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Motivation 

• Vehicular Adhoc Networks (VANETs) will improve traffic safety, driving comfort and efficiency 

• Advanced Driver Assistance Systems (ADAS) based on VANETs need to be tested thoroughly 

before deployment 

• Real world testbeds 

• Are costly 

• Are not yet available  

• Do not deliver reproducible results 

• Virtual test drives are already used to validate ADAS (see GTC 2012) and shall be enhanced for 

VANET simulation 
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Signal Propagation in VANETs 

• Signal propagation has major impact on ADAS performance  

 

• Various wireless channel models exist: 

• Simple models (e.g. free space propagation) 

• Statistical models 

• Deterministic models 

 

• Only deterministic models allow for a site and situation specific simulation of the wireless 

communication channel 
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Requirements and Goals 

Simulate the wireless communication channel 

• For dynamic and detailed scenes, 

• Highly accurate, 

• In real time (necessary for hardware-in-the-loop simulation) 

 

in order to allow realistic testing of ADAS based on VANETs in virtual reality. 
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Radio Wave Propagation using Ray Tracing 

• Radio waves can be modeled as rays using  

• Geometrical Optics and  

• the Unified Theory of Diffraction 

• Ray tracing can be applied to find propagation paths of radio waves 

• Brute-Force approach: Higher ray count = higher accuracy 

• Static (e.g. buildings) and dynamic obstacles (e.g. cars) block wave / ray propagation and 

cause reflection and diffraction of waves 

• Accurate 3D models of environment and cars are necessary 
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Diffraction 

• Diffraction at edges (e.g. of buildings) allows signal to be received even if there is no line-of-

sight 

• Important propagation phenomenon at intersections especially in urban environment 

• Diffraction edges are detected in an automated offline preprocessing step 
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Comparison with Image Rendering 

• Multiple „lights“ = transmitting antennas 

• Multiple „cameras“ = receiving antennas 

• No image plane, rather a 360 degree field of view 

• No approximations (like GI algorithms), we need the exact ray interactions for accurate 

calculation of amplitude and phase of the electromagnetic field 

• Moving obstacles, therefore shadow regions cannot be precomputed 
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Implementation 

• We use NVIDIA OptiX for GPU Raytracing to find the propagation paths between transmitter 

and receiver 

• High quality acceleration structures enable us to simulate highly detailed and dynamic scenes 

(carefully selecting the appropriate ones is crucial!) 

• We employ different custom geometry types: 

• triangle meshes for 3D models 

• spheres for antennas 

• cylinders for diffraction edges 

• OptiX allows us to concentrate on the actual wave propagation rather than on low-level ray 

tracing optimization 

• Some (high-level) optimizations are still necessary 
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Memory Management 

• Every valid propagation path needs to be stored 

• Worst case memory allocation for each ray: 

 

 New rays at diffraction (e.g.100) 

 Maximum diffractions (e.g. 2) 

 Maximum reflections (e.g. 5) 

 Memory needed per interaction (e.g. 32 byte) 

 

• Dynamic memory management: 

• Allocate a global buffer for all threads 

• When a path needs to be stored, atomic operations ensure serialized buffer access 

4 GB GPU memory: 

Only 2500 rays, but we rather need millions! 
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Improving Ray Tracing Performance 
Recursion vs. Iteration 

• Max. reflections  / diffractions can lead to very high recursion depths 

• Iterative Ray Tracing is up to 10 % faster than recursive approach 
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Improving Ray Tracing Performance 
Ray reordering 

 

• Naive approach: 

• Sample N random directions on sphere surface, 

then trace them immediately 

• works, but bad ray coherence 

(memory access and divergence) 

 

• Better: 

• Sort random directions before tracing using  

space filling curve (Hilbert curve, Z-curve) 

• Outperforms naive approach by up to 100 % 
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• No on-the-fly „shading“ of rays, because only few rays arrive 

• Only geometric information of propagation path is stored 

• Electromagnetic field calculation is applied in a postprocessing 

step for each detected propagation path 

• Postprocessing is also done on GPU using Thrust: 

• No memory copying needed thanks to OptiX-CUDA interop 

• Parallel iterating over propagation paths 

• Parallel reduce-by-key to sum up contribution of different 

propagation paths per receiving antenna 
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Video 
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Outlook 

• Coupling of ray tracing results with network simulator 

• Simulation of MIMO antenna systems 

• Exploration of Multi-GPU performance 

• Exploitation of frame coherence 
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Thank you very much. 

 

Contact: 

Manuel Schiller, Technische Universität München 

manuel.schiller@in.tum.de 


