CS 193G

Lecture 1: Introduction to Massively
Parallel Computing

<A NVIDIA.

Course Goals <X

NVIDIA

® Learn how to program massively parallel processors
and achieve

® High performance
® Functionality and maintainability
® Scalability across future generations

® Acquire technical knowledge required to achieve
above goals
® Principles and patterns of parallel programming
® Processor architecture features and constraints
® Programming API, tools and techniques

© 2008 NVIDIA Corporation

<@/
People nwzm
® Lecturers

® Jared Hoberock: jaredhoberock at gmail.com

® David Tarjan: tar.cs193g at gmail.com
® Office hours: 3:00-4:00 PM, Tu Th, Gates 195

® Course TA

® Niels Joubert: njoubert at cs.stanford.edu

® Guest lecturers
® Domain experts

© 2008 NVIDIA Corporation

<X
Web Resources e

® Website:
® http://stanford-cs193g-sp2010.qgooqglecode.com

® Lecture slides/recordings
® Documentation, software resources
®

Note: while we’ll make an effort to post announcements on
the web, we can’t guarantee it, and won’t make allowances
for people who miss things in class
® Mailing list
® Channel for electronic announcements

® Forum for Q&A — Lecturers and assistants read the board,
and your classmates often have answers

® Axess for Grades

© 2008 NVIDIA Corporation

Grading >

NVIDIA

® This is a lab oriented course!

® Machine problems: 50%
® Correctness: ~40%
® Performance: ~35%
® Report: ~25%

® Project: 50%
® Technical pitch: 25%
® Project Presentation: 25%
® Demo: 50%

© 2008 NVIDIA Corporation

Bonus Days <X

NVIDIA

® Every student is allocated two bonus days

® No-questions asked one-day extension that can be used
on any MP

® Use both on the same thing if you want

® Weekends/holidays don’t count for the number of days of
extension (Friday-Monday is just one day extension)

® Intended to cover ilinesses, interview visits, just
needing more time, etc.

® Late penalty is 10% of the possible credit/day, again
counting only weekdays

© 2008 NVIDIA Corporation

Academic Honesty <X

NVIDIA

® You are allowed and encouraged to discuss
assignments with other students in the class.

Getting verbal advice/help from people who’ve
already taken the course is also fine.

® Any copying of non-trivial code is unacceptable
® Non-trivial = more than a line or so

® Includes reading someone else’s code and then
going off to write your own.

© 2008 NVIDIA Corporation

Course Equipment <X

NVIDIA

® Your own PCs with a CUDA-enabled GPU
® NVIDIA GeForce GTX 260 boards

® Lab facilities: Pups cluster, Gates B21
® Nodes 2,8,11,12, & 13
® New Fermi Architecture GPUs?

® As they become available

© 2008 NVIDIA Corporation

Text & Notes <X

NVIDIA

® Course text:

® Kirk & Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. 2010.

® References:

® NVIDIA. The NVIDIA CUDA Programming Guide. 2010.
® NVIDIA. CUDA Reference Manual. 2010.

® Lectures will be posted on the class website.

© 2008 NVIDIA Corporation

Schedule

® Week 1:
Tu: Introduction
Th: CUDA Intro
MP 0: Hello, World!
MP 1: Parallel For
® Week 2
® Tu: Threads & Atomics
® Th: Memory Model
® MP 2: Atomics
® Week 3
® Tu: Performance
® Th: Parallel Programming
® MP 3: Communication
® Week 4
® Tu: Project Proposals
® Th: Parallel Patterns
® MP 4: Productivity

© 2008 NVIDIA Corporation

<3

NVIDIA

Week 5

® Tu: Productivity

® Th: Sparse Matrix Vector
Week 6

® Tu: PDE Solvers Case Study

® Th: Fermi
Week 7

® Tu: Ray Tracing Case Study

® Th: Future of Throughput
Week 8

® Tu: Al Case Study

® Th: Advanced Optimization
Week 9

® Tu: TBD

® Th: Project Presentations
Week 10

® Tu: Project Presentations

Moore’s Law (paraphrased) <3

NVIDIA

“The number of transistors on an integrated
circuit doubles every two years.”

— Gordon E. Moore

© 2008 NVIDIA Corporation

Moore’s Law (Visualized) <X

NVIDIA
10,000,000,000

1,000,000,000

100,000,000

10,000,000

1,000,000

it
c
|
O
&)
| S
O
pd
Rl
7))
c
©
L S

100,000

10,000
/

*
1,000 Intel 4004 I | | |
1970 1980 1990 2000 2010

© 2008 NVIDIA Corporation Data credit: Wikipedia

Buying Performance with Power n%%A

I I

Performance

© 2008 NVIDIA Corporation

(courtesy Mark Horowitz and Kevin Skadron)

Serial Performance Scaling is Over >

NVIDIA

continue to scale processor frequencies
® no 10 GHz chips

continue to increase power consumption
® can’t melt chip

® Can continue to increase transistor density
® as per Moore’s Law

© 2008 NVIDIA Corporation

How to Use Transistors?

® Instruction-level parallelism
® out-of-order execution, speculation, ...
® in power-constrained world

® Data-level parallelism

® vector units, SIMD execution, ...
® increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU

® Thread-level parallelism
® increasing ... multithreading, multicore, manycore

® Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, ...

© 2008 NVIDIA Corporation

<3

NVIDIA

Why Massively Parallel Processing? <3

NVIDIA

® A quiet revolution and potential build-up

® Computation: TFLOPs vs. 100 GFLOPs
1400 -

1200 -
-=-NVIDIA GPU
——|ntel CPU

1000 -

800 -

600 -

"
o
@)
-
™
O

400 -

3GHz Xeon

Rt WEREIE
200 NV40 - 3GHz Quad

Core2 Duo
0 - —t— C%P‘l 0——————“"’/

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008 712712009

® GPU in every PC — massive volume & potential impact

© 2008 NVIDIA Corporation

Why Massively Parallel Processing? <3

NVIDIA

® A quiet revolution and potential build-up

® Bandwidth: ~10x
200 -

| =+NVIDIAGPU
| —+lIntel CPU

3GHz Xeon Westmere

4

v

o V. V.
v v v

9/22/2002 2/4/2004 6/18/2005 10/31/2006 3/14/2008 712712009

® GPU in every PC — massive volume & potential impact

© 2008 NVIDIA Corporation

The “New” Moore’s Law <X

NVIDIA

® Computers no longer get faster, just wider

® You must re-think your algorithms to be parallel !

® Data-parallel computing is most scalable solution
® Otherwise: refactor code for 2 cofas 4 e®s 8rew®s 16 cores...

® You will always have more data than cores —
build the computation around the data

© 2008 NVIDIA Corporation

Generic Multicore Chip <3

NVIDIA

® Handful of processors each supporting ~1 hardware thread

® On-chip memory near processors (cache, RAM, or both)

® Shared global memory space (external DRAM)

© 2008 NVIDIA Corporation

Generic Manycore Chip <3

NVIDIA

® Many processors each supporting many hardware threads

® On-chip memory near processors (cache, RAM, or both)

® Shared global memory space (external DRAM)

© 2008 NVIDIA Corporation

Enter the GPU <X

NVIDIA

® Massive economies of scale

® Massively parallel

© 2008 NVIDIA Corporation

GPU Evolution <X

® High throughput computation

® GeForce GTX 280: 933 GFLOP/s
® High bandwidth memory

® GeForce GTX 280: 140 GB/s

® High availability to all
® 180+ million CUDA-capable GPUs in the wild

3B xtors

GeForce 8800
681M xtors
GeForce FX

GeForce 3 125M xtors

GeForce® 256 ~ 60M xtors
RIVA 128 23M xtors
3M xtors

1995
© 2008 NVIDIA Corporation

Lessons from Graphics Pipeline rszm

® Throughput is paramount
® must paint every pixel within frame time
® scalability

® Create, run, & retire lots of threads very rapidly
® measured 14.8 Gthread/s on increment () kernel

® Use multithreading to hide latency
® 1 stalled thread is OK if 100 are ready to run

© 2008 NVIDIA Corporation

Why is this different from a CPU? <3

NVIDIA

® Different goals produce different designs
® GPU assumes work load is highly parallel
® CPU must be good at everything, parallel or not

® CPU: minimize latency experienced by 1 thread

® big on-chip caches
® sophisticated control logic

® GPU: maximize throughput of all threads

® # threads in flight limited by resources => lots of
resources (registers, bandwidth, etc.)

® multithreading can hide latency => skip the big caches
® share control logic across many threads

© 2008 NVIDIA Corporation

<3
NVIDIA

)
- -
-
-
&
)
=
L
O
- -
<
-
a
O
<
=
>
2

o
=
1
LL
O
=
.
O
L

DRAM I/F DRAM I/F

. 1N
I-[-

] I
l-'r [
N
|| S -

- =N
- -
L LT T TN -
-]
o
- L
O O N

- ST T ——
o
- L
T O
- A
BT || Sp—

- ST | LTS p—
o T
- BT || [Sp——
BT || [Sp—
e

B |-

d/1 NVdd d/1 LSOH

DRAM I/F

ul
ul
ul
ul
ul
al
ull

DRAM I/F ‘
L
l-l
|
l-[
i
l-l
|
l-[
|
l-l
i
l-[
L
l-[
|

.

d/1 NVyd

© 2008 NVIDIA Corporation

SM Multiprocessor

32 CUDA Cores per SM (512 total)

8x peak FP64 performance
® 50% of peak FP32 performance

Direct load/store to memory

® Usual linear sequence of

® High bandwidth (Hundre
sec)

64KB of fast, on-chip RAM
® Software or hardware-managed
® Shared amongst CUDA cores
® Enables thread communication

© 2008 NVIDIA Corporation

<3

NVIDIA
Instruction Cache

_ Register File

Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

oad/Store Units x 1€
Special Func Units x

| connect Network

K Configurable
he/Shared Mem

mniform Cache

Key Architectural Ideas <X

NVIDIA

lﬁstruction Cache

® SIMT (Single Instruction Multiple Thread) execution
® threads run in groups of 32 called warps isterF.e '
® threads in a warp share instruction unit (1U) Core Core Core Core
® HW automatically handles divergence Core Core Core Core

Core Core Core Core

Core Core Core Core

® Hardware multithreading

® HW resource allocation & thread scheduling
® HW relies on threads to hide latency

Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

® Threads have all resources needed to run

® any warp not waiting for something can run AEBTEBRest Network

® context switching is (basically) free Eiconﬁgurable

che/Shared Mem

l Uniform Cache

© 2008 NVIDIA Corporation

Enter CUDA <X

NVIDIA

® Scalable parallel programming model

® Minimal extensions to familiar C/C++ environment

® Heterogeneous serial-parallel computing

© 2008 NVIDIA Corporation

13—457x

Motivation

© 2008 NVIDIA Corporation

CUDA: Scalable parallel programming >

NVIDIA

® Augment C/C++ with minimalist abstractions
® |et programmers focus on parallel algorithms
® not mechanics of a parallel programming language

® Provide straightforward mapping onto hardware

® good fit to GPU architecture
® maps well to multi-core CPUs too

® Scale to 100s of cores & 10,000s of parallel threads
® GPU threads are lightweight — create / switch is free
® GPU needs 1000s of threads for full utilization

© 2008 NVIDIA Corporation

Key Parallel Abstractions in CUDA &

NVIDIA

® Hierarchy of concurrent threads

® Lightweight synchronization primitives

® Shared memory model for cooperating threads

© 2008 NVIDIA Corporation

Hierarchy of concurrent threads

® Parallel kernels composed of many threads
® all threads execute the same sequential program

® Threads are grouped into thread blocks
® threads in the same block can cooperate

® Threads/blocks have unique IDs

© 2008 NVIDIA Corporation

<3

NVIDIA

Thread t

?

CUDA Model of Parallelism <X

NVIDIA

® CUDA virtualizes the physical hardware
® thread is a virtualized scalar processor (registers, PC, state)
® block is a virtualized multiprocessor (threads, shared mem.)

® Scheduled onto physical hardware without pre-emption
® threads/blocks launch & run to completion
® blocks should be independent

© 2008 NVIDIA Corporation

NOT: Flat Multiprocessor <3

NVIDIA

® Global synchronization isn’t cheap
® Global memory access times are expensive

® cf. PRAM (Parallel Random Access Machine) model

© 2008 NVIDIA Corporation

NOT: Distributed Processors <X

NVIDIA

— ——
Processor Processor

P P

Interconnection Network

® Distributed computing is a different setting

® cf. BSP (Bulk Synchronous Parallel) model, MPI

© 2008 NVIDIA Corporation

Heterogeneous Computing

Multicore CPU

Manycore GPU

S

NVIDIA

C for CUDA <3

NVIDIA

Philosophy: provide minimal set of extensions necessary to expose power

Function qualifiers:
__global void my kernel() { }
__device float my device func() { }
Variable qualifiers:
constant float my constant array[32];

__shared float my shared array[32];
Execution configuration:
dim3 grid dim (100, 50); // 5000 thread blocks
dim3 block dim(4, 8, 8); // 256 threads per block
my kernel <<< grid dim, block dim >>> (...); // Launch kernel

Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadldx; // Thread index
void _ syncthreads(); // Thread synchronization

© 2008 NVIDIA Corporation

>

NVIDIA

Example: vector addition

Device Code

// compute vector sum ¢ = a + b
// each thread performs one pair-wise addition
global |void vector add(float* A, float* B, float* C)

{
int i =|threadlIdx.x + blockDim.x * blockIdx.x:

C[i] = A[i] + B[1i];

int main()

{

// elided initialization code

// Run N/256 blocks of 256 threads each
vector add<<< N/256, 256>>>(d A, d B, d C);
}

© 2008 NVIDIA Corporation

<3

NVIDIA

Example: vector addition

// compute vector sum ¢ = a + b
// each thread performs one pair-wise addition
__global void vector add(float* A, float* B, float* C)

{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[1];

Host Code
int main ()

{

// elided initialization code

// launch N/256 blocks of 256 threads each
vector add<<< N/256, 256>>>(d A, d B, d C);
}

© 2008 NVIDIA Corporation

Example: Initialization code for
vector addition

// allocate and initialize host (CPU) memory
float *h A = ., *h B = .

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc((void**) &d A, N * sizeof(float));
cudaMalloc((void**) &d B, N * sizeof(float));
cudaMalloc((void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice)) ;

cudaMemcpy(d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice)) ;

// launch N/256 blocks of 256 threads each
vector add<<<N/256, 256>>>(d A, d B, d C);

© 2008 NVIDIA Corporation

<3

NVIDIA

Previous Projects from UIUC ECE 498AL

>

NVIDIA

Application

Description

Source

Kernel

% time

H.264

SPEC ‘06 version, change in guess vector

34,811

194

35%

LBM

SPEC ‘06 version, change to single precision
and print fewer reports

1,481

285

>99%

RC5-72

Distributed.net RC5-72 challenge client code

1,979

218

>99%

FEM

Finite element modeling, simulation of 3D
graded materials

1,874

146

99%

RPES

Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion

1,104

281

99%

PNS

Petri Net simulation of a distributed system

322

160

>99%

SAXPY

Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine

952

31

>99%

TPACF

Two Point Angular Correlation Function

536

98

96%

FDTD

Finite-Difference Time Domain analysis of 2D
electromagnetic wave propagation

1,365

93

16%

MRI-Q

Computing a matrix Q, a scanner’s
configuration in MRI reconstruction

490

33

>99%

© 2006 NVIDIA L,or'poratlon

o

NVIDIA

457 316
431 263

Speedup of Applications

60
50
8940
5 230
:)'-03
o S 20
O ¥
10
0

LBM RC572 FEM RPES PNS SAXPY TPACF FDTD MR-Q MR-
FHD

®GeForce 8800 GTX vs. 2.2GHz Opteron 248

®10x speedup in a kernel is typical, as long as the kernel can
occupy enough parallel threads

®25x to 400x speedup if the function’s data requirements and
control flow suit the GPU and the application is optimized

© 2008 NVIDIA Corporation

Final Thoughts <X

NVIDIA

® Parallel hardware is here to stay

® GPUs are massively parallel manycore processors
® easily available and fully programmable

® Parallelism & scalability are crucial for success

® This presents many important research challenges
® not to speak of the educational challenges

© 2008 NVIDIA Corporation

Machine Problem 0 <X

NVIDIA

® http://code.google.com/p/stanford-cs193g-sp2010/
wiki/GettingStartedWithCUDA

® Work through tutorial codes
hello_world.cu

cuda_memory_model.cu
global_functions.cu
device_functions.cu
vector_addition.cu

© 2008 NVIDIA Corporation

