
Real-time Electromagnetic Wave Propagation
using OptiX for Simulation of
Car-to-Car-Communication

NVIDIA GTC 2014, San Jose

Manuel Schiller 1

Andreas Kern 2

Alois Knoll 1

1 Robotics and Embedded Systems

 Department of Informatics

 Technische Universität München

2 Audi Electronics Venture GmbH

2 Schiller et. al.

Agenda

• Motivation and Goals

• Simulation of Radio Wave Propagation

• Implementation in OptiX and CUDA

• Optimization of Ray Tracing Performance

• Outlook

3 Schiller et. al.

Motivation

• Vehicular Adhoc Networks (VANETs) will improve traffic safety, driving comfort and efficiency

• Advanced Driver Assistance Systems (ADAS) based on VANETs need to be tested thoroughly

before deployment

• Real world testbeds

• Are costly

• Are not yet available

• Do not deliver reproducible results

• Virtual test drives are already used to validate ADAS (see GTC 2012) and shall be enhanced for

VANET simulation

4 Schiller et. al.

Signal Propagation in VANETs

• Signal propagation has major impact on ADAS performance

• Various wireless channel models exist:

• Simple models (e.g. free space propagation)

• Statistical models

• Deterministic models

• Only deterministic models allow for a site and situation specific simulation of the wireless

communication channel

5 Schiller et. al.

Requirements and Goals

Simulate the wireless communication channel

• For dynamic and detailed scenes,

• Highly accurate,

• In real time (necessary for hardware-in-the-loop simulation)

in order to allow realistic testing of ADAS based on VANETs in virtual reality.

6 Schiller et. al.

Radio Wave Propagation using Ray Tracing

• Radio waves can be modeled as rays using

• Geometrical Optics and

• the Unified Theory of Diffraction

• Ray tracing can be applied to find propagation paths of radio waves

• Brute-Force approach: Higher ray count = higher accuracy

• Static (e.g. buildings) and dynamic obstacles (e.g. cars) block wave / ray propagation and

cause reflection and diffraction of waves

• Accurate 3D models of environment and cars are necessary

7 Schiller et. al.

Diffraction

• Diffraction at edges (e.g. of buildings) allows signal to be received even if there is no line-of-

sight

• Important propagation phenomenon at intersections especially in urban environment

• Diffraction edges are detected in an automated offline preprocessing step

8 Schiller et. al.

Comparison with Image Rendering

• Multiple „lights“ = transmitting antennas

• Multiple „cameras“ = receiving antennas

• No image plane, rather a 360 degree field of view

• No approximations (like GI algorithms), we need the exact ray interactions for accurate

calculation of amplitude and phase of the electromagnetic field

• Moving obstacles, therefore shadow regions cannot be precomputed

9 Schiller et. al.

Implementation

• We use NVIDIA OptiX for GPU Raytracing to find the propagation paths between transmitter

and receiver

• High quality acceleration structures enable us to simulate highly detailed and dynamic scenes

(carefully selecting the appropriate ones is crucial!)

• We employ different custom geometry types:

• triangle meshes for 3D models

• spheres for antennas

• cylinders for diffraction edges

• OptiX allows us to concentrate on the actual wave propagation rather than on low-level ray

tracing optimization

• Some (high-level) optimizations are still necessary

10 Schiller et. al.

Memory Management

• Every valid propagation path needs to be stored

• Worst case memory allocation for each ray:

 New rays at diffraction (e.g.100)

 Maximum diffractions (e.g. 2)

 Maximum reflections (e.g. 5)

 Memory needed per interaction (e.g. 32 byte)

• Dynamic memory management:

• Allocate a global buffer for all threads

• When a path needs to be stored, atomic operations ensure serialized buffer access

4 GB GPU memory:

Only 2500 rays, but we rather need millions!

11 Schiller et. al.

Improving Ray Tracing Performance
Recursion vs. Iteration

• Max. reflections / diffractions can lead to very high recursion depths

• Iterative Ray Tracing is up to 10 % faster than recursive approach

Ray Generation
Program

rtTrace

Closest Hit
Program

Ray Generation
Program

rtTrace

Closest Hit
Program

call call

call

call

call

per ray
data

Recursive Iterative

12 Schiller et. al.

Improving Ray Tracing Performance
Ray reordering

• Naive approach:

• Sample N random directions on sphere surface,

then trace them immediately

• works, but bad ray coherence

(memory access and divergence)

• Better:

• Sort random directions before tracing using

space filling curve (Hilbert curve, Z-curve)

• Outperforms naive approach by up to 100 %

13 Schiller et. al.

Traffic Simulator

Ray Tracing

Duplicate
Elimination

Electromagnetic
Calculation

Position
Updates

Propagation
Paths

Unique
Paths

GPU

Thrust

OptiX

Wave Propagation Simulation Pipeline

• No on-the-fly „shading“ of rays, because only few rays arrive

• Only geometric information of propagation path is stored

• Electromagnetic field calculation is applied in a postprocessing

step for each detected propagation path

• Postprocessing is also done on GPU using Thrust:

• No memory copying needed thanks to OptiX-CUDA interop

• Parallel iterating over propagation paths

• Parallel reduce-by-key to sum up contribution of different

propagation paths per receiving antenna

14 Schiller et. al.

Video

19 Schiller et. al.

Outlook

• Coupling of ray tracing results with network simulator

• Simulation of MIMO antenna systems

• Exploration of Multi-GPU performance

• Exploitation of frame coherence

20 Schiller et. al.

Thank you very much.

Contact:

Manuel Schiller, Technische Universität München

manuel.schiller@in.tum.de

