ECSE-4965-01,
 Spring 2014
 (modified from Stanford CS 193G)

Lecture 1: Introduction to Massively Parallel Computing

Moore's Law (paraphrased)

"The number of transistors on an integrated circuit doubles every two years."

- Gordon E. Moore

Note that one reason that this has remained valid for so long is that HW designers take it as a goal.

Moore's Law (Visualized)

nVIDIA.

Buying Performance with Power

Performance

Serial Performance Scaling is Over

- Cannot continue to scale processor frequencies
- no 10 GHz chips
- Cannot continue to increase power consumption
- can't melt chip
- Can continue to increase transistor density
- as per Moore's Law

How to Use Transistors?

- Instruction-level parallelism
- out-of-order execution, speculation, ...
- vanishing opportunities in power-constrained world
- Data-level parallelism
- vector units, SIMD execution, ...
- increasing ... SSE, AVX, Cell SPE, Clearspeed, GPU
- Thread-level parallelism
- increasing ... multithreading, multicore, manycore
- Intel Core2, AMD Phenom, Sun Niagara, STI Cell, NVIDIA Fermi, ...

Why Massively Parallel Processing?

- A quiet revolution and potential build-up
- Computation: TFLOPs vs. 100 GFLOPs

- GPU in every PC - massive volume \& potential impact

Why Massively Parallel Processing?

- A quiet revolution and potential build-up
- Bandwidth: ~10x

- GPU in every PC - massive volume \& potential impact

The "New" Moore's Law

- Computers no longer get faster, just wider
- You must re-think your algorithms to be parallel !
- Data-parallel computing is most scalable solution
- Otherwise: refactor code for 2 cores 4 cores 8 cores 16 cores...
- You will always have more data than cores build the computation around the data

Generic Multicore Chip

Global Memory

- Handful of processors each supporting ~1 hardware thread
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

Generic Manycore Chip

Global Memory

- Many processors each supporting many hardware threads
- On-chip memory near processors (cache, RAM, or both)
- Shared global memory space (external DRAM)

Enter the GPU

- Massive economies of scale
- Massively parallel

GPU Evolution

- High throughput computation
- GeForce GTX 280: 933 GFLOP/s
- High bandwidth memory
- GeForce GTX 280: 140 GB/s
- High availability to all

"Fermi"
3B xtors

Lessons from Graphics Pipeline

- Throughput is paramount
- must paint every pixel within frame time
- scalability
- Create, run, \& retire lots of threads very rapidly
- measured 14.8 Gthread/s on increment () kernel
- Use multithreading to hide latency
- 1 stalled thread is OK if 100 are ready to run

Why is this different from a CPU?

- Different goals produce different designs
- GPU assumes work load is highly parallel
- CPU must be good at everything, parallel or not
- CPU: minimize latency experienced by 1 thread
- big on-chip caches
- sophisticated control logic
- GPU: maximize throughput of all threads
- \# threads in flight limited by resources => lots of resources (registers, bandwidth, etc.)
- multithreading can hide latency => skip the big caches
- share control logic across many threads

NVIDIA GPU Architecture

Fermi GF100

SM Multiprocessor

- 32 CUDA Cores per SM (512 total)
- 8x peak FP64 performance
- 50\% of peak FP32 performance
- Direct load/store to memory
- Usual linear sequence of bytes
- High bandwidth (Hundreds GB/sec)
- 64KB of fast, on-chip RAM

- Software or hardware-managed
- Shared amongst CUDA cores
- Enables thread communication

Instruction Cache		
Scheduler	Scheduler	
Dispatch	Dispatch	
Register File		
Core	Core	Core
Core		
Core	Core	Core
Core	Core	Core
Core	Core	
Core	Core	Core
Load/Store Units $\mathbf{x} 16$		
Special Func Units $\mathbf{x} 4$		
Interconnect Network		
64 K Configurable		
Cache/Shared Mem		
Uniform Cache		

Key Architectural Ideas

- SIMT (Single Instruction Multiple Thread) execution
- threads run in groups of 32 called warps
- threads in a warp share instruction unit (IU)
- HW automatically handles divergence
- Hardware multithreading
- HW resource allocation \& thread scheduling
- HW relies on threads to hide latency
- Threads have all resources needed to run
- any warp not waiting for something can run
- context switching is (basically) free

Instruction Cache			
Scheduler		Scheduler	
Dispatch		Dispatch	
Register File			
Core	Core	Core	Core
Core	Core	Core	Core
Core	Core	Core	Core
Core	Core	Core	Core
Core	Core	Core	Core
Core	Core	Core	Core
Core	Core	Core	Core
Core	Core	Core	Core
Load/Store Units x 16			
Special Func Units $\times 4$			
Interconnect Network			
64 K Configurable Cache/Shared Mem			
Uniform Cache			

Enter CUDA

- Scalable parallel programming model
- Minimal extensions to familiar C/C++ environment
- Heterogeneous serial-parallel computing

- Augment C/C++ with minimalist abstractions
- let programmers focus on parallel algorithms
- not mechanics of a parallel programming language
- Provide straightforward mapping onto hardware
- good fit to GPU architecture
- maps well to multi-core CPUs too
- Scale to 100s of cores \& 10,000s of parallel threads
- GPU threads are lightweight - create / switch is free
- GPU needs 1000s of threads for full utilization

Key Parallel Abstractions in CUDA

- Hierarchy of concurrent threads
- Lightweight synchronization primitives
- Shared memory model for cooperating threads

Hierarchy of concurrent threads

- Parallel kernels composed of many threads
- all threads execute the same sequential program
- Threads are grouped into thread blocks
- threads in the same block can cooperate

- Threads/blocks have unique IDs

CUDA Model of Parallelism

Global Memory

- CUDA virtualizes the physical hardware
- thread is a virtualized scalar processor
- block is a virtualized multiprocessor
(registers, PC, state)
(threads, shared mem.)
- Scheduled onto physical hardware without pre-emption
- threads/blocks launch \& run to completion
- blocks should be independent

NOT: Flat Multiprocessor

Global Memory

- Global synchronization isn't cheap
- Global memory access times are expensive
- cf. PRAM (Parallel Random Access Machine) model

NOT: Distributed Processors

Interconnection Network

- Distributed computing is a different setting
- cf. BSP (Bulk Synchronous Parallel) model, MPI

Heterogeneous Computing

Multicore CPU

C for CUDA

- Philosophy: provide minimal set of extensions necessary to expose power
- Function qualifiers:
__global__
void my kernel () \{ \} device__ float my_device_func() \{ \}
- Variable qualifiers:
\qquad constant \qquad float my_constant_array[32];
__shared__ float my_shared_array[32];
Execution configuration:

```
dim3 grid_dim(100, 50); // 5000 thread blocks
dim3 block_dim(4, 8, 8); // 256 threads per block
my_kernel <<< grid_dim, block_dim >>> (...); // Launch kernel
```

Built-in variables and functions valid in device code:

```
dim3 gridDim; // Grid dimension
dim3 blockDim; // Block dimension
dim3 blockIdx; // Block index
dim3 threadIdx; // Thread index
void __syncthreads() ; // Thread synchronization
```


Example: vector_addition

Device Code

```
// compute vector sum c = a + b
// each thread performs one pair-wise addition
    global__ void vector_add(float* A, float* B, float* C)
    {
        int i = threadIdx.x + blockDim.x * blockIdx.x;
        C[i] = A[i] + B[i];
}
```

int main()
\{
// elided initialization code
// Run N/256 blocks of 256 threads each
vector_add<<< N/256, 256>>>(d_A, d_B, d_C);
\}

Example: vector_addition

```
// compute vector sum c = a + b
// each thread performs one pair-wise addition
__global__ void vector_add(float* A, float* B, float* C)
{
        int i = threadIdx.x + blockDim.x * blockIdx.x;
        C[i] = A[i] + B[i];
}
int main()
{
    // elided initialization code
    // launch N/256 blocks of 256 threads each
    vector_add<<< N/256, 256>>>(d_A, d_B, d_C);
}
```


Example: Initialization code for vector_addition

```
// allocate and initialize host (CPU) memory
float *h_A = ..., *h_B = ..;
// allocate device (GPU) memory
float *d A, *d B, *d C;
cudaMalloc( (void**) &d_A, N * sizeof(float));
cudaMalloc( (void**) &d_B, N * sizeof(float));
cudaMalloc( (void**) &d_C, N * sizeof(float));
```

// copy host memory to device cudaMemcpy (d A, h A, N * sizeof(float), cudaMemcpyHostTōevice));
cudaMemcpy (d_B, h_B, N * sizeof(float), cudaMemcpyHostToDevice));
// launch N/256 blocks of 256 threads each vector_add<<<N/256, 256>>>(d_A, d_B, d_C);

Previous Projects from UIUC ECE 498AL

nVIDIA.

Application	Description	Source	Kernel	$\%$ time
H.264	SPEC '06 version, change in guess vector	34,811	194	35%
LBM	SPEC '06 version, change to single precision and print fewer reports	1,481	285	$>99 \%$
RC5-72	Distributed.net RC5-72 challenge client code	1,979	218	$>99 \%$
FEM	Finite element modeling, simulation of 3D graded materials	1,874	146	99%
RPES	Rye Polynomial Equation Solver, quantum chem, 2-electron repulsion	1,104	281	99%
PNS	Petri Net simulation of a distributed system 322	160	$>99 \%$	
SAXPY	Single-precision implementation of saxpy, used in Linpack's Gaussian elim. routine	952	31	$>99 \%$
TPACF	Two Point Angular Correlation Function	536	98	96%
FDTD	Finite-Difference Time Domain analysis of 2D electromagnetic wave propagation	1,365	93	16%
MRI-Q	Computing a matrix Q, a scanner's configuration in MRI reconstruction	490	33	$>99 \%$

Speedup of Applications

GeForce 8800 GTX vs. 2.2GHz Opteron 248
-10x speedup in a kernel is typical, as long as the kernel can occupy enough parallel threads
25x to $400 \times$ speedup if the function's data requirements and control flow suit the GPU and the application is optimized

Final Thoughts

- Parallel hardware is here to stay
- GPUs are massively parallel manycore processors
- easily available and fully programmable
- Parallelism \& scalability are crucial for success
- This presents many important research challenges
- not to speak of the educational challenges

Machine Problem 0

- Work through tutorial codes
- hello_world.cu
- cuda_memory_model.cu
- global_functions.cu
- device_functions.cu
- vector_addition.cu

