CS 193G

Lecture 1: Introduction to Massively
Parallel Computing
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Course Goals <X

NVIDIA

® Learn how to program massively parallel processors
and achieve

® High performance
® Functionality and maintainability
® Scalability across future generations

® Acquire technical knowledge required to achieve
above goals
® Principles and patterns of parallel programming
® Processor architecture features and constraints
® Programming API, tools and techniques
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<@/
People nwzm
® Lecturers

® Jared Hoberock: jaredhoberock at gmail.com

® David Tarjan: tar.cs193g at gmail.com
® Office hours: 3:00-4:00 PM, Tu Th, Gates 195

® Course TA

® Niels Joubert: njoubert at cs.stanford.edu

® Guest lecturers
® Domain experts
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Web Resources e

® Website:
® http://stanford-cs193g-sp2010.qgooqglecode.com

® Lecture slides/recordings
® Documentation, software resources
®

Note: while we’ll make an effort to post announcements on
the web, we can’t guarantee it, and won’t make allowances
for people who miss things in class
® Mailing list
® Channel for electronic announcements

® Forum for Q&A — Lecturers and assistants read the board,
and your classmates often have answers

® Axess for Grades

© 2008 NVIDIA Corporation




Grading >

NVIDIA

® This is a lab oriented course!

® Machine problems: 50%
® Correctness: ~40%
® Performance: ~35%
® Report: ~25%

® Project: 50%
® Technical pitch: 25%
® Project Presentation: 25%
® Demo: 50%
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Bonus Days <X

NVIDIA

® Every student is allocated two bonus days

® No-questions asked one-day extension that can be used
on any MP

® Use both on the same thing if you want

® Weekends/holidays don’t count for the number of days of
extension (Friday-Monday is just one day extension)

® Intended to cover ilinesses, interview visits, just
needing more time, etc.

® Late penalty is 10% of the possible credit/day, again
counting only weekdays
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Academic Honesty <X

NVIDIA

® You are allowed and encouraged to discuss
assignments with other students in the class.

Getting verbal advice/help from people who’ve
already taken the course is also fine.

® Any copying of non-trivial code is unacceptable
® Non-trivial = more than a line or so

® Includes reading someone else’s code and then
going off to write your own.
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Course Equipment <X

NVIDIA

® Your own PCs with a CUDA-enabled GPU
® NVIDIA GeForce GTX 260 boards

® Lab facilities: Pups cluster, Gates B21
® Nodes 2,8,11,12, & 13
® New Fermi Architecture GPUs?

® As they become available
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Text & Notes <X

NVIDIA

® Course text:

® Kirk & Hwu. Programming Massively Parallel Processors:
A Hands-on Approach. 2010.

® References:

® NVIDIA. The NVIDIA CUDA Programming Guide. 2010.
® NVIDIA. CUDA Reference Manual. 2010.

® Lectures will be posted on the class website.

© 2008 NVIDIA Corporation




Schedule

® Week 1:
Tu: Introduction
Th: CUDA Intro
MP 0: Hello, World!
MP 1: Parallel For
® Week 2
® Tu: Threads & Atomics
® Th: Memory Model
® MP 2: Atomics
® Week 3
® Tu: Performance
® Th: Parallel Programming
® MP 3: Communication
® Week 4
® Tu: Project Proposals
® Th: Parallel Patterns
® MP 4: Productivity
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NVIDIA

Week 5

® Tu: Productivity

® Th: Sparse Matrix Vector
Week 6

® Tu: PDE Solvers Case Study

® Th: Fermi
Week 7

® Tu: Ray Tracing Case Study

® Th: Future of Throughput
Week 8

® Tu: Al Case Study

® Th: Advanced Optimization
Week 9

® Tu: TBD

® Th: Project Presentations
Week 10

® Tu: Project Presentations




Moore’s Law (paraphrased) <3

NVIDIA

“The number of transistors on an integrated
circuit doubles every two years.”

— Gordon E. Moore
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Moore’s Law (Visualized) <X

NVIDIA
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Buying Performance with Power n%%A

I I

Performance

© 2008 NVIDIA Corporation

(courtesy Mark Horowitz and Kevin Skadron)




Serial Performance Scaling is Over >

NVIDIA

continue to scale processor frequencies
® no 10 GHz chips

continue to increase power consumption
® can’t melt chip

® Can continue to increase transistor density
® as per Moore’s Law
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How to Use Transistors?

® Instruction-level parallelism
® out-of-order execution, speculation, ...
® in power-constrained world

® Data-level parallelism

® vector units, SIMD execution, ...
® increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU

® Thread-level parallelism
® increasing ... multithreading, multicore, manycore

® Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, ...

© 2008 NVIDIA Corporation
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Why Massively Parallel Processing? <3

NVIDIA

® A quiet revolution and potential build-up

® Computation: TFLOPs vs. 100 GFLOPs
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Why Massively Parallel Processing? <3

NVIDIA

® A quiet revolution and potential build-up

® Bandwidth: ~10x
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® GPU in every PC — massive volume & potential impact
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The “New” Moore’s Law <X

NVIDIA

® Computers no longer get faster, just wider

® You must re-think your algorithms to be parallel !

® Data-parallel computing is most scalable solution
® Otherwise: refactor code for 2 cofas 4 e®s 8rew®s 16 cores...

® You will always have more data than cores —
build the computation around the data
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Generic Multicore Chip <3

NVIDIA

® Handful of processors each supporting ~1 hardware thread

® On-chip memory near processors (cache, RAM, or both)

® Shared global memory space (external DRAM)
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Generic Manycore Chip <3

NVIDIA

® Many processors each supporting many hardware threads

® On-chip memory near processors (cache, RAM, or both)

® Shared global memory space (external DRAM)
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Enter the GPU <X

NVIDIA

® Massive economies of scale

® Massively parallel
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GPU Evolution <X

® High throughput computation

® GeForce GTX 280: 933 GFLOP/s
® High bandwidth memory

® GeForce GTX 280: 140 GB/s

® High availability to all
® 180+ million CUDA-capable GPUs in the wild

3B xtors

GeForce 8800
681M xtors
GeForce FX

GeForce 3 125M xtors

GeForce® 256 ~ 60M xtors
RIVA 128  23M xtors
3M xtors

1995
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Lessons from Graphics Pipeline rszm

® Throughput is paramount
® must paint every pixel within frame time
® scalability

® Create, run, & retire lots of threads very rapidly
® measured 14.8 Gthread/s on increment () kernel

® Use multithreading to hide latency
® 1 stalled thread is OK if 100 are ready to run
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Why is this different from a CPU? <3

NVIDIA

® Different goals produce different designs
® GPU assumes work load is highly parallel
® CPU must be good at everything, parallel or not

® CPU: minimize latency experienced by 1 thread

® big on-chip caches
® sophisticated control logic

® GPU: maximize throughput of all threads

® # threads in flight limited by resources => lots of
resources (registers, bandwidth, etc.)

® multithreading can hide latency => skip the big caches
® share control logic across many threads
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NVIDIA
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SM Multiprocessor

32 CUDA Cores per SM (512 total)

8x peak FP64 performance
® 50% of peak FP32 performance

Direct load/store to memory

® Usual linear sequence of

® High bandwidth (Hundre
sec)

64KB of fast, on-chip RAM
® Software or hardware-managed
® Shared amongst CUDA cores
® Enables thread communication

© 2008 NVIDIA Corporation
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Key Architectural Ideas <X

NVIDIA

lﬁstruction Cache

® SIMT (Single Instruction Multiple Thread) execution
® threads run in groups of 32 called warps isterF.e '
® threads in a warp share instruction unit (1U) Core Core Core Core
® HW automatically handles divergence Core Core Core Core

Core Core Core Core

Core Core Core Core

® Hardware multithreading

® HW resource allocation & thread scheduling
® HW relies on threads to hide latency

Core Core Core Core
Core Core Core Core
Core Core Core Core

Core Core Core Core

® Threads have all resources needed to run

® any warp not waiting for something can run AEBTEBRest Network

® context switching is (basically) free Eiconﬁgurable

che/Shared Mem

l Uniform Cache
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Enter CUDA <X

NVIDIA

® Scalable parallel programming model

® Minimal extensions to familiar C/C++ environment

® Heterogeneous serial-parallel computing
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13—457x

Motivation
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CUDA: Scalable parallel programming >

NVIDIA

® Augment C/C++ with minimalist abstractions
® |et programmers focus on parallel algorithms
® not mechanics of a parallel programming language

® Provide straightforward mapping onto hardware

® good fit to GPU architecture
® maps well to multi-core CPUs too

® Scale to 100s of cores & 10,000s of parallel threads
® GPU threads are lightweight — create / switch is free
® GPU needs 1000s of threads for full utilization
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Key Parallel Abstractions in CUDA &

NVIDIA

® Hierarchy of concurrent threads

® Lightweight synchronization primitives

® Shared memory model for cooperating threads
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Hierarchy of concurrent threads

® Parallel kernels composed of many threads
® all threads execute the same sequential program

® Threads are grouped into thread blocks
® threads in the same block can cooperate

® Threads/blocks have unique IDs

© 2008 NVIDIA Corporation
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CUDA Model of Parallelism <X

NVIDIA

® CUDA virtualizes the physical hardware
® thread is a virtualized scalar processor (registers, PC, state)
® block is a virtualized multiprocessor (threads, shared mem.)

® Scheduled onto physical hardware without pre-emption
® threads/blocks launch & run to completion
® blocks should be independent
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NOT: Flat Multiprocessor <3

NVIDIA

® Global synchronization isn’t cheap
® Global memory access times are expensive

® cf. PRAM (Parallel Random Access Machine) model
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NOT: Distributed Processors <X

NVIDIA

— ——
Processor Processor

P P

Interconnection Network

® Distributed computing is a different setting

® cf. BSP (Bulk Synchronous Parallel) model, MPI

© 2008 NVIDIA Corporation




Heterogeneous Computing

Multicore CPU

Manycore GPU

S

NVIDIA




C for CUDA <3

NVIDIA

Philosophy: provide minimal set of extensions necessary to expose power

Function qualifiers:
__global  void my kernel() { }
__device  float my device func() { }
Variable qualifiers:
constant  float my constant array[32];

__shared float my shared array[32];
Execution configuration:
dim3 grid dim (100, 50); // 5000 thread blocks
dim3 block dim(4, 8, 8); // 256 threads per block
my kernel <<< grid dim, block dim >>> (...); // Launch kernel

Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadldx; // Thread index
void _ syncthreads(); // Thread synchronization
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NVIDIA

Example: vector addition

Device Code

// compute vector sum ¢ = a + b
// each thread performs one pair-wise addition
global |void vector add(float* A, float* B, float* C)

{
int i =|threadlIdx.x + blockDim.x * blockIdx.x:

C[i] = A[i] + B[1i];

int main()

{

// elided initialization code

// Run N/256 blocks of 256 threads each
vector add<<< N/256, 256>>>(d A, d B, d C);
}
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NVIDIA

Example: vector addition

// compute vector sum ¢ = a + b
// each thread performs one pair-wise addition
__global  void vector add(float* A, float* B, float* C)

{
int 1 = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[1];

Host Code
int main ()

{

// elided initialization code

// launch N/256 blocks of 256 threads each
vector add<<< N/256, 256>>>(d A, d B, d C);
}
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Example: Initialization code for
vector addition

// allocate and initialize host (CPU) memory
float *h A = ., *h B = .

// allocate device (GPU) memory

float *d A, *d B, *d C;

cudaMalloc( (void**) &d A, N * sizeof(float));
cudaMalloc( (void**) &d B, N * sizeof(float));
cudaMalloc( (void**) &d C, N * sizeof(float));

// copy host memory to device

cudaMemcpy( d A, h A, N * sizeof(float),
cudaMemcpyHostToDevice) ) ;

cudaMemcpy( d B, h B, N * sizeof(float),
cudaMemcpyHostToDevice) ) ;

// launch N/256 blocks of 256 threads each
vector add<<<N/256, 256>>>(d A, d B, d C);

© 2008 NVIDIA Corporation
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Previous Projects from UIUC ECE 498AL

>

NVIDIA

Application

Description

Source

Kernel

% time

H.264

SPEC ‘06 version, change in guess vector

34,811

194

35%

LBM

SPEC ‘06 version, change to single precision
and print fewer reports

1,481

285

>99%

RC5-72

Distributed.net RC5-72 challenge client code

1,979

218

>99%

FEM

Finite element modeling, simulation of 3D
graded materials

1,874

146

99%

RPES

Rye Polynomial Equation Solver, quantum
chem, 2-electron repulsion

1,104

281

99%

PNS

Petri Net simulation of a distributed system

322

160

>99%

SAXPY

Single-precision implementation of saxpy,
used in Linpack’s Gaussian elim. routine

952

31

>99%

TPACF

Two Point Angular Correlation Function

536

98

96%

FDTD

Finite-Difference Time Domain analysis of 2D
electromagnetic wave propagation

1,365

93

16%

MRI-Q

Computing a matrix Q, a scanner’s
configuration in MRI reconstruction

490

33

>99%
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Speedup of Applications
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LBM RC572 FEM RPES PNS SAXPY TPACF FDTD MR-Q MR-
FHD

®GeForce 8800 GTX vs. 2.2GHz Opteron 248

®10x speedup in a kernel is typical, as long as the kernel can
occupy enough parallel threads

®25x to 400x speedup if the function’s data requirements and
control flow suit the GPU and the application is optimized
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Final Thoughts <X

NVIDIA

® Parallel hardware is here to stay

® GPUs are massively parallel manycore processors
® easily available and fully programmable

® Parallelism & scalability are crucial for success

® This presents many important research challenges
® not to speak of the educational challenges

© 2008 NVIDIA Corporation




Machine Problem 0 <X

NVIDIA

® http://code.google.com/p/stanford-cs193g-sp2010/
wiki/GettingStartedWithCUDA

® Work through tutorial codes
hello_world.cu

cuda_memory_model.cu
global_functions.cu
device_functions.cu
vector_addition.cu

© 2008 NVIDIA Corporation




