
CS 193G

Lecture 2: GPU History & CUDA

Programming Basics

Outline of CUDA Basics

Basic Kernels and Execution on GPU

Basic Memory Management

Coordinating CPU and GPU Execution

See the Programming Guide for the full API

BASIC KERNELS AND

EXECUTION ON GPU

CUDA Programming Model

Parallel code (kernel) is launched and

executed on a device by many threads

Launches are hierarchical

Threads are grouped into blocks

Blocks are grouped into grids

Familiar serial code is written for a thread

Each thread is free to execute a unique code

path

Built-in thread and block ID variables

High Level View

S
M

E
M

S
M

E
M

S
M

E
M

S
M

E
M

Global Memory
CPU

Chipset

PCIe

Blocks of threads run on an SM

Thread

Memory

Threadblock

Per-block
Shared
Memory

S
M

E
M

Streaming Processor Streaming Multiprocessor

Registers

Memory

Whole grid runs on GPU

Many blocks of threads

. . .

S
M

E
M

S
M

E
M

S
M

E
M

S
M

E
M

Global Memory

Thread Hierarchy

Threads launched for a parallel section are

partitioned into thread blocks

Grid = all blocks for a given launch

Thread block is a group of threads that can:

Synchronize their execution

Communicate via shared memory

Memory Model

Kernel 0

. . .
Per-device

Global
Memory

. . .

Kernel 1

Sequential

Kernels

Memory Model

Device 0
memory

Device 1
memory

Host memory cudaMemcpy()

Example: Vector Addition Kernel

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// Run grid of N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Device Code

Example: Vector Addition Kernel

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}

int main()

{

// Run grid of N/256 blocks of 256 threads each

vecAdd<<< N/256, 256>>>(d_A, d_B, d_C);

}

Host Code

Example: Host code for vecAdd

// allocate and initialize host (CPU) memory

float *h_A = …, *h_B = …; *h_C = …(empty)

// allocate device (GPU) memory

float *d_A, *d_B, *d_C;

cudaMalloc((void**) &d_A, N * sizeof(float));

cudaMalloc((void**) &d_B, N * sizeof(float));

cudaMalloc((void**) &d_C, N * sizeof(float));

// copy host memory to device

cudaMemcpy(d_A, h_A, N * sizeof(float),
cudaMemcpyHostToDevice));

cudaMemcpy(d_B, h_B, N * sizeof(float),
cudaMemcpyHostToDevice));

// execute grid of N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

Example: Host code for vecAdd (2)

// execute grid of N/256 blocks of 256 threads each

vecAdd<<<N/256, 256>>>(d_A, d_B, d_C);

// copy result back to host memory

cudaMemcpy(h_C, d_C, N * sizeof(float),
cudaMemcpyDeviceToHost));

// do something with the result…

// free device (GPU) memory

cudaFree(d_A);

cudaFree(d_B);

cudaFree(d_C);

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = 7;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = blockIdx.x;

}

__global__ void kernel(int *a)

{

int idx = blockIdx.x*blockDim.x + threadIdx.x;

a[idx] = threadIdx.x;

}

Kernel Variations and Output

Output: 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

Output: 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3

Output: 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Code executed on GPU

C/C++ with some restrictions:
Can only access GPU memory

No variable number of arguments

No static variables

No recursion

No dynamic polymorphism

Must be declared with a qualifier:
__global__ : launched by CPU,

cannot be called from GPU must return void

__device__ : called from other GPU functions,

cannot be called by the CPU

__host__ : can be called by CPU

__host__ and __device__ qualifiers can be combined
sample use: overloading operators

Memory Spaces

CPU and GPU have separate memory

spaces

Data is moved across PCIe bus

Use functions to allocate/set/copy memory on

GPU
Very similar to corresponding C functions

Pointers are just addresses

Can’t tell from the pointer value whether the

address is on CPU or GPU

Must exercise care when dereferencing:
Dereferencing CPU pointer on GPU will likely crash

Same for vice versa

GPU Memory Allocation / Release

Host (CPU) manages device (GPU) memory:

cudaMalloc (void ** pointer, size_t nbytes)

cudaMemset (void * pointer, int value, size_t

count)

cudaFree (void* pointer)

int n = 1024;

int nbytes = 1024*sizeof(int);

int * d_a = 0;

cudaMalloc((void**)&d_a, nbytes);

cudaMemset(d_a, 0, nbytes);

cudaFree(d_a);

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);

returns after the copy is complete

blocks CPU thread until all bytes have been copied

doesn’t start copying until previous CUDA calls complete

enum cudaMemcpyKind

cudaMemcpyHostToDevice

cudaMemcpyDeviceToHost

cudaMemcpyDeviceToDevice

Non-blocking copies are also available

Code Walkthrough 1

// walkthrough1.cu

#include <stdio.h>

int main()

{

int dimx = 16;

int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

Code Walkthrough 1

// walkthrough1.cu

#include <stdio.h>

int main()

{

int dimx = 16;

int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);

cudaMalloc((void**)&d_a, num_bytes);

if(0==h_a || 0==d_a)

{

printf("couldn't allocate memory\n");

return 1;

}

Code Walkthrough 1

// walkthrough1.cu

#include <stdio.h>

int main()

{

int dimx = 16;

int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);

cudaMalloc((void**)&d_a, num_bytes);

if(0==h_a || 0==d_a)

{

printf("couldn't allocate memory\n");

return 1;

}

cudaMemset(d_a, 0, num_bytes);

cudaMemcpy(h_a, d_a, num_bytes,

cudaMemcpyDeviceToHost);

Code Walkthrough 1
// walkthrough1.cu

#include <stdio.h>

int main()

{

int dimx = 16;

int num_bytes = dimx*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);

cudaMalloc((void**)&d_a, num_bytes);

if(0==h_a || 0==d_a)

{

printf("couldn't allocate memory\n");

return 1;

}

cudaMemset(d_a, 0, num_bytes);

cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

for(int i=0; i<dimx; i++)

printf("%d ", h_a[i]);

printf("\n");

free(h_a);

cudaFree(d_a);

return 0;

}

Example: Shuffling Data

// Reorder values based on keys

// Each thread moves one element

__global__ void shuffle(int* prev_array, int*

new_array, int* indices)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

new_array[i] = prev_array[indices[i]];

}

int main()

{

// Run grid of N/256 blocks of 256 threads each

shuffle<<< N/256, 256>>>(d_old, d_new, d_ind);

}

Host Code

IDs and Dimensions

Threads:

3D IDs, unique within a block

Blocks:

2D IDs, unique within a grid

Dimensions set at launch

Can be unique for each grid

Built-in variables:

threadIdx, blockIdx

blockDim, gridDim

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

__global__ void kernel(int *a, int dimx, int dimy)

{

int ix = blockIdx.x*blockDim.x + threadIdx.x;

int iy = blockIdx.y*blockDim.y + threadIdx.y;

int idx = iy*dimx + ix;

a[idx] = a[idx]+1;

}

Kernel with 2D Indexing

int main()

{

int dimx = 16;

int dimy = 16;

int num_bytes = dimx*dimy*sizeof(int);

int *d_a=0, *h_a=0; // device and host pointers

h_a = (int*)malloc(num_bytes);

cudaMalloc((void**)&d_a, num_bytes);

if(0==h_a || 0==d_a)

{

printf("couldn't allocate memory\n");

return 1;

}

cudaMemset(d_a, 0, num_bytes);

dim3 grid, block;

block.x = 4;

block.y = 4;

grid.x = dimx / block.x;

grid.y = dimy / block.y;

kernel<<<grid, block>>>(d_a, dimx, dimy);

cudaMemcpy(h_a, d_a, num_bytes, cudaMemcpyDeviceToHost);

for(int row=0; row<dimy; row++)

{

for(int col=0; col<dimx; col++)

printf("%d ", h_a[row*dimx+col]);

printf("\n");

}

free(h_a);

cudaFree(d_a);

return 0;

}

__global__ void kernel(int *a, int dimx, int dimy)

{

int ix = blockIdx.x*blockDim.x + threadIdx.x;

int iy = blockIdx.y*blockDim.y + threadIdx.y;

int idx = iy*dimx + ix;

a[idx] = a[idx]+1;

}

Blocks must be independent

Any possible interleaving of blocks should

be valid

presumed to run to completion without pre-

emption

can run in any order

can run concurrently OR sequentially

Blocks may coordinate but not synchronize

shared queue pointer: OK

shared lock: BAD … can easily deadlock

Independence requirement gives scalability

Questions?

CS 193G

History of GPUs

Graphics in a Nutshell

Make great images

intricate shapes

complex optical

effects

seamless motion

Make them fast

invent clever

techniques

use every trick

imaginable

build monster

hardware
Eugene d’Eon, David Luebke, Eric Enderton

In Proc. EGSR 2007 and GPU Gems 3

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

Vertex Transform & Lighting

Triangle Setup & Rasterization

Texturing & Pixel Shading

Depth Test & Blending

Framebuffer

The Graphics Pipeline

Key abstraction of real-time

graphics

Hardware used to look like this

One chip/board per stage

Fixed data flow through

pipeline

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

Everything fixed function, with

a certain number of modes

Number of modes for each

stage grew over time

Hard to optimize HW

Developers always wanted

more flexibility

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

Remains a key abstraction

Hardware used to look like this

Vertex & pixel processing

became programmable, new

stages added

GPU architecture increasingly

centers around shader

execution

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

The Graphics Pipeline

Exposing a (at first limited)

instruction set for some stages

Limited instructions &

instruction types and no

control flow at first

Expanded to full ISA

Vertex

Rasterize

Pixel

Test & Blend

Framebuffer

Why GPUs scale so nicely

Workload and Programming Model provide

lots of parallelism

Applications provide large groups of

vertices at once

Vertices can be processed in parallel

Apply same transform to all vertices

Triangles contain many pixels

Pixels from a triangle can be processed in

parallel

Apply same shader to all pixels

Very efficient hardware to hide serialization

bottlenecks

With Moore’s Law…

Raster

Vertex

Pixel

Blend

R
a
s
te

r

Vertex

Pixel 0

B
le

n
d

Pixel 1

Pixel 2

Pixel 3

Vrtx 0

V
rt

x
2

V
rt

x
1

More Efficiency

Note that we do the same thing for lots of

pixels/vertices

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU

Control

ALU ALU ALU

Control

ALU ALU ALU

A warp = 32 threads launched together

Usually, execute together as well

Early GPGPU

All this performance attracted developers

To use GPUs, re-expressed their algorithms

as graphics computations

Very tedious, limited usability

Still had some very nice results

This was the lead up to CUDA

Questions?

