CS 193G

Lecture 4: CUDA Memories

<A NVIDIA.

Hardware Implementation of CUDA <3
Memories

® Each thread can:

Read/write per-thread
registers

Read/write per-thread
local memory

Read/write per-block
shared memory

Read/write per-grid
global memory

Read/only per-grid
constant memory

© 2008 NVIDIA Corporation

NVIDIA

Block (0, 0) Block (1, 0)

Shared Memory Shared Memory

Registers Registers Registers Registers

Thread (0, 0) Thread (1, 0) Thread (0, 0) Thread (1, 0)

Global Memory

Constant Memory

CUDA Variable Type Qualifiers <X

NVIDIA

Variable declaration Memory Scope | Lifetime
int var; register thread thread

int array var[1l0]; local thread thread

__shared int shared var; shared block block

__device int global var; global grid | application

__constant int constant var; constant grid | application

® “automatic” scalar variables without qualifier reside
in a register
® compiler will spill to thread local memory

® “automatic” array variables without qualifier reside
in thread-local memory

© 2008 NVIDIA Corporation

CUDA Variable Type Performance <3

NVIDIA

Variable declaration Memory Penalty

int var; register 1x

int array var[10]; local

shared int shared var; shared 1X

device int global var; global

constant _ int constant var; constant 1x

® scalar variables reside in fast, on-chip registers
® shared variables reside in fast, on-chip memories

® thread-local arrays & global variables reside in
uncached off-chip memory

® constant variables reside in cached off-chip memory

© 2008 NVIDIA Corporation

CUDA Variable Type Scale <3

NVIDIA

Variable declaration Instances Visibility
int wvar; 100,000s 1
int array var[10]; 100,000s 1

shared int shared var; 100s 100s

device int global var; (100,000s

constant int constant var; 1 100,000s

100Ks per-thread variables, R/'W by 1 thread

100s shared variables, each R/W by 100s of threads
» 1 global variable is R/'W by 100Ks threads

1 constant variable is readable by 100Ks threads

© 2008 NVIDIA Corporation

. >)
Where to declare variables? ,f,%A

constant int constant var; int var;

device int global var; int array var[10];

shared int shared var;

© 2008 NVIDIA Corporation

Example — thread-local variables S,%A

// motivate per-thread variables with

// Ten Nearest Neighbors application

__global void ten nn(float2 *result, float2 *ps, float2 *gs,
size t num gs)

// P goes in a register
float2 p = ps[threadIdx.x];

// per-thread heap goes in off-chip memory
float2 heap[1l0];

// read through num gs points, maintaining

// the nearest 10 gs to p in the heap

// write out the contents of heap to result

}

© 2008 NVIDIA Corporation

>

Example — shared variables A

// motivate shared variables with

// Adjacent Difference application:

// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)

{
// compute this thread’s global index

unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

// each thread loads two elements from global memory
int x 1 = input[i];
int x i minus one = input[i-1];

result[i] = x 1 - X i minus one;
}

© 2008 NVIDIA Corporation

}

Example — shared variables <3

NVIDIA

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)
{
// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x 1 = |input[i]};

int X i minus one = input[i-1]};

result[i] = x 1 - X i minus one;
}
}

© 2008 NVIDIA Corporation

Example — shared variables <3

NVIDIA

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)
{
// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x 1 = |input[i]};

int X i minus one = input[i-1]};

result[i] = x 1 - X i minus one;
}
}

© 2008 NVIDIA Corporation

Example — shared variables <3

NVIDIA

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)
{
// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x 1 = input[i];

int x i minus one = input[i-1];

result[i] = x 1 - X i minus one;
}
}

© 2008 NVIDIA Corporation

Example — shared variables f,%A

// optimized version of adjacent difference
__global void adj diff(int *result, int *input)
{

// shorthand for threadIdx.x

int tx threadIdx.x;

// allocate a shared array, one element per thread

shared int s data[BLOCK SIZE];

// each thread reads one element to s data

unsigned int i = blockDim.x * blockIdx.x + tx;
s _data[tx] = input[i];

// avoid race condition: ensure all loads
// complete before continuing

__syncthreads() ;

} © 2008 NVIDIA Corporation

Example — shared variables <X

NVIDIA
// optimized version of adjacent difference

__global void adj diff(int *result, int *input)
{

if(tx > 0)

result[i] = s _data[tx] - s _data[tx-1];
else if(i > 0)
{

// handle thread block boundary

result[i] = s data[tx] - input[i-1];

© 2008 NVIDIA Corporation

Example — shared variables <3

NVIDIA

// when the size of the array isn’t known at compile time...
__global wvoid adj diff(int *result, int *input)
{

// use extern to indicate a _ shared array will be

// allocated dynamically at kernel launch time
extern shared int s_datal];

// pass the size of the per-block array, in bytes, as the third
// argument to the triple chevrons

adj diff<<<num blocks, block size, block size * sizeof (int)>>>(r,i);

© 2008 NVIDIA Corporation

Optimization Analysis <3

NVIDIA

® Experiment performed on a GT200 chip
® Improvement likely better on an older architecture
® Improvement likely worse on a newer architecture

® Optimizations tend to come with a development cost

© 2008 NVIDIA Corporation

About Pointers <X

NVIDIA

® Yes, you can use them!
® You can point at any memory space per se:

device int my global variable;

constant int my constant variable = 13;

__global void foo(void)

{
__shared int my shared variable;

int *ptr to _global = &my global variable;

const int *ptr to constant = &my constant variable;

int *ptr to shared = &my shared variable;

*ptr to global = *ptr to shared;
}

© 2008 NVIDIA Corporation

About Pointers <X

NVIDIA

® Pointers aren’t typed on memory space

® shared int *ptr;
® Where does ptr point?

® ptrisa_ shared pointer variable, not a pointer to a
__shared__ variable!

© 2008 NVIDIA Corporation

Don’t confuse the compiler!

__device int my global variable;
__global wvoid foo(int *input)
{

__shared int my shared variable;
int *ptr = 0;
if (input[threadIdx.x] % 2)
ptr = &my global variable;
else
ptr = &my shared variable;
// where does ptr point?
}

© 2008 NVIDIA Corporation

>

NVIDIA

: <@/
Advice nwzm

' Prefer dereferencing pointers in simple, regular
access patterns
® Avoid propagating pointers
' Avoid pointers to pointers

® The GPU would rather not pointer chase
® Linked lists will not perform well

® Pay attention to compiler warning messages

® Warning: Cannot tell what pointer points to,
assuming global memory space

® Crash waiting to happen

© 2008 NVIDIA Corporation

A Common Programming Strategy <3

NVIDIA

® Global memory resides in device memory (DRAM)
® Much slower access than shared memory

® Tile data to take advantage of fast shared memory:
® Generalize from adjacent difference

example
® Divide and conquer

© 2008 NVIDIA Corporation

A Common Programming Strategy >

NVIDIA

® Partition data into subsets that fit into shared memory

© 2008 NVIDIA Corporation

A Common Programming Strategy >

NVIDIA

$38515583 $383

® Handle each data subset with one thread block

© 2008 NVIDIA Corporation

A Common Programming Strategy >

NVIDIA

® Load the subset from global memory to shared
memory, using multiple threads to exploit memory-
level parallelism

© 2008 NVIDIA Corporation

A Common Programming Strategy >

NVIDIA

S| X F3eX
$38515583 $383

® Perform the computation on the subset from shared
memory

A Common Programming Strategy >

NVIDIA

® Copy the result from shared memory back to global
memory

© 2008 NVIDIA Corporation

A Common Programming Strategy <3

NVIDIA

® Carefully partition data according to access patterns
® Read-only & constant memory (fast)

® R/W & shared within block » shared = memory
(fast)

® R/W within each thread = registers (fast)

® Indexed R/W within each thread = local memory
(slow)

® R/W inputs/results = cudaMalloc‘ed global memory
)

© 2008 NVIDIA Corporation

Communication Through Memory

® Question:

__global void race(void)

{

shared int my shared variable;

my shared variable = threadIdx.x;

// what is the wvalue of

// my shared variable?

© 2008 NVIDIA Corporation

>

NVIDIA

Communication Through Memory <X

NVIDIA

This is a
The result is

The order in which threads access the variable is
undefined without explicit coordination

Use barriers (e.g., syncthreads) or atomic
operations (e.g., atomicAdd) to enforce well-defined
semantics

© 2008 NVIDIA Corporation

Communication Through Memory S,%A

® Use syncthreads to ensure data is ready for
access

__global void share data(int *input)

{
__shared int data[BLOCK SIZE];
data[threadIdx.x] = input[threadIdx.x];
__syncthreads() ;

// the state of the entire data array
// is now well-defined for all threads
// in this block

}

© 2008 NVIDIA Corporation

Communication Through Memory >

NVIDIA

® Use atomic operations to ensure exclusive access to
a variable

// assume *result is initialized to O
__global void sum(int *input, int *result)
{

atomicAdd (result, input[threadIdx.x])

// after this kernel exits, the value of

// *result will be the sum of the input

© 2008 NVIDIA Corporation

. S
Resource Contention iy

® Atomic operations aren’t cheap!
® They imply to a variable

__global void sum(int *input, int *result)

{
atomicAdd (result, input[threadIdx.x])

// how many threads will contend
// for exclusive access to result?

sum<<<B,N/B>>> (input, result) ;

© 2008 NVIDIA Corporation

Hierarchical Atomics

® Divide & Conquer
® Per-thread atomicAddtoa shared partial sum
® Per-block atomicAdd to the total sum

© 2008 NVIDIA Corporation

Hierarchical Atomics <X

NVIDIA
__global wvoid sum(int *input, int *result)

{

shared int partial sum;

// thread 0 is responsible for

// initializing partial sum

if (threadIdx.x == 0)
partial sum = 0;

__syncthreads() ;

}

© 2008 NVIDIA Corporation

Hierarchical Atomics <X

NVIDIA

__global wvoid sum(int *input, int *result)

{

// each thread updates the partial sum
atomicAdd (&partial sum,
input[threadIdx.x]);

__syncthreads() ;

// thread 0 updates the total sum
if (threadIdx.x == 0)
atomicAdd (result, partial sum);

}

© 2008 NVIDIA Corporation

Advice <3

NVIDIA

® Use barriers such as syncthreads to wait until
___shared data is ready

® Prefer barriers to atomics when data access patterns
are regular or predictable

® Prefer atomics to barriers when data access patterns
are sparse or unpredictable

® Atomics to shared variables are much faster
than atomics to global variables

® Don’t synchronize or serialize unnecessarily

© 2008 NVIDIA Corporation

Matrix Multiplication Example <3

NVIDIA

® Generalize adjacent difference
example
® AB=A*B
® Each element AB;
® =dot(row(A,i),col(B,]))

® Parallelization strategy
® Thread - ABij
® 2D kernel

© 2008 NVIDIA Corporation

First Inplementation <X

}

NVIDIA
global void mat mul (float *a, float *b,

float *ab, int width)
// calculate the row & col index of the element
int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and col of b
for(int k = 0; k < width; ++k)
result += a[row*width+k] * b[k*width+col];

ab[row*width+col] = result;

© 2008 NVIDIA Corporation

How will this perform? <3

NVIDIA

How many loads per term of dot 2(a&Db)=
product? 8 Bytes

How many floating point operations? 2 (multiply & addition)

Global memory access to flop ratio 8 Bytes / 2 ops =
(GMAC) 4 B/op

What is the peak fp performance of 805 GFLOPS
GeForce GTX 2607

Lower bound on bandwidth required to GMAC * Peak FLOPS =4 * 805 =
reach peak fp performance 3.2 TB/s

What is the actual memory bandwidth 112 GB/s
of GeForce GTX 2607

Then what is an upper bound on Actual BW / GMAC =112 /4 =
performance of our implementation? 28 GFLOPS

© 2008 NVIDIA Corporation

ldea: Use shared = memory to
reuse global data

® Each input element is
read by width threads

® Load each element into
___shared memory
and have several threads
use the local version to

reduce the memory
bandwidth

© 2008 NVIDIA Corporation

Tiled Multiply

® Partition kernel loop
into phases

® Load a tile of both
matrices into
__shared each
phase

® Each phase, each
thread computes a
partial result

© 2008 NVIDIA Corporation

TILE WIDTH

—
A

Better Implementation <3

NVIDIA
__global void mat mul (float *a, float *b,
float *ab, int width)

// shorthand
int tx = threadIdx.x, ty = threadIdx.y;
int bx = blockIdx.x, by = blockIdx.y;

// allocate tiles in shared memory

shared float s a[TILE WIDTH] [TILE WIDTH];

shared float s b[TILE WIDTH] [TILE WIDTH];

// calculate the row & col index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;

float result = 0;

© 2008 NVIDIA Corporation

Better Implementation <X

NVIDIA
// loop over the tiles of the input in phases

for(int p = 0; p < width/TILE WIDTH; ++p)

{

// collaboratively load tiles into _ shared _
s a[ty]l[tx] = a[row*width + (p*TILE WIDTH + tx)];
s b[ty] [tx] = b[(m*TILE WIDTH + ty)*width + col];

__syncthreads() ;

// dot product between row of s a and col of s b
for(int k = 0; k < TILE WIDTH; ++k)

result += s _a[ty] [k] * s_Db[k][tx];
__syncthreads() ;

ab[row*width+col] = result;

} © 2008 NVIDIA Corporation

. . <@
Use of Barriers in mat mul m,,zm

® Two barriers per phase:

® syncthreads after all data is loaded into shared
memory

® syncthreads after all data is read from shared
memory

® Note that second syncthreads in phase p guards the
load in phase p+1

® Use barriers to guard data

® Guard against using uninitialized data
® Guard against bashing live data

© 2008 NVIDIA Corporation

. . : : <
First Order Size Considerations m,,zm

® Each thread block should have many threads
® TILE WIDTH=16 -> 16*16 = 256 threads

® There should be many thread blocks
® 1024*1024 matrices = 64*64 = 4096 thread blocks
® TILE WIDTH =16 - gives each SM 3 blocks, 768 threads
® Full occupancy

® Each thread block performs 2 * 256 = 512 32b loads
for 256 * (2 * 16) = 8,192 fp ops

® Memory bandwidth no longer limiting factor

© 2008 NVIDIA Corporation

Optimization Analysis <3

NVIDIA

® Experiment performed on a GT200
® This optimization was clearly worth the effort
® Better performance still possible in theory

© 2008 NVIDIA Corporation

TILE SIZE Effects <3

NVIDIA

200
180
160
140
120
100

10

60
40
20
o N

untiled 2x2 4x4 8x8 12x12 14x14 15x15 16x16
TILE SIZE

© 2008 NVIDIA Corporation

Memory Resources as Limit to <3
Parallelism

NVIDIA

21 per thread

2KB per block

® Effective use of different memory resources reduces
the number of accesses to global memory

® These resources are finite!

® The more memory locations each thread requires 2>
the fewer threads an SM can accommodate

© 2008 NVIDIA Corporation

Final Thoughts <X

NVIDIA

Effective use of CUDA memory hierarchy decreases
bandwidth consumption to increase throughput

® Use shared memory to eliminate redundant

loads from global memory

® Use syncthreads barriers to protect shared data
® Use atomics if access patterns are sparse or unpredictable

® Optimization comes with a development cost
Memory resources ultimately limit parallelism

Tutorials
® thread local variables.cu
® shared variables.cu
® matrix multiplication.cu

© 2008 NVIDIA Corporation

