
NVIDIA Research

Parallel Sorting

Michael Garland

© 2010 NVIDIA Corporation

Problem Overview

Given a sequence of n integers, called keys

A = [8 4 3 9 0 9 7]

Place keys in output in non-decreasing order

sorted(A) = [0 3 4 7 8 9 9]

Optionally with equal values in their original order

“stable” sorts provide this; “unstable” sorts do not

© 2010 NVIDIA Corporation

Why Sorting?

Put data in order

Make searching easier

Build data structures in parallel

… and many others

© 2010 NVIDIA Corporation

Some assumptions for today

Keys are integers of fixed length (e.g., 32 bits)

Keys are not part of larger records

Sequences reside entirely in main memory

“Main memory” of the processor we’re using

in CPU memory for CPU sorts

in GPU memory for GPU sorts

© 2010 NVIDIA Corporation

Sorting problems we won’t discuss

External memory sorting

data doesn’t fit in memory all at once

Distributed sorting

data resides in physically separate memories

Long and/or variable length keys

can significantly change performance trade offs

Among others …

© 2010 NVIDIA Corporation

How do we sort?

© 2010 NVIDIA Corporation

Some simple sorts

Selection
remove the smallest key of the input

append at the end of the output

repeat

Insertion
remove the next key of the input

insert into the output in sorted order

repeat

Transposition
find pair where A[i]>A[i+1] and swap them

repeat until there are none

Parallel

(potentially)

Sequential

(mostly)

© 2010 NVIDIA Corporation

Odd-Even Transposition Sort

Parallelizing transposition sort:

assign 1 thread to each element

use odd/even phases to prevent contention

while A is not sorted:

if is_odd(i) and (A[i+1] < A[i])
swap(A[i], A[i+1])

barrier

if is_even(i) and (A[i+1] < A[i])
swap(A[i], A[i+1])

barrier

requires at most n/2 iterations

© 2010 NVIDIA Corporation

Counting Sort

Step 1: Count elements sorting to left of A[i]

Step 2: Scatter to position in sorted order

rank[i] = count(j<i where A[j] ≤ A[i])
+ count(j>i where A[j] < A[i])

permute(A[i] -> A[rank[i]])

A[i] · · ·· · ·

A[i] A[j] < A[i]A[j] ≤ A[i]

© 2010 NVIDIA Corporation

Counting Sort (alternate)

Step 1: Count places that A[i] needs to move

Step 2: Scatter to position in sorted order

offset[i] = count(j<i where A[j] > A[i])
- count(j>i where A[j] < A[i])

permute(A[i] -> A[i-offset[i]])

A[i] · · ·· · ·

A[i] A[j] < A[i]A[j] > A[i]

© 2010 NVIDIA Corporation

Binary Counting Sort

If A[i] is 0:

If A[i] is 1:

And scatter:

offset[i] = count(j<i where A[j] == 1)

A[i]count ones before

offset[i] = -count(j>i where A[j] == 0)

A[i] count zeros after

permute(A[i] -> A[i-offset[i]])

© 2010 NVIDIA Corporation

A Simple Radix Sort

Apply binary counting sort to each bit of the keys, from LSB to MSB

def radix_sort(A, msb=32):

def delta(flag, ones_before, zeros_after):
if flag==0: return -ones_before
else: return +zeros_after

lsb = 0

while lsb<msb:

flags = [(x>>lsb)&1 for x in A]
ones = scan(plus, flags)
zeros = rscan(plus, [f^1 for f in flags])

offsets = map(delta, flags, ones, zeros)
A = permute_with_offsets(A, offsets)

lsb = lsb+1

return A

© 2010 NVIDIA Corporation

Is this efficient?

Apply binary counting sort to each bit of the keys, from LSB to MSB

def radix_sort(A, msb=32):

def delta(flag, ones_before, zeros_after):
if flag==0: return -ones_before
else: return +zeros_after

lsb = 0

while lsb<msb:

flags = [(x>>lsb)&1 for x in A]
ones = scan(plus, flags)
zeros = rscan(plus, [f^1 for f in flags])

offsets = map(delta, flags, ones, zeros)
A = permute_with_offsets(A, offsets)

lsb = lsb+1

return A

© 2010 NVIDIA Corporation

Radix Sort

Apply counting sort to successive digits of keys

Performs d scatter steps for d-digit keys

Scattering in memory is fundamentally costly

© 2010 NVIDIA Corporation

Parallel Radix Sort

Assign tile of data to each block (1024 elements)

Build per-block histograms of current digit (4 bit)

Combine per-block histograms (P x 16)

Scatter

cf. Satish et al., Designing efficient sorting algorithms for manycore GPUs, IPDPS 2009.

© 2010 NVIDIA Corporation

Per-Block Histograms

Perform b parallel splits for b-bit digit

Each split is just a prefix sum of bits

each thread counts 1 bits to its left

Write bucket counts & partially sorted tile

sorting tile improves scatter coherence later

© 2010 NVIDIA Corporation

Combining Histograms

Write per-block counts in column major order & scan

0 1 15

0

1

p-1

cf. Zagha & Blelloch, Radix sort for vector multiprocessors, SC’91.

B
lo

c
k

s

Digit
2 3

© 2010 NVIDIA Corporation

Radix Sorting Rate (pairs/sec)

-

20

40

60

80

100

120

140

160

1,000 10,000 100,000 1,000,000 10,000,000

M
il

li
o

n
s

Sequence Size (key-value pairs)

GTX 280

9800 GTX+

8800 Ultra

8800 GT

8600 GTS

© 2010 NVIDIA Corporation

Merge Sort

Divide input array into 256-element tiles

Sort each tile independently

Produce sorted output with tree of merges

sort sort sort sort sort sortsort sort

merge merge mergemerge

merge merge

merge

© 2010 NVIDIA Corporation

Merge Sorting Rate

-

10

20

30

40

50

60

1,000 10,000 100,000 1,000,000 10,000,000

S
o

rt
in

g
 R

a
te

 (
p

a
ir

s
/s

e
c
)

M
il

li
o

n
s

Sequence Size (key-value pairs)

GTX 280

9800 GTX+

8800 Ultra

8800 GT

8600 GTS

© 2010 NVIDIA Corporation

Some other techniques

Quicksort / Sample Sort

partition keys into non-overlapping ranges

sort each range individually

Sorting networks

fixed network of comparison operators

e.g., bitonic sort, odd-even merge sort

© 2010 NVIDIA Corporation

Questions?

mgarland@nvidia.com

© 2010 NVIDIA Corporation

Odd-Even Merge Sort

template<typename T, typename Cmp>

__device__ void oddeven_sort(T *keys, int i, int n, Cmp lt)

{

for(unsigned int p=n/2; p>0; p/=2) {

unsigned int q=n/2, r=0, d=p;

while(q>=p) {

if(i<(n-d) && (i&p)==r) {

unsigned int j = i+d;

T xi = keys[i], xj = keys[j];

if(lt(xj,xi)) {

keys[i] = xj;

keys[j] = xi;

}

}

d = q-p; q = q/2; r = p;

__syncthreads();

}

}

}

Algorithm M, Section 5.2.2

The Art of Computer Programming, Vol 3

D. E. Knuth

