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Overview: HPC Systems 
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 FLOPS = Floating Point Operation per Second 

 Megaflops = 106 FLOPS 

 Gigaflops = 109 FLOPS 

 Teraflops = 1012 FLOPS 

 Petaflops = 1015 FLOPS 

 

 Memory Bandwidth: Rate at which data can be read from or stored 

into a semiconductor memory by a processor. 

 

 Memory Latency: Delay incurred when a processors accesses data 

inside the main memory (data not in the cache). 

Performance Metrics 
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 The theoretical peak performance is defined by the clock rate and 

cannot be achieved by a real application. 

 The 500 fastest computer systems of the world are compared in the 

Top500 list: 

 Updated in June at ISC (Germany) and November at SC (USA) 

 LINPACK benchmark (www.top500.org): Parallel solution 

of a dense (random) linear equation system, performance measured in 

FLOPS 

 Currently fastest system: MilkyWay-2 (China), 22.86 PF, 17.8 MW power 

 Cluster of >32.000 cpus (Intel Xeon E5-2600) with >48.000 Intel Xeon Phi 

 Example: Our Bull Cluster with about 1500 nodes 

 Peak: 292.135,94 GFLOPS, 25448 cores (3.0 GHz Intel Xeon) 

 Linpack: 219,8 TFLOPS (ranked 32 in 06/2011, ranked 111 in 11/2012) 

LINPACK Benchmark 

http://www.top500.org/
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Top500 List Statistics: Processor Family 

X86 has evolved 

as the main 

architecture for 

HPC systems. 
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Top500 List Statistics: Number of Cores 

The number of 

processor cores 

per system is 

exploding. 

NEC/HP, IBM, Raytheon/Aspen 

Systems, NRCPCET, HP, Megware, RSC 

SKIF, Atipa, Itautec,HP/WIPRO, Adtech, Clus

tervision/Supermicro, Dell/Sun/IBM, IPE, 

Nvidia, Tyan, Dell, SGI, Appro,Cray 

Inc., Xenon Systems, Bull, NUDT, Acer 

Group, Lenovo, Intel, NEC, Self-

made, Fujitsu,Oracle, Inspur, Dawning, Supe

rmicro, Hitachi, Eurotech, ManyCoreSoft, T-

Platforms, RSC Group 
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Our HPC Cluster from Bull: Overview 

IB Fabric / GigE Fabric 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 

SMP S/L 
SMP S/L 

SMP S/L 
SMP S/L HPC 

Filesystem 
Home 

Filesystem 

75x Bullx B Chassis 

1350 Nodes 
171x Bullx S/8 

171 Nodes 
1.5PB 1.5PB 

Login (8/2)  

ScaleMP 

Admin 

Quelle: Bull 

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node 

MPI-Small 1098 161 26 TB 2 x Westmere-EP 
(3,06 GHz, 6 Cores, 

12 Threads) 

24 GB 

MPI-Large 252 37 24 TB 96 GB 

SMP-Small 135 69 17 TB 4x Nehalem-EX 
(2,0 GHz, 8 Cores, 

16 Threads) 
BCS: 4, vSMP: 16 

128 GB 

SMP-Large 36  18 18 TB 512 GB 

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt 

Quelle: Bull 
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Processor Microarchitecture 
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 The program code (instructions) of the high level language (i.e. 

C/C++, Fortran) is translated into machine code by a compiler. 

 

 The instructions are fetched from the main memory, decoded and 

executed in multiple steps (Pipelining). Conflicts are detected 

automatically and might lead to stall cycles. 

 

o Modern (superscalar) processors are capable of executing multiple 

instructions in parallel (ILP = Instruction Level Parallelism). 

o CPI = Clocks per Instruction, usually 0.5 to 2.0 

o Loops have the highest potential for efficient execution 

Properties of modern Microarchitectures 
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 Processor 

 Fetch program from memory 

 Execute program instructions 

 Load data from memory 

 Process data 

 Write results back to memory 

 

 Main Memory 

 Store program 

 Store data 

 

 Input / Output is not covered here! 

Single Processor System (dying out) (1/2) 

core 

memory 
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 Pipelining: An implementation technique whereby multiple 

instructions are overlapped in execution (think of an assembly 

line for automobiles). 

 Throughput: Number of instructions per time interval 

 Speedup of pipelining: 

 

 Example: Assume any (RISC) instruction can be implemented in at 

most 5 clock cycles: 

 Instruction fetch cycle (IF) 

 Instruction decode / register fetch cycle (ID) 

 Execution / effective address cycle (EX) 

 Memory access (MEM) 

 Write-back cycle (WB) 

Pipelining (1/2) 

Time per instructions on unpipelined machine 

Number of pipeline stages 
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 Pipeline model of example architecture: On each clock cycle, 

another instruction is fetched and begins its 5-cycle exec.: 

 

 

 

 

 

 

 The major problems of pipelines: 

 Structural hazards: Resource conflicts when hardware cannot support all 

possible combinations of overlapped instructions 

 Data hazards: Instruction depends on result of previous instr. 

 Control hazards: Branches or other interrupting events 

→ Any hazard leads to a pipeline stall. 

Pipelining (2/2) 
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 There is a gap between core and memory performance. 

 

Memory Bottleneck 
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 CPU is fast 

 Order of 3.0 GHz 

 

 Caches: 

 Fast, but expensive 

 Thus small, order of MB 

 

 Memory is slow 

 Order of 0.3 GHz 

 Large, order of GB 

 

 

 

 A good utilization of caches is 

crucial for good performance of HPC applications! 

Single Processor System (dying out) (2/2) 

core 

memory 

off-chip cache 

on-chip cache 
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 Latency on our Intel Westmere-EP systems 

Visualization of the Memory Hierarchy 
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physical memory 

physical memory 

Memory Model: C/C++ vs. Fortran 

 The order of multi-dimensional arrays (= matrices!) in C/C++ is 

different from the order in Fortran: 

 C: int a[2][3] 

a[0][0]   a[0][1]   a[0][2]   a[1][0]   a[1][1]   a[1][2]   … 
 

 Fortran: INTEGER, DIMENSION(2, 3) :: A 

a(1,1)    a(2,1)    a(1,2)   a(2,2)    a(1,3)   a(2,3)    … 
 

 Thus, the following is equivalent: 

 C: int i[4][3][2] 

 Fortran: INTEGER, DIMENSION(2, 3, 4) :: I 
 

 C: Increment in the rightmost loop index for next element in cache 

 Fortran: Incr. in the leftmost loop index for next element in cache 
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 Since a large and fast memory is not feasible, the memory hierarchy 

has evolved and is getting deeper and deeper ... 

Memory Hierarchy 

on-chip 

cache registers 

datapath 

control 

processor 

Second 
level cache 

(SRAM) 

Main 
memory 

(DRAM) 

Secondary 
storage (Disk) 

Tertiary 
storage 

(Disk/Tape) 

caching caching 

paging  
swapping 

backup  
archive 

Latency Dimension:   nsec       10 nsec      100 nsec     10 msec                10 sec 

Size:                            ~32 KB       1-8 MB     1-100 GB     Tera-/Petabytes  Peta-/Exabytes 



 
RZ: Christian Terboven 

 

Folie 19 

 Because that beast would get too hot! 

 

            Fast clock cycles 

            make processor 

            chips more ex- 

            pensive, hotter 

            and more power 

            consuming. 

 

Why can‘t you buy a 4.0 GHz x86 CPU? 
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         The number of transistors 

        on a chip is still doubling 

        every 24 months … 

 

         … but the clock speed is no 

         longer increasing that fast! 

 

         Instead, we will see many 

         more cores per chip! 

 

 

         Source: Herb Sutter 

         www.gotw.ca/publications/concurrency-ddj.htm 

 

Moore‘s Law still holds! 
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 Traditional single-core processors can only process one thread 

at a time, spending a majority of time waiting for data from memory 

 

 CMT refers to a processor‘s ability to process multiple software 

threads. Such capabilities can be implemented 

using a variety of methods, such as 

 Having multiple cores on a single chip: 

Chip Multi-Processing (CMP) 

 Executing multiple threads on a single core: 

Simultaneous Multi-Threading (SMT) 

 A combination of both CMP and SMT. 

Chip Multi-Threading (CMT) 
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 Since 2005/2006 Intel and AMD 

are producing dual-core pro- 

cessors for the mass market! 

 

 In 2006/2007 Intel and AMD 

introduced quad-core 

processors. 

 

 → Any recently bought PC or 

laptop is a multi-core system 

already! 

Dual-Core Processor System 

Core 

memory 

off-chip cache 

Core 

on-chip cache 
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 Each Core executes multiple threads simultaneously 

 Typically there is one register set thread per thread 

 But compute units are shared 

Simultaneous Multi-Threading (SMT) 
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 Combination of CMP and SMT at work: 

Today: Multiple Multi-Threaded Cores 
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Shared-Memory 

Parallelism 
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 Dual-socket Intel Woodcrest 

(dual-core) system 

 Two cores per chip, 3.0 GHz 

 Each chip has 4 MB of L2 

cache on-chip, shared by 

both cores 

 No off-chip cache 

 Bus: Frontsidebus 

 

 SMP: Symmetric Multi Processor 

 Memory access time is 

uniform on all cores 

 Limited scalabilty 

Example for a SMP system 

Core 

memory 

Core 

on-chip cache 

Core Core 

on-chip cache on-chip cache 

bus 
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 If there are multiple caches not shared by all cores in the system, 

the system takes care of the cache coherence. 

 Example: 
   int a[some_number]; //shared by all threads 

   thread 1: a[0] = 23;     thread 2: a[1] = 42; 

   --- thread + memory synchronization (barrier) --- 

   thread 1: x = a[1];      thread 2: y = a[0]; 

 Elements of array a are stored in continuous memory range 

 Data is loaded into cache in 64 byte blocks (cache line) 

 Both a[0] and a[1] are stored in caches of thread 1 and 2 

 After synchronization point all threads need to have the 

same view of (shared) main memory 
 

 False Sharing: Parallel accesses to the same cache line may have a 

significant performance impact! 

Cache Coherence (cc) 
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 False Sharing: Parallel accesses to the same cache line may have a 

significant performance impact! 

False Sharing 

Core 

memory 

Core 

on-chip cache 

Core Core 

on-chip cache on-chip cache 

bus 

a[0 – 4] 

1: a[0]+=1; 2: a[1]+=1; 
3: a[2]+=1; 4: a[3]+=1; 

Caches are organized in lines of typically 

64 bytes: integer array a[0-4] fits into 

one cache line. 

 

Whenever one element of a cache line 

is updated, the whole cache line is 

invalidated. 

 

Local copies of a cache line have to be 

re-loaded from the main memory and 

the computation may have to be 

repeated. 
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 Dual-socket AMD Opteron 

(dual-core) system 

 Two cores per chip, 2.4 GHz 

 Each core has separate 1 MB 

of L2 cache on-chip 

 No off-chip cache 

 Interconnect: HyperTransport 

 

 cc-NUMA: 

 Memory access time is 

non-uniform 

 Scalable (only if you do it 

right, as we will see) 

Example for a cc-NUMA system 

Core 

memory 

Core 

on-chip 
cache 

Core Core 

memory 

interconnect 

on-chip 
cache 

on-chip 
cache 

on-chip 
cache 
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 Serial code: all array elements are allocated in the memory of the 

NUMA node containing the core executing this thread 
 

 

double* A; 

A = (double*) 

    malloc(N * sizeof(double)); 

 

 

 

 

for (int i = 0; i < N; i++) { 

   A[i] = 0.0; 

} 

Non-uniform Memory 

Core 

memory 

Core 

on-chip 
cache 

Core Core 

memory 

interconnect 

on-chip 
cache 

on-chip 
cache 

on-chip 
cache 

A[0] … A[N] 
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 First Touch w/ parallel code: all array elements are allocated in the 

memory of the NUMA node containing the core executing the 

thread initializing the 

respective partition 
double* A; 

A = (double*) 

    malloc(N * sizeof(double)); 

 

omp_set_num_threads(2); 

 

#pragma omp parallel for 

for (int i = 0; i < N; i++) { 

   A[i] = 0.0; 

} 

First Touch Memory Placement 

Core 

memory 

Core 

on-chip 
cache 

Core Core 

memory 

interconnect 

on-chip 
cache 

on-chip 
cache 

on-chip 
cache 

A[0] … A[N/2] A[N/2] … A[N] 
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 Performance of OpenMP-parallel STREAM vector assignment 

measured on 2-socket Intel® Xeon® X5675 („Westmere“) using 

Intel® Composer XE 2013 compiler with different thread binding 

options: 

Serial vs. Parallel Initialization 
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Intel‘s Nehalem (1/3) 

on-chip interconnect 

c0: t 0 
       t 1 

L1 $ 

L2 $ 

c1: t 2 
       t 3 

L1 $ 

L2 $ 

c3: t 6 
       t 7 

L1 $ 

L2 $ 

L3 $ 

memory controller 

memory 

memory 

memory 

memory memory 

memory 

memory 

memory 

memory 

I/O 
via QuickPath 

Other Socket 
via QuickPath 
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 With each improvement in production technology the num- 

       ber of cores per 

        chip increases. 

 

 

 

 

 Minor modification 

to cache hierarchy: 

L3 cache is shared 

by all cores, L1 and 

L2 caches are per 

core. 

Intel‘s Nehalem (2/3) 
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 Technology 

 45 nm manufacturing process 

 Integrated memory controller 

 Intel QuickPath Interconnect replaces FrontsideBus 

 Will offer cc-NUMA characteristics (see below) 

 Simultaneous Multi-Threading (SMT) = Hyper-Threading 

 Cache Hierarchy 

 32 KB L1 instruction cache + 32 KB L1 data cache per core 

 256 KB L2 cache per core 

 2 or 3 MB L3 cache per core, but shared by all cores 

 Number of pipeline stages: Core microarchitecture has only 12 stages 

(compared to 30 in latest Netburst architecture) 

Intel‘s Nehalem (3/3) 
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 Memory can be accessed by several threads running on different 

cores in a multi-socket multi-core system: 

Shared Memory Parallelization 

a=4 

CPU1 CPU2 

a 

c=3+a 

Look for tasks that can be executed 
simultaneously (task parallelism) 



 
RZ: Christian Terboven 

 

Folie 37 

Distributed-Memory 

Parallelelism 
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 Second level interconnect (network) is not cache coherent 

 Typically used in High Performane Computing: InfiniBand 

 Latency: <= 5 us 

 Bandwidth: >= 1200 MB/s 

 Also used: GigaBit Ethernet: 

 Latency: <= 60 us 

 Bandwidth: >= 100 MB/s 

Example for a Cluster of SMP nodes 

2nd level interconnect (network) Latency: Time required to 
send a message of size zero 
(that is: time to setup the 
communication) 
 
Bandwidth: Rate at which 
large messages (>= 2 MB) are 
transferred 
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 Each process has it‘s own distinct memory 

 Communication via Message Passing 

Distributed Memory Parallelization 

send a 

CPU1 CPU2 

a receive a a 

local memory 

transfer 

Example: 

ventricular 

assist device 

(VAD) 

Decompose data into distinct 
chunks to be processed 

independently (data parallelism) 
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Our HPC Cluster from Bull: Overview 

IB Fabric / GigE Fabric 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 

SMP S/L 
SMP S/L 

SMP S/L 
SMP S/L HPC 

Filesystem 
Home 

Filesystem 

75x Bullx B Chassis 

1350 Nodes 
171x Bullx S/8 

171 Nodes 
1.5PB 1.5PB 

Login (8/2)  

ScaleMP 

Admin 

Quelle: Bull 

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node 

MPI-Small 1098 161 26 TB 2 x Westmere-EP 
(3,06 GHz, 6 Cores, 

12 Threads) 

24 GB 

MPI-Large 252 37 24 TB 96 GB 

SMP-Small 135 69 17 TB 4x Nehalem-EX 
(2,0 GHz, 8 Cores, 

16 Threads) 
BCS: 4, vSMP: 16 

128 GB 

SMP-Large 36  18 18 TB 512 GB 

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt 

Quelle: Bull 
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General Purpose Graphic 

Processing Units (GPGPUs) 
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Motivation 

 Why to care about accelerators? 

 Towards exa-flop computing (performance gain, but power constraints) 

 Accelerators provide good performance per watt ratio (first step) 
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Motivation 

 Accelerators/ co-processors 

 GPGPUs (e.g. NVIDIA, AMD) 

 Intel Many Integrated Core (MIC) Arch. 

(Intel Xeon Phi) 

 FPGAs (e.g. Convey), … 

 

 

 

System Share Performance Share 

None 

Xeon 

Phi 

NVIDIA 

GPU 
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 GPGPUs = General Purpose Graphics Processing Units 

 From fixed-function graphics pipeline to programmable processors for general 

purpose computations 

 Programming paradigms 

 CUDA, OpenCL, OpenACC, OpenMP 4.0,… 

 Main vendors 

 NVIDIA, e.g. Quadro, Tesla, Fermi, Kepler 

 AMD, e.g. FireStream, Radeon 

 

 “Manycore architecture” 

 

GPGPUs 

 

CPU GPU 

8 cores 

2880 cores 



 
RZ: Christian Terboven 

 

Folie 45 

 Different design 

Comparison CPU  GPU 

CPU GPU 

 Optimized for low latencies 

 Huge caches 

 Control logic for out-of-order and 

speculative execution 

 Optimized for data parallel 

throughput 

 Architecture tolerant of memory 

latency 

 More transistors dedicated to 

computation 

 

 

© NVIDIA Corporation 2010 
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GPU architecture: NVIDIA Kepler 

 7.1 billion transistors 

 13-15 streaming multiprocessors 

extreme (SMX) 

 Each comprises 192 cores 

 2496-2880 cores 

 Memory hierarchy 

 

 Peak performance 

 SP: 3.52 TFlops 

 DP: 1.17 TFlops 

 ECC support 

 Compute capability: 3.5 

 E.g. dynamic parallelism = 

possibility to launch dynamically new work from GPU 
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Memory & Execution Model 

 (Weak) memory model 

 Host + device memory = separate entities 

 No coherence between host + device 

 Data synchronization/transfers (triggered by host) 

 

 

 

 

 

 Host-directed execution model 

1. Copy input data from CPU memory to GPU memory. 

2. Execute the GPU program. 

3. Copy results from GPU memory to CPU memory. 

 

CPU 

GPU 

GPU 

T
IM

E
 

processing flow 

PCI Bus 

CPU 

MEMORY 

GPU 

MEMORY 

1 

2 
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 Parallel portion of application is executed as kernel on the device 

 Kernel is executed as an array of threads 

 All threads execute the same code 

 

 GPU is a simple architecture 

 Only few applications suit onto GPUs 

 Optimize data accesses  

(e.g. SoA instead of AoS, use on-chip memory) 

 Launch many many threads to hide latencies 

 GPU-“threads” are lightweight and fast  

switching 

 Stalls are hidden by switching to another 

without a stall 

 

 

 

Programming Model 

float x = input[threadID]; 
float y = func(x); 
output[threadID] = y; ©
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Intel Xeon Phi Coprocessor 
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 Many Integrated Core (MIC) Architecture 

 PCI Express Card (“co-processor”) 

 60 cores @ 1090 MHz 

 4 HW threads per core 

 512-bit SIMD vectors 

 

 

 

 

 Peak Performance 

 DP: ~ 1 TFlops 

 Memory hierarchy 

 

MIC Architecture 
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Architecture (1/2) 

Instruction Decode 

32k/32k L1 Cache inst/data 

512k L2 Cache 

Scalar  
Unit 

Scalar 
Registers 

Vector 
Unit 

Vector 
Registers 

Ring 

Intel Xeon Phi Coprocessor 
• 1 x Intel Xeon Phi @ 1090 MHz 
• 60 Cores (in-order) 
• ~ 1 TFLOPS DP Peak 
• 4 hardware threads per core 
• 8 GB GDDR5 memory 
• 512-bit SIMD vectors (32 registers) 
• Fully-coherent L1 and L2 caches 
• Plugged into PCI Express bus 

Source: Intel 
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Architecture (2/2) 

M
em
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 I/O
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terface 
 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

L1 

L2 L2 L2 L2 

L2 L2 L2 L2 

L1 L1 L1 L1 

Core Core Core Core 

… 

Ring network 

Ring network 

… 

… 

… 

… 

… 

GDDR5 GDDR5 
GDDR5 

GDDR5 
GDDR5 
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Xeon Phi Nodes at RWTH Aachen 

Xeon 
(8 Cores 

@ 2 GHz) 

Xeon 
(8 Cores 

@ 2 GHz) 

DDR3 
(16 GB) 

DDR3 
(16 GB) 

Xeon Phi 
(60 Cores 
@ 1GHz) 

Xeon Phi 
(60 Cores 
@ 1GHz) 

GDDR5 
(8 GB) 

GDDR5 
(8 GB) 

Shared Virtual 
Memory 

PCI Express 

QPI 

Host System 

MIC System 

MIC System 

Compute Node 
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Summary and Conclusions 
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 With a growing number of cores per system, even the desktop or 

notebook has become a parallel computer. 

 Only parallel programs will profit from new processors! 

 

 SMP boxes are building blocks of large parallel systems. 

 Memory hierarchies 

will grow further. 

 CMP + SMT architecture 

is very promising for large, 

memory bound problems. 
 

 Program optimization strategies: 

 Memory Hierarchy 

 Many Cores 

 Tree-like networks 

Summary and Conclusion 

2004     2005      2006      2007      200x     201x   

Cores per Socket 
O(1000)  

cores 

Sun 
2 cores 

AMD 
2 cores 

Intel 
2 cores 

Sun  
8 cores 

AMD 
4 cores 

Intel 
4 cores 

8/16  
cores 

O(100) 
 cores 

IBM 
4 cores 

Sun  
8 cores 

Intel 
80 cores 

(experimental
) 

multi core 

many core 
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Thank you for your attention. 

The End 


