

September 2013

Eigenvalue Computation
with CUDA

Christian Lessig

September 2013 ii

Document Change History

Version Date Responsible Reason for Change

 August, 2007 Christian Lessig Initial release

September 2013 1

 Abstract

The computation of all or a subset of all eigenvalues is an important problem in
linear algebra, statistics, physics, and many other fields. This report describes the
implementation of a bisection algorithm for the computation of all eigenvalues of a
tridiagonal symmetric matrix of arbitrary size with CUDA.

Background

In this section we will establish our notation and provide the mathematical background for
the remainder of the report. On a first read some of the presented material might prove
difficult for the mathematically less inclined reader. Most theorems can, however, be
employed as black box results and their value becomes apparent when they are used in the
next sections. Readers interested in a more thorough discussion of eigen analysis algorithms
are referred, for example, to the book by Parlett [4] or the thesis by Dhillon [13].

Notation

In this report we will use Householder’s notation. Scalars are denoted by roman or greek

lowercase letters such as a , b , and c and , , and . Lowercase bold letters such as

 n

iia
1

a , n

iib
1

b , and n

iic
1

c are used to represent vectors. If not mentioned

otherwise, all vectors are assumed to be column vectors. Matrices are denoted by uppercase

bold roman letters such as A , B , and T . Matrix elements are scalars ija indexed with two

indices i and j , where i denotes the row index and j the column index. A matrix
nnA can thus be written as

nnn

n

aa

aa

....

....

....

....

1

111

A .

The (main) diagonal of a matrix
nmA is formed by the elements iia with ni ...1 .

For brevity we will usually omit the second index and consider the diagonal as a vector a of

length n whose elements are iii aa . The elements ija of A with kji and

 1,...,1 nk form the k -th upper diagonal of A , and the element ija with jki

the k -th lower diagonal. Analogous to the main diagonal, the k -th upper and lower

diagonal can be represented by vectors of length kn . A matrix that has non-zero

Eigenvalue Computation using Bisection

September 2013 2

elements only on the main diagonal is called a diagonal matrix. An important instance is the

identity matrix where all diagonal elements are 1 .

A square matrix
nnA is symmetric if jiij aa for all i and j . We will usually use a

symmetric letter such as A or T to denote such a matrix. The transpose of a matrix
nmA will be denoted with

T
A . We will sometimes also transpose vectors. In this case

we treat a vector of length n as 1n matrix.

Of particular interest for this report are tridiagonal symmetric matrices where only the main
dsiagonal and the first lower and upper diagonal are non-zero

nnnn

nn

ab

b

b

bab

ba

)1(

)1(

32

232221

1211

0..0

....0..

0....0

..0

0..0

T

with jiij bb . If not mentioned otherwise, we will use T to denote a tridiagonal symmetric

matrix.

Eigenvalues and Eigenvectors

Definition 1: Let
nnA be a square matrix. An eigenvalue of A is a scalar satisfying

uAu .

The vector 0u is a (right) eigenvector of A . The spectrum)(A of A is formed by the

set of all eigenvalues of A

 i)(A .

If A is non-degenerated then the cardinality of)(A is n .

Corollary 1: The spectrum of a diagonal matrix D with non-zero elements id is

 n

iid
1

D .

If we arrange the spectrum of a general square matrix A in a diagonal matrix Λ , and form a

square matrix U so that their columns are the eigenvectors, then the eigen decomposition

of A can be written as

UΛAU .

The eigenvalues i are also the roots of the characteristic polynomial

 0det IA i .

Eigenvalues can therefore in general be real or complex. For a symmetric matrix the
eigenvalues are guaranteed to be real [1, pp. 393].

Eigenvalue Computation using Bisection

September 2013 3

Gerschgorin Circle Theorem

Theorem 1. (Gerschgorin Circle Theorem) Let
nn x A be symmetric and

nn x Q

be orthogonal. If FDAQQ T
, where D is diagonal and F has zero diagonal entries,

then

 iiii

n

i

rdrd

,)(
1

A

with

n

j

iji fr
1

 for ni ...1 .

Proof: See [1, pp. 395].

If we let Q be the (trivially orthogonal) identity matrix then FDAQQ T
 is always

satisfied. In practice one wants to employ a matrix Q such that AQQ
T

 is (approximately)

diagonally dominant. This improves the quality of the bounds provided by the Gerschgorin

interval iiii

n

i

rdrd

,
1

 which can otherwise be rather pessimistic.

Corollary 2. (Gerschgorin Circle Theorem for Symmetric, Tridiagonal Matrices) Let
nn x T be tridiagonal and symmetric, and let a and b be the vectors containing the

diagonal and off-diagonal elements of T , respectively. The spectrum T is then bound:

 iiii

n

i

rara

,
1

T

with 1 iii bbr for 1:2 ni , 11 br , and 1 nn br .

Eigenvalue Shifts and Sylvester’s Law of Inertia

Theorem 2. Let
nn x A be a square matrix with eigenvalues i , and let be a

shift index. The matrix IAA has then eigenvalues ii . The eigenvectors of

A and A are identical.

Proof: Consider the characteristic polynomial

0)det(IA i .

By replacing A with IAA we obtain

 0det IIA i .

Rearranging terms yields

 .0det

0det

IA

IIA

i

i

The second claim follows by simplifying

Eigenvalue Computation using Bisection

September 2013 4

 UIΛUIA

which is the eigenvalues equation UΛAU with IAA and IΛΛ .

Theorem 2 establishes a relationship between the eigenvalues of A and those of a shifted

version A of A . It is the foundation for many eigenvalue algorithms because the shift

affects the distance between eigenvalues, and therefore the conditioning of the problem, but

does not change the eigenvectors. For eigenvalues of A that are close together it is often

more stable and more efficient to first shift A and then determine the eigenvalues of the
shifted matrix. Theorem 2 can then be used to relate the eigenvalues of the shifted matrix

back to those of A . See, for example, the technical report by Willems et al. [2] for a more
detailed discussion.

Theorem 3. (Sylvester’s Law of Inertia) Let the inertia of a square matrix
nn x A be a

triple pzn ,, of integer numbers, with n , z , and p being the numbers of negative, zero,

and positive elements in the spectrum of A , respectively. If A is symmetric and
nn x X is nonsingular, then the matrices A and AXX

T
have the same inertia.

Proof: See [1, pp. 403]

Theorem 4. Let
nn x T be tridiagonal and symmetric, and positive definite, and let

0iiba for ni :1 , that is T is non degenerated, then there exists a factorization

TLDLT

where D is diagonal and L is lower bidiagonal with all diagonal elements being 1 .

Proof: Consider the Cholesky factorization
T

LLT of T . The existence of an
TLDL

factorization of T then follows immediately with
2/1

LDL [13].

Positive definite factorizations such as the Cholesky factorization or the
TLDL

factorization exists only if a matrix is positive definite. If this is not the case for a given

tridiagonal symmetric matrix then we can choose an initial shift so that T becomes positive
definite and use Theorem 2 to relate the computed eigenvalues to those of the original

matrix, see [14] for a more detailed discussion. For matrices where any 0iiba it is always

possible to split the input matrix and compute a factorization for the two resulting sub-
matrices; refer to the technical report by Willems et al. [2] for more details.

Corollary 3. The inertia of a tridiagonal symmetric matrix
nn x T can be computed by

first determining the
TLDL factorization of T , and then counting positive and negative

eigenvalues of the diagonal matrix D .

Eigenvalue Count

Definition 2. Let
nn x T be symmetric and tridiagonal, and let x be a shift. The

eigenvalue count xC of T is then the number of eigenvalues of T smaller than x

 TxxC with xix |TT .

Eigenvalue Computation using Bisection

September 2013 5

The eigenvalue count 21, xxC of an interval 21, xx is

 1221, xCxCxxC .

An interval 21, xx is empty if 0, 21 xxC .

With Corollary 3 the eigenvalue count xC of T can be found with the following

algorithm:

1. Shift T by x to obtain xT .

2. Compute the
TLDL factorization of xT .

3. Count the negative elements of the diagonal of D .

Computing the full
TLDL factorization is however wasteful because we are only interested

in the signs of the non-zero elements of D . Algorithm 1 finds the eigenvalue count)(xC

efficiently without computing a full
TLDL factorization and without storing the full vector

of diagonal elements of D [6]1:

Algorithm 1:

Input: Diagonal and off-diagonal elements ai and bi of the tridiagonal symmetric matrix
nn x T , and a shift x . The algorithm requires b0 which is defined as bi

= 0.

Output: count xC

count = 0

d = 1

for i = 1 : n

 d = ai – x – (bi * bi) / d

 if (d < 0)

 count = count + 1

 end

end

1 Let B be an upper bidiagonal matrix and consider the tridiagonal symmetric matrix BBT
. Using

Algorithm 1 to determine an eigenvalue count of BBT
 is unwise because computing BBT

explicitly is numerically unstable [1, p. 453]. Fernando therefore developed a modified version of

Algorithm 1 that works directly with the non-zero elements of the B [7].

Eigenvalue Computation using Bisection

September 2013 6

A Bisection-Like Algorithm to Compute Eigenvalues

Armed with the results of the last section we can now discuss a bisection-like algorithm for
computing all eigenvalues of a tridiagonal symmetric matrix.

Let
nn x T be tridiagonal and symmetric, and let 0,00,0 ,ul be the Gerschgorin interval

of T , computed as described in Corollary 2. We can then subdivide 0,00,0 ,ul into smaller

child intervals 0,10,1 ,ul and 1,11,1 ,ul , and obtain the eigenvalues counts kulC 0,10,1 ,

and knulC 1,11,1 , using Algorithm 1. Obviously, the child intervals provide better

bounds on the eigenvalues than the initial Gerschgorin interval did. If we subdivide each of
the child intervals then we can further improve these bounds, and by recursively continuing
this process we can obtain approximations to the eigenvalues to any desired accuracy. Many
of the generated intervals will be empty and further subdividing these intervals will only
create more empty – and for us irrelevant – intervals. We therefore do not subdivide empty
intervals.

As shown in Figure 1, the set of intervals generated by the subdivision process resembles an
unbalanced binary tree with the Gerschgorin interval as root. A node of the tree is denoted

by kjkj ul ,, , with Jj being the level of the tree and jKk being an index set

defined over all nodes of the tree at level j . Leaf nodes are either empty intervals or

 0.2,0.2

Figure 1. Example interval tree for a matrix
44T with Gerschgorin interval 0.2,0.1

and 7.1,2.1,2.0,25.0T . The grayed out intervals are empty leaf nodes. All other

branches terminate at non-empty intervals. Depending on the desired accuracy,
approximations of the eigenvalues can be obtained by further refining non-empty intervals and
always keeping the child interval whose eigenvalue count is strictly positive.

 0.0,0.2 0.2,0.0

 0.2,0.1 0.1,0.0 0.0,0.1 0.1,0.2

 0.1,5.0 0.2,5.1 0.0,5.0

… … …

 5.0,0.0 5.1,0.1

…

Eigenvalue Computation using Bisection

September 2013 7

converged intervals for which the (absolute or relative) size is smaller than a desired accuracy

 .

Algorithm 2 summarizes the bisection algorithm for computing the eigenvalues of a

tridiagonal symmetric matrix T .

Algorithm 2:

Input: Tridiagonal symmetric matrix T , desired accuracy .

Output: Spectrum T of T in a list O.

2.1. Determine the Gerschgorin interval 0,00,0 ,ul of T and store the interval on a

stack S.

2.2. Repeat until S is empty:

2.2.a. Pop one interval kjkj ul ,, , from the stack.

2.2.b. Compute kjkjkj ulm ,,, , .

2.2.c. Compute kjmC , using Algorithm 1.

2.2.d. Determine if non-empty child intervals converge.

2.2.e. For non-empty, converged child intervals compute an approximation of the

eigenvalue i and store it in O at index iC .

2.2.f. Push non-empty, unconverged child intervals on S.

Eigenvalue Computation using Bisection

September 2013 8

CUDA Implementation

In this section we will describe how Algorithm 2 has been adopted for a data parallel
programming model and implemented with CUDA [10]. Our implementation employs the
scan algorithm2 for various purposes. Readers not familiar with this algorithm should refer,
for example, to the paper by Blelloch [8] or the technical report by Harris et al. [9] for more
details. Throughout this report we will employ addition as scan operator.

An Efficient Parallel Algorithm
To implement Algorithm 2 efficiently on a data parallel architecture we first have to identify
computations that are independent – and can thus be performed in parallel – and are similar or
identical for many data items, for example all elements in an array.

Design of a Parallel Algorithm

When the eigenvalue count is computed with Algorithm 1 similar computations are
performed for all diagonal and off-diagonal elements of the input matrix. The variable d,
however, is iteratively updated in every iteration of the algorithm making every step of the
loop dependent on the previous one. Algorithm 1 has therefore to be computed serially and
we cannot parallelize the eigenvalue count computation for one shift.

The interval splits in Step 2.2 of Algorithm 2 require the Gerschgorin interval as input and
Step 2.1 therefore has to be computed before Step 2.2. Likewise, if we consider two child

nodes k

kj

k

kj ul ',1',1 , and k

kj

k

kj ul 1',11',1 , , then we obviously first have to perform Steps

2.2.a to 2.2f for the parent interval kjkj ul ,, , , and generate k

kj

k

kj ul ',1',1 , and

 k

kj

k

kj ul 1',11',1 , , before we can process the child intervals. Taking this a step further and

also considering dependencies across multiple levels, we can see that the interval tree can be
regarded as a dependency graph for the computations. Nodes that have a (generalized)
parent-child relationship depend on each other and have to be processed serially whereas the
computations for other nodes are independent and can be performed in parallel.

We will gain a better understanding of what this means in practice if we follow the program

flow of the computations in Step 2.2. Initially, the stack S contains only the Gerschgorin

interval 0,00,0 ,ul which is the root of the interval tree. All other nodes are children of

 0,00,0 ,ul and we therefore have to perform Steps 2.2.a to 2.2f for this interval before we

can process any other interval. Splitting the Gerschgorin interval creates the two nodes

 0,10,1 ,ul and 1,11,1 ,ul at the first level of the interval tree. These nodes are siblings and

can thus be processed independently. Performing the interval splitting for 0,10,1 ,ul and

 1,11,1 ,ul in parallel – computing Steps 2.2a to 2.2f with different input data – yields the four

intervals on level two of the tree. If we continue this process then the stack will always

2 In the literature the scan algorithm is also known as prefix sum.

Eigenvalue Computation using Bisection

September 2013 9

contain only intervals on one level of the interval tree – not having a parent-child
relationship – which can be processed in parallel.

A data parallel implementation of Step 2.2 of Algorithm 2 is provided in the following
algorithm.

Algorithm 3.

3.1. Perform in parallel for all intervals kjkj ul ,, , (all at level j) in the list L.

3.1.a. Compute kjkjkj ulm ,,, , .

3.1.b. Compute kjmC , .

3.1.c. Determine if non-empty child intervals converge.

3.1.d. For non-empty, converged child intervals compute an approximation of

the eigenvalue i and store it in O at index iC .

3.1.e. Store non-empty, unconverged child intervals in L.

Note that Algorithm 3 does no longer use a stack to store tree nodes but only a simple list L.
The Algorithm terminates successfully when all non-empty intervals converged. The
reported eigenvalues are then, for example, the midpoints of the final intervals. Care is

required when the distance between eigenvalues is less than the desired accuracy and

converged intervals contain multiple eigenvalues. In this case we store k instances of the

eigenvalue approximation at the appropriate indices iC , where k is the multiplicity of

the eigenvalue. Situations where Algorithm 3, as described above, does not terminate
successfully are described in the following sections.

Thread Allocation

Although it is possible to process multiple intervals with one thread, we decided to use the
the “natural” approach on a data parallel architecture and employ one thread to process one
interval.

CUDA does not permit dynamic creation of new threads on the device. The number of
threads specified at kernel launch time has therefore to match the maximum number of

intervals that will be processed in parallel. Assuming that is smaller than the minimum
distance between any two eigenvalues, then the number of threads has to equal the number
of eigenvalues of the input matrix. Note that this implies that for the first tree levels there
are many more threads than intervals to process and many threads have to be inactive until a
higher tree level has been reached. The available parallelism is therefore fully exploited only
after some iterations of Step 3.1.

Interval Subdivision

Until now we did not specify how kjm , should be chosen but merely required that

 kjkjkj ulm ,,, , . In the literature different approaches such as midpoint subdivision or

Newton-like methods have been used to determine kjm , [6,7,15]. We employ midpoint

subdivision which ensures that all child intervals on the same tree level have the same size.
All converged intervals are therefore on the same tree level and reached at the same

Eigenvalue Computation using Bisection

September 2013 10

processing step. This reduces divergence of the computations and therefore improves
efficiency (cf. [10, Chapter 5.1.1.2]).

Eigenvalue Count Computation

At the beginning of this report we introduced Algorithm 1 to compute the eigenvalue count

 xC . Although the algorithm is correct in a mathematical sense, it is not monotonic when

computed numerically. It is therefore possible for the algorithm to return an eigenvalue

count 1xC so that 21 xCxC although 21 xx . Clearly, this will lead to problems in

practice. In our implementation we therefore employ Algorithm FLCnt_IEEE from the
paper by Demmel et al. [6] which is guaranteed to be monotonic.

Data Representation

The data that has to be stored for Algorithm 3 are the active intervals and the non-zero
elements of the input matrix. Each interval is represented by its left and right interval
bounds and the eigenvalue counts for the bounds. The input matrix can be represented by
two vectors containing the main and the first upper (or lower) diagonal, respectively.

Summarizing the guidelines from the CUDA programming guide [10], to obtain optimal
performance on an NVIDIA compute device it is important to represent data so that

 (high-latency) data transfers to global memory are minimized,

 uncoalesced (non-aligned) data transfers to global memory are avoided, and

 shared memory is employed as much as possible.

We therefore would like to perform all computations entirely in shared memory and
registers. Slow global memory access would then only be necessary at the beginning of the
computations to load the data and at the end to store the result. The limited size of shared

memory – devices with compute capabilities 1.x have 16 KB which corresponds 4096

32 -bit variables – makes this unfortunately impossible. For matrices with more than

20482048 elements shared memory would not even be sufficient to store the matrix
representation. We therefore store only the active intervals in shared memory and the two
vectors representing the input matrix are loaded from global memory whenever the
eigenvalue count has to be computed in Step 3.1.b.

Shared memory is not only limited in its size but also restrictive in that it is shared among

the threads of a single thread block. With a maximum of 512 threads per block and by
using one thread to perform Step 3.1 for each interval, we are thus limited to matrices with

at most 512512 elements. Although such an implementation is very efficient, it defeats
our goal of an algorithm that can process arbitrary size matrices. An extension of Algorithm
3 for arbitrary size matrices will therefore be discussed in the next section. For the
remainder of the section, however, we will restrict ourselves to the simpler case of matrices

with at most 512 eigenvalues.

For simplicity, in practice the list L, containing the information about the active intervals, is
represented by four separate arrays:

 __shared__ float s_left[MAX_INTERVALS_BLOCK]

 __shared__ float s_right[MAX_INTERVALS_BLOCK]

Eigenvalue Computation using Bisection

September 2013 11

 __shared__ unsigned int s_left_count[MAX_INTERVALS_BLOCK]

 __shared__ unsigned int s_right_count[MAX_INTERVALS_BLOCK],

where the left and right interval bounds are stored in s_left and s_right, respectively,
and s_left_count and s_right_count are used to represent the eigenvalue counts.

A problem which is specific to a parallel implementation of the bisection algorithm results
from the data-dependent number of child intervals. In a serial implementation we could
write the data of the actual child intervals, either one or two, at the end of the four arrays
and use an index pointer to track where the next data has to be written. However, in a data
parallel programming model all threads write at the same time. To make sure that no data is
overwritten, we therefore have to assume that every interval has two children when we write
the data; the addresses idx_0 and idx_1 have thus to be computed as

idx_0 = threadIdx.x;

idx_1 = threadIdx.x + blockDim.x;

where blockDim.x is the total number of threads in the thread block. This generates a
sparse list of interval data with unused elements in between. One possible approach would
be to continue with this sparse list. However, because we do not know which child intervals
are actually non-empty and were written to the four arrays, we have to use in the next
iteration of Step 3.1 as many threads as there are possible child intervals, and we would also
again have to compute the indices for the result data as listed above which would generate a

full, balanced binary tree. Obviously, even for small matrices with at most 512512

elements we would easily exceed the available 512 threads before all intervals converged. In
the implementation, we therefore compact the list of child intervals after Step 3.1 before
processing nodes on the next level of the interval tree. In the literature this problem is
known as stream compaction, see for example [9]. The compaction takes as input a binary
array which is one for all intervals that are non-empty, and zero otherwise. Performing a
scan of this array yields the indices for the non-empty intervals so that these form a compact
list, and the intervals are then stored directly to their final location.

In our implementation, however, we do not scan the whole array of possible child nodes.
Every interval is guaranteed to have at least one non-empty child interval. If we store at the
address idx_0 always this non-empty child then no compaction is needed for this part of
the interval list. In practice, we therefore store the first child interval directly into s_left,
s_right, s_left_count, and s_right_count using idx_0 and perform the
compaction only for the second child intervals using a binary list s_compaction_helper.
After the final addresses have been computed the second child intervals are stored after the
first ones into the four shared memory arrays. Performing the scan only for the second child
intervals thereby reduces the costs by half. With the compaction step Algorithm 3 takes the
form:

Algorithm 3.

3.1. Perform in parallel for all intervals kjkj ul ,, , (all at level j) in the list L.

3.1.a. Compute kjkjkj ulm ,,, , .

3.1.b. Compute kjmC , .

3.1.c. For non-empty child intervals determine if they converged.

Eigenvalue Computation using Bisection

September 2013 12

3.1.d. Store non-empty, unconverged child intervals in L.

3.1.e. Write the binary list s_compaction_helper.

3.2. Perform scan on s_compaction_helper.

3.3. Write all non-empty second child intervals to L using the addresses from
s_compaction_helper.

Note that we no longer store non-empty, converged child intervals directly in the output list
but repeat them on subsequent tree levels. In the implementation we therefore keep the data

of converged intervals in L until Algorithm 3 terminated. This enables coalesced writes when
the data is stored to global memory.

The elements of the two vectors representing the input matrix are loaded from global
memory only during the eigenvalue count computation in Step 3.1.b. Given Algorithm 1 it
would be possible to load only a single element of each vector at a time, compute one
iteration of the loop, then load the next element, and so on. This strategy is inefficient
because the loads are uncoalesced and because for low levels of the interval tree only a small
number of threads would perform a load. In these cases the memory access latency could
not be hidden by issuing load instructions for other threads. A better strategy is therefore to
always load chunks of matrix data into shared memory and then compute some iterations of
Algorithm 1 using this data. Coalescing the reads from global memory is then
straightforward and memory latency can be hidden by using not only the active threads to
load the data from global memory but all threads in the current thread block and using a
sufficiently large number of threads per block. Loading chunks of data requires temporary
storage of the information in shared memory. Two additional large arrays would, however,

exceed the available 16 KB of shared memory. We therefore employ s_left and

s_right to store the matrix elements and “cache” the interval bounds during the
computation of Step 3.1.b in registers.

Computation of Eigenvalues for Large Matrices
So far we have described how Algorithm 3 can be implemented efficiently for small matrices

with up to 512512 elements by using one thread to process each interval and storing all
active intervals in shared memory. For large matrices, however, there are not enough threads
in a thread block to always be able to process all intervals simultaneously. It would be
possible to process blocks of intervals serially. However, NVIDIA compute devices can
process multiple thread blocks in parallel and we would therefore not exploit the full

available computing power. Additionally, with significantly more than 512 eigenvalues it
would no longer be possible to store all active intervals in shared memory. One possible
alternative would be to not use shared memory but perform all computations directly from
global memory. Then only minor modifications to Algorithm 3 would be necessary to
process arbitrary size matrices with multiple thread blocks. However, the high latency of
global memory and the lack of efficient synchronization between thread blocks make this
approach inefficient. We therefore followed a different strategy to extend Algorithm 3 for
arbitrary size matrices.

Let us consider for a moment what happens if Algorithm 3 is executed with a matrix with

more than 512512 elements as input. If we assume that no eigenvalues are clustered

(that is the distance between the eigenvalues is larger than) then eventually the number of
active intervals will exceed the number of available threads. The algorithm will then
terminate and return a list U of, in general, unconverged intervals that contain one or

Eigenvalue Computation using Bisection

September 2013 13

multiple eigenvalues. Although this is not yet the desired result, we can now determine the
eigenvalues by continuing the bisection process on each of the intervals in U. The discussion
in this section will focus on how the list U of intervals is generated – in fact, we will see
shortly that two lists are generated – and how the intervals can be processed efficiently.

A naïve approach to process U would be to employ Algorithm 3, as described in the last
section, but always use as input always one interval from U instead of the Gerschgorin
interval. This is however inefficient. Most intervals that result from the first step contain far

less than 512 eigenvalues. The generated interval tree would therefore be very shallow and
we would never reach high tree levels where the available parallelism could be fully
exploited. We therefore employ a different approach to process the intervals in U. First, we
sort the intervals in two lists Uo and Um containing only one and multiple eigenvalues,
respectively. After Um has been obtained, the intervals are grouped into blocks or batches so
that none of them contains more than MAX_THREADS_BLOCK eigenvalues. The sorting into
Uo and Um and the batching are all performed as post-processing step to Algorithm 3. We
then launch two additional kernels to process the elements in Uo and Um, respectively. Each
batch of intervals in Um is thereby processed by one thread block guaranteeing that one
additional kernel launch is sufficient to determine all eigenvalues. Our motivation to perform
the rather expensive sorting to obtain Uo and Um is two-fold. Firstly, it allows us to employ
specialized kernels when we process each interval types which greatly improves the
efficiency, and secondly, it reduces the amount of intermediate data that has to be read back
to the host to two values; the number of elements in Uo and the number of batches of
elements of Um.

Algorithm 4 summarizes the computations for matrices with more than 512512
elements.

Algorithm 4.

4.1. Coarse-grain processing.

4.1.a. Perform Algorithm 3 and obtain a list U of intervals containing one or
more eigenvalues.

4.1.b. Sort U to obtain two lists Uo and Um so that each one contains only
intervals with one and multiple eigenvalues, respectively.

4.1.c. Batch Um into blocks so that none of the blocks contains more than
MAX_THREADS_BLOCK eigenvalues

4.2. Process the intervals in Uo to obtain the contained eigenvalues.

4.3. Process the intervals in Um to obtain the contained eigenvalues by using one
thread block for each batch.

Step 4.1, 4.2, and 4.3 each correspond to a separate kernel launch. Step 1.b and Step 1.c are
performed as a post-processing step of Algorithm 3 in Step 1.a.

On a data parallel architecture the sorting and blocking (or batching) in Step 4.1.b and Step
4.1.c are complex operations. These additional computations are nonetheless beneficial
because they significantly simplify the computations in Step 4.2 and Step 4.3. In particular
the sorting and batching enable the use of customized – and therefore more efficient –
variants of Algorithm 3 to process Uo and Um , respectively.

Algorithm 5 computes the eigenvalues contained in the intervals in Uo. Every interval
processed in this algorithm, either as input or generated during the computation, contains
exactly one eigenvalue and has therefore exactly one child interval. This allows us to omit the

Eigenvalue Computation using Bisection

September 2013 14

compaction step employed in Algorithm 3 and makes Algorithm 5 significantly more
efficient.

Algorithm 5.

5.1. Read a set of intervals kjkj ul ,, , of Uo into shared memory.

5.2. Repeat until all intervals converge.

5.2.a. Compute kjkjkj ulm ,,, , .

5.2.b. Determine kjmC , .

5.2.c. Determine if non-empty child intervals converge.

5.2.d. Store non-empty, unconverged child intervals in L or the original interval if
it was already converged.

5.3. Write eigenvalue approximations to global memory.

To efficiently compute Algorithm 5 the length of Uo is read back to the host and the number
of thread blocks for Step 4.2 is chosen so that all intervals in Uo can be processed. The block
id is used by each thread block to read the correct set of intervals from Uo into shared
memory. Note that each thread block is launched with a large, prescribed number of threads
even if the length of Uo is small. As in Algorithm 3 this enables to load the input matrix data
more efficiently into shared memory when the eigenvalue count has to be computed.

Algorithm 6 is employed to find the eigenvalues for the intervals in Um.

Algorithm 6.

6.1. Read one block of intervals from Um into shared memory.

6.2. Perform in parallel for all jn active intervals at level j :

6.2.a. Compute kjkjkj ulm ,,, , .

6.2.b. Compute kjmC , .

6.2.c. Determine if non-empty child intervals converge.

6.2.d. Store converged child intervals in an output list O.

6.2.e. Store non-empty, unconverged child intervals in L. or the original interval
if it was already converged.

6.2.f. Perform scan on compaction.

6.2.g. Write all non-empty second child intervals to L using the addresses from
compaction.

6.3. Store eigenvalue approximations in global memory.

Algorithm 6 resembles Algorithm 3 very closely but takes as input not the Gerschgorin
interval but a block of intervals. Thus, during processing not a tree but a forest of intervals is
generated. In practice this is only of secondary interest as Algorithm 3 can be used without
modifications to process a forest of trees instead of a single tree. The interval blocks that
form the input to Algorithm 6 are generated so that the maximum number of active intervals
in Step 6.2 never exceeds the available number of threads or the available shared memory

Eigenvalue Computation using Bisection

September 2013 15

space. All eigenvalues in Um can therefore be found with one kernel launch by having as
many thread blocks as interval batches. The number of batches is read from the device after
Step 4.1.c.

Generating Lists and Blocks of Intervals

In the following we will describe in more detail how the two lists Uo and Um are generated in
Step 4.1.b of Algorithm 4, and how Um is subdivided into blocks in Step 4.1.c.

The input to Step 4.1.b is U which contains the unconverged intervals resulting from Step
4.1.a. The lists Uo and Um, formed by intervals containing one and multiple eigenvalues,
respectively, are computed by two compaction operations. The input to both operations is U
but when Uo is computed all intervals containing multiple eigenvalues are ignored, and when
Um is computed intervals containing only one eigenvalues are ignored. The difference
between the two compaction operations is therefore only the subsets of intervals from U
that are considered and both operations can therefore be performed simultaneously
significantly reducing the overall costs. The result is two index lists that determine the
positions of the elements of U in either Uo or Um. To save shared memory resources, we use
s_left_count and s_right_count as buffers for the compaction operations and
“cache” the eigenvalue counts in registers. Note that each thread has to cache the
information for up to two intervals because Step 1.a in Algorithm 5 terminates when the
number of active intervals exceeds the number of threads in the thread block. After the
addresses have been computed it would be possible to directly write out the elements of U to
representations of Uo and Um in global memory. The writes would, however, in general be
uncoalesced and therefore slow. Shared memory has no coalescing constraints and we can
thus efficiently generate Uo and Um in shared memory, and then copy the final lists to global
memory with coalesced writes. Note that separate shared memory arrays for Uo and Um

would exceed the available 16 KB. We therefore use s_left, s_right, s_left_count,

and s_right_count to store the two lists sequentially one after the other by offsetting the
elements of Um by the length of Uo.

Compaction, as used for generating Uo and Um, is a standard technique in parallel
programming and our implementation differs from a textbook example only in that we
perform two compaction operations in parallel. More interesting is the generation of blocks,
or batches, of intervals so that the number of eigenvalues in each block never exceeds a
prescribed threshold, in our case MAX_THREADS_BLOCK.

In general, the batch computation is a special instance of the knapsack problem which is
known to be NP hard [12]. Finding the optimal solution is thus not practical. We therefore
seek a greedy algorithm that provides batches of “good” quality so that the average number
of intervals per block is close to the threshold but which can also be computed efficiently on
a data parallel architecture. The solution proposed in this report is based on the scan
algorithm as described by Blelloch [8] and Harris et al. [9]. We employ in particular the up-
sweep of scan that generates a tree to determine the batches. Instead of building one
complete binary tree containing all intervals, however, we generate a forest of trees so that
for each tree the total numbers of eigenvalues in the leaf nodes does not exceed the
prescribed maximum. In contrast to the original scan algorithm, we therefore combine two

tree nodes kj , and 1, kj only if the new parent node does not contain more than

MAX_THREADS_BLOCK eigenvalues. If the new node would exceed the threshold, we use an

auxiliary buffer to mark kj , and 1, kj as root nodes of blocks. We build the trees by

always discarding the right child node and replacing the left child with the parent (see Figure

Eigenvalue Computation using Bisection

September 2013 16

 2 for an example) and by storing root nodes in the auxiliary buffer at the same location as in
the data buffer. In this way, the location of the first interval of a block in Um, which forms
the start address of the block, can be looked up directly after building the forest. Finally,
compacting the auxiliary buffer containing the start addresses yields a dense list of blocks B

that is stored in global memory. In Step 4.3 each thread block reads the block start and end
address from B and uses these to read the data from Um that has to be processed by the
block into shared memory (cf. Algorithm 6). Next to the start address we also compute for
each block the accumulated number of eigenvalues in previous blocks which is needed to
compactly store all eigenvalues obtained in Step 4.3 in global memory.

Computing the accumulated sum of eigenvalues requires an additional array in shared
memory. Together with the auxiliary array that is used to compute the block start addresses
the required memory would exceed the available shared memory resources. We therefore use
unsigned short as data type for s_left_count and s_right_count and the two
auxiliary buffers used to compute the blocks in Step 4.1. This limits us to matrices with not

less than 6553665536 elements but is sufficient for most applications. If input matrices

can have more than 65536 eigenvalues then the size of the shared memory arrays can be
restricted and again unsigned int can be used as data type.

Figure 2. Example lists generated in Step 4.2 and 4.3 of Algorithm 4. The maximum number
of eigenvalues allowed per batch is 8. Note that the interval containing one eigenvalue is
ignored for building Um and the block list.

 0.7,0.9

2C

Uo Um

 0.5,0.6

1C

 5.0,0.1

3C

 0.3,0.1

4C

 5.5,0.4

2C

 0.8,0.7

3C

 0.9,2.8

1C

 7.9,5.9

2C

 3.10,2.10

3C

 0.11,5.10

2C

 0.7,0.9

2C

Ignored
for blocks

 0.3,0.1

7C

 0.8,0.4

5C

 7.9,5.9

2C

Ignored
for blocks

 0.11,2.10

5C

 0.3,0.9

9C

Would exceed threshold

 7.9,0.4

7C

 0.5,0.6

1C

 0.9,2.8

1C

 0.7,0.9

2C

 5.0,0.1

3C

U

 0.3,0.1

4C

 5.5,0.4

2C

 0.8,0.7

3C

 7.9,5.9

2C

 3.10,2.10

3C

 0.11,5.10

2C

start = 0

sum = 0

start = 1

sum = 2

start = 3

sum = 9

start = 3

sum=16

Eigenvalue Computation using Bisection

September 2013 17

As mentioned previously, the proposed algorithm to compute the blocks of Um is not
optimal and it is easy to construct pathological cases where it provides very poor results. In

practice, however, we observed that on average each block contained about %75 of the
maximum number of eigenvalues. This is sufficient to efficiently perform Step 3.4 of
Algorithm 4.

Eigenvalue Computation using Bisection

September 2013 18

Future Work

The implementation proposed in this report can be improved in various ways. For low levels
of the interval tree it would be beneficial to employ multi-section instead of bisection. This
would increase the parallelism of the computations more rapidly.

For small matrices with less than 256 eigenvalues it is possible to store both the active
intervals and the input matrix in shared memory. The eigenvalue counts in the main loop of
the algorithm can thus be computed without accessing global memory which will
significantly improve performance.

For matrices that have between 512 and 1024 eigenvalues the current implementation can
be improved by processing multiple intervals with each thread. This permits to directly
employ Algorithm 3 to compute all eigenvalues and avoids multiple kernel launches.

There are also several possible improvements for large matrices with more than 1024
eigenvalues. Currently we require two additional kernel launches after Step 1 of Algorithm 4
to determine all eigenvalues. It would be possible to subdivide all intervals that contain only
one eigenvalue to convergence in Step 1 of Algorithm 4. This would allow us to skip Step 2
and might be beneficial in particular for very large matrices where there are only a feew
intervals containing one eigenvalue after Step 1.a. At the moment only one thread block is
used in Step 1 of Algorithm 5. Thus, in this step only a small fraction of the available
compute power is employed. One approach to better utilize the device during the initial step
of Algorithm 5 would be to heuristically subdivide the initial Gerschgorin interval – ideally
the number of intervals should be chosen to match the number of parallel processors on the
device – and process all these intervals in the first processing step. For real-world problems
where eigenvalues are typically not well distributed this might result in an unequal load
balancing. We believe, however, that it will in most cases still outperform the current
implementation. A more sophisticated approach would find initial intervals on the device so
that the workload for all multi-processors is approximately equal in Step 1 (cf. [6]).

Eigenvalue Computation using Bisection

September 2013 19

Conclusion

In this report we presented an efficient algorithm to determine the eigenvalues of a
symmetric and tridiagonal real matrix using CUDA. A bisection strategy and an efficient
technique to determine the number of eigenvalues contained in an interval form the
foundation of the algorithm. The Gerschgorin interval that contains all eigenvalues of a
matrix is the starting point of the computations and recursive bisection yields a tree of
intervals whose leaf nodes contain an approximation of the eigenvalues. Two different
versions of the algorithm have been implemented, one for small matrices with up to

512512 elements, and one for arbitrary large matrices. Particularly important for the
efficiency of the implementation is the memory organization which has been discussed in
detail. Memory consumption and code divergence are minimized by frequent compaction
operations. For large matrices the implementation requires two steps. Post-processing the
result of the first step minimizes data transfer to the host and improves the efficiency of the
second step.

Eigenvalue Computation using Bisection

September 2013 20

Bibliography

1. G. H. Golub and C. F. van Loan, Matrix Computations, 2nd Edition, The John Hopkins
University Press, Baltimore, MD, USA, 1989.

2. P. R. Willems, B. Lang, C. Voemel, LAPACK Working Note 166: Computing the Bidiagonal
SVD Using Multiple Relatively Robust Representations, Technical Report, EECS Department,
University of California, Berkeley, 2005.

3. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and Brian P. Flannery, Numerical Recipes
in C: The Art of Scientific Computing, Cambridge University Press, New York, NY, USA,
1992.

4. B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Upper Saddle River, NJ,
USA, 1998.

5. I. S. Dhillon and B. S. Dhillon, Orthogonal Eigenvectors and Relative Gaps, SIAM Journal on
Matrix Analysis and Applications, 25 (3), 2003.

6. J. Demmel, I. Dhillon, and H. Ren, On The Correctness Of Some Bisection-Like Parallel
Eigenvalue Algorithms In Floating Point Arithmetic, Trans. Num. Anal. (ETNA), 3, 1996.

7. K. V. Fernando, Accurately Counting Singular Values of Bidiagonal Matrices and Eigenvalues of
Skew-Symmetric Tridiagonal Matrices, SIAM Journal on Matrix Analysis and Applications,
20 (2), 1999.

8. G. E. Blelloch, Prefix Sums and Their Applications, In Synthesis of Parallel Algorithms,
Morgan Kaufmann, 1990.

9. M. Harris, S. Sengupta, and J. D. Owens, Parallel Prefix Sum (Scan) with CUDA, GPU
Gems 3, Ed. H. Nguyen, Pearson Education, Boston, MA, 2007.

10. NVIDIA Corporation. NVIDIA CUDA Programming Guide. 2007.

11. T. H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction
to Algorithms, Second Edition, MIT Press, 2001.

12. I. S. Dhillon, A New O(N^2) Algorithm for the Symmetric Tridiagonal Eigenvalue/Eigenvector
Problem, PhD. Thesis, University of California, Berkeley, Spring 1997.

13. I. S. Dhillon and B. N. Parlett, Multiple Representations to Compute Orthogonal Eigenvectors of
Symmetric Tridiagonal Matrices, Linear Algebra and its Applications , Volume 387, Pages 1-
28, 2004.

14. M. A. Forjaz and R. Ralha, An Efficient Parallel Algorithm for the Symmetric Tridiagonal
Eigenvalue Problem, Selected Papers and Invited Talks of Vector and Parallel Processing -
VECPAR 2000, Lecture Notes in Computer Science, Volume 1981, pp. 369, Springer
Berlin / Heidelberg, 2001

Eigenvalue Computation using Bisection

September 2013 21

Appendix

Source Code Files

Host source code files are shown black, device source code files in blue.

main.cu Main file of the program.

matlab.cpp Store result of the computation in
Matlab file format.

gerschgorin.cpp Computation of the Gerschgorin
interval.

bisect_small.cu 512512 elements (allocation of
device code, kernel invocation,
deallocation of resource, …).

bisect_large.cu 512512 elements (allocation of
device code, kernel invocation,
deallocation of resource, …).

inc/bisect_large.cuh Header file for bisect_large.cu.

inc/bisect_small.cuh Header file for bisect_small.cu.

inc/config.h General parameters (e.g. max. number
of threads in one thread block).

inc/gerschgorin.h Header for gerschgorin.cpp.

inc/matlab.h Header for matlab.cpp.

inc/structs.h Definition of structures which bundle
kernel input and output parameter.

inc/util.h Miscellaneous utility functionality.

kernel/bisect_kernel_large.cu Kernel implementing Step 4.1.a to 4.1.c.

kernel/bisect_kernel_large_multi.cu Kernel implementing Algorithm 6.

kernel/bisect_kernel_large_onei.cu Kernel implementing Algorithm 5.

kernel/bisect_kernel_small.cu Kernel implementing Algorithm 3.

kernel/bisect_util.cu Functionality that is required by multiple
kernels, for example implementation of
Algorithm 1.

Eigenvalue Computation using Bisection

September 2013 22

Default Behavior

If the program is run without command line arguments then the diagonal and off-diagonal

elements of a matrix with 20482048 elements are loaded from the files diagonal.dat
and superdiagonal.dat in the data directory, respectively. The output of the program
is

Matrix size: 2048 x 2048

Precision: 0.000010

Iterations timing: 1

Result filename: 'eigenvalues.dat'

Gerschgorin interval: -2.894310 / 2.923304

Average time step 1: 5.263797 ms

Average time step 2, one intervals: 6.178160 ms

Average time step 2, mult intervals: 0.061460 ms

Average time TOTAL: 11.679418 ms

PASSED.

PASSED states that the correct result has been computed. For comparison a reference
solution was loaded from reference.dat from the data directory.

Command Line Flags

filename-result Name of the file where the
computed eigenvalues are
stored (only used when also
matrix-size is user
defined).

eigenvalues.dat

iters-timing Number of iterations used
to time the different
kernels.

100

precision Desired precision of the
eigenvalues.

0.00001

matrix-size Size of random matrix. 2048

Example: %>eigenvalues --precision=0.001 --matrix-size=4096

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

