
CS 193G

Lecture 7: Parallel Patterns II

Overview

Segmented Scan

Sort

Mapreduce

Kernel Fusion

SEGMENTED SCAN

Segmented Scan

What it is:

Scan + Barriers/Flags associated with certain

positions in the input arrays

Operations don’t propagate beyond barriers

Do many scans at once, no matter their size

Image taken from

“Efficient parallel

scan algorithms

for GPUs” by S.

Sengupta, M.

Harris, and M.

Garland

Segmented Scan

__global__ void segscan(int * data,

int * flags)

{

__shared__ int s_data[BL_SIZE];

__shared__ int s_flags[BL_SIZE];

int idx = threadIdx.x + blockDim.x

* blockIdx.x;

// copy block of data into shared

// memory

s_data[idx] = …; s_flags[idx] = …;

__syncthreads();

Segmented Scan

…

// choose whether to propagate

s_data[idx] = s_flags[idx] ?

s_data[idx] :

s_data[idx - 1] + s_data[idx];

// create merged flag

s_flags[idx] =

s_flags[idx - 1] | s_flags[idx];

// repeat for different strides

}

Segmented Scan

Doing lots of reductions of unpredictable

size at the same time is the most common

use

Think of doing sums/max/count/any over

arbitrary sub-domains of your data

Segmented Scan

Common Usage Scenarios:

Determine which region/tree/group/object class

an element belongs to and assign that as its

new ID

Sort based on that ID

Operate on all of the

regions/trees/groups/objects in parallel, no

matter what their size or number

Segmented Scan

Also useful for implementing divide-and-

conquer type algorithms

Quicksort and similar algorithms

SORT

Sort

Useful for almost everything

Optimized versions for the GPU already

exist

Sorted lists can be processed by segmented

scan

Sort data to restore memory and execution

coherence

Sort

binning and sorting can often be used

interchangeably

Sort is standard, but can be suboptimal

Binning is usually custom, has to be

optimized, can be faster

Sort

Radixsort is faster than comparison-based

sorts

If you can generate a fixed-size key for the

attribute you want to sort on, you get better

performance

MAPREDUCE

Mapreduce

Old concept from functional progamming

Repopularized by Google as parallel

computing pattern

Combination of sort and reduction (scan)

Mapreduce

Image taken from Jeff Dean’s presentation at

http://labs.google.com/papers/mapreduce-osdi04-

slides/index-auto-0007.html

Mapreduce: Map Phase

Map a function over a domain

Function is provided by the user

Function can be anything which produces a

(key, value) pair

Value can just be a pointer to arbitrary

datastructure

Mapreduce: Sort Phase

All the (key,value) pairs are sorted based on

their keys

Happens implicitly

Creates runs of (k,v) pairs with same key

User usually has no control over sort

function

Mapreduce: Reduce Phase

Reduce function is provided by the user

Can be simple plus, max,…

Library makes sure that values from one key

don’t propagate to another (segscan)

Final result is a list of keys and final values

(or arbitrary datastructures)

KERNEL FUSION

Kernel Fusion

Combine kernels with simple producer-

>consumer dataflow

Combine generic data movement kernel with

specific operator function

Save memory bandwidth by not writing out

intermediate results to global memory

Separate Kernels

__global__ void is_even(int * in, int

* out)

{

int i = …

out[i] = ((in[i] % 2) == 0) ? 1: 0;

}

__global__ void scan(…)

{

…

}

Fused Kernel

__global__ void fused_even_scan(int *

in, int * out, …)

{

int i = …

int flag = ((in[i] % 2) == 0) ? 1:

0;

// your scan code here, using the

flag directly

}

Kernel Fusion

Best when the pattern looks like

Any simple one-to-one mapping will work

output[i] = g(f(input[i]));

Fused Kernel

template <class F>

__global__ void opt_stencil(float *

in, float * out, F f)

{ // your 2D stencil code here

for(i,j)

{

partial = f(partial,in[…],i,j);

}

float result = partial;

}

Fused Kernel

class boxfilter

{ private:

table[3][3];

boxfilter(float input[3][3])

public:

float operator()(float a, float b,

int i, int j)

{

return a + b*table[i][j];

}

}

Fused Kernel

class maxfilter

{ public:

float operator()(float a, float b,

int i, int j)

{

return max(a,b);

}

}

Questions?

Backup Slides

Example Segmented Scan

int data[10] = {1, 1, 1, 1, 1, 1, 1, 1, 1, 1};

int flags[10] = {0, 0, 0, 1, 0, 1, 1, 0, 0, 0};

int step1[10] = {1, 2, 1, 1, 1, 1, 1, 2, 1, 2};

int flg1[10] = {0, 0, 0, 1, 0, 1, 1, 1, 0, 0};

int step2[10] = {1, 2, 1, 1, 1, 1, 1, 2, 1, 2};

int flg2[10] = {0, 0, 0, 1, 0, 1, 1, 1, 0, 0};

…

Example Segmented Scan

int step2[10] = {1, 2, 1, 1, 1, 1, 1, 2, 1, 2};

int flg2[10] = {0, 0, 0, 1, 0, 1, 1, 1, 0, 0};

…

int result[10] = {1, 2, 3, 1, 2, 1, 1, 2, 3, 4};

