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 Abstract 

The pricing of options is a very important problem encountered in financial engineering 
since the creation of organized option trading in 1973. This sample shows an 
implementation of the Black-Scholes model in CUDA for European options. 
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Introduction 

The most common definition of an option is an agreement between two parties, the option 
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation), 
secured by the option seller, to carry out some operation (or exercise the option) at some 
moment in the future. The predetermined price is referred to as the strike price, and the future 
date is called the expiration date. (See Kolb & Pharr. [1]) 

Options come in several varieties: 

A call option grants its holder the right to buy the underlying asset at a strike price at some moment 
in the future.  

A put option gives its holder the right to sell the underlying asset at a strike price at some moment 
in the future. 

There are several types of options, mostly depending on when the option can be exercised.  
European options can be exercised only on the expiration date. American-style options are 
more flexible as they may be exercised at any time up to and including expiration date and as 
such, they are generally priced at least as high as corresponding European options. Other 
types of options are path-dependent or have multiple exercise dates (Asian, Bermudian). 

For a call option, the profit made at the exercise date is the difference between the price of 
the asset on that date and the strike price, minus the option price paid. For a put option, the 
profit made at the exercise date is the difference between the strike price and the price of the 
asset on that date, minus the option price paid. 

The price of the asset at expiration date and the strike price therefore strongly influence how 
much one would be willing to pay for an option. 

Other important factors in the price of an option are: 

 The time to the expiration date, T: Longer periods imply a wider range of 
possible values for the underlying asset on the expiration date, and thus more 
uncertainty about the value of the option. 

 The riskless rate of return, r, which is the annual interest rate of bonds or 
other “risk-free” investments: Any amount P of dollars is guaranteed to be worth 

rTeP   dollars T years from now if placed today in one of theses investments or 
in other words, if an asset is worth P dollars T years from now, it is worth 

rTeP   today. 

This example demonstrates a CUDA implementation of the Black-Scholes model for 
European options. 



  

    

 

 

September 2013 

Black-Scholes model. 

The Black-Scholes model provides a partial differential equation (PDE) for the evolution of 
an option price under certain assumptions. For European options, a closed-form solution 
exists for this PDE. (See Black & Scholes, [2]) 
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where 

callV  is the price for an option call, 

putV is the price for an option put, 

)(dCND is the Cumulative Normal Distribution function, 

S  is the current option price, 

X is the strike price, 

T is the time to expiration. 

 r  is the continuously compounded risk free interest rate, 

v  is  the implied volatility for the underlying stock, 

The cumulative normal distribution function is computed with a polynomial approximation 
that provides six-decimal-place accuracy. The expansion uses a fifth-order polynomial. (See 
Hull, [3]) 
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Implementation details 

Choosing a data storage layout 
The existence of a closed-form expression makes calculating option prices an easy task. The 
main problem is choosing the best data storage layout.  

Here are some characteristics of the G80-class GPU: 

 Many execution threads simultaneously perform the same instruction at 
hardware level. 

 No memory caching for “raw” device memory operations. Data caching is 
handled explicitly by programmer in shared memory if required (i.e. if the same 
data element is accessed several times within the same thread and/or shared 
among several threads) 

 Memory coalescing: reads and writes within each warp should be arranged 
sequentially, so that all memory requests can be coalesced into a single 
continuous block with base address aligned to 16 * <element size> byte 
boundaries for best performance. At this point it is important to understand that 
memory coalescing occurs between threads of the warp simultaneously executing the 
same instruction, not between successive (in time) memory operations. 

A G80 device is capable of loading words of only 4, 8 or 16 bytes, so in the general case 
arrays of structures aligned on these boundaries can both increas memory waste and result in 
multiple non-coalesced memory accesses per structure read per memory.  This can be very 
detrimental to performance on the GPU, so it is strongly preferred to arrange data into 
arrays of elementary types (also known as the “structure of arrays” strategy), since it enables 
memory coalescing for any number of elementary-type input data properties with no wasted 
memory. 

 

Thread count and data size 
A simple implementation of the Black-Scholes algorithm would assign each thread to a 
specific index of input data. But there are some hardware constraints to be taken into 
account: 

 Block grid dimensions on G80 are only 16-bit (i.e. the maximum size of each 
dimension is 65536). 

 The maximum number of threads per block is 512. Depending on the use of 
shared memory and registers, the optimal number of threads for maximum 
performance is in the 192-256 range. 

Therefore, a one-to-one correspondence between thread count and input data size restricts 
the maximum input data size (around 33 millions options, if we stick to convenient 1D grid 
configuration) and also requires (re)configuring the execution grid in accordance to input 
data size.  

To allow for arbitrary numbers of options, each thread should process more than one index 
if required; this is implemented with the code in Listing 1. 
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Listing 1. This code shows how we break the dependency between the compute grid 
configuration and the input data size. 

In Listing 1, no matter how small THREAD_N is or how large OptN is, exactly OptN 
indices will be processed with perfect memory coalescing. The only recommendation here is 
for OptN to be a multiple of the warp size (32 threads on G80 GPUs) to avoid hardware 
idling, which anyway is negligible in case of large OptN. 
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    const int      tid = blockDim.x * blockIdx.x + threadIdx.x; 

    const int THREAD_N = blockDim.x * gridDim.x; 

 

    for(int opt = tid; opt < OptN; opt += THREAD_N) 

        BlackScholesBody( 

            d_CallResult[opt], 

            d_PutResult[opt], 

            d_StockPrice[opt], 

            d_OptionStrike[opt], 

            d_OptionYears[opt], 

            Riskfree, 

            Volatility 

        ); 
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