
CS 193G

Lecture 1: Introduction to Massively
Parallel Computing

© 2008 NVIDIA Corporation

Course Goals

!   Learn how to program massively parallel processors
and achieve
!   High performance
!   Functionality and maintainability
!   Scalability across future generations

!   Acquire technical knowledge required to achieve
above goals
!   Principles and patterns of parallel programming
!   Processor architecture features and constraints
!   Programming API, tools and techniques

© 2008 NVIDIA Corporation

People

!   Lecturers
!   Jared Hoberock: jaredhoberock at gmail.com
!   David Tarjan: tar.cs193g at gmail.com
!   Office hours: 3:00-4:00 PM, Tu Th, Gates 195

!   Course TA
!   Niels Joubert: njoubert at cs.stanford.edu

!   Guest lecturers
!   Domain experts

© 2008 NVIDIA Corporation

Web Resources

!   Website:
!   http://stanford-cs193g-sp2010.googlecode.com
!   Lecture slides/recordings
!   Documentation, software resources
!   Note: while we’ll make an effort to post announcements on

the web, we can’t guarantee it, and won’t make allowances
for people who miss things in class

!   Mailing list
!   Channel for electronic announcements
!   Forum for Q&A – Lecturers and assistants read the board,

and your classmates often have answers
!   Axess for Grades

© 2008 NVIDIA Corporation

Grading

!   This is a lab oriented course!
!   Machine problems: 50%

!   Correctness: ~40%
!   Performance: ~35%
!   Report: ~25%

!   Project: 50%
!   Technical pitch: 25%
!   Project Presentation: 25%
!   Demo: 50%

© 2008 NVIDIA Corporation

Bonus Days

!   Every student is allocated two bonus days
!   No-questions asked one-day extension that can be used

on any MP
!   Use both on the same thing if you want
!   Weekends/holidays don’t count for the number of days of

extension (Friday-Monday is just one day extension)
!   Intended to cover illnesses, interview visits, just

needing more time, etc.
!   Late penalty is 10% of the possible credit/day, again

counting only weekdays

© 2008 NVIDIA Corporation

Academic Honesty

!   You are allowed and encouraged to discuss
assignments with other students in the class.
Getting verbal advice/help from people who’ve
already taken the course is also fine.

!   Any reference to assignments from previous terms
or web postings is unacceptable

!   Any copying of non-trivial code is unacceptable
!   Non-trivial = more than a line or so
!   Includes reading someone else’s code and then

going off to write your own.

© 2008 NVIDIA Corporation

Course Equipment

!   Your own PCs with a CUDA-enabled GPU
!   NVIDIA GeForce GTX 260 boards

!   Lab facilities: Pups cluster, Gates B21
!   Nodes 2, 8, 11, 12, & 13
!   New Fermi Architecture GPUs?

!   As they become available

© 2008 NVIDIA Corporation

Text & Notes

!   Course text:
!   Kirk & Hwu. Programming Massively Parallel Processors:

A Hands-on Approach. 2010.
!   References:

!   NVIDIA. The NVIDIA CUDA Programming Guide. 2010.
!   NVIDIA. CUDA Reference Manual. 2010.

!   Lectures will be posted on the class website.

© 2008 NVIDIA Corporation

Schedule
!   Week 1:

!   Tu: Introduction
!   Th: CUDA Intro
!   MP 0: Hello, World!
!   MP 1: Parallel For

!   Week 2
!   Tu: Threads & Atomics
!   Th: Memory Model
!   MP 2: Atomics

!   Week 3
!   Tu: Performance
!   Th: Parallel Programming
!   MP 3: Communication

!   Week 4
!   Tu: Project Proposals
!   Th: Parallel Patterns
!   MP 4: Productivity

!   Week 5
!   Tu: Productivity
!   Th: Sparse Matrix Vector

!   Week 6
!   Tu: PDE Solvers Case Study
!   Th: Fermi

!   Week 7
!   Tu: Ray Tracing Case Study
!   Th: Future of Throughput

!   Week 8
!   Tu: AI Case Study
!   Th: Advanced Optimization

!   Week 9
!   Tu: TBD
!   Th: Project Presentations

!   Week 10
!   Tu: Project Presentations

© 2008 NVIDIA Corporation

Moore’s Law (paraphrased)

“The number of transistors on an integrated
circuit doubles every two years.”

– Gordon E. Moore

© 2008 NVIDIA Corporation

Moore’s Law (Visualized)

Data credit: Wikipedia

GF100

© 2008 NVIDIA Corporation

Buying Performance with Power

(courtesy Mark Horowitz and Kevin Skadron)

P
ow

er

Performance

© 2008 NVIDIA Corporation

Serial Performance Scaling is Over

!   Cannot continue to scale processor frequencies
!   no 10 GHz chips

!   Cannot continue to increase power consumption
!   can’t melt chip

!   Can continue to increase transistor density
!   as per Moore’s Law

© 2008 NVIDIA Corporation

How to Use Transistors?

!   Instruction-level parallelism
!   out-of-order execution, speculation, …
!   vanishing opportunities in power-constrained world

!   Data-level parallelism
!   vector units, SIMD execution, …
!   increasing … SSE, AVX, Cell SPE, Clearspeed, GPU

!   Thread-level parallelism
!   increasing … multithreading, multicore, manycore
!   Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, …

© 2008 NVIDIA Corporation

!   A quiet revolution and potential build-up
!   Computation: TFLOPs vs. 100 GFLOPs

!   GPU in every PC – massive volume & potential impact

Why Massively Parallel Processing?

T12

Westmere
NV30 NV40

G70

G80

GT200

3GHz Dual
Core P4

3GHz
Core2 Duo

3GHz Xeon
Quad

© 2008 NVIDIA Corporation

Why Massively Parallel Processing?
!   A quiet revolution and potential build-up

!   Bandwidth: ~10x

!   GPU in every PC – massive volume & potential impact

NV30
NV40 G70

G80

GT200

T12

3GHz Dual
Core P4

3GHz
Core2 Duo

3GHz Xeon
Quad

Westmere

© 2008 NVIDIA Corporation

The “New” Moore’s Law

!   Computers no longer get faster, just wider

!   You must re-think your algorithms to be parallel !

!   Data-parallel computing is most scalable solution
!   Otherwise: refactor code for 2 cores
!   You will always have more data than cores –

build the computation around the data

8 cores 4 cores 16 cores…

© 2008 NVIDIA Corporation

Processor Memory Processor Memory

Global Memory

Generic Multicore Chip

!   Handful of processors each supporting ~1 hardware thread

!   On-chip memory near processors (cache, RAM, or both)

!   Shared global memory space (external DRAM)

© 2008 NVIDIA Corporation

• • •
Processor Memory Processor Memory

Global Memory

Generic Manycore Chip

!   Many processors each supporting many hardware threads

!   On-chip memory near processors (cache, RAM, or both)

!   Shared global memory space (external DRAM)

© 2008 NVIDIA Corporation

Enter the GPU

!   Massive economies of scale

!   Massively parallel

© 2008 NVIDIA Corporation

GPU Evolution

!   High throughput computation
!   GeForce GTX 280: 933 GFLOP/s

!   High bandwidth memory
!   GeForce GTX 280: 140 GB/s

!   High availability to all
!   180+ million CUDA-capable GPUs in the wild

1995 2000 2005 2010

© 2008 NVIDIA Corporation

Lessons from Graphics Pipeline

!   Throughput is paramount
!   must paint every pixel within frame time
!   scalability

!   Create, run, & retire lots of threads very rapidly
!   measured 14.8 Gthread/s on increment() kernel

!   Use multithreading to hide latency
!   1 stalled thread is OK if 100 are ready to run

© 2008 NVIDIA Corporation

Why is this different from a CPU?

!   Different goals produce different designs
!   GPU assumes work load is highly parallel
!   CPU must be good at everything, parallel or not

!   CPU: minimize latency experienced by 1 thread
!   big on-chip caches
!   sophisticated control logic

!   GPU: maximize throughput of all threads
!   # threads in flight limited by resources => lots of

resources (registers, bandwidth, etc.)
!   multithreading can hide latency => skip the big caches
!   share control logic across many threads

© 2008 NVIDIA Corporation

NVIDIA GPU Architecture
Fermi GF100

G
ig

a
Th

re
ad

© 2008 NVIDIA Corporation

SM Multiprocessor

Load/Store Units x 16
Special Func Units x 4

!   32 CUDA Cores per SM (512 total)

!   8x peak FP64 performance
!   50% of peak FP32 performance

!   Direct load/store to memory
!   Usual linear sequence of bytes
!   High bandwidth (Hundreds GB/

sec)

!   64KB of fast, on-chip RAM
!   Software or hardware-managed
!   Shared amongst CUDA cores
!   Enables thread communication

© 2008 NVIDIA Corporation

Key Architectural Ideas

!   SIMT (Single Instruction Multiple Thread) execution
!   threads run in groups of 32 called warps
!   threads in a warp share instruction unit (IU)
!   HW automatically handles divergence

!   Hardware multithreading
!   HW resource allocation & thread scheduling
!   HW relies on threads to hide latency

!   Threads have all resources needed to run
!   any warp not waiting for something can run
!   context switching is (basically) free

Load/Store Units x 16
Special Func Units x 4

© 2008 NVIDIA Corporation

Enter CUDA

!   Scalable parallel programming model

!   Minimal extensions to familiar C/C++ environment

!   Heterogeneous serial-parallel computing

© 2008 NVIDIA Corporation

Motivation
110-240X

45X 100X

35X

17X

13–457x

© 2008 NVIDIA Corporation

CUDA: Scalable parallel programming

!   Augment C/C++ with minimalist abstractions
!   let programmers focus on parallel algorithms
!   not mechanics of a parallel programming language

!   Provide straightforward mapping onto hardware
!   good fit to GPU architecture
!   maps well to multi-core CPUs too

!   Scale to 100s of cores & 10,000s of parallel threads
!   GPU threads are lightweight — create / switch is free
!   GPU needs 1000s of threads for full utilization

© 2008 NVIDIA Corporation

Key Parallel Abstractions in CUDA

!   Hierarchy of concurrent threads

!   Lightweight synchronization primitives

!   Shared memory model for cooperating threads

© 2008 NVIDIA Corporation

Hierarchy of concurrent threads

!   Parallel kernels composed of many threads
!   all threads execute the same sequential program

!   Threads are grouped into thread blocks
!   threads in the same block can cooperate

!   Threads/blocks have unique IDs

Thread t

t0 t1 … tB

Block b

© 2008 NVIDIA Corporation

CUDA Model of Parallelism

!   CUDA virtualizes the physical hardware
!   thread is a virtualized scalar processor (registers, PC, state)
!   block is a virtualized multiprocessor (threads, shared mem.)

!   Scheduled onto physical hardware without pre-emption
!   threads/blocks launch & run to completion
!   blocks should be independent

• • •
Block Memory Block Memory

Global Memory

© 2008 NVIDIA Corporation

NOT: Flat Multiprocessor

!   Global synchronization isn’t cheap
!   Global memory access times are expensive

!   cf. PRAM (Parallel Random Access Machine) model

Processors

Global Memory

© 2008 NVIDIA Corporation

NOT: Distributed Processors

!   Distributed computing is a different setting

!   cf. BSP (Bulk Synchronous Parallel) model, MPI

Interconnection Network

Processor Memory Processor Memory
• • •

© 2008 NVIDIA Corporation

Heterogeneous Computing

Multicore CPU

© 2008 NVIDIA Corporation

C for CUDA
!   Philosophy: provide minimal set of extensions necessary to expose power

!   Function qualifiers:
__global__ void my_kernel() { }
__device__ float my_device_func() { }

!   Variable qualifiers:
__constant__ float my_constant_array[32];
__shared__ float my_shared_array[32];

!   Execution configuration:
dim3 grid_dim(100, 50); // 5000 thread blocks
dim3 block_dim(4, 8, 8); // 256 threads per block
my_kernel <<< grid_dim, block_dim >>> (...); // Launch kernel

!   Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index
void __syncthreads(); // Thread synchronization

© 2008 NVIDIA Corporation

Example: vector_addition

// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // elided initialization code
 ...
 // Run N/256 blocks of 256 threads each
 vector_add<<< N/256, 256>>>(d_A, d_B, d_C);
}

Device Code

© 2008 NVIDIA Corporation

Example: vector_addition

// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C)
{
 int i = threadIdx.x + blockDim.x * blockIdx.x;
 C[i] = A[i] + B[i];
}

int main()
{
 // elided initialization code
 ...
 // launch N/256 blocks of 256 threads each
 vector_add<<< N/256, 256>>>(d_A, d_B, d_C);
}

Host Code

© 2008 NVIDIA Corporation

Example: Initialization code for
vector_addition
// allocate and initialize host (CPU) memory
float *h_A = …, *h_B = …;

// allocate device (GPU) memory
float *d_A, *d_B, *d_C;
cudaMalloc((void**) &d_A, N * sizeof(float));
cudaMalloc((void**) &d_B, N * sizeof(float));
cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device
cudaMemcpy(d_A, h_A, N * sizeof(float),

cudaMemcpyHostToDevice));
cudaMemcpy(d_B, h_B, N * sizeof(float),

cudaMemcpyHostToDevice));

// launch N/256 blocks of 256 threads each
vector_add<<<N/256, 256>>>(d_A, d_B, d_C);

© 2008 NVIDIA Corporation

Application Description Source Kernel % time

H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision
and print fewer reports

1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D
graded materials

1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion

1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine

952 31 >99%

TPACF Two Point Angular Correlation Function 536 98 96%

FDTD Finite-Difference Time Domain analysis of 2D
electromagnetic wave propagation

1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s
configuration in MRI reconstruction

490 33 >99%

Previous Projects from UIUC ECE 498AL

© 2008 NVIDIA Corporation

Speedup of Applications

!  GeForce 8800 GTX vs. 2.2GHz Opteron 248
!  10× speedup in a kernel is typical, as long as the kernel can

occupy enough parallel threads
!  25× to 400× speedup if the function’s data requirements and

control flow suit the GPU and the application is optimized

© 2008 NVIDIA Corporation

Final Thoughts

!   Parallel hardware is here to stay

!   GPUs are massively parallel manycore processors
!   easily available and fully programmable

!   Parallelism & scalability are crucial for success

!   This presents many important research challenges
!   not to speak of the educational challenges

© 2008 NVIDIA Corporation

Machine Problem 0

!   http://code.google.com/p/stanford-cs193g-sp2010/
wiki/GettingStartedWithCUDA

!   Work through tutorial codes
!   hello_world.cu
!   cuda_memory_model.cu
!   global_functions.cu
!   device_functions.cu
!   vector_addition.cu

