

September 2013

Black-Scholes
option pricing

Victor Podlozhnyuk
vpodlozhnyuk@nvidia.com

September 2013

Document Change History

Version Date Responsible Reason for Change

0.9 2007/03/19 vpodlozhnyuk Initial release

1.0 2007/04/06 mharris Minor clarity / grammar edits for initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

 Abstract

The pricing of options is a very important problem encountered in financial engineering
since the creation of organized option trading in 1973. This sample shows an
implementation of the Black-Scholes model in CUDA for European options.

September 2013

Introduction

The most common definition of an option is an agreement between two parties, the option
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation),
secured by the option seller, to carry out some operation (or exercise the option) at some
moment in the future. The predetermined price is referred to as the strike price, and the future
date is called the expiration date. (See Kolb & Pharr. [1])

Options come in several varieties:

A call option grants its holder the right to buy the underlying asset at a strike price at some moment
in the future.

A put option gives its holder the right to sell the underlying asset at a strike price at some moment
in the future.

There are several types of options, mostly depending on when the option can be exercised.
European options can be exercised only on the expiration date. American-style options are
more flexible as they may be exercised at any time up to and including expiration date and as
such, they are generally priced at least as high as corresponding European options. Other
types of options are path-dependent or have multiple exercise dates (Asian, Bermudian).

For a call option, the profit made at the exercise date is the difference between the price of
the asset on that date and the strike price, minus the option price paid. For a put option, the
profit made at the exercise date is the difference between the strike price and the price of the
asset on that date, minus the option price paid.

The price of the asset at expiration date and the strike price therefore strongly influence how
much one would be willing to pay for an option.

Other important factors in the price of an option are:

 The time to the expiration date, T: Longer periods imply a wider range of
possible values for the underlying asset on the expiration date, and thus more
uncertainty about the value of the option.

 The riskless rate of return, r, which is the annual interest rate of bonds or
other “risk-free” investments: Any amount P of dollars is guaranteed to be worth

rTeP dollars T years from now if placed today in one of theses investments or
in other words, if an asset is worth P dollars T years from now, it is worth

rTeP today.

This example demonstrates a CUDA implementation of the Black-Scholes model for
European options.

September 2013

Black-Scholes model.

The Black-Scholes model provides a partial differential equation (PDE) for the evolution of
an option price under certain assumptions. For European options, a closed-form solution
exists for this PDE. (See Black & Scholes, [2])

)(1)(

)
2

()log(

)
2

()log(

)()(

)()(

2

2

2

1

12

21

dCNDdCND

Tv

T
v

r
X

S

d

Tv

T
v

r
X

S

d

dCNDSdCNDeXV

dCNDeXdCNDSV

rT

put

Tr

call

where

callV is the price for an option call,

putV is the price for an option put,

)(dCND is the Cumulative Normal Distribution function,

S is the current option price,

X is the strike price,

T is the time to expiration.

 r is the continuously compounded risk free interest rate,

v is the implied volatility for the underlying stock,

The cumulative normal distribution function is computed with a polynomial approximation
that provides six-decimal-place accuracy. The expansion uses a fifth-order polynomial. (See
Hull, [3])

September 2013

Implementation details

Choosing a data storage layout
The existence of a closed-form expression makes calculating option prices an easy task. The
main problem is choosing the best data storage layout.

Here are some characteristics of the G80-class GPU:

 Many execution threads simultaneously perform the same instruction at
hardware level.

 No memory caching for “raw” device memory operations. Data caching is
handled explicitly by programmer in shared memory if required (i.e. if the same
data element is accessed several times within the same thread and/or shared
among several threads)

 Memory coalescing: reads and writes within each warp should be arranged
sequentially, so that all memory requests can be coalesced into a single
continuous block with base address aligned to 16 * <element size> byte
boundaries for best performance. At this point it is important to understand that
memory coalescing occurs between threads of the warp simultaneously executing the
same instruction, not between successive (in time) memory operations.

A G80 device is capable of loading words of only 4, 8 or 16 bytes, so in the general case
arrays of structures aligned on these boundaries can both increas memory waste and result in
multiple non-coalesced memory accesses per structure read per memory. This can be very
detrimental to performance on the GPU, so it is strongly preferred to arrange data into
arrays of elementary types (also known as the “structure of arrays” strategy), since it enables
memory coalescing for any number of elementary-type input data properties with no wasted
memory.

Thread count and data size
A simple implementation of the Black-Scholes algorithm would assign each thread to a
specific index of input data. But there are some hardware constraints to be taken into
account:

 Block grid dimensions on G80 are only 16-bit (i.e. the maximum size of each
dimension is 65536).

 The maximum number of threads per block is 512. Depending on the use of
shared memory and registers, the optimal number of threads for maximum
performance is in the 192-256 range.

Therefore, a one-to-one correspondence between thread count and input data size restricts
the maximum input data size (around 33 millions options, if we stick to convenient 1D grid
configuration) and also requires (re)configuring the execution grid in accordance to input
data size.

To allow for arbitrary numbers of options, each thread should process more than one index
if required; this is implemented with the code in Listing 1.

September 2013

Listing 1. This code shows how we break the dependency between the compute grid
configuration and the input data size.

In Listing 1, no matter how small THREAD_N is or how large OptN is, exactly OptN
indices will be processed with perfect memory coalescing. The only recommendation here is
for OptN to be a multiple of the warp size (32 threads on G80 GPUs) to avoid hardware
idling, which anyway is negligible in case of large OptN.

Bibliography

1. Craig Kolb and Matt Pharr (2005). "Option pricing on the GPU". GPU Gems 2. Chapter
45.

2. Fischer Black and Myron Scholes (1973). "The Pricing of Options and Corporate
Liabilities". Journal of Political Economy 81 (3): 637-654.

3. John C. Hull (1997) “Options, Futures, and Other Derivatives”

 const int tid = blockDim.x * blockIdx.x + threadIdx.x;

 const int THREAD_N = blockDim.x * gridDim.x;

 for(int opt = tid; opt < OptN; opt += THREAD_N)

 BlackScholesBody(

 d_CallResult[opt],

 d_PutResult[opt],

 d_StockPrice[opt],

 d_OptionStrike[opt],

 d_OptionYears[opt],

 Riskfree,

 Volatility

);

September 2013

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

