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Chapter 1.
OVERVIEW

GPUDirect RDMA is a technology introduced in Kepler-class GPUs and CUDA 5.0 that
enables a direct path for data exchange between the GPU and a third-party peer device
using standard features of PCI Express. Examples of third-party devices are: network
interfaces, video acquisition devices, storage adapters.

GPUDirect RDMA is available on both Tesla and Quadro GPUs.

A number of limitations can apply, the most important being that the two devices must
share the same upstream PCI Express root complex. Some of the limitations depend on
the platform used and could be lifted in current/future products.

A few straightforward changes must be made to device drivers to enable this
functionality with a wide range of hardware devices. This document introduces the
technology and describes the steps necessary to enable an GPUDirect RDMA connection
to NVIDIA GPUs on Linux.

Figure 1 GPUDirect RDMA within the Linux Device Driver Model
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1.1. How GPUDirect RDMA Works
When setting up GPUDirect RDMA communication between two peers, all physical
addresses are the same from the PCI Express devices' point of view. Within this physical
address space are linear windows called PCI BARs. Each device has six BAR registers
at most, so it can have up to six active 32bit BAR regions. 64bit BARs consume two
BAR registers. The PCI Express device issues reads and writes to a peer device's BAR
addresses in the same way that they are issued to system memory.

Traditionally, resources like BAR windows are mapped to user or kernel address space
using the CPU's MMU as memory mapped I/O (MMIO) addresses. However, because
current operating systems don't have sufficient mechanisms for exchanging MMIO
regions between drivers, the NVIDIA kernel driver exports functions to perform the
necessary address translations and mappings.

To add GPUDirect RDMA support to a device driver, a small amount of address
mapping code within the kernel driver must be modified. This code typically resides
near existing calls to get_user_pages().

The APIs and control flow involved with GPUDirect RDMA are very similar to those
used with standard DMA transfers.

See Supported Systems and PCI BAR sizes for more hardware details.

1.2. Standard DMA Transfer
First, we outline a standard DMA Transfer initiated from userspace. In this scenario, the
following components are present:

‣ Userspace program
‣ Userspace communication library
‣ Kernel driver for the device interested in doing DMA transfers

The general sequence is as follows:

 1. The userspace program requests a transfer via the userspace communication library.
This operation takes a pointer to data (a virtual address) and a size in bytes.

 2. The communication library must make sure the memory region corresponding to
the virtual address and size is ready for the transfer. If this is not the case already, it
has to be handled by the kernel driver (next step).

 3. The kernel driver receives the virtual address and size from the userspace
communication library. It then asks the kernel to translate the virtual address range
to a list of physical pages and make sure they are ready to be transferred to or from.
We will refer to this operation as pinning the memory.

 4. The kernel driver uses the list of pages to program the physical device's DMA
engine(s).

 5. The communication library initiates the transfer.



Overview

www.nvidia.com
Developing a Linux Kernel module using RDMA for
GPUDirect

TB-06712-001 _v7.0 | 3

 6. After the transfer is done, the communication library should eventually clean up any
resources used to pin the memory. We will refer to this operation as unpinning the
memory.

1.3. GPUDirect RDMA Transfers
For the communication to support GPUDirect RDMA transfers some changes to the
sequence above have to be introduced. First of all, two new components are present:

‣ Userspace CUDA library
‣ NVIDIA kernel driver

As described in Basics of UVA CUDA Memory Management, programs using the CUDA
library have their address space split between GPU and CPU virtual addresses, and the
communication library has to implement two separate paths for them.

The userspace CUDA library provides a function that lets the communication library
distinguish between CPU and GPU addresses. Moreover, for GPU addresses it returns
additional metadata that is required to uniquely identify the GPU memory represented
by the address. See Userspace API for details.

The difference between the paths for CPU and GPU addresses is in how the memory
is pinned and unpinned. For CPU memory this is handled by built-in Linux Kernel
functions (get_user_pages() and put_page()). However, in the GPU memory case
the pinning and unpinning has to be handled by functions provided by the NVIDIA
Kernel driver. See Pinning GPU memory and Unpinning GPU memory for details.

Some hardware caveats are explained in Supported Systems and PCI BAR sizes.

1.4. Changes in CUDA 6.0
In this section we briefly list the changes that are available in CUDA 6.0:

‣ CUDA peer-to-peer tokens are no longer mandatory. For memory buffers owned by
the calling process (which is typical) tokens can be replaced by zero (0) in the kernel-
mode function nvidia_p2p_get_pages(). This new feature is meant to make it
easier for existing third party software stacks to adopt RDMA for GPUDirect.

‣ As a consequence of the change above, a new API cuPointerSetAttribute() has
been introduced. This API must be used to register any buffer for which no peer-
to-peer tokens are used. It is necessary to ensure correct synchronization behavior
of the CUDA API when operation on memory which may be read by RDMA for
GPUDirect. Failing to use it in these cases may cause data corruption. See changes in
Tokens Usage.

‣ cuPointerGetAttribute() has been extended to return a globally unique
numeric identifier, which in turn can be used by lower-level libraries to detect
buffer reallocations happening in user-level code (see Userspace API). It provides an
alternative method to detect reallocations when intercepting CUDA allocation and
deallocation APIs is not possible.
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‣ The kernel-mode memory pinning feature has been extended to work in
combination with Multi-Process Service (MPS).

Caveats as of CUDA 6.0:

‣ CUDA Unified Memory is not explicitly supported in combination with GPUDirect
RDMA. While the page table returned by nvidia_p2p_get_pages() is valid for
managed memory buffers and provides a mapping of GPU memory at any given
moment in time, the GPU device copy of that memory may be incoherent with the
writable copy of the page which is not on the GPU. Using the page table in this
circumstance may result in accessing stale data, or data loss, because of a DMA
write access to device memory that is subsequently overwritten by the Unified
Memory run-time. cuPointerGetAttribute() may be used to determine if an
address is being managed by the Unified Memory runtime.

‣ Every time a device memory region is pinned, new GPU BAR space is allocated
unconditionally, even when pinning overlapping or duplicate device memory
ranges. There is no attempt at reusing mappings. This behavior could change in the
future, so we encourage developers not to rely on it.
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Chapter 2.
DESIGN CONSIDERATIONS

When designing a system to utilize GPUDirect RDMA, there a number of considerations
which should be taken into account.

2.1. Lazy Unpinning Optimization
Pinning GPU device memory in BAR is an expensive operation, taking up to
milliseconds. Therefore the application should be designed in a way to minimize that
overhead.

The most straightforward implementation using GPUDirect RDMA would pin memory
before each transfer and unpin it right after the transfer is complete. Unfortunately, this
would perform poorly in general, as pinning and unpinning memory are expensive
operations. The rest of the steps required to perform an RDMA transfer, however, can
be performed quickly without entering the kernel (the DMA list can be cached and
replayed using MMIO registers/command lists).

Hence, lazily unpinning memory is key to a high performance RDMA implementation.
What it implies, is keeping the memory pinned even after the transfer has finished. This
takes advantage of the fact that it is likely that the same memory region will be used for
future DMA transfers thus lazy unpinning saves pin/unpin operations.

An example implementation of lazy unpinning would keep a set of pinned memory
regions and only unpin some of them (for example the least recently used one) if the
total size of the regions reached some threshold, or if pinning a new region failed
because of BAR space exhaustion (see PCI BAR sizes).

2.2. Registration Cache
Communication middleware often employs an optimization called a registration cache,
or pin-down cache, to minimize pinning overhead. Typically it already exists for host
memory, implementing lazy unpinning, LRU de-registration, etc. For networking
middleware, such caches are usually implemented in user-space, as they are used in
combination with hardware capable of user-mode message injection. CUDA UVA
memory address layout enables GPU memory pinning to work with these caches
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by taking into account just a few design considerations. In the CUDA environment,
this is even more important as the amount of memory which can be pinned may be
significantly more constrained than for host memory.

As the GPU BAR space is typically mapped using 64KB pages, it is more resource
efficient to maintain a cache of regions rounded to the 64KB boundary. In additon,
pinning two memory areas which are in the same 64KB boundary would allocate and
return two distinct BAR regions mapping the same GPU device memory. So proper
handling of alignment helps conserving GPU BAR space.

Registration caches usually rely on the ability to intercept deallocation events happening
in the user application, so that they can unpin the memory and free important HW
resources, e.g. on the network card. To implement a similar mechanism for GPU
memory, an implementation has two options:

‣ Instrument all CUDA allocation and deallocation APIs.
‣ Use a tag check function to track deallocation and reallocation. See Buffer ID Tag

Check for A Registration Cache.

While intercepting CUDA APIs is beyond the scope of this document, an approach
to performing tag checks is available starting with CUDA 6.0. It involves the usage of
the CU_POINTER_ATTRIBUTE_BUFFER_ID attribute in cuPointerGetAttribute()
to detect memory buffer deallocations or reallocations. The API will return a different
ID value in case of reallocation or an error if the buffer address is no longer valid. See
Userspace API for API usage.

Using tag checks introduces an extra call into the CUDA API on each memory buffer
use, so this approach is most appropriate when the additional latency is not a
concern.

2.3. Unpin Callback
When a third party device driver pins the GPU pages with nvidia_p2p_get_pages()
it must also provide a callback function that the NVIDIA driver will call if it needs to
revoke access to the mapping. This callback occurs synchronously, giving the third
party driver the opportunity to clean up and remove any references to the pages in
question (i.e., wait for outstanding DMAs to complete). The user callback function may
block for a few milliseconds, although it is recommended that the callback complete as
quickly as possible. Care has to be taken not to introduce deadlocks as waiting within
the callback for the GPU to do anything is not safe.

The callback must call nvidia_p2p_free_page_table() (not
nvidia_p2p_put_pages()) to free the memory pointed to by page_table. The
corresponding mapped memory areas will only be unmapped by the NVIDIA driver
after returning from the callback.

Note that the callback will be invoked in two scenarios:
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‣ If the userspace program explicitly deallocates the corresponding GPU memory, e.g.
cuMemFree, cuCtxDestroy, etc. before the third party kernel driver has a chance to
unpin the memory with nvidia_p2p_put_pages().

‣ As a consequence of an early exit of the process.

In the latter case there can be tear-down ordering issues between closing the file
descriptor of the third party kernel driver and that of the NVIDIA kernel driver.
In the case the file descriptor for the NVIDIA kernel driver is closed first, the
nvidia_p2p_put_pages() callback will be invoked.

A proper software design is important as the NVIDIA kernel driver will protect
itself from reentrancy issues with locks before invoking the callback. The third party
kernel driver will almost certainly take similar actions, so dead-locking or live-locking
scenarios may arise if careful consideration is not taken.

2.4. Supported Systems
Even though the only theoretical requirement for GPUDirect RDMA to work between a
third-party device and an NVIDIA GPU is that they share the same root complex, there
exist bugs (mostly in chipsets) causing it to perform badly, or not work at all in certain
setups.

We can distinguish between three situations, depending on what is on the path between
the GPU and the third-party device:

‣ PCIe switches only
‣ single CPU/IOH
‣ CPU/IOH <-> QPI/HT <-> CPU/IOH

The first situation, where there are only PCIe switches on the path, is optimal and yields
the best performance. The second one, where a single CPU/IOH is involved, works, but
yields worse performance ( especially peer-to-peer read bandwidth has been shown to
be severely limited on some processor architectures ). Finally, the third situation, where
the path traverses a QPI/HT link, doesn't work reliably.

Tip lspci can be used to check the PCI topology:
$ lspci -t

IOMMUs

GPUDirect RDMA currently relies upon all physical addresses being the same from
the different PCI devices' point of view. This makes it incompatible with IOMMUs
performing any form of translation other than 1:1, hence they must be disabled or
configured for pass-through translation for GPUDirect RDMA to work.
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2.5. PCI BAR sizes
PCI devices can ask the OS/BIOS to map a region of physical address space to them.
These regions are commonly called BARs. NVIDIA GPUs currently expose multiple
BARs, and some of them can back arbitrary device memory, making GPUDirect RDMA
possible.

The maximum BAR size available for GPUDirect RDMA differs from GPU to GPU. For
example, currently the smallest available BAR size on Kepler class GPUs is 256 MB. Of
that, 32MB are currently reserved for internal use. These sizes may change.

On some Tesla-class GPUs a large BAR feature is enabled, e.g. BAR1 size is set to 16GB
or larger. Large BARs can pose a problem for the BIOS, especially on older motherbords,
related to compatibility support for 32bit operating systems. On those motherboards the
bootstrap can stop during the early POST phase, or the GPU may be misconfigured and
so unusable. If this appears to be occuring it might be necessary to enable some special
BIOS feature to deal with the large BAR issue. Please consult your system vendor for
more details regarding large BAR support.

2.6. Tokens Usage
Starting in CUDA 6.0, tokens should be considered deprecated, though they are still
supported.

As can be seen in Userspace API and Kernel API, one method for pinning and
unpinning memory requires two tokens in addition to the GPU virtual address.

These tokens, p2pToken and vaSpaceToken, are necessary to uniquely identify a GPU
VA space. A process identifier alone does not identify a GPU VA space.

The tokens are consistent within a single CUDA context (i.e., all memory obtained
through cudaMalloc() within the same CUDA context will have the same p2pToken
and vaSpaceToken). However, a given GPU virtual address need not map to the same
context/GPU for its entire lifetime. As a concrete example:
cudaSetDevice(0)
ptr0 = cudaMalloc();
cuPointerGetAttribute(&return_data, CU_POINTER_ATTRIBUTE_P2P_TOKENS, ptr0);
// Returns [p2pToken = 0xabcd, vaSpaceToken = 0x1]
cudaFree(ptr0);
cudaSetDevice(1);
ptr1 = cudaMalloc();
assert(ptr0 == ptr1);
// The CUDA driver is free (although not guaranteed) to reuse the VA,
// even on a different GPU
cuPointerGetAttribute(&return_data, CU_POINTER_ATTRIBUTE_P2P_TOKENS, ptr0);
// Returns [p2pToken = 0x0123, vaSpaceToken = 0x2]

That is, the same address, when passed to cuPointerGetAttribute, may return
different tokens at different times during the program's execution. Therefore, the third
party communication library must call cuPointerGetAttribute() for every pointer it
operates on.
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Security implications

The two tokens act as an authentication mechanism for the NVIDIA kernel driver. If
you know the tokens, you can map the address space corresponding to them, and the
NVIDIA kernel driver doesn't perform any additional checks. The 64bit p2pToken is
randomized to prevent it from being guessed by an adversary.

When no tokens are used, the NVIDIA driver limits the Kernel API to the process which
owns the memory allocation.

2.7. Synchronization and Memory Ordering
GPUDirect RDMA introduces a new independent GPU data flow path exposed to third
party devices and it is important to understand how these devices interact with the
GPU's relaxed memory model.

‣ Properly registering a BAR mapping of CUDA memory is required for that mapping
to remain consistent with CUDA APIs operations on that memory.

‣ Only CUDA synchronization and work submission APIs provide memory ordering
of GPUDirect RDMA operations.

Registration for CUDA API Consistency

Registration is necesary to ensure the CUDA API memory operations visible to a BAR
mapping happen before the API call returns control to the calling CPU thread. This
provides a consistent view of memory to a device using GPUDirect RDMA mappings
when invoked after a CUDA API in the thread. This is a strictly more conservative
mode of operation for the CUDA API and disables optimizations, thus it may negatively
impact performance.

This behavior is enabled on a per-allocation granularity either by calling
cuPointerSetAttribute() with the CU_POINTER_ATTRIBUTE_SYNC_MEMOPS
attribute, or p2p tokens are retrieved for a buffer when using the legacy path. See
Userspace API for more details.

An example situation would be Read-after-Write dependency betewen a
cudaMemcpyDtoD() and subsequent GPUDirect RDMA read operation on the
destination of the copy. As an optimization the device-to-device memory copy typically
returns asynchronously to the calling thread after queuing the copy to the GPU
scheduler. However, in this circumstance that will lead to incosistent data read via the
BAR mapping, so this optimization is disabled an the copy completed before the CUDA
API returns.

CUDA APIs for Memory Ordering

Only CPU initiated CUDA APIs provide ordering of GPUDirect memory operations
as observed by the GPU. That is, despite a third party device having issued all PCIE
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transactions, a running GPU kernel or copy operation may observe stale data or data
that arrives out-of-order until a subsequent CPU initiated CUDA work submission or
synchronization API. To ensure that memory updates are visible to CUDA kernels or
copies, an implementation should ensure that all writes to the GPU BAR happen before
control is returned to the CPU thread which will invoke the dependent CUDA API.

An example situation for a network communication scenario is when a network RDMA
write operation is completed by the third party network device and the data is written to
the GPU BAR mapping. Though reading back the written data either through GPU BAR
or a CUDA memory copy operation, will return the newly written data, a concurrently
running GPU kernel to that network write might observe stale data, the data partially
written, or the data written out-of-order.

In short, a GPU kernel is wholly inconsistent with concurrent RDMA for GPUDirect
operations and accessing the memory overwritten by the third party device in such a
situation would be considered a data race. To resolve this inconsistency and remove the
data race the DMA write operation must complete with respect to the CPU thread which
will launch the dependent GPU kernel.
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Chapter 3.
HOW TO PERFORM SPECIFIC TASKS

3.1. Displaying GPU BAR space
Starting in CUDA 6.0 the NVIDIA SMI utility provides the capability to dump BAR1
memory usage. It can be used to understand the application usage of BAR space, the
primary resource consumed by GPUDirect RDMA mappings.

$ nvidia-smi -q
...
    BAR1 Memory Usage
        Total                       : 256 MiB
        Used                        : 2 MiB
        Free                        : 254 MiB
...

GPU memory is pinned in fixed size chunks, so the amount of space reflected
here might be unexpected. In addition, a certain amount of BAR space is reserved
by the driver for internal use, so not all available memory may be usable via
GPUDirect RDMA. Note that the same ability is offered programmatically through
the nvmlDeviceGetBAR1MemoryInfo() NVML API.
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3.2. Pinning GPU memory
 1. Correct behavior requires using cuPointerSetAttribute() on the memory

address to enable proper synchronization behavior in the CUDA driver. See section
Synchronization and Memory Ordering.

void pin_buffer(void *address, size_t size)
{
    unsigned int flag = 1;
    CUresult status = cuPointerSetAttribute(&flag,
 CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, address);
    if (CUDA_SUCCESS == status) {
        // GPU path
        pass_to_kernel_driver(address, size);
    } else {
        // CPU path
        // ...
    }
}
                    

This is required so that the GPU memory buffer is treated in a special way by
the CUDA driver, so that CUDA memory transfers are guaranteed to always
be synchronous with respect to the host. See Userspace API for details on
cuPointerSetAttribute().

 2. In the kernel driver, invoke nvidia_p2p_get_pages().

// for boundary alignment requirement
#define GPU_BOUND_SHIFT   16
#define GPU_BOUND_SIZE    ((u64)1 << GPU_BOUND_SHIFT)
#define GPU_BOUND_OFFSET  (GPU_BOUND_SIZE-1)
#define GPU_BOUND_MASK    (~GPU_BOUND_OFFSET)

struct kmd_state {
 nvidia_p2p_page_table_t *page_table;
    // ...
};

void kmd_pin_memory(struct kmd_state *my_state, void *address, size_t size)
{ 
    // do proper alignment, as required by NVIDIA kernel driver
    u64 virt_start = address & GPU_BOUND_MASK;
    size_t pin_size = address + size - virt_start;
    if (!size)
     return -EINVAL;
    int ret = nvidia_p2p_get_pages(0, 0, virt_start, pin_size, &my_state-
>page_table, free_callback, &my_state);
    if (ret == 0) {
        // Succesfully pinned, page_table can be accessed
    } else {
        // Pinning failed
    }
}
                    

Note how the start address is aligned to a 64KB boundary before calling the pinning
functions.
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If the function succeeds the memory has been pinned and the page_table entries
can be used to program the device's DMA engine. See Kernel API for details on
nvidia_p2p_get_pages().

3.3. Unpinning GPU memory
In the kernel driver, invoke nvidia_p2p_put_pages().

void unpin_memory(void *address, size_t size, nvidia_p2p_page_table_t
 *page_table)
{
    nvidia_p2p_put_pages(0, 0, address, size, page_table);
}
                    

See Kernel API for details on nvidia_p2p_put_pages().

Starting CUDA 6.0 zeros should be used as the token parameters. Note that
nvidia_p2p_put_pages() must be called from within the same process context as
the one from which the corresponding nvidia_p2p_get_pages() has been issued.

3.4. Handling the free callback
 1. The NVIDIA kernel driver invokes free_callback(data) as specified in the

nvidia_p2p_get_pages() call if it needs to revoke the mapping. See Kernel API
and Unpin Callback for details.

 2. The callback waits for pending transfers and then cleans up the page table allocation.

void free_callback(void *data)
{
    my_state *state = data;
    wait_for_pending_transfers(state);
    nvidia_p2p_free_pages(state->page_table);
}
                    

 3. The NVIDIA kernel driver handles the unmapping so nvidia_p2p_put_pages()
should not be called.

3.5. Buffer ID Tag Check for A Registration Cache
Remember that a solution built around Buffer ID tag checking is not recommended
for latency sensitive implementations. Instead, instrumentation of CUDA allocation
and deallocation APIs to provide callbacks to the registration cache is recommended,
removing tag checking overhead from the critical path.

 1. The first time a device memory buffer is encountered and recognized as not yet
pinned, the pinned mapping is created and the associated buffer ID is retrieved and
stored together in the cache entry. The cuMemGetAddressRange() function can be
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used to obtain the size and starting address for the whole allocation, which can then
be used to pin it. As nvidia_p2p_get_pages() will need a pointer aligned to 64K,
it is useful to directly align the cached address. Also, as the BAR space is currently
mapped in chunks of 64KB, it is more resource efficient to round the whole pinning to
64KB.

// struct buf represents an entry of the registration cache
struct buf {
 CUdeviceptr pointer;
 size_t      size;
 CUdeviceptr aligned_pointer;
 size_t      aligned_size;
 int         is_pinned;
 uint64_t    id; // buffer id obtained right after pinning
};

        

 2. Once created, every time a registration cache entry will be used it must be first
checked for validity. One way to do this is to use the Buffer ID provided by CUDA as
a tag to check for deallocation or reallocation.

int buf_is_gpu_pinning_valid(struct buf* buf) {
 uint64_t buffer_id;
 int retcode;
 assert(buf->is_pinned);
 // get the current buffer id
 retcode = cuPointerGetAttribute(&buffer_id, CU_POINTER_ATTRIBUTE_BUFFER_ID,
 buf->pointer);
 if (CUDA_ERROR_INVALID_VALUE == retcode) {
  // the device pointer is no longer valid
  // it could have been deallocated
  return ERROR_INVALIDATED;
 } else if (CUDA_SUCCESS != retcode) {
  // handle more serious errors here
  return ERROR_SERIOUS;
 }
 if (buf->id != buffer_id)
  // the original buffer has been deallocated and the cached mapping should
 be invalidated and the buffer re-pinned
  return ERROR_INVALIDATED;
 return 0;
}

     

When the buffer identifier changes the corresponding memory buffer has been
reallocated so the corresponding kernel-space page table will not be valid anymore.
In this case the kernel-space nvidia_p2p_get_pages() callback would have been
invoked. Thus the Buffer IDs provide a tag to keep the pin-down cache consistent
with the kernel-space page table without requiring the kernel driver to up-call into
the user-space.

If CUDA_ERROR_INVALID_VALUE is returned from cuPointerGetAttribute(), the
program should assume that the memory buffer has been deallocated or is otherwise
not a valid GPU memory buffer.
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 3. In both cases, the corresponding cache entry must be invalidated.

// in the registration cache code
if (buf->is_pinned && !buf_is_gpu_pinning_valid(buf)) { 
  regcache_invalidate_entry(buf); 
  pin_buffer(buf);
}

     

3.6. Linking a Kernel Module against nvidia.ko
 1. Run the extraction script:

./NVIDIA-Linux-x86_64-<version>.run –x

This extracts the NVIDA driver and kernel wrapper.
 2. Navigate to the output directory:

cd <output directory>/kernel/

 3. Within this directory, build the NVIDIA module for your kernel:
make module

After this is done, the Module.symvers file under your kernel build directory
contains symbol information for nvidia.ko.

 4. Modify your kernel module build process with the following line:
KBUILD_EXTRA_SYMBOLS := <path to kernel build directory>/Module.symvers
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Chapter 4.
REFERENCES

4.1. Basics of UVA CUDA Memory Management
Unified virtual addressing (UVA) is a memory address management system enabled
by default in CUDA 4.0 and later releases on Fermi and Kepler GPUs running 64-bit
processes. The design of UVA memory management provides a basis for the operation
of GPUDirect RDMA. On UVA-supported configurations, when the CUDA runtime
initializes, the virtual address (VA) range of the application is partitioned into two areas:
the CUDA-managed VA range and the OS-managed VA range. All CUDA-managed
pointers are within this VA range, and the range will always fall within the first 40 bits
of the process's VA space.

Figure 2 CUDA VA Space Addressing

Subsequently, within the CUDA VA space, addresses can be subdivided into three types:
GPU

A page backed by GPU memory. This will not be accessible from the host and the VA
in question will never have a physical backing on the host. Dereferencing a pointer to
a GPU VA from the CPU will trigger a segfault.

CPU
A page backed by CPU memory. This will be accessible from both the host and the
GPU at the same VA.

FREE
These VAs are reserved by CUDA for future allocations.
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This partitioning allows the CUDA runtime to determine the physical location of a
memory object by its pointer value within the reserved CUDA VA space.

Addresses are subdivided into these categories at page granularity; all memory within a
page is of the same type. Note that GPU pages may not be the same size as CPU pages.
The CPU pages are usually 4KB and the GPU pages on Kepler-class GPUs are 64KB.
GPUDirect RDMA operates exclusively on GPU pages (created by cudaMalloc()) that
are within this CUDA VA space.

4.2. Userspace API

Data structures

typedef struct CUDA_POINTER_ATTRIBUTE_P2P_TOKENS_st {
    unsigned long long p2pToken;
    unsigned int vaSpaceToken;
} CUDA_POINTER_ATTRIBUTE_P2P_TOKENS;
    

Function cuPointerSetAttribute()
CUresult cuPointerSetAttribute(void *data, CUpointer_attribute attribute,
 CUdeviceptr pointer);

In GPUDirect RDMA scope, the interesting usage is when
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS is passed as the attribute:

    unsigned int flag = 1;
    cuPointerSetAttribute(&flag, CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, pointer);
    

Parameters
data [in]

A pointer to a unsigned int variable containing a boolean value.
attribute [in]

In GPUDirect RDMA scope should always be
CU_POINTER_ATTRIBUTE_SYNC_MEMOPS.

pointer [in]
A pointer.

Returns
CUDA_SUCCESS

if pointer points to GPU memory and the CUDA driver was able to set the new
behavior for the whole device memory allocation.

anything else
if pointer points to CPU memory.

It is used to explicitly enable a strictly synchronizing behavior on the whole memory
allocation pointed to by pointer, and by doing so disabling all data transfer
optimizations which might create problems with concurrent RDMA and CUDA memory
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copy operations. This API has CUDA synchronizing behavior, so it should be considered
expensive and possibly invoked only once per buffer.

Function cuPointerGetAttribute()
CUresult cuPointerGetAttribute(const void *data, CUpointer_attribute attribute,
 CUdeviceptr pointer);

This function has two different attributes related to GPUDirect RDMA:
CU_POINTER_ATTRIBUTE_P2P_TOKENS and CU_POINTER_ATTRIBUTE_BUFFER_ID.

CU_POINTER_ATTRIBUTE_P2P_TOKENS has been deprecated in CUDA 6.0

When CU_POINTER_ATTRIBUTE_P2P_TOKENS is passed as the attribute, data is a
pointer to CUDA_POINTER_ATTRIBUTE_P2P_TOKENS:

    CUDA_POINTER_ATTRIBUTE_P2P_TOKENS tokens;
    cuPointerGetAttribute(&tokens, CU_POINTER_ATTRIBUTE_P2P_TOKENS, pointer);
    

In this case, the function returns two tokens for use with the Kernel API.

Parameters
data [out]

Struct CUDA_POINTER_ATTRIBUTE_P2P_TOKENS with the two tokens.
attribute [in]

In GPUDirect RDMA scope should always be
CU_POINTER_ATTRIBUTE_P2P_TOKENS.

pointer [in]
A pointer.

Returns
CUDA_SUCCESS

if pointer points to GPU memory.
anything else

if pointer points to CPU memory.

This function may be called at any time, including before CUDA initialization, and it
has CUDA synchronizing behavior, as in CU_POINTER_ATTRIBUTE_SYNC_MEMOPS, so it
should be considered expensive and should be invoked only once per buffer.

Note that values set in tokens can be different for the same pointer value during a
lifetime of a user-space program. See Tokens Usage for a concrete example.

Note that for security reasons the value set in p2pToken will be randomized, to prevent
it from being guessed by an adversary.

In CUDA 6.0, a new attribute has been introduced that is useful to detect memory
reallocations.
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When CU_POINTER_ATTRIBUTE_BUFFER_ID is passed as the attribute, data is
expected to point to a 64bit unsigned integer variable, like uint64_t.

    uint64_t buf_id;
    cuPointerGetAttribute(&buf_id, CU_POINTER_ATTRIBUTE_BUFFER_ID, pointer);
    

Parameters
data [out]

A pointer to a 64 bits variable where the buffer id will be stored.
attribute [in]

The CU_POINTER_ATTRIBUTE_BUFFER_ID enumerator.
pointer [in]

A pointer to GPU memory.

Returns
CUDA_SUCCESS

if pointer points to GPU memory.
anything else

if pointer points to CPU memory.

Some general remarks follow:

‣ cuPointerGetAttribute() and cuPointerSetAttribute() are CUDA driver
API functions only.

‣ In particular, cuPointerGetAttribute() is not equivalent to
cudaPointerGetAttributes(), as the required functionality is only present in the
former function. This in no way limits the scope where GPUDirect RDMA may be
used as cuPointerGetAttribute() is compatible with the CUDA Runtime API.

‣ No runtime API equivalent to cuPointerGetAttribute() is provided. The
additional overhead associated with the CUDA runtime API to driver API call
sequence would introduce unneeded overhead and cuPointerGetAttribute()
can be on the critical path in communication libraries. The API is fully compatible
with the CUDA Runtime API.

4.3. Kernel API
Following declarations can be found in the nv-p2p.h header that is distributed in the
NVIDIA Driver package.
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Data structures

typedef
struct nvidia_p2p_page {
    uint64_t physical_address;
    union nvidia_p2p_request_registers {
        struct {
            uint32_t wreqmb_h;
            uint32_t rreqmb_h;
            uint32_t rreqmb_0;
            uint32_t reserved[3];
        } fermi;
    } registers;
} nvidia_p2p_page_t;
    

In nvidia_p2p_page only the physical_address is relevant to GPUDirect RDMA.

#define NVIDIA_P2P_PAGE_TABLE_VERSION   0x00010001

typedef
struct nvidia_p2p_page_table {
    uint32_t version;
    uint32_t page_size;
    struct nvidia_p2p_page **pages;
    uint32_t entries;
} nvidia_p2p_page_table_t;
    

Fields
version

the version of the page table; should be compared to
NVIDIA_P2P_PAGE_TABLE_VERSION before accessing the other fields

page_size
the GPU page size

pages
the page table entries

entries
number of the page table entries

Function nvidia_p2p_get_pages()

int nvidia_p2p_get_pages(uint64_t p2p_token, uint32_t va_space_token,
                uint64_t virtual_address,
                uint64_t length,
                struct nvidia_p2p_page_table **page_table,
                void (*free_callback)(void *data),
                void *data);
   

This function makes the pages underlying a range of GPU virtual memory accessible to
a third-party device.

Parameters
p2p_token [in][deprecated]

A token that uniquely identifies the P2P mapping or zero.
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va_space_token [in][deprecated]
A GPU virtual address space qualifier or zero.

virtual_address [in]
The start address in the specified virtual address space. Has to be aligned to 64K.

length [in]
The length of the requested P2P mapping.

page_table [out]
A pointer to an array of structures with P2P PTEs. Cannot be NULL.

free_callback [in]
A pointer to the function to be invoked if the pages underlying the virtual address
range are freed implicitly. Cannot be NULL.

data [in]
An opaque pointer to private data to be passed to the callback function.

Returns
0

upon successful completion.
-EINVAL

if an invalid argument was supplied.
-ENOTSUPP

if the requested operation is not supported.
-ENOMEM

if the driver failed to allocate memory or if insufficient resources were available to
complete the operation.

-EIO
if an unknown error occurred.

This is an expensive operation and should be performed as infrequently as possible - see
Lazy Unpinning Optimization.

Function nvidia_p2p_put_pages()

int nvidia_p2p_put_pages(uint64_t p2p_token, uint32_t va_space_token,
        uint64_t virtual_address,
        struct nvidia_p2p_page_table *page_table);
    

This function releases a set of pages previously made accessible to a third-party device.
Warning: it is not meant to be called from within the nvidia_p2p_get_pages()
callback.

Parameters
p2p_token [in][deprecated]

A token that uniquely identifies the P2P mapping or zero.
va_space_token [in][deprecated]

A GPU virtual address space qualifier or zero.
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virtual_address [in]
The start address in the specified virtual address space.

page_table [in]
A pointer to an array of structures with P2P PTEs.

Returns
0

upon successful completion.
-EINVAL

if an invalid argument was supplied.
-EIO

if an unknown error occurred.

Function nvidia_p2p_free_page_table()

int nvidia_p2p_free_page_table(struct nvidia_p2p_page_table *page_table);
    

This function frees a third-party P2P page table and is meant to be invoked during the
execution of the nvidia_p2p_get_pages() callback.

Parameters
page_table [in]

A pointer to an array of structures with P2P PTEs.

Returns
0

upon successful completion.
-EINVAL

if an invalid argument was supplied.
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