CS 193G

Lecture 7: Parallel Patterns Il

Overview

4 Segmented Scan
® Sort

4 Mapreduce

® Kernel Fusion

SEGMENTED SCAN

Segmented Scan

® What it is:

® scan + Barriers/Flags associated with certain
positions in the input arrays

® Operations don’t propagate beyond barriers

® Do many scans at once, no matter their size

Image taken from
“Efficient parallel
scan algorithms
for GPUs” by S.
Sengupta, M.
Harris, and M.
Garland

Segmented Scan

__global wvoid segscan(int * data,
int * flags)

shared int s data[BL SIZE];
~_shared int s flags[BL SIZE];

int 1dx = threadIdx.x + blockDim.x
* blockIdx.x;

// copy block of data into shared

// memory
s data[idx] = ..; s flags[idx] = ..;
syncthreads () ;

Segmented Scan

// choose whether to propagate
s data[idx] = s flags[idx] ?
s data[idx]
s data[idx - 1] + s data[idx];

// create merged flag
s flags[idx] =
s flags[idx - 1] | s flags[idx];

// repeat for different strides

Segmented Scan

® Doing lots of reductions of unpredictable
size at the same time Is the most common
use

® Think of doing sums/max/count/any over
arbitrary sub-domains of your data

Segmented Scan

® common Usage Scenarios:

® Determine which region/tree/group/object class
an element belongs to and assign that as its
new ID

® Sort based on that ID

® Operate on all of the
regions/trees/groups/objects in parallel, no
matter what their size or number

Segmented Scan

® Also useful for iImplementing divide-and-
conquer type algorithms
® Quicksort and similar algorithms

SORT

Sort

® Useful for almost everything

4 Optimized versions for the GPU already
exist

® Sorted lists can be processed by segmented
scan

® Sort data to restore memory and execution
coherence

Sort

4 binning and sorting can often be used
Interchangeably

® Sortis standard, but can be suboptimal

® Binning is usually custom, has to be
optimized, can be faster

Sort

® Radixsort is faster than comparison-based
sorts

®f you can generate a fixed-size key for the
attribute you want to sort on, you get better
performance

MAPREDUCE

Mapreduce

® o concept from functional progamming

4 Repopularized by Google as parallel
computing pattern

® Ccombination of sort and reduction (scan)

Mapreduce

Intermediate | kl:vkl:vk2:v

kd:v k3:v

Grouped

[[Gmup by Key]J

l

kl:v,v,v,v

| k3iv,v

kd:v,v,v

ééé

Image taken from Jeff Dean’s presentation at
http://labs.google.com/papers/mapreduce-osdiO4-
slides/index-auto-0007.html

Mapreduce: Map Phase

4 Map a function over a domain
® Function is provided by the user

® Function can be anything which produces a
(key, value) pair

® value can just be a pointer to arbitrary
datastructure

Mapreduce: Sort Phase

® Al the (key,value) pairs are sorted based on
their keys

® Happens implicitly
® Creates runs of (k,v) pairs with same key

® User usually has no control over sort
function

Mapreduce: Reduce Phase

® Reduce function is provided by the user
® canbe simple plus, max,...

® Library makes sure that values from one key
don’t propagate to another (segscan)

® Final result is a list of keys and final values
(or arbitrary datastructures)

KERNEL FUSION

Kernel Fusion

® combine kernels with simple producer-
>consumer dataflow

® combine generic data movement kernel with
specific operator function

® save memory bandwidth by not writing out
Intermediate results to global memory

Separate Kernels

~_global wvoid is _even(int * in, int
* out)

int 1 = ..
out[i] = ((in[1] % 2) = 0) ? 1: O;
}

~_global void scan((..)

{

Fused Kernel

~_global void fused even scan(int *
in, int * out, ..)

{

int 1 =
int flag = ((in[i] % 2) == 0) ? 1:
0;

// your scan code here, using the
flag directly

Kernel Fusion

® Best when the pattern looks like

output[i] = g(f(input[i]))

® Any simple one-to-one mapping will work

Fused Kernel

template <class F>

__global wvoid opt stencil(float *
in, float * out, F f£f)

{ // your 2D stencil code here
for (i,)
{
partial = f (partial,in|[..],1i,3):
}

float result = partial;

Fused Kernel

class boxfilter
{ private:
table[3][3];
boxfilter (float input[3][3])
public:
float operator () (float a, float b,
int i, int j)
{
return a + b*table[1i][]];

Fused Kernel

class maxfilter

{ public:
float operator () (float a, float b,
int i, int j)
{

return max(a,b) ;

Questions?

Backup Slides

Example Segmented Scan

int data[10] ={1,1,1,1,1,1,1,1,1, 1};
int flags[10] ={0,0,0,1,0, 1, 1,0, 0, 0};

int step1[10] ={1, 2,1, 1,1, 1,1, 2,1, 2};
int flg1[10] ={0,0,0,1,0, 1,1, 1,0, 0};

int step2[10] ={1,2,1, 1,1,1,1, 2,1, 2};
int flg2[10] ={0,0,0,1,0,1,1, 1,0, 0};

Example Segmented Scan

int step2[10] ={1,2,1, 1,1,1,1, 2,1, 2};
int flg2[10] ={0,0,0,1,0,1,1, 1,0, 0};

int result[10] ={1,2,3, 1,2, 1, 1, 2, 3, 4};

