Michael C. Shebanow

Principal Research Scientist,
NV Research
mshebanow@nvidia.com

<A NVIDIA.

NVIDIA,

Fermi GF100
% Overview

Fermi GF100 GPU @

nvibDiAa

| Host Interface |
o [OC BT UL S
gerfod o fus
!“lll' | . — —
i §
g :
£ <
o
g g
4 2
] 2
: :
2 8
: ;
£ [)) o 3
£ <
o
S g
3 :
{5 [o e [s o s | (M
¢ 0
2 3
I
]
_. L
[|] I.I
(1] 1H
T
& (111 H H
3 T 5
£ TTTH 3
: HH-H| g
E] 0 =)
£ — T 0
I =
e 0
g

© NVIDIA 2010 3

Comparing Fermi with GT200 & G80 <3

NVIDIA.

3.0 billion

512

256 FMA ops /clock

512 FMA ops /clock

4

2

Configurable 48 KB
or 16 KB
Configurable 16 KB
or 48 KB
768 KB

Yes

Up to 16

64-bit

© NVIDIA 2010 4

Soul of Fermi <X

NVIDIA
® Expand performance | e |
sweet spot of the GPU]]
* Caching ========|c=======||
annn llll llll llll ([] llll llll llll i

® Concurrent kernels

* FP64 PP | R

Memory Controller

® Bring more users, i j |
more applications to
the GPU

* C++

Memory Col
49]j043u0D Asowsw

® Visual Studio § ||| mmnn: IIIIE IIIIE nnnnil|| nnnn: IIIIE IIIIE IIIIE :
Integration :
¢ ECC

Memory C
|I| LI) L)

© NVIDIA 2010 5

Fermi Focus Areas <X
nviDia

Host Interface

® Improved peak
performance

]
[
[
[]
|
[]
[
-
|
[]
[
-
|
[]
[
-
|
[[I]
(I
[|
|
[]
[
-
|
[
[]
-
|
[
[]
-
110. 0D Aiowsw

Memory Controller

* Improved efficiency T ::::; ::::; ::::5 = ::::5 ::::5 ::::5

throughput

® Broader applicability

Memory Controller
43]1013u0D Asowaw

® Full integration within |y e e | e) g) —
modern software [

development environment

]
[
[
[]
[
[]
[
[|
[
[]
[
[|
[
[]
[
[|
[
[]
[
[|
[
[]
[
[|
[
[
[]
[|
[
[
[]
[|
3])0. 0D Aiowaw

Memory Col ollel
[]
[
[
[]
[
[|
[
-
[
[|
[
-
[
[|
[
-

L)
[
[|
[
[|
[
[|
[
-
[
[
[|
[|
.-
[
[
[|
-

© NVIDIA 2010 6

GeForce GTX 480 GeForce GTX 470 <3

1536MB / 384-bit

NVIDIA.

1280MB / 320-bit

lekmiery GDDRS5

Cores 480

Gfx / Proc / Mem

Clock MHz

Power

Connectors

Power

SLI

Length 10.5 inches

Thermal Dual Slot Fansink
DL-DVI

Outputs DL-DVI
mini-HDMI

© NVIDIA 2010

Hgiigry GDDR5
Cores 448
Gfx / Proc / Mem
Clock
Power
Connectors
Power
SLI
Length
Thermal
DL-DVI
Outputs DL-DVI
mini-HDMI

Improving Geometric Realism: Tessellation @2
nviDIA

State of the Art in Games State of the Art in Film

@& ST TN — Ty

© Disgey Ente a
ﬂights reserved tesy Industrial Light &

Al

© NVIDIA 2010 8

lon?

Tessellat

WHEIRES

nvibia

© NVIDIA 2010

Tessellation Applications <3

NVIDIA.

Hair: 18,000 hair strands
(~4x vs. prior demos)

Realistic water: Up to 1.6e9 triangles/sec

© NVIDIA 2010 10

Tessellation Off/On <X

NVIDIA.

© NVIDIA 2010 11

Much Better Compute

* Programmability

.

.

C++ Support

Exceptions/Debug
support

® Performance

0

.

.

.

.

Dual issue SMs

L1 cache

Larger Shared

Much better DP math

Much better atomic
support

* Reliability: ECC

© NVIDIA 2010

>

nvibia

L1 Texture 12 KB 12 KB Fast texture
Cache (per filtering
quad)
Dedicated 16 or 48 KB Efficient
L1 LD/ST physics and
Cache ray tracing
Total 16KB 16 or 48 KB | More data reuse
Shared among threads
Memory
L2 Cache 256KB 768 KB Greater texture
(TEX read (all clients coverage,
only) read/write) | robust compute
performance
Double 30 256 Much higher
Precision | FMAs/clock | FMAs/clock | throughputs for
Throughput Scientific codes

12

NVIDIA,

Fermi SM
Architecture

Fermi SM <X

nNVIDIA

2

® Objective — DX11 support
* Polymorph engine
® Objective — Optimize for

‘.|I
‘III

- HEEE =

GF:U computing ----=I
New ISA —

® Revamp issue / control flow ‘ | ----=I
* New CUDA core architecture Y E—— ----=

® 32cores per SM | ----=I
(512 cores total) ----=

® 64KB configurable E ; ----=I
L1$ / shared memory EEsslesns HEEE =

ex ex

FP32 FP64 INT SFU LD/ST
Ops / clk 32 16 32 4 16

© NVIDIA 2010 14

CUDA Core Architecture <X

nvibDiAa

® Decoupled FP32 and integer
execution datapaths

® Double precision throughput
Increased: now 50% of single
precision peak

® Integer operations optimized
for extended precision

* 64 bit and wider data element
Slze

® Predication field for all

Instructions

® Fused multiply add FP
datapath

© NVIDIA 2010 15

IEEE 754-2008 Floating Point <X

NVIDIA

)

IEEE 754-2008 results

® 64-bit double precision
® 32-bit single precision A
* Rounding, subnormals
® NaNs, +/- Infinity
IEEE 754-2008 rounding: +
nearest even, zero, +inf, -inf

Full-speed subnormal operands

Multiply-Add (MAD): D =A*B + C;
B

)
I : I :

L)

and subnormal results Fused Multiply-Add (FMA): D = A*B + C;
* IEEE 754-2008 Fused Multiply-Add -
(FMA)
* D=A*B +C; = Product

®* No loss of precision
* |EEE divide & sqgrt use FMA

© NVIDIA 2010 16

Instruction Set Architecture <X
nviDia

w
2

«|I
«II

¢ Enables C++ : virtual
functions, new/delete,
try/catch

® Unified load/store addressing

® 64-bit addressing for large
problems

® Optimized for CUDA C,
OpenCL & Direct Compute
* Native (x,y)-based LD/ST

operations with format
conversion

® Enables system call

functionality — stdio.h, etc. L o —

‘Atr.ribur.e Setup ‘ Stream Output

© NVIDIA 2010 17

Multiple Memory Scopes

O

Per-thread private memory

.

Each thread has its own
local memory

Stacks, other private data

g

® Per-thread-block shared
memory

.

Small memory close to the
processor, low latency

Allocated per thread block

0

®

Main memory

¢ GPU frame buffer

® Can be accessed by any
thread in any thread block

© NVIDIA 2010

>

nvinDia
Thread
Per-thread
Local Memory
Block
Per-block
Shared
Memory
EEE = | =
=N E =

18

Unified Load/Store Addressing <3

NVIDIA.

Non-unified Address Space

*p_local

*

*p_shared

o

* _ -
*p_global 32-bit

Unified Address Space

0 f

40-bit

© NVIDIA 2010 19

Atomic Operations f\‘%A
(Read / Modify / Writes)

® Fast inter-block, thread-safe communication
& Significantly more efficient chip-wide synchronization
® Much faster parallel aggregation

* Faster ray tracing, histogram computation, clustering and pattern
recognition, face recognition, speech recognition, BLAS, etc

® Accelerated by cached memory hierarchy

® Fermi increases atomic performance by 5x to 20x

© NVIDIA 2010 20

ECC <3

nvibia

® All major internal memories are ECC protected
* Regqister file, L1 cache, L2 cache

® DRAM protected by ECC

® ECC supported for GDDR5 as well as SDDR3 memory
configurations

® ECCis amust have for many computing applications
® Clear customer feedback

© NVIDIA 2010 21

SM Operational Block Diagram <3

NVIDIA

Fermi Dual Issue

Y Y

SFUs (x4) LD/ST Units (x16)

Y
 cwaceres i)
P - HHHH

II Z
@)
<
w — —

IADD

© NVIDIA 2010 22

Instruction Issue and Control Flow <X
nviDia

® Decoupleinternal execution resources

* Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

® Dual issue pipelines select two warps to issue

time

-

© NVIDIA 2010 23

Caches

Configurable L1 cache per SM

16KB L1$/ 48KB Shared
Memory

48KB L1$ / 16KB Shared
Memory

¢ Shared 768KB L2 cache

* Compute motivation:

© NVIDIA 2010

Caching captures locality,
amplifies bandwidth
Caching more effective than
Shared Memory RAM for

irregular or unpredictable
access

¢ Ray tracing, sparse matrix
multiply, physics kernels ...

Caching helps latency sensitive

cases

>

nvibia

Tesla Memory Hiearchy Fermi Memory Hiearchy

Cache Usage: Graphics <X

nvibia

¢ Data stays on die

Chip A

® L1 cache
® Register spilling
® Stack ops
® Global LD/ST

DRAM

® L2 Cache
® Vertex, SM, Texture and ROP Data

© NVIDIA 2010 25

NVIDIA,

Fermi Application
Tuning

GPU Computing Key Concepts

® Hardware (HW) thread management
® HW thread launch and monitoring
® HW thread switching
* Tens of thousands of lightweight, concurrent threads
¢ Real threads: PC, private registers, ...

® SIMT execution model
® Multiple memory scopes
* Per-thread private memory

® Per-thread-block shared memory
® Global memory

® Using threads to hide memory latency
® Coarse grain thread synchronization

© NVIDIA 2010

>

nvibia

27

SM Limiter Theory Block Diagram

=

nvibDiAa

L
L3

Single Multi-
Instruction Threaded
(Sh) (MT)

© NVIDIA 2010

28

Limiter Theory <3

nvibia

»

SM a form of queuing system

L)

Use “limiter theory” to predict
SM performance

® Supply vs. Demand

»

There are three types of limits
on the performance of the SM:
* Bandwidth resource limiters

* Per-thread-block space
limiters

® Per-thread space limiters S = o

® The most constraining limiter
Is called the critical limiter

* =min(all limiters)

© NVIDIA 2010 29

Bandwidth Limiters <X

nNVIDIA

® Thread blocks arrive at some rate A

e Threads composed of some distribution of operations (FMUL, FADD, LD, etc.)
® Each arriving thread block of S threads contributes to a distribution of operations to be performed

e Per operation type, the offered load, or BW “demand”, is the product of:

® Thread block arrival rate A
L # of threads S in a block
® Operation count N, in each thread

* BW “supply” A,,

® Throughput availa ratio,

L BW limiter equation:

(Arg X S X Ngp)[S|Agp

= [Are S Ay /(S X Np)

// Compute vector sum C = A+B
// Each thread performs one pair-wise addition
__global _ void vecAdd(float* A, float* B, float* C)
{
int i = threadIdx.x + blockDim.x * blockIdx.x;
C[i] = A[i] + B[i];

FADD IADD IMUL LOAD STORE

© NVIDIA 2010 30

Space Limiters

® SM also has space resources.
Examples:

-«

-«

Finite limit on warp count

Finite limit on register file
space

Finite limit on shared memory
size

® Spaceresources:

-«

Allocated on thread block
launch

Deallocated on thread block
completion

Consumption computed using
Little’s Law

® Thread Latency (L)

-«

-«

© NVIDIA 2010

Complex computation
Varies with memory behavior

Little’s Law:
N=AL
N = number “in flight”

A = arrival rate (throughput)
L = service latency

Inverted:

AsSN/L

<3

nvibia

31

Implications of Limiter Theory <3

NVIDIA

»

Limiter theory assumes uniform workloads
* Breaks down if “traffic jam” behavior
® Limiter theory is an ok 1st order approximation

»

Kernel code has to pay careful attention to operation “mix”
¢ Math-to-memory operation ratios for example
* Do not want to bottleneck on one function unit leaving other units idling
® Ideal: all units equally critical

»

Don’t “traffic jam” kernel code

® Making thread blocks too large so that only a few execute on the SM at a time
a bad idea

“Bunching” operations of a similar type in one section of a kernel will
aggravate the problem

Ideal: lots of small thread blocks with uniform distribution of operation
densities

»

»

»

Focus on Space resource consumption
® Ideal: use as few resources necessary to “load the SM”

© NVIDIA 2010 32

Hiding LD Latency <3

nvibia

® Principle:
* Little’s Law again:
® N = “number in flight”
& A=arrival rate
* L =memory latency

Arrival Rate product of:

® Desired execution rate
(IPC)

* Density of LOAD
instructions (%)

® N =# of threads needed to
cover latency L

Time

© NVIDIA 2010 33

Hiding LOAD Latency w/ Fewer <X

nvibDiA
Threads
s . // batch size 3 example
Use batching float *d A, *d B, *d C;
® Group independent LDs |fleat a, b, ¢, result,
together a=*dA; b=*dB; c =*dC;
g result = a * b + ¢c;
* Modified law:
AL ¢ The values ‘a’, ‘b’, and ‘c’ are
N=——- loaded independently before being
B used
® B =Dbatch size ® Implication is that we can execute 3
loads from one thread before the
first use (‘a’ in this case) causes a
stall

© NVIDIA 2010 34

Final Performance Tuning Thoughts <&

NVIDIA

® Threads are free

* A common mistake in GPU Computing kernels is to make threads
do too much

Keep them short, sweet , & balanced
* Example: one thread per vector element

HW provides LOTs of them (10s of thousands)
HW launch => near zero overhead to create them
HW context switching => near zero overhead scheduling

»

»

»

»

® Barriers are cheap
® Single instruction
* HW synchronization of thread blocks
¢ Partition kernel code into producer-consumer
* DON’T use spin locks!

® Partition on results, not sources

© NVIDIA 2010 35

Thank Yoi

