1 and
A2-B2-C2. Each of these chains is independent and therefore they could be executed at the
same time (i.e. concurrently). With Fermi’s single pipeline, however, this depth-first launch
sequence will result in false dependencies:

Eigenvalue Computation using Bisection

September 2013 3

Stream Queue Management

C

B

A

C

B

A

C

B

A

SMX SMX SMX SMX

Work Distributor
(16 active grids)

Grid Management Unit
(1000s of pending grids)

As a result the hardware is only able to determine that it can execute the shaded pairs
concurrently.

Grid Management Unit
Kepler GK110 introduces the Grid Management
Unit, which creates multiple hardware work queues
to reduce or eliminate false dependencies. With the
GMU, streams can be kept as individual pipelines
of work.

Also shown on the diagram is the feedback path
from the SMXs to the Work Distributor, and the
work creation path from the SMXs to the GMU.
These components provide dynamic parallelism
(see the CUDA Programming Guide for more
information on dynamic parallelism).

A0

B0

C0

streams[0]

A1

B1

C1

streams[1]

A2

B2

C2

streams[2]

Hardware Work Queue

A0 B0 C0 A1 B1 C1 A2 B2 C2

Eigenvalue Computation using Bisection

September 2013 4

Simple Example

This sample code uses a depth-first launch as described above to demonstrate how Hyper_Q
allows the independent kernels to be executed concurrently, regardless of the launch order.

After initializing and checking the device properties, the code creates a number of streams
and launches a pair of kernels into each stream as follows:

for (int i = 0 ; i < nstreams ; ++i)
{
 kernel_A<<<1,1,0,streams[i]>>>(&d_a[2*i], time_clocks);
 total_clocks += time_clocks;
 kernel_B<<<1,1,0,streams[i]>>>(&d_a[2*i+1], time_clocks);
 total_clocks += time_clocks;
}

Each kernel is launched as a single thread, which simply executes a loop for a defined
amount of time (10ms by default) and saves the total number of clock cycles to memory (as
a simple sanity check).

Having launched the pairs into the streams, the code does a sum-reduction to add up all the
clock cycle counts, and checks that the total number of clock cycles is as expected.

Eigenvalue Computation using Bisection

September 2013 5

Running without Hyper-Q
On a device without Hyper-Q, the single work pipeline in hardware means that we can only
see concurrency between pairs of kernel_B from stream N and kernel_A from stream N+1.
This can be seen clearly when viewing the timeline with the NVIDIA Visual Profiler.

Running with Hyper-Q
On a device with Hyper-Q, the false dependencies are eliminated and all the kernel_As can
execute concurrently (as can all the kernel_Bs). Again, the NVIDIA Visual Profiler can be
used to visualize the timeline and clearly shows the benefit.

Eigenvalue Computation using Bisection

September 2013 6

Appendix

Default Behavior

Typical output from the program on a device without Hyper-Q is:

starting hyperQ...

GPU Device 0: "GeForce GTX 680" with compute capability 3.0

> GPU does not support HyperQ

 CUDA kernel runs will have limited concurrency

> Detected Compute SM 3.0 hardware with 8 multi-processors

Expected time for serial execution of 32 sets of kernels is between approx. 0.330s and 0.640s

Expected time for fully concurrent execution of 32 sets of kernels is approx. 0.020s

Measured time for sample = 0.346s

Typical output from the program on a device with Hyper-Q is:

starting hyperQ...

GPU Device 0: "Tesla K20X" with compute capability 3.5

> Detected Compute SM 3.5 hardware with 14 multi-processors

Expected time for serial execution of 32 sets of kernels is between approx. 0.330s and 0.640s

Expected time for fully concurrent execution of 32 sets of kernels is approx. 0.020s

Measured time for sample = 0.021s

An exit status of 0 indicates that the total clock count from all kernels matches (or exceeds)
the sum of the target count multiplied by the number of launches.

Command Line Flags

Flag Description Default value

nstreams Number of streams to use 32

noprompt Disable the pause before terminating

Example: $ hyperq --nstreams=8

NVIDIA Corporation

2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

