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Fermi GF100 

Overview



© NVIDIA 2010 3

Fermi GF100 GPU
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Comparing Fermi with GT200 & G80

GPU G80 GT200 GF100

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops / clock 512 FMA ops /clock

Special Function Units / SM 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB 

or 16 KB

L1 Cache (per SM) None None Configurable 16 KB 

or 48 KB

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit
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Soul of Fermi

Expand performance 

sweet spot of the GPU

Caching

Concurrent kernels

FP64

Bring more users, 

more applications to 

the GPU

C++

Visual Studio 

Integration

ECC
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Fermi Focus Areas

Improved peak 

performance

Improved efficiency 

throughput

Broader applicability

Full integration within 

modern software 

development environment
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GeForce GTX 480

Memory
1536MB / 384-bit 

GDDR5

Cores 480

Gfx / Proc / Mem

Clock

700 / 1401 / 1848 

MHz

Power 

Connectors
6-pin + 8-pin

Power 250W

SLI 3-way

Length 10.5 inches

Thermal Dual Slot Fansink

Outputs

DL-DVI 

DL-DVI 

mini-HDMI

Memory
1280MB / 320-bit 

GDDR5

Cores 448

Gfx / Proc / Mem

Clock

607 / 1215 / 1674 

MHz

Power 

Connectors
2x 6-pin

Power 215W

SLI 3-way

Length 9.5 inches

Thermal Dual Slot Fansink

Outputs

DL-DVI 

DL-DVI

mini-HDMI

GeForce GTX 470
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Improving Geometric Realism: Tessellation

© Disney Enterprises, Inc. and Jerry Bruckheimer, Inc.
All rights reserved. Image courtesy Industrial Light & Magic.

State of the Art in Games State of the Art in Film
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What is Tessellation?
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Tessellation Applications

Realistic water: Up to 1.6e9 triangles/sec
Hair: 18,000 hair strands

(~4x vs. prior demos)
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Tessellation Off/On
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Much Better Compute

Programmability

C++ Support

Exceptions/Debug 
support

Performance

Dual issue SMs

L1 cache

Larger Shared

Much better DP math

Much better atomic 
support

Reliability: ECC

GT200 GF100 Benefit

L1 Texture 

Cache (per 

quad)

12 KB 12 KB Fast texture 

filtering

Dedicated 

L1 LD/ST 

Cache

X 16 or 48 KB Efficient 

physics and

ray tracing

Total 

Shared 

Memory

16KB 16 or 48 KB More data reuse

among threads

L2 Cache 256KB

(TEX read 

only)

768 KB

(all clients 

read/write)

Greater texture 

coverage, 

robust compute 

performance

Double

Precision 

Throughput

30 

FMAs/clock

256 

FMAs/clock

Much higher 

throughputs for 

Scientific codes
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Fermi SM 

Architecture
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Fermi SM

Objective – DX11 support
Polymorph engine

Objective – Optimize for 
GPU computing

New ISA

Revamp issue / control flow

New CUDA core architecture

32 cores per SM 
(512 cores total)

64KB configurable 
L1$ / shared memory

FP32 FP64 INT SFU LD/ST

Ops / clk 32 16 32 4 16

L2 Cache
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CUDA Core Architecture

Decoupled FP32 and integer 

execution datapaths 

Double precision throughput 

increased: now 50% of single 

precision peak

Integer operations optimized 

for extended precision

64 bit and wider data element 

size 

Predication field for all 

instructions

Fused multiply add FP 

datapath 
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IEEE 754-2008 Floating Point

IEEE 754-2008 results

64-bit double precision

32-bit single precision

Rounding, subnormals

NaNs, +/- Infinity

IEEE 754-2008 rounding: 

nearest even, zero, +inf, -inf

Full-speed subnormal operands 

and subnormal results

IEEE 754-2008 Fused Multiply-Add 

(FMA)

D = A*B + C;  

No loss of precision

IEEE divide & sqrt use FMA

A B

Product

C

D=

Multiply-Add (MAD):  D = A*B + C;

Fused Multiply-Add (FMA):  D = A*B + C;

(truncate digits)

A B

Product

C

D=

+

×

= (retain all digits)

×

=

+

(no loss of precision)
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Instruction Set Architecture

Enables C++ : virtual 

functions, new/delete, 

try/catch

Unified load/store addressing

64-bit addressing for large 

problems

Optimized for CUDA C, 

OpenCL & Direct Compute

Native (x,y)-based LD/ST 

operations with format 

conversion

Enables system call 

functionality – stdio.h, etc.
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Multiple Memory Scopes

Per-thread private memory

Each thread has its own 

local memory

Stacks, other private data

Per-thread-block shared 

memory

Small memory close to the 

processor, low latency

Allocated per thread block

Main memory

GPU frame buffer

Can be accessed by any 

thread in any thread block

Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory

Kernel 0

. 

. 

.
Per-device

Global
Memory

. . .

Kernel 1

Sequential

Blocks
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Local

Shared

Global

GlobalLocal Shared

Non-unified Address Space

Unified Address Space

0 32-bit

0 40-bit

*p_local

*p_shared

*p_global

*p

Unified Load/Store Addressing
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Atomic Operations 

(Read / Modify / Writes)

Fast inter-block, thread-safe communication

Significantly more efficient chip-wide synchronization

Much faster parallel aggregation

Faster ray tracing, histogram computation, clustering and pattern 

recognition, face recognition, speech recognition, BLAS, etc

Accelerated by cached memory hierarchy

Fermi increases atomic performance by 5x to 20x
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ECC

All major internal memories are ECC protected

Register file, L1 cache, L2 cache

DRAM protected by ECC

ECC supported for GDDR5 as well as SDDR3 memory 

configurations

ECC is a must have for many computing applications

Clear customer feedback



© NVIDIA 2010 22

Fermi Dual Issue

Instruction Dispatch Unit Instruction Dispatch Unit

CUDA Cores (x16) CUDA Cores (x16) SFUs (x4) LD/ST Units (x16)

Warp Scheduler Warp Scheduler

FADD

LD

FFMA

IADD

ST

RCP

FADD

FFMA

IADD

ICMP

IADD

MOV

FFMA

FFMA

FFMA

IADD

SIN

LD

SM Operational Block Diagram
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Instruction Issue and Control Flow 

Decouple internal execution resources

Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

Dual issue pipelines select two warps to issue

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

ti
m

e



© NVIDIA 2010 24

Caches

Configurable L1 cache per SM

16KB L1$ / 48KB Shared 
Memory

48KB L1$ / 16KB Shared 
Memory

Shared 768KB L2 cache

Compute motivation:

Caching captures locality, 
amplifies bandwidth

Caching more effective than 
Shared Memory RAM for 
irregular or unpredictable 
access

Ray tracing, sparse matrix 
multiply, physics kernels …

Caching helps latency sensitive 
cases

Register File

DRAM

Thread

Register File

DRAM

Thread

L1 Cache / Shared Memory

L2 Cache

Tesla Memory Hiearchy

S
h

a
re

d
 

M
e

m
o

ry

Fermi Memory Hiearchy
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Cache Usage: Graphics

Data stays on die

L1 cache

Register spilling

Stack ops

Global LD/ST

L2 Cache

Vertex, SM, Texture and ROP Data

DRAM

Vertex Fetch Vertex Shader
Hull, Domain & 

Geomtry Shaders
Rasterizer Pixel Shader ROP

L1 & L2 Caches

Chip
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Fermi Application 

Tuning
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GPU Computing Key Concepts

Hardware (HW) thread management

HW thread launch and monitoring

HW thread switching

Tens of thousands of lightweight, concurrent threads

Real threads: PC, private registers, …

SIMT execution model

Multiple memory scopes

Per-thread private memory

Per-thread-block shared memory

Global memory

Using threads to hide memory latency

Coarse grain thread synchronization
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SM Limiter Theory Block Diagram

Warp 0

Warp 1

Warp K

Fetch

Unit

Register

Files

Warp 0

Warp 1

Warp K

Instruction 

Buffers

PC

PC

PC

Instruction

Cache

Sched

Unit

ALUs

LSU

Single

Instruction

(SI)

Multi- 

Threaded

(MT)



© NVIDIA 2010 29

Limiter Theory

SM a form of queuing system

Use “limiter theory” to predict 
SM performance

Supply vs. Demand

There are three types of limits 
on the performance of the SM:

Bandwidth resource limiters

Per-thread-block space 
limiters

Per-thread space limiters

The most constraining limiter 
is called the critical limiter

= min(all limiters)

Warp 0

Warp 1

Warp K

Fetch

Unit

Register

Files

Warp 0

Warp 1

Warp K

Instruction 

Buffers

PC

PC

PC

Instruction

Cache

Sched

Unit

ALUs

LSU

Single

Instruction

(SI)

Multi- 

Threaded

(MT)
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Bandwidth Limiters

Thread blocks arrive at some rate λTB

Threads composed of some distribution of operations (FMUL, FADD, LD, etc.)
Each arriving thread block of S threads contributes to a distribution of operations to be performed

Per operation type, the offered load, or BW “demand”, is the product of:
Thread block arrival rate λTB

# of threads S in a block

Operation count Nop in each thread

BW “supply” λop

Throughput available for some operation type “op”

BW limiter equation:

(λTB x S x Nop) ≤ λop  λTB ≤ λop / ( S x Nop)

BW “supply” is an upper bound on throughput

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}
0

1

2

FADD IADD IMUL LOAD STORE

Demand Supply
BW Limiter 

Equation
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Space Limiters

SM also has space resources. 
Examples:

Finite limit on warp count

Finite limit on register file 
space

Finite limit on shared memory 
size

Space resources:

Allocated on thread block 
launch

Deallocated on thread block 
completion

Consumption computed using 
Little’s Law

Thread Latency (L)

Complex computation

Varies with memory behavior

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp 5

Warp 30

Warp 31

Thread 

Block 0

Thread 

Block 1

Registers,

Shared 

Memory

Registers,

Shared 

Memory

Little’s Law:

N = λ L

N = number “in flight”

λ = arrival rate (throughput)

L = service latency

Inverted:

λ ≤ N / L
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Implications of Limiter Theory

Limiter theory assumes uniform workloads
Breaks down if “traffic jam” behavior

Limiter theory is an ok 1st order approximation

Kernel code has to pay careful attention to operation “mix”

Math-to-memory operation ratios for example

Do not want to bottleneck on one function unit leaving other units idling

Ideal: all units equally critical

Don’t “traffic jam” kernel code

Making thread blocks too large so that only a few execute on the SM at a time 
a bad idea

“Bunching” operations of a similar type in one section of a kernel will 
aggravate the problem

Ideal: lots of small thread blocks with uniform distribution of operation 
densities

Focus on space resource consumption

Ideal: use as few resources necessary to “load the SM”
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Hiding LD Latency

Principle: 

Little’s Law again:

N = “number in flight”

l = arrival rate

L = memory latency

Arrival Rate product of:

Desired execution rate 

(IPC)

Density of LOAD 

instructions (%)

N = # of threads needed to 

cover latency L

W0T0

Load Req

W0T1

Load Req

W0T2

Load Req

LN l

WkT29

Load Req

WkT30

Load Req

WkT31

Load Req

W0T0

Load Resp

W0T1

Load Resp

W0T2

Load Resp

Time
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Hiding LOAD Latency w/ Fewer 

Threads

Use batching

Group independent LDs 

together

Modified law:

B = batch size

// batch size 3 example

float *d_A, *d_B, *d_C;

float a, b, c, result;

a = *d_A; b = *d_B; c = *d_C;

result = a * b + c;

The values ‘a’, ‘b’, and ‘c’ are 

loaded independently before being 

used

Implication is that we can execute 3 

loads from one thread before the 

first use (‘a’ in this case) causes a 

stall

B

L
N

l

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Final Performance Tuning Thoughts

Threads are free

A common mistake in GPU Computing kernels is to make threads 
do too much

Keep them short, sweet , & balanced

Example: one thread per vector element

HW provides LOTs of them (10s of thousands)

HW launch => near zero overhead to create them

HW context switching => near zero overhead scheduling

Barriers are cheap

Single instruction

HW synchronization of thread blocks

Partition kernel code into producer-consumer

DON’T use spin locks!

Partition on results, not sources




