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Lecture 4: CUDA Memories
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Hardware Implementation of CUDA <3
Memories

® Each thread can:

Read/write per-thread
registers

Read/write per-thread
local memory

Read/write per-block
shared memory

Read/write per-grid
global memory

Read/only per-grid
constant memory
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CUDA Variable Type Qualifiers <X

NVIDIA

Variable declaration Memory Scope | Lifetime
int var; register thread thread

int array var[1l0]; local thread thread

__shared  int shared var; shared block block

__device int global var; global grid | application

__constant  int constant var; constant grid | application

® “automatic” scalar variables without qualifier reside
in a register
® compiler will spill to thread local memory

® “automatic” array variables without qualifier reside
in thread-local memory
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CUDA Variable Type Performance <3

NVIDIA

Variable declaration Memory Penalty

int var; register 1x

int array var[10]; local

shared int shared var; shared 1X

device int global var; global

constant _ int constant var; constant 1x

® scalar variables reside in fast, on-chip registers
® shared variables reside in fast, on-chip memories

® thread-local arrays & global variables reside in
uncached off-chip memory

® constant variables reside in cached off-chip memory
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CUDA Variable Type Scale <3

NVIDIA

Variable declaration Instances Visibility
int wvar; 100,000s 1
int array var[10]; 100,000s 1

shared int shared var; 100s 100s

device int global var; ( 100,000s

constant  int constant var; 1 100,000s

100Ks per-thread variables, R/'W by 1 thread

100s shared variables, each R/W by 100s of threads
» 1 global variable is R/'W by 100Ks threads

1 constant variable is readable by 100Ks threads
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. >)
Where to declare variables? ,f,%A

constant int constant var; int var;

device int global var; int array var[10];

shared int shared var;
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Example — thread-local variables S,%A

// motivate per-thread variables with

// Ten Nearest Neighbors application

__global  void ten nn(float2 *result, float2 *ps, float2 *gs,
size t num gs)

// P goes in a register
float2 p = ps[threadIdx.x];

// per-thread heap goes in off-chip memory
float2 heap[1l0];

// read through num gs points, maintaining

// the nearest 10 gs to p in the heap

// write out the contents of heap to result

}
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Example — shared variables A

// motivate shared variables with

// Adjacent Difference application:

// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)

{
// compute this thread’s global index

unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

// each thread loads two elements from global memory
int x 1 = input[i];
int x i minus one = input[i-1];

result[i] = x 1 - X i minus one;
}
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Example — shared variables <3

NVIDIA

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)
{
// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x 1 = |input[i]};

int X i minus one = input[i-1]};

result[i] = x 1 - X i minus one;
}
}
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Example — shared variables <3

NVIDIA

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)
{
// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x 1 = |input[i]};

int X i minus one = input[i-1]};

result[i] = x 1 - X i minus one;
}
}
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Example — shared variables <3

NVIDIA

// motivate shared variables with
// Adjacent Difference application:
// compute result[i] = input[i] - input[i-1]
__global void adj _diff naive(int *result, int *input)
{
// compute this thread’s global index
unsigned int i = blockDim.x * blockIdx.x + threadIdx.x;

if(i > 0)
{

int x 1 = input[i];

int x i minus one = input[i-1];

result[i] = x 1 - X i minus one;
}
}
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Example — shared variables f,%A

// optimized version of adjacent difference
__global  void adj diff(int *result, int *input)
{

// shorthand for threadIdx.x

int tx threadIdx.x;

// allocate a shared array, one element per thread

shared int s data[BLOCK SIZE];

// each thread reads one element to s data

unsigned int i = blockDim.x * blockIdx.x + tx;
s _data[tx] = input[i];

// avoid race condition: ensure all loads
// complete before continuing

__syncthreads() ;

} © 2008 NVIDIA Corporation




Example — shared variables <X

NVIDIA
// optimized version of adjacent difference

__global  void adj diff(int *result, int *input)
{

if(tx > 0)

result[i] = s _data[tx] - s _data[tx-1];
else if(i > 0)
{

// handle thread block boundary

result[i] = s data[tx] - input[i-1];
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Example — shared variables <3

NVIDIA

// when the size of the array isn’t known at compile time...
__global  wvoid adj diff(int *result, int *input)
{

// use extern to indicate a _ shared array will be

// allocated dynamically at kernel launch time
extern shared int s_datal];

// pass the size of the per-block array, in bytes, as the third
// argument to the triple chevrons

adj diff<<<num blocks, block size, block size * sizeof (int)>>>(r,i);
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Optimization Analysis <3

NVIDIA

® Experiment performed on a GT200 chip
® Improvement likely better on an older architecture
® Improvement likely worse on a newer architecture

® Optimizations tend to come with a development cost
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About Pointers <X

NVIDIA

® Yes, you can use them!
® You can point at any memory space per se:

device  int my global variable;

constant  int my constant variable = 13;

__global  void foo(void)

{
__shared  int my shared variable;

int *ptr to _global = &my global variable;

const int *ptr to constant = &my constant variable;

int *ptr to shared = &my shared variable;

*ptr to global = *ptr to shared;
}
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About Pointers <X

NVIDIA

® Pointers aren’t typed on memory space

® shared int *ptr;
® Where does ptr point?

® ptrisa_ shared pointer variable, not a pointer to a
__shared__ variable!
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Don’t confuse the compiler!

__device int my global variable;
__global  wvoid foo(int *input)
{

__shared  int my shared variable;
int *ptr = 0;
if (input[threadIdx.x] % 2)
ptr = &my global variable;
else
ptr = &my shared variable;
// where does ptr point?
}
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: <@/
Advice nwzm

' Prefer dereferencing pointers in simple, regular
access patterns
® Avoid propagating pointers
' Avoid pointers to pointers

® The GPU would rather not pointer chase
® Linked lists will not perform well

® Pay attention to compiler warning messages

® Warning: Cannot tell what pointer points to,
assuming global memory space

® Crash waiting to happen
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A Common Programming Strategy <3

NVIDIA

® Global memory resides in device memory (DRAM)
® Much slower access than shared memory

® Tile data to take advantage of fast shared memory:
® Generalize from adjacent difference

example
® Divide and conquer
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A Common Programming Strategy >

NVIDIA

® Partition data into subsets that fit into shared memory
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A Common Programming Strategy >

NVIDIA

$38515583 $383

® Handle each data subset with one thread block
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A Common Programming Strategy >

NVIDIA

® Load the subset from global memory to shared
memory, using multiple threads to exploit memory-
level parallelism
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A Common Programming Strategy >

NVIDIA

S| X F3eX
$38515583 $383

® Perform the computation on the subset from shared
memory




A Common Programming Strategy >

NVIDIA

® Copy the result from shared memory back to global
memory
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A Common Programming Strategy <3

NVIDIA

® Carefully partition data according to access patterns
® Read-only & constant  memory (fast)

® R/W & shared within block » shared = memory
(fast)

® R/W within each thread = registers (fast)

® Indexed R/W within each thread = local memory
(slow)

® R/W inputs/results = cudaMalloc‘ed global memory
)
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Communication Through Memory

® Question:

__global  void race(void)

{

shared int my shared variable;

my shared variable = threadIdx.x;

// what is the wvalue of

// my shared variable?
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Communication Through Memory <X

NVIDIA

This is a
The result is

The order in which threads access the variable is
undefined without explicit coordination

Use barriers (e.g.,  syncthreads) or atomic
operations (e.g., atomicAdd) to enforce well-defined
semantics
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Communication Through Memory S,%A

® Use syncthreads to ensure data is ready for
access

__global  void share data(int *input)

{
__shared  int data[BLOCK SIZE];
data[threadIdx.x] = input[threadIdx.x];
__syncthreads() ;

// the state of the entire data array
// is now well-defined for all threads
// in this block

}
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Communication Through Memory >

NVIDIA

® Use atomic operations to ensure exclusive access to
a variable

// assume *result is initialized to O
__global  void sum(int *input, int *result)
{

atomicAdd (result, input[threadIdx.x])

// after this kernel exits, the value of

// *result will be the sum of the input
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Resource Contention iy

® Atomic operations aren’t cheap!
® They imply to a variable

__global  void sum(int *input, int *result)

{
atomicAdd (result, input[threadIdx.x])

// how many threads will contend
// for exclusive access to result?

sum<<<B,N/B>>> (input, result) ;
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Hierarchical Atomics

® Divide & Conquer
® Per-thread atomicAddtoa shared partial sum
® Per-block atomicAdd to the total sum
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Hierarchical Atomics <X

NVIDIA
__global  wvoid sum(int *input, int *result)

{

shared  int partial sum;

// thread 0 is responsible for

// initializing partial sum

if (threadIdx.x == 0)
partial sum = 0;

__syncthreads() ;

}
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Hierarchical Atomics <X

NVIDIA

__global  wvoid sum(int *input, int *result)

{

// each thread updates the partial sum
atomicAdd (&partial sum,
input[threadIdx.x]);

__syncthreads() ;

// thread 0 updates the total sum
if (threadIdx.x == 0)
atomicAdd (result, partial sum);

}
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Advice <3

NVIDIA

® Use barriers such as  syncthreads to wait until
___shared data is ready

® Prefer barriers to atomics when data access patterns
are regular or predictable

® Prefer atomics to barriers when data access patterns
are sparse or unpredictable

® Atomics to shared variables are much faster
than atomics to global variables

® Don’t synchronize or serialize unnecessarily
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Matrix Multiplication Example <3

NVIDIA

® Generalize adjacent difference
example
® AB=A*B
® Each element AB;
® =dot(row(A,i),col(B,]))

® Parallelization strategy
® Thread - ABij
® 2D kernel
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First Inplementation <X

}

NVIDIA
global  void mat mul (float *a, float *b,

float *ab, int width)
// calculate the row & col index of the element
int row = blockIdx.y*blockDim.y + threadIdx.y;

int col = blockIdx.x*blockDim.x + threadIdx.x;

float result = 0;

// do dot product between row of a and col of b
for(int k = 0; k < width; ++k)
result += a[row*width+k] * b[k*width+col];

ab[row*width+col] = result;
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How will this perform? <3

NVIDIA

How many loads per term of dot 2(a&Db)=
product? 8 Bytes

How many floating point operations? 2 (multiply & addition)

Global memory access to flop ratio 8 Bytes / 2 ops =
(GMAC) 4 B/op

What is the peak fp performance of 805 GFLOPS
GeForce GTX 2607

Lower bound on bandwidth required to GMAC * Peak FLOPS =4 * 805 =
reach peak fp performance 3.2 TB/s

What is the actual memory bandwidth 112 GB/s
of GeForce GTX 2607

Then what is an upper bound on Actual BW / GMAC =112 /4 =
performance of our implementation? 28 GFLOPS
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ldea: Use  shared = memory to
reuse global data

® Each input element is
read by width threads

® Load each element into
___shared memory
and have several threads
use the local version to

reduce the memory
bandwidth

© 2008 NVIDIA Corporation




Tiled Multiply

® Partition kernel loop
into phases

® Load a tile of both
matrices into
__shared each
phase

® Each phase, each
thread computes a
partial result

© 2008 NVIDIA Corporation
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Better Implementation <3

NVIDIA
__global  void mat mul (float *a, float *b,
float *ab, int width)

// shorthand
int tx = threadIdx.x, ty = threadIdx.y;
int bx = blockIdx.x, by = blockIdx.y;

// allocate tiles in shared memory

shared float s a[TILE WIDTH] [TILE WIDTH];

shared float s b[TILE WIDTH] [TILE WIDTH];

// calculate the row & col index
int row = by*blockDim.y + ty;
int col = bx*blockDim.x + tx;

float result = 0;
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Better Implementation <X

NVIDIA
// loop over the tiles of the input in phases

for(int p = 0; p < width/TILE WIDTH; ++p)

{

// collaboratively load tiles into _ shared _
s a[ty]l[tx] = a[row*width + (p*TILE WIDTH + tx)];
s b[ty] [tx] = b[ (m*TILE WIDTH + ty)*width + col];

__syncthreads() ;

// dot product between row of s a and col of s b
for(int k = 0; k < TILE WIDTH; ++k)

result += s _a[ty] [k] * s_Db[k][tx];
__syncthreads() ;

ab[row*width+col] = result;

} © 2008 NVIDIA Corporation
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Use of Barriers in mat mul m,,zm

® Two barriers per phase:

®  syncthreads after all data is loaded into  shared
memory

®  syncthreads after all data is read from  shared
memory

® Note that second syncthreads in phase p guards the
load in phase p+1

® Use barriers to guard data

® Guard against using uninitialized data
® Guard against bashing live data
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First Order Size Considerations m,,zm

® Each thread block should have many threads
® TILE WIDTH=16 -> 16*16 = 256 threads

® There should be many thread blocks
® 1024*1024 matrices = 64*64 = 4096 thread blocks
® TILE WIDTH =16 - gives each SM 3 blocks, 768 threads
® Full occupancy

® Each thread block performs 2 * 256 = 512 32b loads
for 256 * (2 * 16) = 8,192 fp ops

® Memory bandwidth no longer limiting factor
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Optimization Analysis <3
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® Experiment performed on a GT200
® This optimization was clearly worth the effort
® Better performance still possible in theory
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TILE SIZE Effects <3
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Memory Resources as Limit to <3
Parallelism

NVIDIA

21 per thread

2KB per block

® Effective use of different memory resources reduces
the number of accesses to global memory

® These resources are finite!

® The more memory locations each thread requires 2>
the fewer threads an SM can accommodate
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Final Thoughts <X

NVIDIA

Effective use of CUDA memory hierarchy decreases
bandwidth consumption to increase throughput

® Use shared memory to eliminate redundant

loads from global memory

® Use syncthreads barriers to protect shared data
® Use atomics if access patterns are sparse or unpredictable

® Optimization comes with a development cost
Memory resources ultimately limit parallelism

Tutorials
® thread local variables.cu
® shared variables.cu
® matrix multiplication.cu
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