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Moore’s Law (paraphrased) 

“The number of transistors on an integrated 

circuit doubles every two years.”  

– Gordon E. Moore 

 

Note that one reason that this has 

remained valid for so long is that HW 

designers take it as a goal. 
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Moore’s Law (Visualized) 

Data credit: Wikipedia 

GF100 
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Buying Performance with Power 

(courtesy Mark Horowitz and Kevin Skadron) 
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Serial Performance Scaling is Over 

Cannot continue to scale processor frequencies 

no 10 GHz chips 

 

 

Cannot continue to increase power consumption 

can’t melt chip 

 

 

Can continue to increase transistor density 

as per Moore’s Law 
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How to Use Transistors? 

Instruction-level parallelism 

out-of-order execution, speculation, … 

vanishing opportunities in power-constrained world 

 

Data-level parallelism 

vector units, SIMD execution, … 

increasing … SSE, AVX, Cell SPE, Clearspeed, GPU 

 

Thread-level parallelism 

increasing … multithreading, multicore, manycore 

Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, … 
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A quiet revolution and potential build-up 

Computation: TFLOPs vs. 100 GFLOPs 

 

 

 

 

 

 

 

 

 

 

 

GPU in every PC – massive volume & potential impact 

Why Massively Parallel Processing? 
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Why Massively Parallel Processing? 

A quiet revolution and potential build-up 

Bandwidth: ~10x 

 

 

 

 

 

 

 

 

 

 

 

GPU in every PC – massive volume & potential impact 
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The “New” Moore’s Law 

Computers no longer get faster, just wider 

 

You must re-think your algorithms to be parallel ! 

 

Data-parallel computing is most scalable solution 

Otherwise: refactor code for 2 cores  

You will always have more data than cores –  

build the computation around the data 

8 cores 4 cores 16 cores…  
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Processor Memory Processor Memory 

Global Memory 

Generic Multicore Chip 

Handful of processors each supporting ~1 hardware thread 

 

On-chip memory near processors  (cache, RAM, or both) 

 

Shared global memory space  (external DRAM) 
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• • • 
Processor Memory Processor Memory 

Global Memory 

Generic Manycore Chip 

Many processors each supporting many hardware threads 

 

On-chip memory near processors  (cache, RAM, or both) 

 

Shared global memory space  (external DRAM) 
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Enter the GPU 

Massive economies of scale 

 

Massively parallel 
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GPU Evolution 

High throughput computation 

GeForce GTX 280: 933 GFLOP/s 

High bandwidth memory 

GeForce GTX 280: 140 GB/s  

High availability to all 

180+ million CUDA-capable GPUs in the wild 

1995 2000 2005 2010 

RIVA 128 
3M xtors 

GeForce® 256 
23M xtors 

GeForce FX 
125M xtors 

GeForce 8800 
681M xtors 

GeForce 3  
60M xtors 

“Fermi” 
3B xtors 
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Lessons from Graphics Pipeline 

Throughput is paramount 

must paint every pixel within frame time 

scalability 

 

Create, run, & retire lots of threads very rapidly 

measured 14.8 Gthread/s on increment() kernel 

 

 

Use multithreading to hide latency 

1 stalled thread is OK if 100 are ready to run 
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Why is this different from a CPU? 

Different goals produce different designs 
GPU assumes work load is highly parallel 

CPU must be good at everything, parallel or not 

 

CPU: minimize latency experienced by 1 thread 
big on-chip caches 

sophisticated control logic 

 

GPU: maximize throughput of all threads 
# threads in flight limited by resources => lots of resources 
(registers, bandwidth, etc.) 

multithreading can hide latency => skip the big caches 

share control logic across many threads 
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NVIDIA GPU Architecture 

Fermi GF100 
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SM Multiprocessor 
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Scheduler 

Dispatch 

Scheduler 
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Instruction Cache 

32 CUDA Cores per SM (512 total) 

 

8x peak FP64 performance 

50% of peak FP32 performance 

 

Direct load/store to memory 

Usual linear sequence of bytes 

High bandwidth (Hundreds 
GB/sec) 

 

64KB of fast, on-chip RAM 

Software or hardware-managed 

Shared amongst CUDA cores 

Enables thread communication 
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Key Architectural Ideas 

SIMT (Single Instruction Multiple Thread) execution 

threads run in groups of 32 called warps 

threads in a warp share instruction unit (IU) 

HW automatically handles divergence 

 

Hardware multithreading 

HW resource allocation & thread scheduling 

HW relies on threads to hide latency 

 

Threads have all resources needed to run 

any warp not waiting for something can run 

context switching is (basically) free 
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Enter CUDA 

Scalable parallel programming model 

 

Minimal extensions to familiar C/C++ environment 

 

Heterogeneous serial-parallel computing 
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Motivation 

110-240X 

45X 100X 

35X 

17X 

13–457x  
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CUDA: Scalable parallel programming 

Augment C/C++ with minimalist abstractions 

let programmers focus on parallel algorithms 

not mechanics of a parallel programming language 

 

Provide straightforward mapping onto hardware 

good fit to GPU architecture 

maps well to multi-core CPUs too 

 

Scale to 100s of cores & 10,000s of parallel threads 

GPU threads are lightweight — create / switch is free 

GPU needs 1000s of threads for full utilization 
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Key Parallel Abstractions in CUDA 

 

Hierarchy of concurrent threads 

 

 

Lightweight synchronization primitives 

 

 

Shared memory model for cooperating threads 
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Hierarchy of concurrent threads 

Parallel kernels composed of many threads 

all threads execute the same sequential program 

 

 

 

Threads are grouped into thread blocks 

threads in the same block can cooperate 

 

 

 

Threads/blocks have unique IDs 

 

Thread t 

t0 t1 … tB 

Block b 



© 2008 NVIDIA Corporation 

CUDA Model of Parallelism 

CUDA virtualizes the physical hardware 

thread is a virtualized scalar processor (registers, PC, state) 

block is a virtualized multiprocessor (threads, shared mem.) 

 

Scheduled onto physical hardware without pre-emption 

threads/blocks launch & run to completion 

blocks should be independent 

• • • 
Block Memory Block Memory 

Global Memory 
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NOT:  Flat Multiprocessor 

Global synchronization isn’t cheap 

Global memory access times are expensive 

 

 

 

cf. PRAM (Parallel Random Access Machine) model 

Processors 

Global Memory 
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NOT:  Distributed Processors 

Distributed computing is a different setting 

 

 

 

 

 

cf.  BSP (Bulk Synchronous Parallel) model, MPI 

Interconnection Network 

Processor Memory Processor Memory 

• • • 
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Heterogeneous Computing 

 

Multicore CPU 
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C for CUDA 

Philosophy: provide minimal set of extensions necessary to expose power 

 

Function qualifiers: 
__global__ void my_kernel() { } 

__device__ float my_device_func() { } 

 

Variable qualifiers: 
__constant__ float my_constant_array[32]; 

__shared__   float my_shared_array[32]; 

 

Execution configuration: 
dim3 grid_dim(100, 50);  // 5000 thread blocks  

dim3 block_dim(4, 8, 8); // 256 threads per block  

my_kernel <<< grid_dim, block_dim >>> (...); // Launch kernel 

 

Built-in variables and functions valid in device code: 
dim3 gridDim;   // Grid dimension 

dim3 blockDim;  // Block dimension 

dim3 blockIdx;  // Block index 

dim3 threadIdx; // Thread index 

void __syncthreads(); // Thread synchronization 
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Example: vector_addition 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

int main() 

{ 

    // elided initialization code 

    ... 

    // Run N/256 blocks of 256 threads each 

    vector_add<<< N/256, 256>>>(d_A, d_B, d_C); 

} 

Device Code 



© 2008 NVIDIA Corporation 

Example: vector_addition 

// compute vector sum c = a + b 

// each thread performs one pair-wise addition 

__global__ void vector_add(float* A, float* B, float* C) 

{ 

    int i = threadIdx.x + blockDim.x * blockIdx.x; 

    C[i] = A[i] + B[i]; 

} 

 

int main() 

{ 

    // elided initialization code 

    ... 

    // launch N/256 blocks of 256 threads each 

    vector_add<<< N/256, 256>>>(d_A, d_B, d_C); 

} 

Host Code 
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Example: Initialization code for  

vector_addition 

// allocate and initialize host (CPU) memory 

float *h_A = …,   *h_B = …; 

 

// allocate device (GPU) memory 

float *d_A, *d_B, *d_C; 

cudaMalloc( (void**) &d_A, N * sizeof(float)); 

cudaMalloc( (void**) &d_B, N * sizeof(float)); 

cudaMalloc( (void**) &d_C, N * sizeof(float)); 

 

// copy host memory to device 

cudaMemcpy( d_A, h_A, N * sizeof(float), 
cudaMemcpyHostToDevice) ); 

cudaMemcpy( d_B, h_B, N * sizeof(float), 
cudaMemcpyHostToDevice) ); 

 

// launch N/256 blocks of 256 threads each 

vector_add<<<N/256, 256>>>(d_A, d_B, d_C); 
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Application Description Source Kernel % time  

H.264 SPEC ‘06 version, change in guess vector 34,811 194 35% 

LBM SPEC ‘06 version, change to single precision 

and print fewer reports 

1,481 285 >99% 

RC5-72 Distributed.net RC5-72 challenge client code 1,979 218 >99% 

FEM Finite element modeling, simulation of 3D 

graded materials 

1,874 146 99% 

RPES Rye Polynomial Equation Solver, quantum 

chem, 2-electron repulsion 

1,104 281 99% 

PNS Petri Net simulation of a distributed system 322 160 >99% 

SAXPY Single-precision implementation of saxpy, 

used in Linpack’s Gaussian elim. routine 

952 31 >99% 

TPACF Two Point Angular Correlation Function 536 98 96% 

FDTD Finite-Difference Time Domain analysis of 2D 

electromagnetic wave propagation 

1,365 93 16% 

MRI-Q Computing a matrix Q, a scanner’s 

configuration in MRI reconstruction 

490 33 >99% 

Previous Projects from UIUC ECE 498AL 
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Speedup of Applications 

GeForce 8800 GTX vs. 2.2GHz Opteron 248  

10 speedup in a kernel is typical, as long as the kernel can 
occupy enough parallel threads 

25 to 400 speedup if the function’s data requirements and 
control flow suit the GPU and the application is optimized 



© 2008 NVIDIA Corporation 

Final Thoughts 

Parallel hardware is here to stay 

 

GPUs are massively parallel manycore processors 

easily available and fully programmable 

 

Parallelism & scalability are crucial for success 

 

This presents many important research challenges 

not to speak of the educational challenges 
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Machine Problem 0 

Work through tutorial codes 

hello_world.cu 

cuda_memory_model.cu 

global_functions.cu 

device_functions.cu 

vector_addition.cu 


