
ECSE-4965-01,

Spring 2014
(modified from Stanford CS 193G)

Lecture 1: Introduction to Massively

Parallel Computing

© 2008 NVIDIA Corporation

Moore’s Law (paraphrased)

“The number of transistors on an integrated

circuit doubles every two years.”

– Gordon E. Moore

Note that one reason that this has

remained valid for so long is that HW

designers take it as a goal.

© 2008 NVIDIA Corporation

Moore’s Law (Visualized)

Data credit: Wikipedia

GF100

© 2008 NVIDIA Corporation

Buying Performance with Power

(courtesy Mark Horowitz and Kevin Skadron)

P
o

w
e

r

Performance

© 2008 NVIDIA Corporation

Serial Performance Scaling is Over

Cannot continue to scale processor frequencies

no 10 GHz chips

Cannot continue to increase power consumption

can’t melt chip

Can continue to increase transistor density

as per Moore’s Law

© 2008 NVIDIA Corporation

How to Use Transistors?

Instruction-level parallelism

out-of-order execution, speculation, …

vanishing opportunities in power-constrained world

Data-level parallelism

vector units, SIMD execution, …

increasing … SSE, AVX, Cell SPE, Clearspeed, GPU

Thread-level parallelism

increasing … multithreading, multicore, manycore

Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, …

© 2008 NVIDIA Corporation

A quiet revolution and potential build-up

Computation: TFLOPs vs. 100 GFLOPs

GPU in every PC – massive volume & potential impact

Why Massively Parallel Processing?

T12

Westmere

NV30
NV40

G70

G80

GT200

3GHz Dual

Core P4

3GHz

Core2 Duo

3GHz Xeon

Quad

© 2008 NVIDIA Corporation

Why Massively Parallel Processing?

A quiet revolution and potential build-up

Bandwidth: ~10x

GPU in every PC – massive volume & potential impact

NV30

NV40
G70

G80

GT200

T12

3GHz Dual

Core P4

3GHz

Core2 Duo

3GHz Xeon

Quad
Westmere

© 2008 NVIDIA Corporation

The “New” Moore’s Law

Computers no longer get faster, just wider

You must re-think your algorithms to be parallel !

Data-parallel computing is most scalable solution

Otherwise: refactor code for 2 cores

You will always have more data than cores –

build the computation around the data

8 cores 4 cores 16 cores…

© 2008 NVIDIA Corporation

Processor Memory Processor Memory

Global Memory

Generic Multicore Chip

Handful of processors each supporting ~1 hardware thread

On-chip memory near processors (cache, RAM, or both)

Shared global memory space (external DRAM)

© 2008 NVIDIA Corporation

• • •
Processor Memory Processor Memory

Global Memory

Generic Manycore Chip

Many processors each supporting many hardware threads

On-chip memory near processors (cache, RAM, or both)

Shared global memory space (external DRAM)

© 2008 NVIDIA Corporation

Enter the GPU

Massive economies of scale

Massively parallel

© 2008 NVIDIA Corporation

GPU Evolution

High throughput computation

GeForce GTX 280: 933 GFLOP/s

High bandwidth memory

GeForce GTX 280: 140 GB/s

High availability to all

180+ million CUDA-capable GPUs in the wild

1995 2000 2005 2010

RIVA 128
3M xtors

GeForce® 256
23M xtors

GeForce FX
125M xtors

GeForce 8800
681M xtors

GeForce 3
60M xtors

“Fermi”
3B xtors

© 2008 NVIDIA Corporation

Lessons from Graphics Pipeline

Throughput is paramount

must paint every pixel within frame time

scalability

Create, run, & retire lots of threads very rapidly

measured 14.8 Gthread/s on increment() kernel

Use multithreading to hide latency

1 stalled thread is OK if 100 are ready to run

© 2008 NVIDIA Corporation

Why is this different from a CPU?

Different goals produce different designs
GPU assumes work load is highly parallel

CPU must be good at everything, parallel or not

CPU: minimize latency experienced by 1 thread
big on-chip caches

sophisticated control logic

GPU: maximize throughput of all threads
threads in flight limited by resources => lots of resources
(registers, bandwidth, etc.)

multithreading can hide latency => skip the big caches

share control logic across many threads

© 2008 NVIDIA Corporation

NVIDIA GPU Architecture

Fermi GF100

D
R

A
M

 I
/F

H

O
S

T
 I
/F

G

ig
a
 T

h
re

a
d

D

R
A

M
 I

/F
 D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

L2

© 2008 NVIDIA Corporation

SM Multiprocessor

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

32 CUDA Cores per SM (512 total)

8x peak FP64 performance

50% of peak FP32 performance

Direct load/store to memory

Usual linear sequence of bytes

High bandwidth (Hundreds
GB/sec)

64KB of fast, on-chip RAM

Software or hardware-managed

Shared amongst CUDA cores

Enables thread communication

© 2008 NVIDIA Corporation

Key Architectural Ideas

SIMT (Single Instruction Multiple Thread) execution

threads run in groups of 32 called warps

threads in a warp share instruction unit (IU)

HW automatically handles divergence

Hardware multithreading

HW resource allocation & thread scheduling

HW relies on threads to hide latency

Threads have all resources needed to run

any warp not waiting for something can run

context switching is (basically) free

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

© 2008 NVIDIA Corporation

Enter CUDA

Scalable parallel programming model

Minimal extensions to familiar C/C++ environment

Heterogeneous serial-parallel computing

© 2008 NVIDIA Corporation

Motivation

110-240X

45X 100X

35X

17X

13–457x

© 2008 NVIDIA Corporation

CUDA: Scalable parallel programming

Augment C/C++ with minimalist abstractions

let programmers focus on parallel algorithms

not mechanics of a parallel programming language

Provide straightforward mapping onto hardware

good fit to GPU architecture

maps well to multi-core CPUs too

Scale to 100s of cores & 10,000s of parallel threads

GPU threads are lightweight — create / switch is free

GPU needs 1000s of threads for full utilization

© 2008 NVIDIA Corporation

Key Parallel Abstractions in CUDA

Hierarchy of concurrent threads

Lightweight synchronization primitives

Shared memory model for cooperating threads

© 2008 NVIDIA Corporation

Hierarchy of concurrent threads

Parallel kernels composed of many threads

all threads execute the same sequential program

Threads are grouped into thread blocks

threads in the same block can cooperate

Threads/blocks have unique IDs

Thread t

t0 t1 … tB

Block b

© 2008 NVIDIA Corporation

CUDA Model of Parallelism

CUDA virtualizes the physical hardware

thread is a virtualized scalar processor (registers, PC, state)

block is a virtualized multiprocessor (threads, shared mem.)

Scheduled onto physical hardware without pre-emption

threads/blocks launch & run to completion

blocks should be independent

• • •
Block Memory Block Memory

Global Memory

© 2008 NVIDIA Corporation

NOT: Flat Multiprocessor

Global synchronization isn’t cheap

Global memory access times are expensive

cf. PRAM (Parallel Random Access Machine) model

Processors

Global Memory

© 2008 NVIDIA Corporation

NOT: Distributed Processors

Distributed computing is a different setting

cf. BSP (Bulk Synchronous Parallel) model, MPI

Interconnection Network

Processor Memory Processor Memory

• • •

© 2008 NVIDIA Corporation

Heterogeneous Computing

Multicore CPU

© 2008 NVIDIA Corporation

C for CUDA

Philosophy: provide minimal set of extensions necessary to expose power

Function qualifiers:
__global__ void my_kernel() { }

__device__ float my_device_func() { }

Variable qualifiers:
__constant__ float my_constant_array[32];

__shared__ float my_shared_array[32];

Execution configuration:
dim3 grid_dim(100, 50); // 5000 thread blocks

dim3 block_dim(4, 8, 8); // 256 threads per block

my_kernel <<< grid_dim, block_dim >>> (...); // Launch kernel

Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension

dim3 blockDim; // Block dimension

dim3 blockIdx; // Block index

dim3 threadIdx; // Thread index

void __syncthreads(); // Thread synchronization

© 2008 NVIDIA Corporation

Example: vector_addition

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // elided initialization code

 ...

 // Run N/256 blocks of 256 threads each

 vector_add<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

© 2008 NVIDIA Corporation

Example: vector_addition

// compute vector sum c = a + b

// each thread performs one pair-wise addition

__global__ void vector_add(float* A, float* B, float* C)

{

 int i = threadIdx.x + blockDim.x * blockIdx.x;

 C[i] = A[i] + B[i];

}

int main()

{

 // elided initialization code

 ...

 // launch N/256 blocks of 256 threads each

 vector_add<<< N/256, 256>>>(d_A, d_B, d_C);

}

Host Code

© 2008 NVIDIA Corporation

Example: Initialization code for

vector_addition

// allocate and initialize host (CPU) memory

float *h_A = …, *h_B = …;

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice));

// launch N/256 blocks of 256 threads each

vector_add<<<N/256, 256>>>(d_A, d_B, d_C);

© 2008 NVIDIA Corporation

Application Description Source Kernel % time

H.264 SPEC ‘06 version, change in guess vector 34,811 194 35%

LBM SPEC ‘06 version, change to single precision

and print fewer reports

1,481 285 >99%

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99%

FEM Finite element modeling, simulation of 3D

graded materials

1,874 146 99%

RPES Rye Polynomial Equation Solver, quantum

chem, 2-electron repulsion

1,104 281 99%

PNS Petri Net simulation of a distributed system 322 160 >99%

SAXPY Single-precision implementation of saxpy,

used in Linpack’s Gaussian elim. routine

952 31 >99%

TPACF Two Point Angular Correlation Function 536 98 96%

FDTD Finite-Difference Time Domain analysis of 2D

electromagnetic wave propagation

1,365 93 16%

MRI-Q Computing a matrix Q, a scanner’s

configuration in MRI reconstruction

490 33 >99%

Previous Projects from UIUC ECE 498AL

© 2008 NVIDIA Corporation

Speedup of Applications

GeForce 8800 GTX vs. 2.2GHz Opteron 248

10 speedup in a kernel is typical, as long as the kernel can
occupy enough parallel threads

25 to 400 speedup if the function’s data requirements and
control flow suit the GPU and the application is optimized

© 2008 NVIDIA Corporation

Final Thoughts

Parallel hardware is here to stay

GPUs are massively parallel manycore processors

easily available and fully programmable

Parallelism & scalability are crucial for success

This presents many important research challenges

not to speak of the educational challenges

© 2008 NVIDIA Corporation

Machine Problem 0

Work through tutorial codes

hello_world.cu

cuda_memory_model.cu

global_functions.cu

device_functions.cu

vector_addition.cu

