
CUFFT LIBRARY USER'S GUIDE

DU-06707-001_v7.0 | August 2014

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | ii

TABLE OF CONTENTS

Chapter 1. Introduction...1
Chapter 2. Using the cuFFT API.. 3

2.1. Accessing cuFFT...4
2.2. Fourier Transform Setup...5
2.3. Fourier Transform Types... 5
2.4. Data Layout..6

2.4.1. FFTW Compatibility Mode..7
2.5. Multidimensional Transforms..7
2.6. Advanced Data Layout... 9
2.7. Streamed cuFFT Transforms... 10
2.8. Multiple GPU cuFFT Transforms...10

2.8.1. Plan Specification and Work Areas..11
2.8.2. Helper Functions... 11
2.8.3. Multiple GPU 2D and 3D Transforms on Permuted Input.....................................12
2.8.4. Supported Functionality.. 13

2.9. cuFFT Callback Routines... 14
2.9.1. Overview of the cufFFT Callback Routine Feature... 14
2.9.2. Specifying Load and Store Callback Routines... 15
2.9.3. Callback Routine Function Details.. 16
2.9.4. Coding Considerations for the cuFFT Callback Routine Feature............................18

2.10. Thread Safety...19
2.11. Static Library and Callback Support.. 19
2.12. Accuracy and Performance... 20

Chapter 3. cuFFT API Reference..22
3.1. Return value cufftResult... 22
3.2. cuFFT Basic Plans... 22

3.2.1. Function cufftPlan1d().. 23
3.2.2. Function cufftPlan2d().. 23
3.2.3. Function cufftPlan3d().. 24
3.2.4. Function cufftPlanMany()... 24

3.3. cuFFT Extensible Plans... 26
3.3.1. Function cufftCreate().. 26
3.3.2. Function cufftMakePlan1d().. 26
3.3.3. Function cufftMakePlan2d().. 27
3.3.4. Function cufftMakePlan3d().. 28
3.3.5. Function cufftMakePlanMany()...29

3.4. cuFFT Estimated Size of Work Area..30
3.4.1. Function cufftEstimate1d()...31
3.4.2. Function cufftEstimate2d()...31
3.4.3. Function cufftEstimate3d()...32

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | iii

3.4.4. Function cufftEstimateMany()..33
3.5. cuFFT Refined Estimated Size of Work Area..34

3.5.1. Function cufftGetSize1d().. 34
3.5.2. Function cufftGetSize2d().. 35
3.5.3. Function cufftGetSize3d().. 35
3.5.4. Function cufftGetSizeMany()... 36

3.6. Function cufftGetSize().. 37
3.7. cuFFT Caller Allocated Work Area Support... 38

3.7.1. Function cufftSetAutoAllocation()...38
3.7.2. Function cufftSetWorkArea()... 38

3.8. Function cufftDestroy()...39
3.9. cuFFT Execution... 39

3.9.1. Functions cufftExecC2C() and cufftExecZ2Z()...39
3.9.2. Functions cufftExecR2C() and cufftExecD2Z()...40
3.9.3. Functions cufftExecC2R() and cufftExecZ2D()...41

3.10. cuFFT and Multiple GPUs...41
3.10.1. Function cufftXtSetGPUs().. 42
3.10.2. Function cufftXtSetWorkArea()... 42
3.10.3. cuFFT Multiple GPU Execution... 43

3.10.3.1. Functions cufftXtExecDescriptorC2C() and cufftXtExecDescriptorZ2Z()............ 43
3.10.4. Memory Allocation and Data Movement Functions..44

3.10.4.1. Function cufftXtMalloc()... 44
3.10.4.2. Function cufftXtFree()..45
3.10.4.3. Function cufftXtMemcpy()... 45

3.10.5. General Multiple GPU Descriptor Types...46
3.10.5.1. cudaXtDesc... 46
3.10.5.2. cudaLibXtDesc..47

3.11. cuFFT Callbacks.. 47
3.11.1. Function cufftXtSetCallback().. 47
3.11.2. Function cufftXtClearCallback()..48
3.11.3. Function cufftXtSetCallbackSharedSize()... 48

3.12. Function cufftSetStream().. 49
3.13. Function cufftGetVersion()... 49
3.14. Function cufftSetCompatibilityMode()..49
3.15. Parameter cufftCompatibility..50
3.16. cuFFT Types...50

3.16.1. Parameter cufftType... 50
3.16.2. Parameters for Transform Direction... 51
3.16.3. Type definitions for callbacks.. 51
3.16.4. Other cuFFT Types... 52

3.16.4.1. cufftHandle...52
3.16.4.2. cufftReal.. 52
3.16.4.3. cufftDoubleReal..52

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | iv

3.16.4.4. cufftComplex...52
3.16.4.5. cufftDoubleComplex.. 52

Chapter 4. cuFFT Code Examples...53
4.1. 1D Complex-to-Complex Transforms... 54
4.2. 1D Real-to-Complex Transforms...55
4.3. 2D Complex-to-Real Transforms...56
4.4. 3D Complex-to-Complex Transforms... 57
4.5. 2D Advanced Data Layout Use.. 58
4.6. 3D Complex-to-Complex Transforms using Two GPUs..59
4.7. 1D Complex-to-Complex Transforms using Two GPUs with Natural Order...................... 60
4.8. 1D Complex-to-Complex Convolution using Two GPUs.. 61

Chapter 5. Multiple GPU Data Organization.. 63
5.1. Multiple GPU Data Organization for Batched Transforms... 63
5.2. Multiple GPU Data Organization for Single 2D and 3D Transforms.............................. 63
5.3. Multiple-GPU Data Organization for Single 1D Transforms..64

Chapter 6. FFTW Conversion Guide.. 69
Chapter 7. FFTW Interface to cuFFT...70
Chapter 8. Deprecated Functionality...73

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 1

Chapter 1.
INTRODUCTION

This document describes cuFFT, the NVIDIA® CUDA™ Fast Fourier Transform (FFT)
product. It consists of two separate libraries: cuFFT and cuFFTW. The cuFFT library
is designed to provide high performance on NVIDIA GPUs. The cuFFTW library is
provided as a porting tool to enable users of FFTW to start using NVIDIA GPUs with a
minimum amount of effort.

The FFT is a divide-and-conquer algorithm for efficiently computing discrete Fourier
transforms of complex or real-valued data sets. It is one of the most important and
widely used numerical algorithms in computational physics and general signal
processing. The cuFFT library provides a simple interface for computing FFTs on an
NVIDIA GPU, which allows users to quickly leverage the floating-point power and
parallelism of the GPU in a highly optimized and tested FFT library.

The cuFFT product supports a wide range of FFT inputs and options efficiently on
NVIDIA GPUs. This version of the cuFFT library supports the following features:

‣ Algorithms highly optimized for input sizes that can be written in the form
. In general the smaller the prime factor, the better the performance,

i.e., powers of two are fastest.
‣ An algorithm for every input data size
‣ Single-precision (32-bit floating point) and double-precision (64-bit floating point).

Single-precision transforms have higher performance than double-precision
transforms.

‣ Complex and real-valued input and output. Real valued input or output require less
computations and data than complex values and often have faster time to solution.
Types supported are:

‣ C2C - Complex input to complex output
‣ R2C - Real input to complex output
‣ C2R - Symmetric complex input to real output

‣ 1D, 2D and 3D transforms
‣ Execution of multiple 1D, 2D and 3D transforms simultaneously. These batched

transforms have higher performance than single transforms.
‣ In-place and out-of-place transforms
‣ Arbitrary intra- and inter-dimension element strides (strided layout)

Introduction

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 2

‣ FFTW compatible data layouts
‣ Execution of transforms across two or four GPUs
‣ Streamed execution, enabling asynchronous computation and data movement
‣ Transform sizes up to 512 million elements in single precision and up to half that in

double precision in any dimension, limited by the type of transform chosen and the
available GPU memory

The cuFFTW library provides the FFTW3 API to facilitate porting of existing FFTW
applications.

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 3

Chapter 2.
USING THE CUFFT API

This chapter provides a general overview of the cuFFT library API. For more complete
information on specific functions, see cuFFT API Reference. Users are encouraged to
read this chapter before continuing with more detailed descriptions.

The Discrete Fourier transform (DFT) maps a complex-valued vector (time domain)
into its frequency domain representation given by:

where is a complex-valued vector of the same size. This is known as a forward DFT.
If the sign on the exponent of e is changed to be positive, the transform is an inverse
transform. Depending on , different algorithms are deployed for the best performance.

The cuFFT API is modeled after FFTW, which is one of the most popular and efficient
CPU-based FFT libraries. cuFFT provides a simple configuration mechanism called
a plan that uses internal building blocks to optimize the transform for the given
configuration and the particular GPU hardware selected. Then, when the execution
function is called, the actual transform takes place following the plan of execution.
The advantage of this approach is that once the user creates a plan, the library retains
whatever state is needed to execute the plan multiple times without recalculation of the
configuration. This model works well for cuFFT because different kinds of FFTs require
different thread configurations and GPU resources, and the plan interface provides a
simple way of reusing configurations.

http://www.fftw.org

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 4

Computing a number BATCH of one-dimensional DFTs of size NX using cuFFT will
typically look like this:

#define NX 256
#define BATCH 10
#define RANK 1
...
{
 cufftHandle plan;
 cufftComplex *data;
 ...
 cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
 cufftPlanMany(&plan, RANK, NX, &iembed, istride, idist,
 &oembed, ostride, odist, CUFFT_C2C, BATCH);
 ...
 cufftExecC2C(plan, data, data, CUFFT_FORWARD);
 cudaDeviceSynchronize();
 ...
 cufftDestroy(plan);
 cudaFree(data);
}

2.1. Accessing cuFFT
The cuFFT and cuFFTW libraries are available as shared libraries. They consist of
compiled programs ready for users to incorporate into applications with the compiler
and linker. cuFFT can be downloaded from http://developer.nvidia.com/cufft. By
selecting Download CUDA Production Release users are all able to install the package
containing the CUDA Toolkit, SDK code samples and development drivers. The CUDA
Toolkit contains cuFFT and the samples include simplecuFFT.

The Linux release for simplecuFFT assumes that the root install directory is /usr/
local/cuda and that the locations of the products are contained there as follows.
Modify the Makefile as appropriate for your system.

Product Location and name Include file

nvcc compiler /bin/nvcc

cuFFT library {lib, lib64}/libcufft.so inc/cufft.h

cuFFT library with Xt
functionality

{lib, lib64}/libcufft.so inc/cufftXt.h

cuFFTW library {lib, lib64}/libcufftw.so inc/cufftw.h

The most common case is for developers to modify an existing CUDA routine (for
example, filename.cu) to call cuFFT routines. In this case the include file cufft.h or
cufftXt.h should be inserted into filename.cu file and the library included in the
link line. A single compile and link line might appear as

‣ /usr/local/cuda/bin/nvcc [options] filename.cu … -I/usr/local/
cuda/inc -L/usr/local/cuda/lib -lcufft

Of course there will typically be many compile lines and the compiler g++ may be used
for linking so long as the library path is set correctly.

http://developer.nvidia.com/cufft

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 5

Users of the FFTW interface (see FFTW Interface to cuFFT) should include cufftw.h
and link with both cuFFT and cuFFTW libraries.

For the best performance input data should reside in device memory. Therefore
programs in the cuFFT library assume that the data is in GPU memory. For example,
if one of the execution functions is called with data in host memory, the program will
return CUFFT_EXEC_FAILED. Programs in the cuFFTW library assume that the input
data is in host memory since this library is a porting tool for users of FFTW. If the data
resides in GPU memory, the program will abort.

2.2. Fourier Transform Setup
The first step in using the cuFFT Library is to create a plan using one of the following:

‣ cufftPlan1D() / cufftPlan2D() / cufftPlan3D() - Create a simple plan for
a 1D/2D/3D transform respectively.

‣ cufftPlanMany() - Creates a plan supporting batched input and strided data
layouts.

Among the plan creation functions, cufftPlanMany() allows use of more complicated
data layouts and batched executions. Execution of a transform of a particular size and
type may take several stages of processing. When a plan for the transform is generated,
cuFFT derives the internal steps that need to be taken. These steps may include multiple
kernel launches, memory copies, and so on. In addition, all the intermediate buffer
allocations (on CPU/GPU memory) take place during planning. These buffers are
released when the plan is destroyed. In the worst case, the cuFFT Library allocates
space for 8*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex
elements (where batch denotes the number of transforms that will be executed in
parallel, rank is the number of dimensions of the input data (see Multidimensional
Transforms) and n[] is the array of transform dimensions) for single and double-
precision transforms respectively. Depending on the configuration of the plan, less
memory may be used. In some specific cases, the temporary space allocations can be
as low as 1*batch*n[0]*..*n[rank-1] cufftComplex or cufftDoubleComplex
elements. This temporary space is allocated separately for each individual plan when it
is created (i.e., temporary space is not shared between the plans).

The next step in using the library is to call an execution function such as
cufftExecC2C() (see Parameter cufftType) which will perform the transform with the
specifications defined at planning.

One can create a cuFFT plan and perform multiple transforms on different data sets by
providing different input and output pointers. Once the plan is no longer needed, the
cufftDestroy() function should be called to release the resources allocated for the
plan.

2.3. Fourier Transform Types
Apart from the general complex-to-complex (C2C) transform, cuFFT implements
efficiently two other types: real-to-complex (R2C) and complex-to-real (C2R). In many

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 6

practical applications the input vector is real-valued. It can be easily shown that in
this case the output satisfies Hermitian symmetry (, where the star denotes
complex conjugation). The converse is also true: for complex-Hermitian input the
inverse transform will be purely real-valued. cuFFT takes advantage of this redundancy
and works only on the first half of the Hermitian vector.

Transform execution functions for single and double-precision are defined separately as:

‣ cufftExecC2C() / cufftExecZ2Z() - complex-to-complex transforms for single/
double precision.

‣ cufftExecR2C() / cufftExecD2Z() - real-to-complex forward transform for
single/double precision.

‣ cufftExecC2R() / cufftExecZ2D() - complex-to-real inverse transform for
single/double precision.

Each of those functions demands different input data layout (see Data Layout for
details).

2.4. Data Layout
In the cuFFT Library, data layout depends strictly on the configuration and the
transform type. In the case of general complex-to-complex transform both the input
and output data shall be a cufftComplex/cufftDoubleComplex array in single- and
double-precision modes respectively. In C2R mode an input array of
only non-redundant complex elements is required. The output array
consists of cufftReal/cufftDouble elements in this mode. Finally, R2C demands an
input array of real values and returns an array of non-
redundant complex elements.

In real-to-complex and complex-to-real transforms the size of input data and the size
of output data differ. For out-of-place transforms a separate array of appropriate size is
created. For in-place transforms the user can specify one of two supported data layouts:
padded ornative(deprecated). The default is padded for FFTW compatibility.

In the padded layout output signals begin at the same memory addresses as the input
data. Therefore input data for real-to-complex and output data for complex-to-real must
be padded. In the native(deprecated) layout no padding is required and both input and
output data are formed as arrays of adequate types and sizes.

Expected sizes of input/output data for 1-d transforms are summarized in the table
below:

FFT type input data size output data size

C2C cufftComplex cufftComplex

C2R cufftComplex cufftReal

R2C* cufftReal cufftComplex

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 7

The real-to-complex transform is implicitly a forward transform. For an in-place real-
to-complex transform where FFTW compatible output is desired, the input size must

be padded to complex elements. For out-of-place transforms, input and

output sizes match the logical transform size and the non-redundant size ,
respectively.

The complex-to-real transform is implicitly inverse. For in-place complex-to-real FFTs
where FFTW compatible output is selected (default padding mode), the input size is

assumed to be cufftComplex elements. Note that in-place complex-to-real
FFTs may overwrite arbitrary imaginary input point values when non-unit input and
output strides are chosen. For out-of-place transforms, input and output sizes match the

logical transform non-redundant size and size , respectively.

2.4.1. FFTW Compatibility Mode
For some transform sizes, FFTW requires additional padding bytes between rows and
planes of real-to-complex (R2C) and complex-to-real (C2R) transforms of rank greater
than . (For details, please refer to the FFTW online documentation.)

One can disable FFTW-compatible layout using
cufftSetCompatibilityMode()(deprecated). Setting the input parameter to
CUFFT_COMPATIBILITY_NATIVE disables padding and ensures compact data layout for
the input/output data for Real-to-Complex/Complex-To-Real transforms.

The FFTW compatibility modes are as follows:

CUFFT_COMPATIBILITY_NATIVE mode disables FFTW compatibility and packs data
most compactly.(this mode has been deprecated)

CUFFT_COMPATIBILITY_FFTW_PADDING supports FFTW data padding by inserting
extra padding between packed in-place transforms for batched transforms (default).

CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC guarantees FFTW-compatible output for
non-symmetric complex inputs for transforms with power-of-2 size. This is only useful
for artificial (that is, random) data sets as actual data will always be symmetric if it has
come from the real plane. Enabling this mode can significantly impact performance.

CUFFT_COMPATIBILITY_FFTW_ALL enables full FFTW
compatibility (both CUFFT_COMPATIBILITY_FFTW_PADDING and
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC).

Refer to the FFTW online documentation for detailed FFTW data layout specifications.

The default mode is CUFFT_COMPATIBILITY_FFTW_PADDING

2.5. Multidimensional Transforms
Multidimensional DFT map a -dimensional array , where into its
frequency domain array given by:

http://www.fftw.org
http://www.fftw.org

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 8

where , and the summation denotes the set of nested summations

cuFFT supports one-dimensional, two-dimensional and three-dimensional transforms,
which can all be called by the same cufftExec* functions (see Fourier Transform
Types).

Similar to the one-dimensional case, the frequency domain representation of real-valued
input data satisfies Hermitian symmetry, defined as: .

C2R and R2C algorithms take advantage of this fact by operating
only on half of the elements of signal array, namely on: for

.

The general rules of data alignment described in Data Layout apply to higher-
dimensional transforms. The following table summarizes input and output data sizes for
multidimensional DFTs:

Dims FFT type Input data size Output data size

C2C cufftComplex cufftComplex

1D C2R
 cufftComplex

 cufftReal

R2C cufftReal
 cufftComplex

C2C cufftComplex cufftComplex

2D C2R
 cufftComplex

 cufftReal

R2C cufftReal
 cufftComplex

C2C cufftComplex cufftComplex

3D C2R
 cufftComplex

 cufftReal

R2C cufftReal
 cufftComplex

For example, static declaration of a three-dimensional array for the output of an out-of-
place real-to-complex transform will look like this:
cufftComplex odata[N1][N2][N3/2+1];

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 9

2.6. Advanced Data Layout
The advanced data layout feature allows transforming only a subset of an input array, or
outputting to only a portion of a larger data structure. It can be set by calling function:
cufftResult cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch);

Passing inembed or onembed set to NULL is a special case and is equivalent to passing
n for each. This is same as the basic data layout and other advanced parameters such as
istride are ignored.

If the advanced parameters are to be used, then all of the advanced interface parameters
must be specified correctly. Advanced parameters are defined in units of the relevant
data type (cufftReal, cufftDoubleReal, cufftComplex, or cufftDoubleComplex).

Advanced layout can be perceived as an additional layer of abstraction above the access
to input/output data arrays. An element of coordinates [z][y][x] in signal number b
in the batch will be associated with the following addresses in the memory:

‣ 1D

input[b * idist + x * istride]

output[b * odist + x * ostride]
‣ 2D

input[b * idist + (x * inembed[1] + y) * istride]

output[b * odist + (x * onembed[1] + y) * ostride]
‣ 3D

input[b * idist + ((x * inembed[1] + y) * inembed[2] + z) * istride]

output[b * odist + ((x * onembed[1] + y) * onembed[2] + z) * ostride]

The istride and ostride parameters denote the distance between two successive
input and output elements in the least significant (that is, the innermost) dimension
respectively. In a single 1D transform, if every input element is to be used in the
transform, istride should be set to ; if every other input element is to be used in the
transform, then istride should be set to . Similarly, in a single 1D transform, if it is
desired to output final elements one after another compactly, ostride should be set to
; if spacing is desired between the least significant dimension output data, ostride

should be set to the distance between the elements.

The inembed and onembed parameters define the number of elements in each
dimension in the input array and the output array respectively. The inembed[rank-1]
contains the number of elements in the least significant (innermost) dimension of the
input data excluding the istride elements; the number of total elements in the least
significant dimension of the input array is then istride*inembed[rank-1]. The
inembed[0] or onembed[0] corresponds to the most significant (that is, the outermost)
dimension and is effectively ignored since the idist or odist parameter provides this
information instead. Note that the size of each dimension of the transform should be less

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 10

than or equal to the inembed and onembed values for the corresponding dimension, that
is n[i] ≤ inembed[i], n[i] ≤ onembed[i], where .

The idist and odist parameters indicate the distance between the first element of two
consecutive batches in the input and output data.

Internally cuFFT uses 32 bit unsigned integers to compute offsets. This results in a
limitation on maximum transform size. The size of input data, including strides and
batches, may not exceed bytes. This limitation also applies to output data and work
area sizes.

2.7. Streamed cuFFT Transforms
Every cuFFT plan may be associated with a CUDA stream. Once so associated, all
launches of the internal stages of that plan take place through the specified stream.
Streaming of cuFFT execution allows for potential overlap between transforms and
memory copies. (See the NVIDIA CUDA Programming Guide for more information on
streams.) If no stream is associated with a plan, launches take place in stream(0), the
default CUDA stream. Note that many plan executions require multiple kernel launches.

cufftSetStream() returns an error in the multiple GPU case as multiple GPU plans
perform operations in their own streams.

2.8. Multiple GPU cuFFT Transforms
cuFFT supports using two or four GPUs connected to a CPU to perform Fourier
Transforms whose calculations are distributed across the GPUs. An API has
been defined to allow users to write new code or modify existing code to use this
functionality.

Some existing functions such as the creation of a plan using cufftCreate() also apply
in the multiple GPU case. Multiple GPU unique routines contain Xt in their name.

The memory on the GPUs is managed by helper functions cufftXtMalloc()/
cufftXtFree() and cufftXtMemcpy() using the cudaLibXtDesc descriptor.

Performance is a function of the bandwidth between the GPUs, the computational ability
of the individual GPUs, and the type and number of FFT to be performed. The fastest
performance is obtained using PCI Express 3.0 between the GPUs and ensuring that
both GPUs are on the same switch. Note that multiple GPU execution is not guaranteed
to solve a given size problem in a shorter time than single GPU execution.

The multiple GPU extensions to cuFFT are built on the extensible cuFFT API. The
general steps in defining and executing a transform with this API are:

‣ cufftCreate() - create an empty plan, as in the single GPU case
‣ cufftXtSetGPUs() - define which GPUs are to be used
‣ Optional: cufftEstimate{1d,2d,3d,Many}() - estimate the sizes of the work

areas required. These are the same functions used in the single GPU case although
the definition of the argument workSize reflects the number of GPUs used.

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 11

‣ cufftMakePlan{1d,2d,3d,Many}() - create the plan. These are the same
functions used in the single GPU case although the definition of the argument
workSize reflects the number of GPUs used.

‣ Optional: cufftGetSize{1d,2d,3d,Many}() - refined estimate of the sizes of
the work areas required. These are the same functions used in the single GPU case
although the definition of the argument workSize reflects the number of GPUs
used.

‣ Optional: cufftGetSize() - check workspace size. This is the same function used
in the single GPU case although the definition of the argument workSize reflects
the number of GPUs used.

‣ Optional: cufftXtSetWorkArea() - do your own workspace allocation.
‣ cufftXtMalloc() - allocate descriptor and data on the GPUs
‣ cufftXtMemcpy() - copy data to the GPUs
‣ cufftXtExecDescriptorC2C()/cufftXtExecDescriptorZ2Z() - execute the

plan
‣ cufftXtMemcpy() - copy data from the GPUs
‣ cufftXtFree() - free any memory allocated with cufftXtMalloc()
‣ cufftDestroy() - free cuFFT plan resources

2.8.1. Plan Specification and Work Areas
In the single GPU case a plan is created by a call to cufftCreate() followed by a call to
cufftMakePlan*(). For multiple GPUs, the GPUs to use for execution are identified by
a call to cufftXtSetGPUs() and this must occur after the call to cufftCreate() and
prior to the call to cufftMakePlan*().

Note that when cufftMakePlan*() is called for a single GPU, the work area is on that
GPU. In a multiple GPU plan, the returned work area has multiple entries; one value per
GPU. That is workSize points to a size_t array, one entry per GPU. Also the strides
and batches apply to the entire plan across all GPUs associated with the plan.

Once a plan is locked by a call to cufftMakePlan*(), different descriptors may be
specified in calls to cufftXtExecDescriptor*() to execute the plan on different data
sets, but the new descriptors must use the same GPUs in the same order.

As in the single GPU case, cufftEstimateSize{Many,1d,2d,3d}() and
cufftGetSize{Many,1d,2d,3d}() give estimates of the work area sizes required for
a multiple GPU plan and in this case workSize points to a size_t array, one entry per
GPU.

Similarly the actual work size returned by cufftGetSize() is a size_t array, one
entry per GPU in the multiple GPU case.

2.8.2. Helper Functions
Multiple GPU cuFFT execution functions assume a certain data layout in terms
of what input data has been copied to which GPUs prior to execution, and what
output data resides in which GPUs post execution. cuFFT provides functions to assist
users in manipulating data on multiple GPUs. These must be called after the call to
cufftMakePlan*().

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 12

On a single GPU users may call cudaMalloc() and cudaFree() to allocate and free
GPU memory. To provide similar functionality in the multiple GPU case, cuFFT includes
cufftXtMalloc() and cufftXtFree() functions. The function cufftXtMalloc()
returns a descriptor which specifies the location of these memories.

On a single GPU users may call cudaMemcpy() to transfer data between host and GPU
memory. To provide similar functionality in the multiple GPU case, cuFFT includes
cufftXtMemcpy() which allows users to copy between host and multiple GPU
memories or even between the GPU memories.

All single GPU cuFFT FFTs return output the data in natural order, that is the ordering
of the result is the same as if a DFT had been performed on the data. Some Fast Fourier
Transforms produce intermediate results where the data is left in a permutation of the
natural output. When batch is one, data is left in the GPU memory in a permutation of
the natural output.

When cufftXtMemcpy() is used to copy data from GPU memory back to host memory,
the results are in natural order regardless of whether the data on the GPUs is in natural
order or permuted. Using CUFFT_COPY_DEVICE_TO_DEVICE allows users to copy data
from the permuted data format produced after a single transform to the natural order on
GPUs.

2.8.3. Multiple GPU 2D and 3D Transforms on Permuted
Input
For single 2D or 3D transforms on multiple GPUs, when cufftXtMemcpy() distributes
the data to the GPUs, the array is divided on the X axis. E.G. for two GPUs half of the
X dimenson points, for all Y (and Z) values, are copied to each of the GPUs. When the
transform is computed, the data are permuted such that they are divided on the Y axis.
I.E. half of the Y dimension points, for all X (and Z) values are on each of the GPUs.

When cuFFT creates a 2D or 3D plan for a single transform on multiple GPUs, it actually
creates two plans. One plan expects input to be divided on the X axis. The other plan
expects data to be divided on the Y axis. This is done because many algorithms compute
a forward FFT, then perform some point-wise operation on the result, and then compute
the inverse FFT. A memory copy to restore the data to the original order would be
expensive. To avoid this, cufftXtMemcpy and cufftXtExecDescriptor() keep track
of the data ordering so that the correct operation is used.

The ability of cuFFT to process data in either order makes the following sequence
possible.

‣ cufftCreate() - create an empty plan, as in the single GPU case
‣ cufftXtSetGPUs() - define which GPUs are to be used
‣ cufftMakePlan{1d,2d,3d,Many}() - create the plan.
‣ cufftXtMalloc() - allocate descriptor and data on the GPUs
‣ cufftXtMemcpy() - copy data to the GPUs
‣ cufftXtExecDescriptorC2C()/cufftXtExecDescriptorZ2Z() - compute the

forward FFT
‣ userFunction() - modify the data in the frequency domain

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 13

‣ cufftXtExecDescriptorC2C()/cufftXtExecDescriptorZ2Z() - compute the
inverse FFT

‣ Note that it was not necessary to copy/permute the data between execute calls
‣ cufftXtMemcpy() - copy data to the host
‣ cufftXtFree() - free any memory allocated with cufftXtMalloc()
‣ cufftDestroy() - free cuFFT plan resources

2.8.4. Supported Functionality
In version 7.0 only a subset of single GPU functionality is supported for multiple GPU
execution.

Supported functionality:

‣ Plans operating on two or four GPUs are supported.
‣ Three GPUs are supported for 2D and 3D transforms or when number of batches is

greater than 1.
‣ All GPUs must have the same CUDA architecture level.
‣ The GPUs must support the Unified Virtual Address Space.
‣ On Windows, the GPU boards must be operating in Tesla Compute Cluster (TCC)

mode.
‣ Running cuFFT on multiple GPUs is not compatible with an application that uses

the CUDA Driver API.
‣ Strided input and output are not supported.
‣ When the number of batches is 1:

‣ Only C2C and Z2Z transform types are supported.
‣ Only in-place transforms are supported.
‣ For 1D transforms, the dimension must be a power of 2.
‣ For 2D and 3D transforms, the dimensions must factor into primes less than or

equal to 127.
‣ The X and Y dimensions of the transform must be greater than or equal to 64.

General guidelines are:

‣ The data for the entire transform must fit within the memory of the GPUs assigned
to it.

‣ For batch size m on n GPUs :

‣ The first m % n GPUs execute transforms.
‣ The remaining GPUs execute transforms.

Batch size output differences:

Single GPU cuFFT results are always returned in natural order. When multiple GPUs are
used to perform more than one transform, the results are also returned in natural order.
When multiple GPUs are used to perform a single transform the results are returned in a
permutation of the normal results to reduce communication time.

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 14

Number of GPUs Number of transforms Output Order on GPUs

One One or multiple transforms Natural order

Multiple One Permuted results

Multiple Multiple Natural order

To produce natural order results in GPU memory in the 1D single transform case,
requires calling cufftXtMemcpy() with CUFFT_COPY_DEVICE_TO_DEVICE.

2D and 3D transforms support execution of a transform given permuted order results as
input. After execution in this case, the output will be in natural order. It is also possible
to use cufftXtMemcpy() with CUFFT_COPY_DEVICE_TO_DEVICE to return 2D or 3D
data to natural order.

NOTE:To create a cuFFT plan that runs on 4 GPUs, or on a pair of GPUs on different
boards, requires a current license. Free evaluation licenses are available for registered
developers until 12/31/2015. To learn more please visit the cuFFT developer page.

A license key can be set up as follows:

‣ Download the license key file (with extension .lic) to your machine.
‣ Set the environment variable LM_LICENSE_FILE to point to this license key.
‣ If the LM_LICENSE_FILE variable is already in use, you can simply append

the path to your license key file to it. Alternatively, you can use the variable
NVIDIA_LICENSE_FILE in place of LM_LICENSE_FILE.

‣ You can rename the license key file if you choose, but please make sure the .lic
extension remains.

The end date for a license key file is mentioned in clear text in the license key.

The only supported multiple GPU configurations are 2 or 4 GPUs, all with the same
CUDA architecture level. During the evaluation period, and if a license file is present,
cuFFT will not check number of GPUs or architecture level in the cufftXt APIs.

See the cuFFT Code Examples section for single GPU and multiple GPU examples.

2.9. cuFFT Callback Routines
Callback routines are user-supplied kernel routines that cuFFT will call when loading or
storing data. They allow the user to do data pre- or post- processing without additional
kernel calls.

2.9.1. Overview of the cufFFT Callback Routine Feature
cuFFT provides a set of APIs that allow the cuFFT user to provide CUDA functions that
re-direct or manipulate the data as it is loaded prior to processing the FFT, or stored
once the FFT has been done. For the load callback, cuFFT passes the callback routine the
address of the input data and the offset to the value to be loaded from device memory,
and the callback routine returns the value it wishes cuFFT to use instead. For the store
callback, cufFFT passes the callback routine the value it has computed, along with the

https://developer.nvidia.com/cufft/

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 15

address of the output data and the offset to the value to be written to device memory,
and the callback routine modifies the value and stores the modified result.

In order to provide a callback to cuFFT, a plan is created and configured normally using
the extensible plan APIs. After the call to cufftCreate and cufftMakePlan, the user
may associate a load callback routine, or a store callback routine, or both, with the plan,
by callingcufftXtSetCallback. The caller also has the option to specify a device
pointer to an opaque structure they wish to associate with the plan. This pointer will be
passed to the callback routine by the cuFFT library. The caller may use this structure to
remember plan dimensions and strides, or have a pointer to auxiliary data, etc.

With some restrictions, the callback routine is allowed to request shared memory for its
own use. If the requested amount of shared memory is available, cufft will pass a pointer
to it when it calls the callback routine.

CUFFT allows for 8 types of callback routine, one for each possible combination of: load
or store, real or complex, single precision or double. It is the caller's responsibility
to provide a routine that matches the function prototype for the type of routine
specified. If there is already a callback of the specified type associated with the plan, the
set callback function will replace it with the new one.

The callback routine extensions to cuFFT are built on the extensible cuFFT API. The
general steps in defining and executing a transform with callbacks are:

‣ cufftCreate() - create an empty plan, as in the single GPU case
‣ cufftMakePlan{1d,2d,3d,Many}() - create the plan. These are the same

functions used in the single GPU case.
‣ cufftXtSetCallback() - called for load and/or store callback for this plan
‣ cufftExecC2C() etc. - execute the plan
‣ cufftDestroy() - free cuFFT plan resources

Callback functions are not supported on transforms with a dimension size that does
not factor into primes smaller than 127. Callback functions on plans whose dimensions'
prime factors are limited to 2, 3, 5, and 7 can safely call __syncthreads(). On other
plans, results are not defined.

NOTE:The callback API is available in the statically linked cuFFT library only, and only
on 64 bit LINUX operating systems.

2.9.2. Specifying Load and Store Callback Routines
In order to associate a callback routine with a plan, it is necessary to obtain a device
pointer to the callback routine.

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 16

As an example, if the user wants to specify a load callback for an R2C transform, they
would write the device code for the callback function, and define a global device
variable that contains a pointer to the function:

 __device__ cufftReal myOwnCallback(void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPtr) {
 cufftReal ret;
 // use offset, dataIn, and optionally callerInfo to
 // compute the return value
 return ret;
 }
 __device__ cufftCallbackLoadR myOwnCallbackPtr = myOwnCallback;

From the host side, the user then has to get the address of the callback routine, which is
stored in myOwnCallbackPtr. This is done with cudaMemcpyFromSymbol, as follows:

cufftCallbackLoadR hostCopyOfCallbackPtr;

cudaMemcpyFromSymbol(&hostCopyOfCallbackPtr,
 myOwnCallbackPtr,
 sizeof(hostCopyOfCallbackPtr));

hostCopyOfCallbackPtr then contains the device address of the callback
routine, that should be passed to cufftXtSetCallback. Note that, for multi-GPU
transforms, hostCopyOfCallbackPtr will need to be an array of pointers, and the
cudaMemcpyFromSymbol will have to be invoked for each GPU.

2.9.3. Callback Routine Function Details
Below are the function prototypes, and typedefs for pointers to the user supplied
callback routines that cuFFT calls to load data prior to the transform.

typedef cufftComplex (*cufftCallbackLoadC)(void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPointer);

 typedef cufftDoubleComplex (*cufftCallbackLoadZ)(void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPointer);

 typedef cufftReal (*cufftCallbackLoadR)(void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPointer);

 typedef cufftDoubleReal (*cufftCallbackLoadD)(void *dataIn,
 size_t offset,
 void *callerInfo,
 void *sharedPointer);

Parameters for all of the load callbacks are defined as below:

‣ offset: offset of the input element from the start of output data. This is not a byte
offset, rather it is the number of elements from start of data.

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 17

‣ dataIn: device pointer to the start of the input array that was passed in the
cufftExecute call.

‣ callerInfo: device pointer to the optional caller specified data passed in the
cufftXtSetCallback call.

‣ sharedPointer: pointer to shared memory, valid only if the user has called
cufftXtSetCallbackSharedSize().

Below are the function prototypes, and typedefs for pointers to the user supplied
callback routines that cuFFT calls to store data after completion of the transform. Note
that the store callback functions do not return a value. This is because a store callback
function is responsible not only for transforming the data as desired, but also for writing
the data to the desired location. This allows the store callback to rearrange the data, for
example to shift the zero frequency result to the center of the ouput.

typedef void (*cufftCallbackStoreC)(void *dataOut,
 size_t offset,
 cufftComplex element,
 void *callerInfo,
 void *sharedPointer);

typedef void (*cufftCallbackStoreZ)(void *dataOut,
 size_t offset,
 cufftDoubleComplex element,
 void *callerInfo,
 void *sharedPointer);

typedef void (*cufftCallbackStoreR)(void *dataOut,
 size_t offset,
 cufftReal element,
 void *callerInfo,
 void *sharedPointer);

typedef void (*cufftCallbackStoreD)(void *dataOut,
 size_t offset,
 cufftDoubleReal element,
 void *callerInfo,
 void *sharedPointer);

Parameters for all of the store callbacks are defined as below:

‣ offset: offset of the output element from the start of output data. This is not a byte
offset, rather it is the number of elements from start of data.

‣ dataOut: device pointer to the start of the output array that was passed in the
cufftExecute call.

‣ element: the real or complex result computed by CUFFT for the element specified
by the offset argument.

‣ callerInfo: device pointer to the optional caller specified data passed in the
cufftXtSetCallback call.

‣ sharedPointer: pointer to shared memory, valid only if the user has called
cufftXtSetCallbackSharedSize().

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 18

2.9.4. Coding Considerations for the cuFFT Callback
Routine Feature
cuFFT supports callbacks on all types of transforms, regardless of precision, dimension,
batch, stride between elements, or number of GPUs.

cuFFT supports a wide range of parameters, and based on those for a given plan, it
attempts to optimize performance. The number of kernels launched, and for each
of those, the number of blocks launched and the number of threads per block, will
vary depending on how cuFFT decomposes the transform. For some configurations,
cuFFT will load or store (and process) multiple inputs or outputs per thread. For
some configurations, threads may load or store inputs or outputs in any order, and
cuFFT does not guarantee that the inputs or outputs handled by a given thread will be
contiguous. These characteristics may vary with transform size, transform type (e.g.
C2C vs C2R), number of dimensions, and GPU architecture. These variations may also
change from one library version to the next.

cuFFT will call the load callback routine, for each point in the input, once and only once.
Similarly it will call the store callback routine, for each point in the output, once and
only once. If cuFFT is implementing a given FFT in multiple phases, it will only call the
load callback routine from the first phase kernel(s), and it will only call the store callback
routine from the last phase kernel(s).

When cufft is using only a single kernel, both the load and store callback routines will
be called from the same kernel. In this case, if the transform is being done in-place (i.e.
input data and output data are in the same memory location) the store callback can not
safely write outside the confines of the specified element, unless it is writing the data to
a completley separate output buffer.

When more than one kernel are used to implement a transform, the thread and block
structure of the first kernel (the one that does the load) is often different from the thread
and block structure of the last kernel (the one that does the store)

For multi-GPU transforms, the index passed to the callback routine is the element index
from the start of data on that GPU, not from the start of the entire input or output data
array.

For transforms whose dimensions can be factored into powers of 2, 3, 5, or 7, cuFFT
guarantees that it will call the load and store callback routines from points in the kernel
at which the code has converged (all threads in any given block will invoke the callback
routine). This allows the callback routine to invoke __syncthreads internally as
needed. Of course the caller is responsible for guaranteeing that the callback routine
is at a point where the callback code has converged, to avoid deadlock. For plans
whose dimensions are factored into higher primes, results of a callback routine calling
__syncthreads are not defined.

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 19

2.10. Thread Safety
cuFFT APIs are thread safe as long as different host threads execute FFTs using different
plans and the output data are disjoint.

2.11. Static Library and Callback Support
Starting with release 6.5, the cuFFT Libraries are also delivered in a static form as
libcufft_static.a and libcufftw_static.a on Linux and Mac and as cufft_static.lib. Static
libraries are not supported on Windows. The static cufft and cufftw libraries depend on
thread abstraction layer library libculibos.a.

For example, on linux, to compile a small application using cuFFT against the dynamic
library, the following command can be used:

 nvcc myCufftApp.c -lcufft -o myCufftApp

For cufftw on Linux, to compile a small application against the dynamic library, the
following command can be used:

 nvcc myCufftwApp.c -lcufftw -lcufft -o myCufftwApp

Whereas to compile against the static cuFFT library, the following command has to be
used:

 nvcc myCufftApp.c -lcufft_static -lculibos -o myCufftApp

Similarly to compile against the static cufftw library, the following command has to be
used:

 nvcc myCufftwApp.c libcufftw_static.a libcufft_static.a libculibos.a
 -o myCufftwApp

It is also possible to use the native Host C++ compiler. Depending on the Host Operating
system, some additional libraries like pthread or dl might be needed on the linking
line. The following command on Linux is suggested :

 g++ myCufftApp.c -lcufft_static -lculibos -lcudart_static -lpthread -ldl
 -I <cuda-toolkit-path>/include -L <cuda-toolkit-path>/lib64 -o myCufftApp

Note that in the latter case, the library cuda is not needed. The CUDA Runtime will try
to open explicitly the cuda library if needed. In the case of a system which does not have
the CUDA driver installed, this allows the application to gracefully manage this issue
and potentially run if a CPU-only path is available.

An application can be built with the cuFFT static library that will run on any CUDA
hardware with SM20 or above. However cuFFT is not built with code for all possible
SMs. Some kernels are built only on select architectures. This can cause warnings at link
time that architectures are missing from these kernels. These warnings can safely be
ignored.

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 20

On 64 bit LINUX operating systems, the cuFFT static library supports user supplied
callback routines. The callback routines are CUDA device code, and must be
separately compiled with NVCC and linked with the cuFFT library. Refer to the NVCC
documentation regarding separate compilation for details. If you specify an SM when
compiling your callback functions, you must specify one of the SM’s cuFFT includes. On
X86 platforms, these are SM20, SM30, SM35, and SM50. On Arm, cuFFT is built for SM32
only.

2.12. Accuracy and Performance
A DFT can be implemented as a matrix vector multiplication that requires
operations. However, the cuFFT Library employs the Cooley-Tukey algorithm to reduce
the number of required operations to optimize the performance of particular transform
sizes. This algorithm expresses the DFT matrix as a product of sparse building block
matrices. The cuFFT Library implements the following building blocks: radix-2, radix-3,
radix-5, and radix-7. Hence the performance of any transform size that can be factored
as (where a, b, c, and d are non-negative integers) is optimized in the
cuFFT library. There are also radix-m building blocks for other primes, m, whose value
is < 128. When the length cannot be decomposed as multiples of powers of primes from
2 to 127, Bluestein's algorithm is used. Since the Bluestein implementation requires more
computations per output point than the Cooley-Tukey implementation, the accuracy
of the Cooley-Tukey algorithm is better. The pure Cooley-Tukey implementation has
excellent accuracy, with the relative error growing proportionally to , where is
the transform size in points.

For sizes handled by the Cooley-Tukey code path, the most efficient implementation is
obtained by applying the following constraints (listed in order from the most generic to
the most specialized constraint, with each subsequent constraint providing the potential
of an additional performance improvement).

Applies to Recommendation Comment

All Use single precision transforms. Single precision transforms require
less bandwidth per computation than
double precision transforms.

All Restrict the size along all
dimensions to be representable as

.

The cuFFT library has highly
optimized kernels for transforms
whose dimensions have these
prime factors. In general the best
performance occurs when using
powers of 2, followed by powers of 3,
then 5, 7.

All Restrict the size along each
dimension to use fewer distinct prime
factors.

A transform of size or will
usually be faster than one of size

 even if the latter is slightly
smaller, due to the composition of
specialized paths.

All Restrict the data to be contiguous
in memory when performing a single

The cuFFT library has been optimized
for this data layout.

http://en.wikipedia.org/wiki/Cooley-Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Bluestein's_FFT_algorithm

Using the cuFFT API

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 21

Applies to Recommendation Comment

transform. When performing multiple
transforms make the individual
datasets contiguous

All Perform multiple (i.e., batched)
transforms.

Additional optimizations are
performed in batched mode.

real-to-complex
transforms or complex-
to-real transforms

Ensure problem size of x dimension is
a multiple of 4.

This scheme uses more efficient
kernels to implement conjugate
symmetry property.

real-to-complex
transforms or complex-
to-real transforms

Use out-of-place mode. This scheme uses more efficient
kernels than in-place mode.

Multiple GPU transforms Use PCI Express 3.0 between GPUs
and ensure the GPUs are on the same
switch.

The faster the interconnect
between the GPUs, the faster the
performance.

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 22

Chapter 3.
CUFFT API REFERENCE

This chapter specifies the behavior of the cuFFT library functions by describing their
input/output parameters, data types, and error codes. The cuFFT library is initialized
upon the first invocation of an API function, and cuFFT shuts down automatically when
all user-created FFT plans are destroyed.

3.1. Return value cufftResult
All cuFFT Library return values except for CUFFT_SUCCESS indicate that the current API
call failed and the user should reconfigure to correct the problem. The possible return
values are defined as follows:

typedef enum cufftResult_t {
 CUFFT_SUCCESS = 0, // The cuFFT operation was successful
 CUFFT_INVALID_PLAN = 1, // cuFFT was passed an invalid plan handle
 CUFFT_ALLOC_FAILED = 2, // cuFFT failed to allocate GPU or CPU memory
 CUFFT_INVALID_TYPE = 3, // No longer used
 CUFFT_INVALID_VALUE = 4, // User specified an invalid pointer or
 parameter
 CUFFT_INTERNAL_ERROR = 5, // Driver or internal cuFFT library error
 CUFFT_EXEC_FAILED = 6, // Failed to execute an FFT on the GPU
 CUFFT_SETUP_FAILED = 7, // The cuFFT library failed to initialize
 CUFFT_INVALID_SIZE = 8, // User specified an invalid transform size
 CUFFT_UNALIGNED_DATA = 9, // No longer used
 CUFFT_INCOMPLETE_PARAMETER_LIST = 10, // Missing parameters in call
 CUFFT_INVALID_DEVICE = 11, // Execution of a plan was on different GPU than
 plan creation
 CUFFT_PARSE_ERROR = 12, // Internal plan database error
 CUFFT_NO_WORKSPACE = 13 // No workspace has been provided prior to plan
 execution
} cufftResult;

Users are encouraged to check return values from cuFFT functions for errors as shown in
cuFFT Code Examples.

3.2. cuFFT Basic Plans

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 23

3.2.1. Function cufftPlan1d()
cufftResult
 cufftPlan1d(cufftHandle *plan, int nx, cufftType type, int batch);

Creates a 1D FFT plan configuration for a specified signal size and data type. The batch
input parameter tells cuFFT how many 1D transforms to configure.
Input

plan Pointer to a cufftHandle object

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx. Deprecated - use
cufftPlanMany for multiple transforms.

Output

plan Contains a cuFFT 1D plan handle value

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx or batch parameter is not a supported size.

3.2.2. Function cufftPlan2d()
cufftResult
 cufftPlan2d(cufftHandle *plan, int nx, int ny, cufftType type);

Creates a 2D FFT plan configuration according to specified signal sizes and data type.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

Output

plan Contains a cuFFT 2D plan handle value

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 24

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.2.3. Function cufftPlan3d()
cufftResult
 cufftPlan3d(cufftHandle *plan, int nx, int ny, int nz, cufftType type);

Creates a 3D FFT plan configuration according to specified signal sizes and data type.
This function is the same as cufftPlan2d() except that it takes a third size parameter
nz.
Input

plan Pointer to a cufftHandle object

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

Output

plan Contains a cuFFT 3D plan handle value

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.2.4. Function cufftPlanMany()
cufftResult
 cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch);

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 25

Creates a FFT plan configuration of dimension rank, with sizes specified in the array
n. The batch input parameter tells cuFFT how many transforms to configure. With this
function, batched plans of 1, 2, or 3 dimensions may be created.

The cufftPlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

If inembed and onembed are set to NULL, all other stride information is ignored, and
default strides are used. The default assumes contiguous data arrays.

All arrays are assumed to be in CPU memory.
Input

plan Pointer to a cufftHandle object

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

Output

plan Contains a cuFFT plan handle

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 26

3.3. cuFFT Extensible Plans
This API separates handle creation from plan generation. This makes it possible to
change plan settings, which may alter the outcome of the plan generation phase, before
the plan is actually generated.

3.3.1. Function cufftCreate()
cufftResult
 cufftCreate(cufftHandle *plan);

Creates only an opaque handle, and allocates small data structures on the host. The
cufftMakePlan*() calls actually do the plan generation. It is recommended that
cufftSet*() calls, such as cufftSetCompatibilityMode(), that may require a plan
to be broken down and re-generated, should be made after cufftCreate() and before
one of the cufftMakePlan*() calls.
Input

plan Pointer to a cufftHandle object

Output

plan Contains a cuFFT plan handle value

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_ALLOC_FAILED The allocation of resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

3.3.2. Function cufftMakePlan1d()
cufftResult
 cufftMakePlan1d(cufftHandle plan, int nx, cufftType type, int batch,
 size_t *workSize);

Following a call to cufftCreate() makes a 1D FFT plan configuration for a specified
signal size and data type. The batch input parameter tells cuFFT how many 1D
transforms to configure.

If cufftXtSetGPUs() was called prior to this call with multiple GPUs, then workSize
will contain multiple sizes. See sections on multiple GPUs for more details.
Input

plan cufftHandle returned by cufftCreate

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 27

nx The transform size (e.g. 256 for a 256-point FFT). For
multiple GPUs, this must be a power of 2.

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex). For multiple GPUs this must
be a complex to complex transform.

batch Number of transforms of size nx. Deprecated - use
cufftMakePlanMany for multiple transforms.

*workSize Pointer to the size(s) of the work areas. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size(s) of the work areas.

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle. Handle is not valid
when multi-GPU restrictions are not met.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx or batch parameter is not a supported size.

3.3.3. Function cufftMakePlan2d()
cufftResult
 cufftMakePlan2d(cufftHandle plan, int nx, int ny, cufftType type,
 size_t *workSize);

Following a call to cufftCreate() makes a 2D FFT plan configuration according to
specified signal sizes and data type.

If cufftXtSetGPUs() was called prior to this call with multiple GPUs, then workSize
will contain multiple sizes. See sections on multiple GPUs for more details.
Input

plan cufftHandle returned by cufftCreate

nx The transform size in the x dimension (number of rows). For
multiple GPUs, this must be factorable into primes less than
or equal to 127.

ny The transform size in the y dimension (number of columns).
For 2 GPUs, this must be factorable into primes less than or
equal to 127.

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real). For multiple GPUs this must be a
complex to complex transform.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 28

*workSize Pointer to the size(s) of the work areas. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size(s) of the work areas.

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.3.4. Function cufftMakePlan3d()
cufftResult
 cufftMakePlan3d(cufftHandle plan, int nx, int ny, int nz, cufftType type,
 size_t *workSize);

Following a call to cufftCreate() makes a 3D FFT plan configuration according to
specified signal sizes and data type. This function is the same as cufftPlan2d() except
that it takes a third size parameter nz.

If cufftXtSetGPUs() was called prior to this call with multiple GPUs, then workSize
will contain multiple sizes. See sections on multiple GPUs for more details.
Input

plan cufftHandle returned by cufftCreate

nx The transform size in the x dimension. For multiple GPUs,
this must be factorable into primes less than or equal to 127.

ny The transform size in the y dimension. For multiple GPUs,
this must be factorable into primes less than or equal to 127.

nz The transform size in the z dimension. For multiple GPUs,
this must be factorable into primes less than or equal to 127.

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex). For multiple GPUs this must be a
complex to complex transform.

*workSize Pointer to the size(s) of the work areas. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size(s) of the work area(s).

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 29

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.3.5. Function cufftMakePlanMany()
cufftResult
 cufftMakePlanMany(cufftHandle plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch, size_t *workSize);

Following a call to cufftCreate() makes a FFT plan configuration of dimension rank,
with sizes specified in the array n. The batch input parameter tells cuFFT how many
transforms to configure. With this function, batched plans of 1, 2, or 3 dimensions may
be created.

The cufftPlanMany() API supports more complicated input and output data layouts
via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

If inembed and onembed are set to NULL, all other stride information is ignored, and
default strides are used. The default assumes contiguous data arrays.

If cufftXtSetGPUs() was called prior to this call with multiple GPUs, then workSize
will contain multiple sizes. See sections on multiple GPUs for more details.

All arrays are assumed to be in CPU memory.
Input

plan cufftHandle returned by cufftCreate

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension. For
multiple GPUs and rank equal to 1, the sizes must be a power
of 2. For multiple GPUs and rank equal to 2 or 3, the sizes
must be factorable into primes less than or equal to 127.

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 30

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex). For 2 GPUs this must be a
complex to complex transform.

batch Batch size for this transform

*workSize Pointer to the size(s) of the work areas. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size(s) of the work areas.

Return Values

CUFFT_SUCCESS cuFFT successfully created the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle. Handle is not valid
when multi-GPU restrictions are not met.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

3.4. cuFFT Estimated Size of Work Area
During plan execution, cuFFT requires a work area for temporary storage of
intermediate results. The cufftEstimate*() calls return an estimate for the size of the
work area required, given the specified parameters, and assuming default plan settings.
Some problem sizes require much more storage than others. In particular powers of 2
are very efficient in terms of temporary storage. Large prime numbers, however, use
different algorithms and may need up to the eight times that of a similarly sized power
of 2. These routines return estimated workSize values which may still be smaller than
the actual values needed especially for values of n that are not multiples of powers of 2,
3, 5 and 7. More refined values are given by the cufftGetSize*() routines, but these
values may still be conservative.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 31

3.4.1. Function cufftEstimate1d()
cufftResult
 cufftEstimate1d(int nx, cufftType type, int batch, size_t *workSize);

During plan execution, cuFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.
Input

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx. Deprecated - use
cufftEstimateMany for multiple transforms.

*workSize Pointer to the size of the work space.

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx parameter is not a supported size.

3.4.2. Function cufftEstimate2d()
cufftResult
 cufftEstimate2d(int nx, int ny, cufftType type, size_t *workSize);

During plan execution, cuFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.
Input

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 32

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

*workSize Pointer to the size of the work space.

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.4.3. Function cufftEstimate3d()
cufftResult
 cufftEstimate3d(int nx, int ny, int nz, cufftType type, size_t *workSize);

During plan execution, cuFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.
Input

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

*workSize Pointer to the size of the work space.

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 33

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.4.4. Function cufftEstimateMany()
cufftResult
 cufftEstimateMany(int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch, size_t *workSize);

During plan execution, cuFFT requires a work area for temporary storage of
intermediate results. This call returns an estimate for the size of the work area required,
given the specified parameters, and assuming default plan settings. Note that changing
some plan settings, such as compatibility mode, may alter the size required for the work
area.

The cufftEstimateMany() API supports more complicated input and output data
layouts via the advanced data layout parameters: inembed, istride, idist, onembed,
ostride, and odist.

All arrays are assumed to be in CPU memory.
Input

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

*workSize Pointer to the size of the work space.

Output

*workSize Pointer to the size of the work space

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 34

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

3.5. cuFFT Refined Estimated Size of Work Area
The cufftGetSize*() routines give a more accurate estimate of the work area size
required for a plan than the cufftEstimate*() routines as they take into account any
plan settings that may have been made. As discussed in the section cuFFT Estimated
Size of Work Area, the workSize value(s) returned may be conservative especially for
values of n that are not multiples of powers of 2, 3, 5 and 7.

3.5.1. Function cufftGetSize1d()
cufftResult
 cufftGetSize1d(cufftHandle plan, int nx, cufftType type, int batch,
 size_t *workSize);

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimate1d(), given the specified parameters, and taking into account any plan
settings that may have been made.
Input

plan cufftHandle returned by cufftCreate

nx The transform size (e.g. 256 for a 256-point FFT)

type The transform data type (e.g., CUFFT_C2C for single
precision complex to complex)

batch Number of transforms of size nx. Deprecated - use
cufftGetSizeMany for multiple transforms.

*workSize Pointer to the size of the work space. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 35

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE The nx parameter is not a supported size.

3.5.2. Function cufftGetSize2d()
cufftResult
 cufftGetSize2d(cufftHandle plan, int nx, int ny, cufftType type,
 size_t *workSize);

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimate2d(), given the specified parameters, and taking into account any plan
settings that may have been made.
Input

plan cufftHandle returned by cufftCreate

nx The transform size in the x dimension (number of rows)

ny The transform size in the y dimension (number of columns)

type The transform data type (e.g., CUFFT_C2R for single
precision complex to real)

*workSize Pointer to the size of the work space. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE Either or both of the nx or ny parameters is not a supported
size.

3.5.3. Function cufftGetSize3d()
cufftResult
 cufftGetSize3d(cufftHandle plan, int nx, int ny, int nz, cufftType type,
 size_t *workSize);

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 36

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimate3d(), given the specified parameters, and taking into account any plan
settings that may have been made.
Input

plan cufftHandle returned by cufftCreate

nx The transform size in the x dimension

ny The transform size in the y dimension

nz The transform size in the z dimension

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

*workSize Pointer to the size of the work space. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size of the work space.

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the nx, ny, or nz parameters is not a
supported size.

3.5.4. Function cufftGetSizeMany()
cufftResult
 cufftGetSizeMany(cufftHandle plan, int rank, int *n, int *inembed,
 int istride, int idist, int *onembed, int ostride,
 int odist, cufftType type, int batch, size_t *workSize);

This call gives a more accurate estimate of the work area size required for a plan than
cufftEstimateSizeMany(), given the specified parameters, and taking into account
any plan settings that may have been made.
Input

plan cufftHandle returned by cufftCreate

rank Dimensionality of the transform (1, 2, or 3)

n Array of size rank, describing the size of each dimension

inembed Pointer of size rank that indicates the storage dimensions of
the input data in memory. If set to NULL all other advanced
data layout parameters are ignored.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 37

istride Indicates the distance between two successive input
elements in the least significant (i.e., innermost) dimension

idist Indicates the distance between the first element of two
consecutive signals in a batch of the input data

onembed Pointer of size rank that indicates the storage dimensions of
the output data in memory. If set to NULL all other advanced
data layout parameters are ignored.

ostride Indicates the distance between two successive output
elements in the output array in the least significant (i.e.,
innermost) dimension

odist Indicates the distance between the first element of two
consecutive signals in a batch of the output data

type The transform data type (e.g., CUFFT_R2C for single
precision real to complex)

batch Batch size for this transform

*workSize Pointer to the size of the work space. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size of the work area

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_SIZE One or more of the parameters is not a supported size.

3.6. Function cufftGetSize()
cufftResult
 cufftGetSize(cufftHandle plan, size_t *workSize);

Once plan generation has been done, either with the original API or the extensible API,
this call returns the actual size of the work area required to support the plan. Callers
who choose to manage work area allocation within their application must use this call
after plan generation, and after any cufftSet*() calls subsequent to plan generation, if
those calls might alter the required work space size.
Input

plan cufftHandle returned by cufftCreate

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 38

*workSize Pointer to the size of the work space. For example for two
GPUs worksize must be declared to have two elements.

Output

*workSize Pointer to the size of the work space

Return Values

CUFFT_SUCCESS cuFFT successfully returned the size of the work space.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

3.7. cuFFT Caller Allocated Work Area Support

3.7.1. Function cufftSetAutoAllocation()
cufftResult
 cufftSetAutoAllocation(cufftHandle plan, int autoAllocate);

cufftSetAutoAllocation() indicates that the caller intends to allocate and manage
work areas for plans that have been generated. cuFFT default behavior is to allocate the
work area at plan generation time. If cufftSetAutoAllocation() has been called
with autoAllocate set to 0 ("false") prior to one of the cufftMakePlan*() calls, cuFFT
does not allocate the work area. This is the preferred sequence for callers wishing to
manage work area allocation.
Input

plan cufftHandle returned by cufftCreate.

autoAllocate Indicates whether to allocate work area.

Return Values

CUFFT_SUCCESS cuFFT successfully allows user to manage work area.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

3.7.2. Function cufftSetWorkArea()
cufftResult
 cufftSetWorkArea(cufftHandle plan, void *workArea);

cufftSetWorkArea() overrides the work area pointer associated with a plan.
If the work area was auto-allocated, cuFFT frees the auto-allocated space. The
cufftExecute*() calls assume that the work area pointer is valid and that it points to
a contiguous region in device memory that does not overlap with any other work area. If
this is not the case, results are indeterminate.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 39

Input

plan cufftHandle returned by cufftCreate

workArea Pointer to workArea. For multiple GPUs, multiple work area
pointers must be given.

Return Values

CUFFT_SUCCESS cuFFT successfully allows user to override workArea pointer.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

3.8. Function cufftDestroy()
cufftResult
 cufftDestroy(cufftHandle plan);

Frees all GPU resources associated with a cuFFT plan and destroys the internal plan
data structure. This function should be called once a plan is no longer needed, to avoid
wasting GPU memory.
Input

plan The cufftHandle object of the plan to be destroyed.

Return Values

CUFFT_SUCCESS cuFFT successfully destroyed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

3.9. cuFFT Execution

3.9.1. Functions cufftExecC2C() and cufftExecZ2Z()
cufftResult
 cufftExecC2C(cufftHandle plan, cufftComplex *idata,
 cufftComplex *odata, int direction);
cufftResult
 cufftExecZ2Z(cufftHandle plan, cufftDoubleComplex *idata,
 cufftDoubleComplex *odata, int direction);

cufftExecC2C() (cufftExecZ2Z()) executes a single-precision (double-precision)
complex-to-complex transform plan in the transform direction as specified by
direction parameter. cuFFT uses the GPU memory pointed to by the idata parameter
as input data. This function stores the Fourier coefficients in the odata array. If idata
and odata are the same, this method does an in-place transform.
Input

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 40

plan cufftHandle returned by cufftCreate

idata Pointer to the complex input data (in GPU memory) to
transform

odata Pointer to the complex output data (in GPU memory)

direction The transform direction: CUFFT_FORWARD or CUFFT_INVERSE

Output

odata Contains the complex Fourier coefficients

Return Values

CUFFT_SUCCESS cuFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata, odata, and
direction is not valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED cuFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

3.9.2. Functions cufftExecR2C() and cufftExecD2Z()
cufftResult
 cufftExecR2C(cufftHandle plan, cufftReal *idata, cufftComplex *odata);
cufftResult
 cufftExecD2Z(cufftHandle plan, cufftDoubleReal *idata, cufftDoubleComplex
 *odata);

cufftExecR2C() (cufftExecD2Z()) executes a single-precision (double-precision)
real-to-complex, implicitly forward, cuFFT transform plan. cuFFT uses as input
data the GPU memory pointed to by the idata parameter. This function stores the
nonredundant Fourier coefficients in the odata array. Pointers to idata and odata are
both required to be aligned to cufftComplex data type in single-precision transforms
and cufftDoubleComplex data type in double-precision transforms. If idata and
odata are the same, this method does an in-place transform. Note the data layout
differences between in-place and out-of-place transforms as described in Parameter
cufftType.
Input

plan cufftHandle returned by cufftCreate

idata Pointer to the real input data (in GPU memory) to transform

odata Pointer to the complex output data (in GPU memory)

Output

odata Contains the complex Fourier coefficients

Return Values

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 41

CUFFT_SUCCESS cuFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata and odata is not valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED cuFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

3.9.3. Functions cufftExecC2R() and cufftExecZ2D()
cufftResult
 cufftExecC2R(cufftHandle plan, cufftComplex *idata, cufftReal *odata);
cufftResult
 cufftExecZ2D(cufftHandle plan, cufftComplex *idata, cufftReal *odata);

cufftExecC2R() (cufftExecZ2D()) executes a single-precision (double-precision)
complex-to-real, implicitly inverse, cuFFT transform plan. cuFFT uses as input data
the GPU memory pointed to by the idata parameter. The input array holds only the
nonredundant complex Fourier coefficients. This function stores the real output values
in the odata array. and pointers are both required to be aligned to cufftComplex data
type in single-precision transforms and cufftDoubleComplex type in double-precision
transforms. If idata and odata are the same, this method does an in-place transform.
Input

plan cufftHandle returned by cufftCreate

idata Pointer to the complex input data (in GPU memory) to
transform

odata Pointer to the real output data (in GPU memory)

Output

odata Contains the real output data

Return Values

CUFFT_SUCCESS cuFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata and odata is not valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED cuFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

3.10. cuFFT and Multiple GPUs

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 42

3.10.1. Function cufftXtSetGPUs()
cufftResult
 cufftXtSetGPUs(cufftHandle plan, int nGPUs, int *whichGPUs);

cufftXtSetGPUs() indentifies which GPUs are to be used with the plan. As in the
single GPU case cufftCreate() creates a plan and cufftMakePlan*() does the plan
generation. This call will return an error if a non-default stream has been associated with
the plan.

Note that the call to cufftXtSetGPUs() must occur after the call to cufftCreate()
and prior to the call to cufftMakePlan*().
Input

plan cufftHandle returned by cufftCreate

nGPUs Number of GPUs to use

whichGPUs The GPUs to use

Return Values

CUFFT_SUCCESS cuFFT successfully set the GPUs to use.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle, or a non-default
stream has been associated with the plan.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_VALUE The requested number of GPUs was less than 2.

CUFFT_INVALID_DEVICE An invalid GPU index was specified.

CUFFT_LICENSE_ERROR A license file is required for the requested configuration.

3.10.2. Function cufftXtSetWorkArea()
cufftResult
 cufftXtSetWorkArea(cufftHandle plan, void **workArea);

cufftXtSetWorkArea() overrides the work areas associated with a plan. If the work
area was auto-allocated, cuFFT frees the auto-allocated space. The cufftXtExec*()
calls assume that the work area is valid and that it points to a contiguous region in each
device memory that does not overlap with any other work area. If this is not the case,
results are indeterminate.
Input

plan cufftHandle returned by cufftCreate

workArea Pointer to the pointers to workArea

Return Values

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 43

CUFFT_SUCCESS cuFFT successfully allows user to override workArea pointer.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_DEVICE A GPU associated with the plan could not be selected.

3.10.3. cuFFT Multiple GPU Execution

3.10.3.1. Functions cufftXtExecDescriptorC2C() and
cufftXtExecDescriptorZ2Z()

cufftResult
 cufftXtExecDescriptorC2C(cufftHandle plan, cudaLibXtDesc *idata,
 cudaLibXtDesc *idata, int direction);
cufftResult
 cufftXtExecDescriptorZ2Z(cufftHandle plan, cudaLibXtDesc *idata,
 cudaLibXtDesc *idata, int direction);

cufftXtExecDescriptorC2C() (cufftXtExecDescriptorZ2Z()) executes a single-
precision (double-precision) complex-to-complex transform plan in the transform
direction as specified by direction parameter. cuFFT uses the GPU memory pointed
to by cudaLibXtDesc *idata as input data. Since only in-place multiple GPU
functionality is support, this function also stores the result in the cudaLibXtDesc
*idata arrays.
Input

plan cufftHandle returned by cufftCreate

idata Pointer to the complex input data (in GPU memory) to
transform

idata Pointer to the complex output data (in GPU memory)

direction The transform direction: CUFFT_FORWARD or CUFFT_INVERSE

Output

idata Contains the complex Fourier coefficients

Return Values

CUFFT_SUCCESS cuFFT successfully executed the FFT plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE At least one of the parameters idata and direction is not
valid.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_EXEC_FAILED cuFFT failed to execute the transform on the GPU.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_DEVICE An invalid GPU index was specified in a descriptor.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 44

3.10.4. Memory Allocation and Data Movement
Functions
Multiple GPU cuFFT execution functions assume a certain data layout in terms of what
input data has been copied to which GPUs prior to execution, and what output data
resides in which GPUs post execution. The following functions assist in allocation, setup
and retrieval of the data. They must be called after the call to cufftMakePlan*().

3.10.4.1. Function cufftXtMalloc()

cufftResult
 cufftXtMalloc(cufftHandle plan, cudaLibXtDesc **descriptor,
 cufftXtSubFormat format);

cufftXtMalloc() allocates a descriptor, and all memory for data in GPUs associated
with the plan, and returns a pointer to the descriptor. Note the descriptor contains an
array of device pointers so that the application may preprocess or postprocess the data
on the GPUs. The enumerated parameter cufftXtSubFormat_t indicates if the buffer
will be used for input or output.
Input

plan cufftHandle returned by cufftCreate

descriptor Pointer to a pointer to a cudaLibXtDesc object

format cufftXtSubFormat value

Output

descriptor Pointer to a pointer to a cudaLibXtDesc object

Return Values

CUFFT_SUCCESS cuFFT successfully allows user to allocate descriptor and GPU
memory.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle or it is not a
multiple GPU plan.

CUFFT_ALLOC_FAILED The allocation of GPU resources for the plan failed.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_DEVICE An invalid GPU index was specified in the descriptor.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 45

3.10.4.1.1. Parameter cufftXtSubFormat

cufftXtSubFormat_t is an enumerated type that indicates if the buffer will be used for
input or output and the ordering of the data.

typedef enum cufftXtSubFormat_t {
 CUFFT_XT_FORMAT_INPUT, //by default input is in linear order
 across GPUs
 CUFFT_XT_FORMAT_OUTPUT, //by default output is in scrambled
 order depending on transform
 CUFFT_XT_FORMAT_INPLACE, //by default inplace is input order,
 which is linear across GPUs
 CUFFT_XT_FORMAT_INPLACE_SHUFFLED, //shuffled output order after execution
 of the transform
 CUFFT_FORMAT_UNDEFINED
} cufftXtSubFormat;

3.10.4.2. Function cufftXtFree()

cufftResult
 cufftXtFree(cudaLibXtDesc *descriptor);

cufftXtFree() frees the descriptor and all memory associated with it. The descriptor
and memory must have been returned by a previous call to cufftXtMalloc().
Input

descriptor Pointer to a cudaLibXtDesc object

Return Values

CUFFT_SUCCESS cuFFT successfully allows user to free descriptor and
associated GPU memory.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

3.10.4.3. Function cufftXtMemcpy()

cufftResult
 cufftXtMemcpy(cufftHandle plan, void *dstPointer, void *srcPointer,
 cufftXtCopyType type);

cufftXtMemcpy() copies data between buffers on the host and GPUs or between GPUs.
The enumerated parameter cufftXtCopyType_t indicates the type and direction of
transfer.
Input

plan cufftHandle returned by cufftCreate

dstPointer Pointer to the destination address(es)

srcPointer Pointer to the source address(es)

type cufftXtCopyTypevalue

Return Values

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 46

CUFFT_SUCCESS cuFFT successfully allows user to copy memory between host
and GPUs or between GPUs.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_INVALID_VALUE One or more invalid parameters were passed to the API.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

CUFFT_INVALID_DEVICE An invalid GPU index was specified in a descriptor.

3.10.4.3.1. Parameter cufftXtCopyType

cufftXtCopyType_t is an enumerated type for multiple GPU functions that specifies
the type of copy for cufftXtMemcpy().

CUFFT_COPY_HOST_TO_DEVICE copies data from a contiguous host buffer to multiple
device buffers, in the layout cuFFT requires for input data. dstPointer must point to a
cudaLibXtDesc structure, and srcPointer must point to a host memory buffer.

CUFFT_COPY_DEVICE_TO_HOST copies data from multiple device buffers, in the layout
cuFFT produces for output data, to a contiguous host buffer. dstPointer must point to
a host memory buffer, and srcPointer must point to a cudaLibXtDesc structure.

CUFFT_COPY_DEVICE_TO_DEVICE copies data from multiple device buffers, in the
layout cuFFT produces for output data, to multiple device buffers, in the layout
cuFFT requires for input data. dstPointer and srcPointer must point to different
cudaLibXtDesc structures (and therefore memory locations). That is, the copy cannot
be in-place.

typedef enum cufftXtCopyType_t {
 CUFFT_COPY_HOST_TO_DEVICE,
 CUFFT_COPY_DEVICE_TO_HOST,
 CUFFT_COPY_DEVICE_TO_DEVICE
} cufftXtCopyType;

3.10.5. General Multiple GPU Descriptor Types

3.10.5.1. cudaXtDesc
A descriptor type used in multiple GPU routines that contains information about the
GPUs and their memory locations.

 struct cudaXtDesc_t{
 int version; //descriptor version
 int nGPUs; //number of GPUs
 int GPUs[MAX_CUDA_DESCRIPTOR_GPUS]; //array of device IDs
 void *data[MAX_CUDA_DESCRIPTOR_GPUS]; //array of pointers to data, one
 per GPU
 size_t size[MAX_CUDA_DESCRIPTOR_GPUS]; //array of data sizes, one per GPU
 void *cudaXtState; //opaque CUDA utility structure
};
typedef struct cudaXtDesc_t cudaXtDesc;

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 47

3.10.5.2. cudaLibXtDesc
A descriptor type used in multiple GPU routines that contains information about the
library used.

struct cudaLibXtDesc_t{
 int version; //descriptor version
 cudaXtDesc *descriptor; //multi-GPU memory descriptor
 libFormat library; //which library recognizes the format
 int subFormat; //library specific enumerator of sub formats
 void *libDescriptor; //library specific descriptor e.g. FFT transform
 plan object
};
typedef struct cudaLibXtDesc_t cudaLibXtDesc;

3.11. cuFFT Callbacks

3.11.1. Function cufftXtSetCallback()
cufftResult
 cufftXtSetCallback(cufftHandle plan, void **callbackRoutine,
 cufftXtCallbackType type, void **callerInfo)

cufftXtSetCallback() specifies a load or store callback to be used with the
plan. This call is valid only after a call to cufftMakePlan*(), which does the plan
generation. If there was already a callback of this type associated with the plan, this new
callback routine replaces it. If the new callback requires shared memory, you must call
cufftXtSetCallbackSharedSize with the amount of shared memory it needs. cuFFT
will not retain the amount of shared memory associated with the previous callback.
Input

plan cufftHandle returned by cufftCreate

callbackRoutine Array of callback routine pointers, one per GPU

type type of callback routine

callerInfo optional array of device pointers to caller specific
information, one per GPU

Return Values

CUFFT_SUCCESS cuFFT successfully associated the callback function with the
plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle, or a non-default
stream has been associated with the plan.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 48

3.11.2. Function cufftXtClearCallback()
cufftResult
 cufftXtClearCallback(cufftHandle plan, cufftXtCallbackType type)

cufftXtClearCallback() instructs cuFFT to stop invoking the specified callback type
when executing the plan. Only the specified callback is cleared. If no callback of this type
had been specified, the return code is CUFFT_SUCCESS.
Input

plan cufftHandle returned by cufftCreate

type type of callback routine

Return Values

CUFFT_SUCCESS cuFFT successfully disassociated the callback function with
the plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle, or a non-default
stream has been associated with the plan.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

3.11.3. Function cufftXtSetCallbackSharedSize()
cufftResult
 cufftXtSetCallbackSharedSize(cufftHandle plan, cufftXtCallbackType type,
 size_t sharedSize)

cufftXtSetCallbackSharedSize() instructs cuFFT to dynamically allocate shared
memory at launch time, for use by the callback. The maximum allowable amount of
shared memory is 16K bytes. cuFFT passes a pointer to this shared memory to the
callback routine at execution time. This shared memory is only valid for the life of
the load or store callback operation. During execution, cuFFT may overwrite shared
memory for its own purposes.
Input

plan cufftHandle returned by cufftCreate

type type of callback routine

sharedSize amount of shared memory requested

Return Values

CUFFT_SUCCESS cuFFT will invoke the callback routine with a pointer to the
requested amount of shared memory.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle, or a non-default
stream has been associated with the plan.

CUFFT_INTERNAL_ERROR An internal driver error was detected.

CUFFT_ALLOC_FAILED cuFFT will not be able to allocate the requested amount of
shared memory.

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 49

3.12. Function cufftSetStream()
cufftResult
 cufftSetStream(cufftHandle plan, cudaStream_t stream);

Associates a CUDA stream with a cuFFT plan. All kernel launches made during plan
execution are now done through the associated stream, enabling overlap with activity in
other streams (e.g. data copying). The association remains until the plan is destroyed or
the stream is changed with another call to cufftSetStream(). This call will return an
error for multiple GPU plans.
Input

plan The cufftHandle object to associate with the stream

stream A valid CUDA stream created with cudaStreamCreate(); 0
for the default stream

Status Returned

CUFFT_SUCCESS The stream was associated with the plan.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle, or it is a multiple
GPU plan.

3.13. Function cufftGetVersion()
cufftResult
 cufftGetVersion(int *version);

Returns the version number of cuFFT.
Input

version Pointer to the version number

Output

version Contains the version number

Return Values

CUFFT_SUCCESS cuFFT successfully returned the version number.

3.14. Function cufftSetCompatibilityMode()
cufftResult
 cufftSetCompatibilityMode(cufftHandle plan, cufftCompatibility mode);

Configures the layout of cuFFT output in FFTW-compatible modes. When desired,
FFTW compatibility can be configured for padding only, for asymmetric complex inputs

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 50

only, or for full compatibility. If the cufftSetCompatibilityMode() API fails, later
cufftExecute*() calls are not guaranteed to work.
Input

plan The cufftHandle object to associate with the stream

mode The cufftCompatibility option to be used:

CUFFT_COMPATIBILITY_NATIVE (deprecated)
CUFFT_COMPATIBILITY_FFTW_PADDING (default)
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC (deprecated)
CUFFT_COMPATIBILITY_FFTW_ALL

Return Values

CUFFT_SUCCESS cuFFT successfully set compatibiltiy mode.

CUFFT_INVALID_PLAN The plan parameter is not a valid handle.

CUFFT_SETUP_FAILED The cuFFT library failed to initialize.

3.15. Parameter cufftCompatibility
cuFFT Library defines FFTW compatible data layouts using the following enumeration
of values. See FFTW Compatibility Mode for more details.

typedef enum cufftCompatibility_t {
 CUFFT_COMPATIBILITY_NATIVE = 0, // Compact data in native format
 // (deprecated. Use
 // CUFFT_COMPATIBILITY_FFTW_PADDING)
 CUFFT_COMPATIBILITY_FFTW_PADDING = 1, // FFTW-compatible alignment
 // (default value)
 CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC = 2, // Deprecated. Asymmetric input is
 // always treated as in FFTW.
 CUFFT_COMPATIBILITY_FFTW_ALL = 3
} cufftCompatibility;

3.16. cuFFT Types

3.16.1. Parameter cufftType
The cuFFT library supports complex- and real-data transforms. The cufftType data
type is an enumeration of the types of transform data supported by cuFFT.

typedef enum cufftType_t {
 CUFFT_R2C = 0x2a, // Real to complex (interleaved)
 CUFFT_C2R = 0x2c, // Complex (interleaved) to real
 CUFFT_C2C = 0x29, // Complex to complex (interleaved)
 CUFFT_D2Z = 0x6a, // Double to double-complex (interleaved)
 CUFFT_Z2D = 0x6c, // Double-complex (interleaved) to double
 CUFFT_Z2Z = 0x69 // Double-complex to double-complex (interleaved)
} cufftType;

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 51

3.16.2. Parameters for Transform Direction
The cuFFT library defines forward and inverse Fast Fourier Transforms according to the
sign of the complex exponential term.

 #define cuFFTFORWARD -1
 #define cuFFTINVERSE 1

cuFFT performs un-normalized FFTs; that is, performing a forward FFT on an input data
set followed by an inverse FFT on the resulting set yields data that is equal to the input,
scaled by the number of elements. Scaling either transform by the reciprocal of the size
of the data set is left for the user to perform as seen fit.

3.16.3. Type definitions for callbacks
The cuFFT library supports callback funtions for all combinations of single or double
precision, real or complex data, load or store. These are enumerated in the parameter
cufftXtCallbackType.

typedef enum cufftXtCallbackType_t {
 CUFFT_CB_LD_COMPLEX = 0x0,
 CUFFT_CB_LD_COMPLEX_DOUBLE = 0x1,
 CUFFT_CB_LD_REAL = 0x2,
 CUFFT_CB_LD_REAL_DOUBLE = 0x3,
 CUFFT_CB_ST_COMPLEX = 0x4,
 CUFFT_CB_ST_COMPLEX_DOUBLE = 0x5,
 CUFFT_CB_ST_REAL = 0x6,
 CUFFT_CB_ST_REAL_DOUBLE = 0x7,
 CUFFT_CB_UNDEFINED = 0x8
} cufftXtCallbackType;

The corresponding function prototypes and pointer type definitions are as follows:

typedef cufftComplex (*cufftCallbackLoadC)(void *dataIn, size_t offset, void
 *callerInfo, void *sharedPointer);

typedef cufftDoubleComplex (*cufftCallbackLoadZ)(void *dataIn, size_t offset,
 void *callerInfo, void *sharedPointer);

typedef cufftReal (*cufftCallbackLoadR)(void *dataIn, size_t offset, void
 *callerInfo, void *sharedPointer);

typedef cufftDoubleReal(*cufftCallbackLoadD)(void *dataIn, size_t offset, void
 *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreC)(void *dataOut, size_t offset, cufftComplex
 element, void *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreZ)(void *dataOut, size_t offset,
 cufftDoubleComplex element, void *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreR)(void *dataOut, size_t offset, cufftReal
 element, void *callerInfo, void *sharedPointer);

typedef void (*cufftCallbackStoreD)(void *dataOut, size_t offset,
 cufftDoubleReal element, void *callerInfo, void *sharedPointer);

cuFFT API Reference

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 52

3.16.4. Other cuFFT Types

3.16.4.1. cufftHandle
A handle type used to store and access cuFFT plans. The user receives a handle after
creating a cuFFT plan and uses this handle to execute the plan.
typedef unsigned int cufftHandle;

3.16.4.2. cufftReal
A single-precision, floating-point real data type.
typedef float cufftReal;

3.16.4.3. cufftDoubleReal
A double-precision, floating-point real data type.
typedef double cufftDoubleReal;

3.16.4.4. cufftComplex
A single-precision, floating-point complex data type that consists of interleaved real and
imaginary components.
typedef cuComplex cufftComplex;

3.16.4.5. cufftDoubleComplex
A double-precision, floating-point complex data type that consists of interleaved real
and imaginary components.
typedef cuDoubleComplex cufftDoubleComplex;

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 53

Chapter 4.
CUFFT CODE EXAMPLES

This chapter provides multiple simple examples of complex and real 1D, 2D, and 3D
transforms that use cuFFT to perform forward and inverse FFTs.

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 54

4.1. 1D Complex-to-Complex Transforms
In this example a one-dimensional complex-to-complex transform is applied to the input
data. Afterwards an inverse transform is performed on the computed frequency domain
representation.

#define NX 256
#define BATCH 1

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*BATCH);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

if (cufftPlan1d(&plan, NX, CUFFT_C2C, BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: Plan creation failed");
 return;
}

...

/* Note:
 * Identical pointers to input and output arrays implies in-place
 transformation
 */

if (cufftExecC2C(plan, data, data, CUFFT_FORWARD) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
 return;
}

if (cufftExecC2C(plan, data, data, CUFFT_INVERSE) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Inverse failed");
 return;
}

/*
 * Results may not be immediately available so block device until all
 * tasks have completed
 */

if (cudaDeviceSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

/*
 * Divide by number of elements in data set to get back original data
 */

...

cufftDestroy(plan);
cudaFree(data);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 55

4.2. 1D Real-to-Complex Transforms
In this example a one-dimensional real-to-complex transform is applied to the input
data.

#define NX 256
#define BATCH 1

cufftHandle plan;
cufftComplex *data;
cudaMalloc((void**)&data, sizeof(cufftComplex)*(NX/2+1)*BATCH);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

if (cufftPlan1d(&plan, NX, CUFFT_R2C, BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: Plan creation failed");
 return;
}

...

/* Use the CUFFT plan to transform the signal in place. */
if (cufftExecR2C(plan, (cufftReal*)data, data) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
 return;
}

if (cudaDeviceSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 56

4.3. 2D Complex-to-Real Transforms
In this example a two-dimensional complex-to-real transform is applied to the input
data arranged according to the requirements of the default FFTW padding mode.

#define NX 256
#define NY 128
#define NRANK 2
#define BATCH 1

cufftHandle plan;
cufftComplex *data;
int n[NRANK] = {NX, NY};

cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*(NY/2+1));
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

/* Create a 2D FFT plan. */
if (cufftPlanMany(&plan, NRANK, n,
 NULL, 1, 0,
 NULL, 1, 0,
 CUFFT_C2R,BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Unable to create plan\n");
 return;
}

...

if (cufftExecC2R(plan, data, data) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Unable to execute plan\n");
 return;
}

if (cudaDeviceSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 57

4.4. 3D Complex-to-Complex Transforms
In this example a three-dimensional complex-to-complex transform is applied to the
input data.

#define NX 64
#define NY 128
#define NZ 128
#define BATCH 10
#define NRANK 3

cufftHandle plan;
cufftComplex *data;
int n[NRANK] = {NX, NY, NZ};

cudaMalloc((void**)&data, sizeof(cufftComplex)*NX*NY*NZ*BATCH);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

/* Create a 3D FFT plan. */
if (cufftPlanMany(&plan, NRANK, n,
 NULL, 1, NX*NY*NZ, // *inembed, istride, idist
 NULL, 1, NX*NY*NZ, // *onembed, ostride, odist
 CUFFT_C2C, BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: Plan creation failed");
 return;
}

/* Use the CUFFT plan to transform the signal in place. */
if (cufftExecC2C(plan, data, data, CUFFT_FORWARD) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT error: ExecC2C Forward failed");
 return;
}

if (cudaDeviceSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(data);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 58

4.5. 2D Advanced Data Layout Use
In this example a two-dimensional complex-to-complex transform is applied to the input
data arranged according to the requirements the advanced layout.

#define NX 128
#define NY 256
#define BATCH 10
#define NRANK 2

/* Advanced interface parameters, arbitrary strides */
#define ISTRIDE 2 // distance between successive input elements in innermost
 dimension
#define OSTRIDE 1 // distance between successive output elements in innermost
 dimension
#define IX (NX+2)
#define IY (NY+1)
#define OX (NX+3)
#define OY (NY+4)
#define IDIST (IX*IY*ISTRIDE+3) // distance between first element of two
 consecutive signals in a batch of input data
#define ODIST (OX*OY*OSTRIDE+5) // distance between first element of two
 consecutive signals in a batch of output data

cufftHandle plan;
cufftComplex *idata, *odata;
int isize = IDIST * BATCH;
int osize = ODIST * BATCH;
int n[NRANK] = {NX, NY};
int inembed[NRANK] = {IX, IY}; // pointer that indicates storage dimensions of
 input data
int onembed[NRANK] = {OX, OY}; // pointer that indicates storage dimensions of
 output data

cudaMalloc((void **)&idata, sizeof(cufftComplex)*isize);
cudaMalloc((void **)&odata, sizeof(cufftComplex)*osize);
if (cudaGetLastError() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to allocate\n");
 return;
}

/* Create a batched 2D plan */
if (cufftPlanMany(&plan, NRANK, n,
 inembed,ISTRIDE,IDIST,
 onembed,OSTRIDE,ODIST,
 CUFFT_C2C,BATCH) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Unable to create plan\n");
 return;
}

...

/* Execute the transform out-of-place */
if (cufftExecC2C(plan, idata, odata, CUFFT_FORWARD) != CUFFT_SUCCESS){
 fprintf(stderr, "CUFFT Error: Failed to execute plan\n");
 return;
}

if (cudaDeviceSynchronize() != cudaSuccess){
 fprintf(stderr, "Cuda error: Failed to synchronize\n");
 return;
}

...

cufftDestroy(plan);
cudaFree(idata);
cudaFree(odata);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 59

4.6. 3D Complex-to-Complex Transforms using Two
GPUs
In this example a three-dimensional complex-to-complex transform is applied to the
input data using two GPUs.

// Demonstrate how to use CUFFT to perform 3-d FFTs using 2 GPUs
//
// cufftCreate() - Create an empty plan
 cufftHandle plan_input; cufftResult result;
 result = cufftCreate(&plan_input);
 if (result != CUFFT_SUCCESS) { printf ("*Create failed\n"); return; }
//
// cufftXtSetGPUs() - Define which GPUs to use
 int nGPUs = 2, whichGPUs[2];
 whichGPUs[0] = 0; whichGPUs[1] = 1;
 result = cufftXtSetGPUs (plan_input, nGPUs, whichGPUs);
 if (result != CUFFT_SUCCESS) { printf ("*XtSetGPUs failed\n"); return; }
//
// Initialize FFT input data
 size_t worksize[2];
 cufftComplex *host_data_input, *host_data_output;
 int nx = 64, ny = 128, nz = 32;
 int size_of_data = sizeof(cufftComplex) * nx * ny * nz;
 host_data_input = malloc(size_of_data);
 if (host_data_input == NULL) { printf ("malloc failed\n"); return; }
 host_data_output = malloc(size_of_data);
 if (host_data_output == NULL) { printf ("malloc failed\n"); return; }
 initialize_3d_data (nx, ny, nz, host_data_input, host_data_output);
//
// cufftMakePlan3d() - Create the plan
 result = cufftMakePlan3d (plan_input, nz, ny, nx, CUFFT_C2C, worksize);
 if (result != CUFFT_SUCCESS) { printf ("*MakePlan* failed\n"); return; }
//
// cufftXtMalloc() - Malloc data on multiple GPUs
 cudaLibXtDesc *device_data_input;
 result = cufftXtMalloc (plan_input, &device_data_input,
 CUFFT_XT_FORMAT_INPLACE);
 if (result != CUFFT_SUCCESS) { printf ("*XtMalloc failed\n"); return; }
//
// cufftXtMemcpy() - Copy data from host to multiple GPUs
 result = cufftXtMemcpy (plan_input, device_data_input,
 host_data_input, CUFFT_COPY_HOST_TO_DEVICE);
 if (result != CUFFT_SUCCESS) { printf ("*XtMemcpy failed\n"); return; }
//
// cufftXtExecDescriptorC2C() - Execute FFT on multiple GPUs
 result = cufftXtExecDescriptorC2C (plan_input, device_data_input,
 device_data_input, CUFFT_FORWARD);
 if (result != CUFFT_SUCCESS) { printf ("*XtExec* failed\n"); return; }
//
// cufftXtMemcpy() - Copy data from multiple GPUs to host
 result = cufftXtMemcpy (plan_input, host_data_output,
 device_data_input, CUFFT_COPY_DEVICE_TO_HOST);
 if (result != CUFFT_SUCCESS) { printf ("*XtMemcpy failed\n"); return; }
//
// Print output and check results
 int output_return = output_3d_results (nx, ny, nz,
 host_data_input, host_data_output);
 if (output_return != 0) { return; }
//
// cufftXtFree() - Free GPU memory
 result = cufftXtFree(device_data_input);
 if (result != CUFFT_SUCCESS) { printf ("*XtFree failed\n"); return; }
//
// cufftDestroy() - Destroy FFT plan
 result = cufftDestroy(plan_input);
 if (result != CUFFT_SUCCESS) { printf ("*Destroy failed: code\n"); return; }
 free(host_data_input); free(host_data_output);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 60

4.7. 1D Complex-to-Complex Transforms using Two
GPUs with Natural Order
In this example a one-dimensional complex-to-complex transform is applied to the input
data using two GPUs. The output data is in natural order in GPU memory.

// Demonstrate how to use CUFFT to perform 1-d FFTs using 2 GPUs
// Output on the GPUs is in natural output
// Function return codes should be checked for errors in actual code
//
// cufftCreate() - Create an empty plan
 cufftHandle plan_input; cufftResult result;
 result = cufftCreate(&plan_input);
//
// cufftXtSetGPUs() - Define which GPUs to use
 int nGPUs = 2, whichGPUs[2];
 whichGPUs[0] = 0; whichGPUs[1] = 1;
 result = cufftXtSetGPUs (plan_input, nGPUs, whichGPUs);
//
// Initialize FFT input data
 size_t worksize[2];
 cufftComplex *host_data_input, *host_data_output;
 int nx = 1024, batch = 1, rank = 1, n[1];
 int inembed[1], istride, idist, onembed[1], ostride, odist;
 n[0] = nx;
 int size_of_data = sizeof(cufftComplex) * nx * batch;
 host_data_input = malloc(size_of_data);
 host_data_output = malloc(size_of_data);
 initialize_1d_data (nx, batch, rank, n, inembed, &istride, &idist,
 onembed, &ostride, &odist, host_data_input, host_data_output);
//
// cufftMakePlanMany() - Create the plan
 result = cufftMakePlanMany (plan_input, rank, n, inembed, istride, idist,
 onembed, ostride, odist, CUFFT_C2C, batch, worksize);
//
// cufftXtMalloc() - Malloc data on multiple GPUs
 cudaLibXtDesc *device_data_input, *device_data_output;
 result = cufftXtMalloc (plan_input, &device_data_input,
 CUFFT_XT_FORMAT_INPLACE);
 result = cufftXtMalloc (plan_input, &device_data_output,
 CUFFT_XT_FORMAT_INPLACE);
//
// cufftXtMemcpy() - Copy data from host to multiple GPUs
 result = cufftXtMemcpy (plan_input, device_data_input,
 host_data_input, CUFFT_COPY_HOST_TO_DEVICE);
//
// cufftXtExecDescriptorC2C() - Execute FFT on multiple GPUs
 result = cufftXtExecDescriptorC2C (plan_input, device_data_input,
 device_data_input, CUFFT_FORWARD);
//
// cufftXtMemcpy() - Copy the data to natural order on GPUs
 result = cufftXtMemcpy (plan_input, device_data_output,
 device_data_input, CUFFT_COPY_DEVICE_TO_DEVICE);
//
// cufftXtMemcpy() - Copy natural order data from multiple GPUs to host
 result = cufftXtMemcpy (plan_input, host_data_output,
 device_data_output, CUFFT_COPY_DEVICE_TO_HOST);
//
// Print output and check results
 int output_return = output_1d_results (nx, batch,
 host_data_input, host_data_output);
//
// cufftXtFree() - Free GPU memory
 result = cufftXtFree(device_data_input);
 result = cufftXtFree(device_data_output);
//
// cufftDestroy() - Destroy FFT plan
 result = cufftDestroy(plan_input);
 free(host_data_input); free(host_data_output);

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 61

4.8. 1D Complex-to-Complex Convolution using
Two GPUs
In this example a one-dimensional convolution is calculated using complex-to-complex
transforms.

//
// Demonstrate how to use CUFFT to perform a convolution using 1-d FFTs and
// 2 GPUs. The forward FFTs use both GPUs, while the inverse FFT uses one.
// Function return codes should be checked for errors in actual code.
//
// cufftCreate() - Create an empty plan
 cufftResult result; cudaError_t cuda_status;
 cufftHandle plan_forward_2_gpus, plan_inverse_1_gpu;
 result = cufftCreate(&plan_forward_2_gpus);
 result = cufftCreate(&plan_inverse_1_gpu);
//
// cufftXtSetGPUs() - Define which GPUs to use
 int nGPUs = 2, whichGPUs[2];
 whichGPUs[0] = 0; whichGPUs[1] = 1;
 result = cufftXtSetGPUs (plan_forward_2_gpus, nGPUs, whichGPUs);
//
// Initialize FFT input data
 size_t worksize[2];
 cufftComplex *host_data_input, *host_data_output;
 int nx = 1048576, batch = 2, rank = 1, n[1];
 int inembed[1], istride, idist, onembed[1], ostride, odist;
 n[0] = nx;
 int size_of_one_set = sizeof(cufftComplex) * nx;
 int size_of_data = size_of_one_set * batch;
 host_data_input = (cufftComplex*)malloc(size_of_data);
 host_data_output = (cufftComplex*)malloc(size_of_one_set);
 initialize_1d_data (nx, batch, rank, n, inembed, &istride, &idist,
 onembed, &ostride, &odist, host_data_input, host_data_output);
//
// cufftMakePlanMany(), cufftPlan1d - Create the plans
 result = cufftMakePlanMany (plan_forward_2_gpus, rank, n, inembed,
 istride, idist, onembed, ostride, odist, CUFFT_C2C, batch, worksize);
 result = cufftPlan1d (&plan_inverse_1_gpu, nx, CUFFT_C2C, 1);
//
// cufftXtMalloc(), cudaMallocHost - Allocate data for GPUs
 cudaLibXtDesc *device_data_input; cufftComplex *GPU0_data_from_GPU1;
 result = cufftXtMalloc (plan_forward_2_gpus, &device_data_input,
 CUFFT_XT_FORMAT_INPLACE);
 int device0 = device_data_input->descriptor->GPUs[0];
 cudaSetDevice(device0) ;
 cuda_status = cudaMallocHost ((void**)&GPU0_data_from_GPU1,size_of_one_set);
//
// cufftXtMemcpy() - Copy data from host to multiple GPUs
 result = cufftXtMemcpy (plan_forward_2_gpus, device_data_input,
 host_data_input, CUFFT_COPY_HOST_TO_DEVICE);
//
// cufftXtExecDescriptorC2C() - Execute forward FFTs on multiple GPUs
 result = cufftXtExecDescriptorC2C (plan_forward_2_gpus, device_data_input,
 device_data_input, CUFFT_FORWARD);
//
// cudaMemcpy result from GPU1 to GPU0
 cufftComplex *device_data_on_GPU1;
 device_data_on_GPU1 = (cufftComplex*)
 (device_data_input->descriptor->data[1]);
 cuda_status = cudaMemcpy (GPU0_data_from_GPU1, device_data_on_GPU1,
 size_of_one_set, cudaMemcpyDeviceToDevice);
//
// Continued on next page
//

cuFFT Code Examples

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 62

//
// Demonstrate how to use CUFFT to perform a convolution using 1-d FFTs and
// 2 GPUs. The forward FFTs use both GPUs, while the inverse FFT uses one.
// Function return codes should be checked for errors in actual code.
//
// Part 2
//
// Multiply results and scale output
 cufftComplex *device_data_on_GPU0;
 device_data_on_GPU0 = (cufftComplex*)
 (device_data_input->descriptor->data[0]);
 cudaSetDevice(device0) ;
 ComplexPointwiseMulAndScale<<<32, 256>>>((cufftComplex*)device_data_on_GPU0,
 (cufftComplex*) GPU0_data_from_GPU1, nx);
//
// cufftExecC2C() - Execute inverse FFT on one GPU
 result = cufftExecC2C (plan_inverse_1_gpu, GPU0_data_from_GPU1,
 GPU0_data_from_GPU1, CUFFT_INVERSE);
//
// cudaMemcpy() - Copy results from GPU0 to host
 cuda_status = cudaMemcpy(host_data_output, GPU0_data_from_GPU1,
 size_of_one_set, cudaMemcpyDeviceToHost);
//
// Print output and check results
 int output_return = output_1d_results (nx, batch,
 host_data_input, host_data_output);
//
// cufftDestroy() - Destroy FFT plans
 result = cufftDestroy(plan_forward_2_gpus);
 result = cufftDestroy(plan_inverse_1_gpu);
//
// cufftXtFree(), cudaFreeHost(), free() - Free GPU and host memory
 result = cufftXtFree(device_data_input);
 cuda_status = cudaFreeHost (GPU0_data_from_GPU1);
 free(host_data_input); free(host_data_output);

//
// Utility routine to perform complex pointwise multiplication with scaling
__global__ void ComplexPointwiseMulAndScale
 (cufftComplex *a, cufftComplex *b, int size)
{
 const int numThreads = blockDim.x * gridDim.x;
 const int threadID = blockIdx.x * blockDim.x + threadIdx.x;
 float scale = 1.0f / (float)size;
 cufftComplex c;
 for (int i = threadID; i < size; i += numThreads)
 {
 c = cuCmulf(a[i], b[i]);
 b[i] = make_cuFloatComplex(scale*cuCrealf(c), scale*cuCimagf(c));
 }
 return;
}

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 63

Chapter 5.
MULTIPLE GPU DATA ORGANIZATION

This chapter explains how data are distributed between the GPUs, before and after a
multiple GPU transform. For simplicity, it is assumed in this chapter that the caller has
specified GPU 0 and GPU 1 to perform the transform.

5.1. Multiple GPU Data Organization for Batched
Transforms
For batches of transforms, each individual transform is executed on a single GPU.
If possible the batches are evenly distributed among the GPUs. For a batch of size m
performed on n GPUs, where m is not divisible by n, the first m % n GPUs will perform

 transforms. The remaining GPUs will perform transforms. For
example, in a batch of 15 transforms performed on 4 GPUs, the first three GPUs would
perform 4 transforms, and the last GPU would perform 3 transforms. This approach
removes the need for data exchange between the GPUs, and results in nearly perfect
scaling for cases where the batch size is divisible by the number of GPUs.

5.2. Multiple GPU Data Organization for Single 2D
and 3D Transforms
Single transforms performed on multiple GPUs require the data to be divided between
the GPUs. Then execution takes place in phases. For example with 2 GPUs, for 2D and
3D transforms with even sized dimensions, each GPU does half of the transform in (rank
- 1) dimensions. Then data are exchanged between the GPUs so that the final dimension
can be processed.

Since 2D and 3D transforms support sizes other than powers of 2, it is possible that
the data can not be evenly distributed among the GPUs. In general for the case of n
GPUs, a dimension of size m that is not a multiple of n would be distributed such that
the first m % n GPUs would get one extra row for 2D transforms, one extra plane for 3D
transforms.

Multiple GPU Data Organization

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 64

Take for example, a 2D transform on 4 GPUs, using an array declared in C as data[x]
[y], where x is 65 and y is 99. The surface is distributed prior to the transform such that
GPU 0 receives a surface with dimensions [17][99], and GPUs 1...3 receive surfaces
with dimensions [16][99]. After the transform, each GPU again has a portion of the
surface, but divided in the y dimension. GPUs 0...2 have surfaces with dimensions [65]
[25]. GPU 3 has a surface with dimensions [65][24]

For a 3D transform on 4 GPUs consider an array declared in C as data[x][y][z],
where x is 103, y is 122, and z is 64. The volume is distributed prior to the transform
such that each GPUs 0...2 receive volumes with dimensions [26][122][64], and GPU
3 receives a volume with dimensions [26][101][64]. After the transform, each GPU
again has a portion of the surface, but divided in the y dimension. GPUs 0 and 1 have
a volumes with dimensions [103][31][64], and GPUs 2 and 3 have volumes with
dimensions [103][30][64].

5.3. Multiple-GPU Data Organization for Single 1D
Transforms
By default for 1D transforms, the initial distribution of data to the GPUs is similar to
the 2D and 3D cases. For a transform of dimension x on two GPUs, GPU 0 receives data
ranging from 0...(x/2-1). GPU 1 receives data ranging from (x/2)...(x-1). Similarly, with 4
GPUs, the data are evenly distributed among all 4 GPUs.

Before computation can begin, data are redistributed among the GPUs. It is possible
to perform this redistribution in the copy from host memory, in cases where the
application does not need to pre-process the data prior to the transform. To do this, the
application can create the data descriptor with cufftXtMalloc using the sub-format
CUFFT_XT_FORMAT_1D_INPUT_SHUFFLED. This can significantly reduce the time it takes
to execute the transform.

cuFFT performs multiple GPU 1D transforms by decomposing the transform size
into factors Factor1 and Factor2, and treating the data as a grid of size Factor1 x
Factor2. The four steps done to calculate the 1D FFT are: Factor1 transforms of size
Factor2, data exchange between the GPUs, a pointwise twiddle multiplication, and
Factor2 transforms of size Factor1.

To gain efficiency by overlapping computation with data exchange, cuFFT breaks the
whole transform into independent segments or strings, which can be processed while
others are in flight. A side effect of this algorithm is that the output of the transform is
not in linear order. The output in GPU memory is in strings, each of which is composed
of Factor2 substrings of equal size. Each substring contains contiguous results starting
Factor1 elements subsequent to start of the previous substring. Each string starts

Multiple GPU Data Organization

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 65

substring size elements after the start of the previous string. The strings appear in order,
the first half on GPU 0, and the second half on GPU 1. See the example below:

transform size = 1024
number of strings = 8
Factor1 = 64
Factor2 = 16
substrings per string for output layout is Factor2 (16)
string size = 1024/8 = 128
substring size = 128/16 = 8
stride between substrings = 1024/16 = Factor1 (64)

On GPU 0:
string 0 has substrings with indices 0...7 64...71 128...135 ... 960...967
string 1 has substrings with indices 8...15 72...79 136...143 ... 968...975
...
On GPU 1:
string 4 has substrings with indices 32...39 96...103 160...167 ... 992...999
...
string 7 has substrings with indices 56...63 120...127 184...191 ... 1016...1023

The cufftXtQueryPlan API allows the caller to retrieve a structure containing the number
of strings, the decomposition factors, and (in the case of power of 2 size) some useful
mask and shift elements. The example below shows how cufftXtQueryPlan is invoked. It

Multiple GPU Data Organization

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 66

also shows how to translate from an index in the host input array to the corresponding
index on the device, and vice versa.

/*
 * These routines demonstrate the use of cufftXtQueryPlan to get the 1D
 * factorization and convert between permuted and linear indexes.
 */
/*
 * Set up a 1D plan that will execute on GPU 0 and GPU1, and query
 * the decomposition factors
 */
int main(int argc, char **argv){
 cufftHandle plan;
 cufftResult stat;
 int whichGPUs[2] = { 0, 1 };
 cufftXt1dFactors factors;
 stat = cufftCreate(&plan);
 if (stat != CUFFT_SUCCESS) {
 printf("Create error %d\n",stat);
 return 1;
 }
 stat = cufftXtSetGPUs(plan, 2, whichGPUs);
 if (stat != CUFFT_SUCCESS) {
 printf("SetGPU error %d\n",stat);
 return 1;
 }
 stat = cufftMakePlan1d(plan, size, CUFFT_C2C, 1, workSizes);
 if (stat != CUFFT_SUCCESS) {
 printf("MakePlan error %d\n",stat);
 return 1;
 }
 stat = cufftXtQueryPlan(plan, (void *) &factors, CUFFT_QUERY_1D_FACTORS);
 if (stat != CUFFT_SUCCESS) {
 printf("QueryPlan error %d\n",stat);
 return 1;
 }
 printf("Factor 1 %zd, Factor2 %zd\n",factors.factor1,factors.factor2);
 cufftDestroy(plan);
 return 0;
}

Multiple GPU Data Organization

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 67

/*
 * Given an index into a permuted array, and the GPU index return the
 * corresponding linear index from the beginning of the input buffer.
 *
 * Parameters:
 * factors input: pointer to cufftXt1dFactors as returned by
 * cufftXtQueryPlan
 * permutedIx input: index of the desired element in the device output
 * array
 * linearIx output: index of the corresponding input element in the
 * host array
 * GPUix input: index of the GPU containing the desired element
 */
cufftResult permuted2Linear(cufftXt1dFactors * factors,
 size_t permutedIx,
 size_t *linearIx,
 int GPUIx) {
 size_t indexInSubstring;
 size_t whichString;
 size_t whichSubstring;
 // the low order bits of the permuted index match those of the linear index
 indexInSubstring = permutedIx & factors->substringMask;
 // the next higher bits are the substring index
 whichSubstring = (permutedIx >> factors->substringShift) &
 factors->factor2Mask;
 // the next higher bits are the string index on this GPU
 whichString = (permutedIx >> factors->stringShift) & factors->stringMask;
 // now adjust the index for the second GPU
 if (GPUIx) {
 whichString += factors->stringCount/2;
 }
 // linear index low order bits are the same
 // next higher linear index bits are the string index
 *linearIx = indexInSubstring + (whichString << factors->substringShift);
 // next higher bits of linear address are the substring index
 *linearIx += whichSubstring << factors->factor1Shift;
 return CUFFT_SUCCESS;
}

Multiple GPU Data Organization

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 68

/*
 * Given a linear index into a 1D array, return the GPU containing the permuted
 * result, and index from the start of the data buffer for that element.
 *
 * Parameters:
 * factors input: pointer to cufftXt1dFactors as returned by
 * cufftXtQueryPlan
 * linearIx input: index of the desired element in the host input
 * array
 * permutedIx output: index of the corresponding result in the device
 * output array
 * GPUix output: index of the GPU containing the result
 */
cufftResult linear2Permuted(cufftXt1dFactors * factors,
 size_t linearIx,
 size_t *permutedIx,
 int *GPUIx) {
 size_t indexInSubstring;
 size_t whichString;
 size_t whichSubstring;
 size_t whichStringMask;
 int whichStringShift;
 if (linearIx >= factors->size) {
 return CUFFT_INVALID_VALUE;
 }
 // get a useful additional mask and shift count
 whichStringMask = factors->stringCount -1;
 whichStringShift = (factors->factor1Shift + factors->factor2Shift) -
 factors->stringShift ;
 // the low order bits identify the index within the substring
 indexInSubstring = linearIx & factors->substringMask;
 // first determine which string has our linear index.
 // the low order bits indentify the index within the substring.
 // the next higher order bits identify which string.
 whichString = (linearIx >> factors->substringShift) & whichStringMask;
 // the first stringCount/2 strings are in the first GPU,
 // the rest are in the second.
 *GPUIx = whichString/(factors->stringCount/2);
 // next determine which substring within the string has our index
 // the substring index is in the next higher order bits of the index
 whichSubstring = (linearIx >>(factors->substringShift + whichStringShift)) &
 factors->factor2Mask;
 // now we can re-assemble the index
 *permutedIx = indexInSubstring;
 *permutedIx += whichSubstring << factors->substringShift;
 if (!*GPUIx) {
 *permutedIx += whichString << factors->stringShift;
 } else {
 *permutedIx += (whichString - (factors->stringCount/2)) <<
 factors->stringShift;
 }
 return CUFFT_SUCCESS;
}

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 69

Chapter 6.
FFTW CONVERSION GUIDE

cuFFT differs from FFTW in that FFTW has many plans and a single execute function
while cuFFT has fewer plans, but multiple execute functions. The cuFFT execute
functions determine the precision (single or double) and whether the input is complex or
real valued. The following table shows the relationship between the two interfaces.

FFTW function cuFFT function

fftw_plan_dft_1d(), fftw_plan_dft_r2c_1d(),
fftw_plan_dft_c2r_1d()

cufftPlan1d()

fftw_plan_dft_2d(), fftw_plan_dft_r2c_2d(),
fftw_plan_dft_c2r_2d()

cufftPlan2d()

fftw_plan_dft_3d(), fftw_plan_dft_r2c_3d(),
fftw_plan_dft_c2r_3d()

cufftPlan3d()

fftw_plan_dft(), fftw_plan_dft_r2c(),
fftw_plan_dft_c2r()

cufftPlanMany()

fftw_plan_many_dft(), fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r()

cufftPlanMany()

fftw_execute() cufftExecC2C(), cufftExecZ2Z(),
cufftExecR2C(), cufftExecD2Z(),
cufftExecC2R(), cufftExecZ2D()

fftw_destroy_plan() cufftDestroy()

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 70

Chapter 7.
FFTW INTERFACE TO CUFFT

NVIDIA provides FFTW3 interfaces to the cuFFT library. This allows applications using
FFTW to use NVIDIA GPUs with minimal modifications to program source code. To use
the interface first do the following two steps

‣ It is recommended that you replace the include file fftw3.h with cufftw.h
‣ Instead of linking with the double/single precision libraries such as fftw3/fftw3f

libraries, link with both the cuFFT and cuFFTW libraries
‣ Ensure the search path includes the directory containing cuda_runtime_api.h

After an application is working using the FFTW3 interface, users may want to modify
their code to move data to and from the GPU and use the routines documented in the
FFTW Conversion Guide for the best performance.

The following tables show which components and functions of FFTW3 are supported in
cuFFT.

Section in FFTW
manual Supported Unsupported

Complex numbers fftw_complex, fftwf_complex
types

Precision double fftw3, single fftwf3 long double fftw3l, quad precision
fftw3q are not supported since
CUDA functions operate on double
and single precision floating-point
quantities

Memory Allocation fftw_malloc(), fftw_free(),
fftw_alloc_real(),
fftw_alloc_complex(),
fftwf_alloc_real(),
fftwf_alloc_complex()

Multi-threaded FFTW fftw3_threads, fftw3_omp are
not supported

Distributed-memory
FFTW with MPI

fftw3_mpi,fftw3f_mpi are not
supported

FFTW Interface to cuFFT

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 71

Note that for each of the double precision functions below there is a corresponding
single precision version with the letters fftw replaced by fftwf.

Section in FFTW
manual Supported Unsupported

Using Plans fftw_execute(),
fftw_destroy_plan(),
fftw_cleanup(),
fftw_print_plan()

fftw_cost(), fftw_flops() exist
but are not functional

Basic Interface

Complex DFTs fftw_plan_dft_1d(),
fftw_plan_dft_2d(),
fftw_plan_dft_3d(),
fftw_plan_dft()

Planner Flags Planner flags are ignored and the
same plan is returned regardless

Real-data DFTs fftw_plan_dft_r2c_1d(),
fftw_plan_dft_r2c_2d(),
fftw_plan_dft_r2c_3d(),
fftw_plan_dft_r2c(),
fftw_plan_dft_c2r_1d(),
fftw_plan_dft_c2r_2d(),
fftw_plan_dft_c2r_3d(),
fftw_plan_dft_c2r()

Read-data DFT Array
Format

Not supported

Read-to-Real Transform Not supported

Read-to-Real Transform
Kinds

Not supported

Advanced Interface

Advanced Complex DFTs fftw_plan_many_dft() with
multiple 1D, 2D, 3D transforms

fftw_plan_many_dft() with 4D or
higher transforms or a 2D or higher
batch of embedded transforms

Advanced Real-data
DFTs

fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r() with
multiple 1D, 2D, 3D transforms

fftw_plan_many_dft_r2c(),
fftw_plan_many_dft_c2r() with
4D or higher transforms or a 2D or
higher batch of embedded transforms

Advanced Real-to-Real
Transforms

Not supported

Guru Interface

Interleaved and split
arrays

Interleaved format Split format

Guru vector and
transform sizes

fftw_iodim struct

Guru Complex DFTs fftw_plan_guru_dft(),
fftw_plan_guru_dft_r2c(),
fftw_plan_guru_dft_c2r() with
multiple 1D, 2D, 3D transforms

fftw_plan_guru_dft(),
fftw_plan_guru_dft_r2c(),
fftw_plan_guru_dft_c2r() with

FFTW Interface to cuFFT

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 72

Section in FFTW
manual Supported Unsupported

4D or higher transforms or a 2D or
higher batch of transforms

Guru Real-data DFTs Not supported

Guru Real-to-real
Transforms

Not supported

64-bit Guru Interface Not supported

New-array Execute
Functions

fftw_execute_dft(),
fftw_execute_dft_r2c(),
fftw_execute_dft_c2r() with
interleaved format

Split format and real-to-real
functions

Wisdom fftw_export_wisdom_to_file(),
fftw_import_wisdom_from_file()
exist but are not functional. Other
wisdom functions do not have entry
points in the library.

www.nvidia.com
cuFFT Library User's Guide DU-06707-001_v7.0 | 73

Chapter 8.
DEPRECATED FUNCTIONALITY

The cuFFT native data layout, specified by CUFFT_COMPATIBILITY_NATIVE has been
deprecated. Use CUFFT_COMPATIBILITY_FFTW_PADDING.

The cuFFT asymmetric data input layout, specified by
CUFFT_COMPATIBILITY_FFTW_ASYMMETRIC has been deprecated. Use
CUFFT_COMPATIBILITY_FFTW_PADDING. cuFFT always treats asymmetric input in the
same way as FFTW.

Batch sizes other than 1 for cufftPlan1d() have been deprecated. Use
cufftPlanMany() for multiple batch execution.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY,
"MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES NO WARRANTIES,
EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF
NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA
Corporation assumes no responsibility for the consequences of use of such
information or for any infringement of patents or other rights of third parties
that may result from its use. No license is granted by implication of otherwise
under any patent rights of NVIDIA Corporation. Specifications mentioned in this
publication are subject to change without notice. This publication supersedes and
replaces all other information previously supplied. NVIDIA Corporation products
are not authorized as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names
may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2014 NVIDIA Corporation. All rights reserved.

www.nvidia.com

	Table of Contents
	Introduction
	Using the cuFFT API
	2.1. Accessing cuFFT
	2.2. Fourier Transform Setup
	2.3. Fourier Transform Types
	2.4. Data Layout
	2.4.1. FFTW Compatibility Mode

	2.5. Multidimensional Transforms
	2.6. Advanced Data Layout
	2.7. Streamed cuFFT Transforms
	2.8. Multiple GPU cuFFT Transforms
	2.8.1. Plan Specification and Work Areas
	2.8.2. Helper Functions
	2.8.3. Multiple GPU 2D and 3D Transforms on Permuted Input
	2.8.4. Supported Functionality

	2.9. cuFFT Callback Routines
	2.9.1. Overview of the cufFFT Callback Routine Feature
	2.9.2. Specifying Load and Store Callback Routines
	2.9.3. Callback Routine Function Details
	2.9.4. Coding Considerations for the cuFFT Callback Routine Feature

	2.10. Thread Safety
	2.11. Static Library and Callback Support
	2.12. Accuracy and Performance

	cuFFT API Reference
	3.1. Return value cufftResult
	3.2. cuFFT Basic Plans
	3.2.1. Function cufftPlan1d()
	3.2.2. Function cufftPlan2d()
	3.2.3. Function cufftPlan3d()
	3.2.4. Function cufftPlanMany()

	3.3. cuFFT Extensible Plans
	3.3.1. Function cufftCreate()
	3.3.2. Function cufftMakePlan1d()
	3.3.3. Function cufftMakePlan2d()
	3.3.4. Function cufftMakePlan3d()
	3.3.5. Function cufftMakePlanMany()

	3.4. cuFFT Estimated Size of Work Area
	3.4.1. Function cufftEstimate1d()
	3.4.2. Function cufftEstimate2d()
	3.4.3. Function cufftEstimate3d()
	3.4.4. Function cufftEstimateMany()

	3.5. cuFFT Refined Estimated Size of Work Area
	3.5.1. Function cufftGetSize1d()
	3.5.2. Function cufftGetSize2d()
	3.5.3. Function cufftGetSize3d()
	3.5.4. Function cufftGetSizeMany()

	3.6. Function cufftGetSize()
	3.7. cuFFT Caller Allocated Work Area Support
	3.7.1. Function cufftSetAutoAllocation()
	3.7.2. Function cufftSetWorkArea()

	3.8. Function cufftDestroy()
	3.9. cuFFT Execution
	3.9.1. Functions cufftExecC2C() and cufftExecZ2Z()
	3.9.2. Functions cufftExecR2C() and cufftExecD2Z()
	3.9.3. Functions cufftExecC2R() and cufftExecZ2D()

	3.10. cuFFT and Multiple GPUs
	3.10.1. Function cufftXtSetGPUs()
	3.10.2. Function cufftXtSetWorkArea()
	3.10.3. cuFFT Multiple GPU Execution
	3.10.3.1. Functions cufftXtExecDescriptorC2C() and cufftXtExecDescriptorZ2Z()

	3.10.4. Memory Allocation and Data Movement Functions
	3.10.4.1. Function cufftXtMalloc()
	3.10.4.1.1. Parameter cufftXtSubFormat

	3.10.4.2. Function cufftXtFree()
	3.10.4.3. Function cufftXtMemcpy()
	3.10.4.3.1. Parameter cufftXtCopyType

	3.10.5. General Multiple GPU Descriptor Types
	3.10.5.1. cudaXtDesc
	3.10.5.2. cudaLibXtDesc

	3.11. cuFFT Callbacks
	3.11.1. Function cufftXtSetCallback()
	3.11.2. Function cufftXtClearCallback()
	3.11.3. Function cufftXtSetCallbackSharedSize()

	3.12. Function cufftSetStream()
	3.13. Function cufftGetVersion()
	3.14. Function cufftSetCompatibilityMode()
	3.15. Parameter cufftCompatibility
	3.16. cuFFT Types
	3.16.1. Parameter cufftType
	3.16.2. Parameters for Transform Direction
	3.16.3. Type definitions for callbacks
	3.16.4. Other cuFFT Types
	3.16.4.1. cufftHandle
	3.16.4.2. cufftReal
	3.16.4.3. cufftDoubleReal
	3.16.4.4. cufftComplex
	3.16.4.5. cufftDoubleComplex

	cuFFT Code Examples
	4.1. 1D Complex-to-Complex Transforms
	4.2. 1D Real-to-Complex Transforms
	4.3. 2D Complex-to-Real Transforms
	4.4. 3D Complex-to-Complex Transforms
	4.5. 2D Advanced Data Layout Use
	4.6. 3D Complex-to-Complex Transforms using Two GPUs
	4.7. 1D Complex-to-Complex Transforms using Two GPUs with Natural Order
	4.8. 1D Complex-to-Complex Convolution using Two GPUs

	Multiple GPU Data Organization
	5.1. Multiple GPU Data Organization for Batched Transforms
	5.2. Multiple GPU Data Organization for Single 2D and 3D Transforms
	5.3. Multiple-GPU Data Organization for Single 1D Transforms

	FFTW Conversion Guide
	FFTW Interface to cuFFT
	Deprecated Functionality

