
The Fermi Architecture

Michael C. Shebanow
Principal Research Scientist,

NV Research

mshebanow@nvidia.com

© NVIDIA 2010 2

Fermi GF100

Overview

© NVIDIA 2010 3

Fermi GF100 GPU

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

© NVIDIA 2010 4

Comparing Fermi with GT200 & G80

GPU G80 GT200 GF100

Transistors 681 million 1.4 billion 3.0 billion

CUDA Cores 128 240 512

Double Precision Floating Point None 30 FMA ops / clock 256 FMA ops /clock

Single Precision Floating Point 128 MAD ops/clock 240 MAD ops / clock 512 FMA ops /clock

Special Function Units / SM 2 2 4

Warp schedulers (per SM) 1 1 2

Shared Memory (per SM) 16 KB 16 KB Configurable 48 KB

or 16 KB

L1 Cache (per SM) None None Configurable 16 KB

or 48 KB

L2 Cache None None 768 KB

ECC Memory Support No No Yes

Concurrent Kernels No No Up to 16

Load/Store Address Width 32-bit 32-bit 64-bit

© NVIDIA 2010 5

Soul of Fermi

Expand performance

sweet spot of the GPU

Caching

Concurrent kernels

FP64

Bring more users,

more applications to

the GPU

C++

Visual Studio

Integration

ECC

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

© NVIDIA 2010 6

Fermi Focus Areas

Improved peak

performance

Improved efficiency

throughput

Broader applicability

Full integration within

modern software

development environment

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

© NVIDIA 2010 7

GeForce GTX 480

Memory
1536MB / 384-bit

GDDR5

Cores 480

Gfx / Proc / Mem

Clock

700 / 1401 / 1848

MHz

Power

Connectors
6-pin + 8-pin

Power 250W

SLI 3-way

Length 10.5 inches

Thermal Dual Slot Fansink

Outputs

DL-DVI

DL-DVI

mini-HDMI

Memory
1280MB / 320-bit

GDDR5

Cores 448

Gfx / Proc / Mem

Clock

607 / 1215 / 1674

MHz

Power

Connectors
2x 6-pin

Power 215W

SLI 3-way

Length 9.5 inches

Thermal Dual Slot Fansink

Outputs

DL-DVI

DL-DVI

mini-HDMI

GeForce GTX 470

© NVIDIA 2010 8

Improving Geometric Realism: Tessellation

© Disney Enterprises, Inc. and Jerry Bruckheimer, Inc.
All rights reserved. Image courtesy Industrial Light & Magic.

State of the Art in Games State of the Art in Film

© NVIDIA 2010 9

What is Tessellation?

© NVIDIA 2010 10

Tessellation Applications

Realistic water: Up to 1.6e9 triangles/sec
Hair: 18,000 hair strands

(~4x vs. prior demos)

© NVIDIA 2010 11

Tessellation Off/On

© NVIDIA 2010 12

Much Better Compute

Programmability

C++ Support

Exceptions/Debug
support

Performance

Dual issue SMs

L1 cache

Larger Shared

Much better DP math

Much better atomic
support

Reliability: ECC

GT200 GF100 Benefit

L1 Texture

Cache (per

quad)

12 KB 12 KB Fast texture

filtering

Dedicated

L1 LD/ST

Cache

X 16 or 48 KB Efficient

physics and

ray tracing

Total

Shared

Memory

16KB 16 or 48 KB More data reuse

among threads

L2 Cache 256KB

(TEX read

only)

768 KB

(all clients

read/write)

Greater texture

coverage,

robust compute

performance

Double

Precision

Throughput

30

FMAs/clock

256

FMAs/clock

Much higher

throughputs for

Scientific codes

© NVIDIA 2010 13

Fermi SM

Architecture

© NVIDIA 2010 14

Fermi SM

Objective – DX11 support
Polymorph engine

Objective – Optimize for
GPU computing

New ISA

Revamp issue / control flow

New CUDA core architecture

32 cores per SM
(512 cores total)

64KB configurable
L1$ / shared memory

FP32 FP64 INT SFU LD/ST

Ops / clk 32 16 32 4 16

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

L2 Cache

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

M
e
m

o
r
y
 C

o
n
t
r
o
lle

r
M

e
m

o
r
y
 C

o
n
t
r
o
lle

r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

M
e
m

o
r
y
 C

o
n
t
r
o
ll
e
r

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

GPC

SM

Raster Engine

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

SM

Polymorph Engine

Polymorph Engine

Host Interface

GigaThread Engine

© NVIDIA 2010 15

CUDA Core Architecture

Decoupled FP32 and integer

execution datapaths

Double precision throughput

increased: now 50% of single

precision peak

Integer operations optimized

for extended precision

64 bit and wider data element

size

Predication field for all

instructions

Fused multiply add FP

datapath

© NVIDIA 2010 16

IEEE 754-2008 Floating Point

IEEE 754-2008 results

64-bit double precision

32-bit single precision

Rounding, subnormals

NaNs, +/- Infinity

IEEE 754-2008 rounding:

nearest even, zero, +inf, -inf

Full-speed subnormal operands

and subnormal results

IEEE 754-2008 Fused Multiply-Add

(FMA)

D = A*B + C;

No loss of precision

IEEE divide & sqrt use FMA

A B

Product

C

D=

Multiply-Add (MAD): D = A*B + C;

Fused Multiply-Add (FMA): D = A*B + C;

(truncate digits)

A B

Product

C

D=

+

×

= (retain all digits)

×

=

+

(no loss of precision)

© NVIDIA 2010 17

Instruction Set Architecture

Enables C++ : virtual

functions, new/delete,

try/catch

Unified load/store addressing

64-bit addressing for large

problems

Optimized for CUDA C,

OpenCL & Direct Compute

Native (x,y)-based LD/ST

operations with format

conversion

Enables system call

functionality – stdio.h, etc.

© NVIDIA 2010 18

Multiple Memory Scopes

Per-thread private memory

Each thread has its own

local memory

Stacks, other private data

Per-thread-block shared

memory

Small memory close to the

processor, low latency

Allocated per thread block

Main memory

GPU frame buffer

Can be accessed by any

thread in any thread block

Thread

Per-thread
Local Memory

Block

Per-block
Shared
Memory

Kernel 0

.

.

.
Per-device

Global
Memory

. . .

Kernel 1

Sequential

Blocks

© NVIDIA 2010 19

Local

Shared

Global

GlobalLocal Shared

Non-unified Address Space

Unified Address Space

0 32-bit

0 40-bit

*p_local

*p_shared

*p_global

*p

Unified Load/Store Addressing

© NVIDIA 2010 20

Atomic Operations

(Read / Modify / Writes)

Fast inter-block, thread-safe communication

Significantly more efficient chip-wide synchronization

Much faster parallel aggregation

Faster ray tracing, histogram computation, clustering and pattern

recognition, face recognition, speech recognition, BLAS, etc

Accelerated by cached memory hierarchy

Fermi increases atomic performance by 5x to 20x

© NVIDIA 2010 21

ECC

All major internal memories are ECC protected

Register file, L1 cache, L2 cache

DRAM protected by ECC

ECC supported for GDDR5 as well as SDDR3 memory

configurations

ECC is a must have for many computing applications

Clear customer feedback

© NVIDIA 2010 22

Fermi Dual Issue

Instruction Dispatch Unit Instruction Dispatch Unit

CUDA Cores (x16) CUDA Cores (x16) SFUs (x4) LD/ST Units (x16)

Warp Scheduler Warp Scheduler

FADD

LD

FFMA

IADD

ST

RCP

FADD

FFMA

IADD

ICMP

IADD

MOV

FFMA

FFMA

FFMA

IADD

SIN

LD

SM Operational Block Diagram

© NVIDIA 2010 23

Instruction Issue and Control Flow

Decouple internal execution resources

Deliver peak IPC on branchy / int-heavy / LD-ST - heavy codes

Dual issue pipelines select two warps to issue

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 11 Warp 9 instruction 11

Warp 2 instruction 42 Warp 3 instruction 33

Warp 14 instruction 95 Warp 15 instruction 95

Instruction Dispatch Unit

Warp Scheduler

Warp 8 instruction 12 Warp 9 instruction 12

Warp 14 instruction 96 Warp 3 instruction 34

Warp 2 instruction 43 Warp 15 instruction 96

ti
m

e

© NVIDIA 2010 24

Caches

Configurable L1 cache per SM

16KB L1$ / 48KB Shared
Memory

48KB L1$ / 16KB Shared
Memory

Shared 768KB L2 cache

Compute motivation:

Caching captures locality,
amplifies bandwidth

Caching more effective than
Shared Memory RAM for
irregular or unpredictable
access

Ray tracing, sparse matrix
multiply, physics kernels …

Caching helps latency sensitive
cases

Register File

DRAM

Thread

Register File

DRAM

Thread

L1 Cache / Shared Memory

L2 Cache

Tesla Memory Hiearchy

S
h

a
re

d

M
e

m
o

ry

Fermi Memory Hiearchy

© NVIDIA 2010 25

Cache Usage: Graphics

Data stays on die

L1 cache

Register spilling

Stack ops

Global LD/ST

L2 Cache

Vertex, SM, Texture and ROP Data

DRAM

Vertex Fetch Vertex Shader
Hull, Domain &

Geomtry Shaders
Rasterizer Pixel Shader ROP

L1 & L2 Caches

Chip

© NVIDIA 2010 26

Fermi Application

Tuning

© NVIDIA 2010 27

GPU Computing Key Concepts

Hardware (HW) thread management

HW thread launch and monitoring

HW thread switching

Tens of thousands of lightweight, concurrent threads

Real threads: PC, private registers, …

SIMT execution model

Multiple memory scopes

Per-thread private memory

Per-thread-block shared memory

Global memory

Using threads to hide memory latency

Coarse grain thread synchronization

© NVIDIA 2010 28

SM Limiter Theory Block Diagram

Warp 0

Warp 1

Warp K

Fetch

Unit

Register

Files

Warp 0

Warp 1

Warp K

Instruction

Buffers

PC

PC

PC

Instruction

Cache

Sched

Unit

ALUs

LSU

Single

Instruction

(SI)

Multi-

Threaded

(MT)

© NVIDIA 2010 29

Limiter Theory

SM a form of queuing system

Use “limiter theory” to predict
SM performance

Supply vs. Demand

There are three types of limits
on the performance of the SM:

Bandwidth resource limiters

Per-thread-block space
limiters

Per-thread space limiters

The most constraining limiter
is called the critical limiter

= min(all limiters)

Warp 0

Warp 1

Warp K

Fetch

Unit

Register

Files

Warp 0

Warp 1

Warp K

Instruction

Buffers

PC

PC

PC

Instruction

Cache

Sched

Unit

ALUs

LSU

Single

Instruction

(SI)

Multi-

Threaded

(MT)

© NVIDIA 2010 30

Bandwidth Limiters

Thread blocks arrive at some rate λTB

Threads composed of some distribution of operations (FMUL, FADD, LD, etc.)
Each arriving thread block of S threads contributes to a distribution of operations to be performed

Per operation type, the offered load, or BW “demand”, is the product of:
Thread block arrival rate λTB

of threads S in a block

Operation count Nop in each thread

BW “supply” λop

Throughput available for some operation type “op”

BW limiter equation:

(λTB x S x Nop) ≤ λop  λTB ≤ λop / (S x Nop)

BW “supply” is an upper bound on throughput

// Compute vector sum C = A+B

// Each thread performs one pair-wise addition

__global__ void vecAdd(float* A, float* B, float* C)

{

int i = threadIdx.x + blockDim.x * blockIdx.x;

C[i] = A[i] + B[i];

}
0

1

2

FADD IADD IMUL LOAD STORE

Demand Supply
BW Limiter

Equation

© NVIDIA 2010 31

Space Limiters

SM also has space resources.
Examples:

Finite limit on warp count

Finite limit on register file
space

Finite limit on shared memory
size

Space resources:

Allocated on thread block
launch

Deallocated on thread block
completion

Consumption computed using
Little’s Law

Thread Latency (L)

Complex computation

Varies with memory behavior

Warp 0

Warp 1

Warp 2

Warp 3

Warp 4

Warp 5

Warp 30

Warp 31

Thread

Block 0

Thread

Block 1

Registers,

Shared

Memory

Registers,

Shared

Memory

Little’s Law:

N = λ L

N = number “in flight”

λ = arrival rate (throughput)

L = service latency

Inverted:

λ ≤ N / L

© NVIDIA 2010 32

Implications of Limiter Theory

Limiter theory assumes uniform workloads
Breaks down if “traffic jam” behavior

Limiter theory is an ok 1st order approximation

Kernel code has to pay careful attention to operation “mix”

Math-to-memory operation ratios for example

Do not want to bottleneck on one function unit leaving other units idling

Ideal: all units equally critical

Don’t “traffic jam” kernel code

Making thread blocks too large so that only a few execute on the SM at a time
a bad idea

“Bunching” operations of a similar type in one section of a kernel will
aggravate the problem

Ideal: lots of small thread blocks with uniform distribution of operation
densities

Focus on space resource consumption

Ideal: use as few resources necessary to “load the SM”

© NVIDIA 2010 33

Hiding LD Latency

Principle:

Little’s Law again:

N = “number in flight”

l = arrival rate

L = memory latency

Arrival Rate product of:

Desired execution rate

(IPC)

Density of LOAD

instructions (%)

N = # of threads needed to

cover latency L

W0T0

Load Req

W0T1

Load Req

W0T2

Load Req

LN l

WkT29

Load Req

WkT30

Load Req

WkT31

Load Req

W0T0

Load Resp

W0T1

Load Resp

W0T2

Load Resp

Time

© NVIDIA 2010 34

Hiding LOAD Latency w/ Fewer

Threads

Use batching

Group independent LDs

together

Modified law:

B = batch size

// batch size 3 example

float *d_A, *d_B, *d_C;

float a, b, c, result;

a = *d_A; b = *d_B; c = *d_C;

result = a * b + c;

The values ‘a’, ‘b’, and ‘c’ are

loaded independently before being

used

Implication is that we can execute 3

loads from one thread before the

first use (‘a’ in this case) causes a

stall

B

L
N

l


© NVIDIA 2010 35

Final Performance Tuning Thoughts

Threads are free

A common mistake in GPU Computing kernels is to make threads
do too much

Keep them short, sweet , & balanced

Example: one thread per vector element

HW provides LOTs of them (10s of thousands)

HW launch => near zero overhead to create them

HW context switching => near zero overhead scheduling

Barriers are cheap

Single instruction

HW synchronization of thread blocks

Partition kernel code into producer-consumer

DON’T use spin locks!

Partition on results, not sources

