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Overview: HPC Systems 
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 FLOPS = Floating Point Operation per Second 

 Megaflops = 106 FLOPS 

 Gigaflops = 109 FLOPS 

 Teraflops = 1012 FLOPS 

 Petaflops = 1015 FLOPS 

 

 Memory Bandwidth: Rate at which data can be read from or stored 

into a semiconductor memory by a processor. 

 

 Memory Latency: Delay incurred when a processors accesses data 

inside the main memory (data not in the cache). 

Performance Metrics 
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 The theoretical peak performance is defined by the clock rate and 

cannot be achieved by a real application. 

 The 500 fastest computer systems of the world are compared in the 

Top500 list: 

 Updated in June at ISC (Germany) and November at SC (USA) 

 LINPACK benchmark (www.top500.org): Parallel solution 

of a dense (random) linear equation system, performance measured in 

FLOPS 

 Currently fastest system: MilkyWay-2 (China), 22.86 PF, 17.8 MW power 

 Cluster of >32.000 cpus (Intel Xeon E5-2600) with >48.000 Intel Xeon Phi 

 Example: Our Bull Cluster with about 1500 nodes 

 Peak: 292.135,94 GFLOPS, 25448 cores (3.0 GHz Intel Xeon) 

 Linpack: 219,8 TFLOPS (ranked 32 in 06/2011, ranked 111 in 11/2012) 

LINPACK Benchmark 

http://www.top500.org/
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Top500 List Statistics: Processor Family 

X86 has evolved 

as the main 

architecture for 

HPC systems. 
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Top500 List Statistics: Number of Cores 

The number of 

processor cores 

per system is 

exploding. 

NEC/HP, IBM, Raytheon/Aspen 

Systems, NRCPCET, HP, Megware, RSC 

SKIF, Atipa, Itautec,HP/WIPRO, Adtech, Clus

tervision/Supermicro, Dell/Sun/IBM, IPE, 

Nvidia, Tyan, Dell, SGI, Appro,Cray 

Inc., Xenon Systems, Bull, NUDT, Acer 

Group, Lenovo, Intel, NEC, Self-

made, Fujitsu,Oracle, Inspur, Dawning, Supe

rmicro, Hitachi, Eurotech, ManyCoreSoft, T-

Platforms, RSC Group 
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Our HPC Cluster from Bull: Overview 

IB Fabric / GigE Fabric 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 

SMP S/L 
SMP S/L 

SMP S/L 
SMP S/L HPC 

Filesystem 
Home 

Filesystem 

75x Bullx B Chassis 

1350 Nodes 
171x Bullx S/8 

171 Nodes 
1.5PB 1.5PB 

Login (8/2)  

ScaleMP 

Admin 

Quelle: Bull 

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node 

MPI-Small 1098 161 26 TB 2 x Westmere-EP 
(3,06 GHz, 6 Cores, 

12 Threads) 

24 GB 

MPI-Large 252 37 24 TB 96 GB 

SMP-Small 135 69 17 TB 4x Nehalem-EX 
(2,0 GHz, 8 Cores, 

16 Threads) 
BCS: 4, vSMP: 16 

128 GB 

SMP-Large 36  18 18 TB 512 GB 

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt 

Quelle: Bull 
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Processor Microarchitecture 
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 The program code (instructions) of the high level language (i.e. 

C/C++, Fortran) is translated into machine code by a compiler. 

 

 The instructions are fetched from the main memory, decoded and 

executed in multiple steps (Pipelining). Conflicts are detected 

automatically and might lead to stall cycles. 

 

o Modern (superscalar) processors are capable of executing multiple 

instructions in parallel (ILP = Instruction Level Parallelism). 

o CPI = Clocks per Instruction, usually 0.5 to 2.0 

o Loops have the highest potential for efficient execution 

Properties of modern Microarchitectures 



 
RZ: Christian Terboven 

 

Folie 11 

 Processor 

 Fetch program from memory 

 Execute program instructions 

 Load data from memory 

 Process data 

 Write results back to memory 

 

 Main Memory 

 Store program 

 Store data 

 

 Input / Output is not covered here! 

Single Processor System (dying out) (1/2) 

core 

memory 
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 Pipelining: An implementation technique whereby multiple 

instructions are overlapped in execution (think of an assembly 

line for automobiles). 

 Throughput: Number of instructions per time interval 

 Speedup of pipelining: 

 

 Example: Assume any (RISC) instruction can be implemented in at 

most 5 clock cycles: 

 Instruction fetch cycle (IF) 

 Instruction decode / register fetch cycle (ID) 

 Execution / effective address cycle (EX) 

 Memory access (MEM) 

 Write-back cycle (WB) 

Pipelining (1/2) 

Time per instructions on unpipelined machine 

Number of pipeline stages 
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 Pipeline model of example architecture: On each clock cycle, 

another instruction is fetched and begins its 5-cycle exec.: 

 

 

 

 

 

 

 The major problems of pipelines: 

 Structural hazards: Resource conflicts when hardware cannot support all 

possible combinations of overlapped instructions 

 Data hazards: Instruction depends on result of previous instr. 

 Control hazards: Branches or other interrupting events 

→ Any hazard leads to a pipeline stall. 

Pipelining (2/2) 
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 There is a gap between core and memory performance. 

 

Memory Bottleneck 



 
RZ: Christian Terboven 

 

Folie 15 

 CPU is fast 

 Order of 3.0 GHz 

 

 Caches: 

 Fast, but expensive 

 Thus small, order of MB 

 

 Memory is slow 

 Order of 0.3 GHz 

 Large, order of GB 

 

 

 

 A good utilization of caches is 

crucial for good performance of HPC applications! 

Single Processor System (dying out) (2/2) 

core 

memory 

off-chip cache 

on-chip cache 
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 Latency on our Intel Westmere-EP systems 

Visualization of the Memory Hierarchy 
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physical memory 

physical memory 

Memory Model: C/C++ vs. Fortran 

 The order of multi-dimensional arrays (= matrices!) in C/C++ is 

different from the order in Fortran: 

 C: int a[2][3] 

a[0][0]   a[0][1]   a[0][2]   a[1][0]   a[1][1]   a[1][2]   … 
 

 Fortran: INTEGER, DIMENSION(2, 3) :: A 

a(1,1)    a(2,1)    a(1,2)   a(2,2)    a(1,3)   a(2,3)    … 
 

 Thus, the following is equivalent: 

 C: int i[4][3][2] 

 Fortran: INTEGER, DIMENSION(2, 3, 4) :: I 
 

 C: Increment in the rightmost loop index for next element in cache 

 Fortran: Incr. in the leftmost loop index for next element in cache 
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 Since a large and fast memory is not feasible, the memory hierarchy 

has evolved and is getting deeper and deeper ... 

Memory Hierarchy 

on-chip 

cache registers 

datapath 

control 

processor 

Second 
level cache 

(SRAM) 

Main 
memory 

(DRAM) 

Secondary 
storage (Disk) 

Tertiary 
storage 

(Disk/Tape) 

caching caching 

paging  
swapping 

backup  
archive 

Latency Dimension:   nsec       10 nsec      100 nsec     10 msec                10 sec 

Size:                            ~32 KB       1-8 MB     1-100 GB     Tera-/Petabytes  Peta-/Exabytes 
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 Because that beast would get too hot! 

 

            Fast clock cycles 

            make processor 

            chips more ex- 

            pensive, hotter 

            and more power 

            consuming. 

 

Why can‘t you buy a 4.0 GHz x86 CPU? 
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         The number of transistors 

        on a chip is still doubling 

        every 24 months … 

 

         … but the clock speed is no 

         longer increasing that fast! 

 

         Instead, we will see many 

         more cores per chip! 

 

 

         Source: Herb Sutter 

         www.gotw.ca/publications/concurrency-ddj.htm 

 

Moore‘s Law still holds! 
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 Traditional single-core processors can only process one thread 

at a time, spending a majority of time waiting for data from memory 

 

 CMT refers to a processor‘s ability to process multiple software 

threads. Such capabilities can be implemented 

using a variety of methods, such as 

 Having multiple cores on a single chip: 

Chip Multi-Processing (CMP) 

 Executing multiple threads on a single core: 

Simultaneous Multi-Threading (SMT) 

 A combination of both CMP and SMT. 

Chip Multi-Threading (CMT) 
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 Since 2005/2006 Intel and AMD 

are producing dual-core pro- 

cessors for the mass market! 

 

 In 2006/2007 Intel and AMD 

introduced quad-core 

processors. 

 

 → Any recently bought PC or 

laptop is a multi-core system 

already! 

Dual-Core Processor System 

Core 

memory 

off-chip cache 

Core 

on-chip cache 



 
RZ: Christian Terboven 

 

Folie 23 

 Each Core executes multiple threads simultaneously 

 Typically there is one register set thread per thread 

 But compute units are shared 

Simultaneous Multi-Threading (SMT) 
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 Combination of CMP and SMT at work: 

Today: Multiple Multi-Threaded Cores 
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Shared-Memory 

Parallelism 



 
RZ: Christian Terboven 

 

Folie 26 

 Dual-socket Intel Woodcrest 

(dual-core) system 

 Two cores per chip, 3.0 GHz 

 Each chip has 4 MB of L2 

cache on-chip, shared by 

both cores 

 No off-chip cache 

 Bus: Frontsidebus 

 

 SMP: Symmetric Multi Processor 

 Memory access time is 

uniform on all cores 

 Limited scalabilty 

Example for a SMP system 

Core 

memory 

Core 

on-chip cache 

Core Core 

on-chip cache on-chip cache 

bus 
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 If there are multiple caches not shared by all cores in the system, 

the system takes care of the cache coherence. 

 Example: 
   int a[some_number]; //shared by all threads 

   thread 1: a[0] = 23;     thread 2: a[1] = 42; 

   --- thread + memory synchronization (barrier) --- 

   thread 1: x = a[1];      thread 2: y = a[0]; 

 Elements of array a are stored in continuous memory range 

 Data is loaded into cache in 64 byte blocks (cache line) 

 Both a[0] and a[1] are stored in caches of thread 1 and 2 

 After synchronization point all threads need to have the 

same view of (shared) main memory 
 

 False Sharing: Parallel accesses to the same cache line may have a 

significant performance impact! 

Cache Coherence (cc) 
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 False Sharing: Parallel accesses to the same cache line may have a 

significant performance impact! 

False Sharing 

Core 

memory 

Core 

on-chip cache 

Core Core 

on-chip cache on-chip cache 

bus 

a[0 – 4] 

1: a[0]+=1; 2: a[1]+=1; 
3: a[2]+=1; 4: a[3]+=1; 

Caches are organized in lines of typically 

64 bytes: integer array a[0-4] fits into 

one cache line. 

 

Whenever one element of a cache line 

is updated, the whole cache line is 

invalidated. 

 

Local copies of a cache line have to be 

re-loaded from the main memory and 

the computation may have to be 

repeated. 
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 Dual-socket AMD Opteron 

(dual-core) system 

 Two cores per chip, 2.4 GHz 

 Each core has separate 1 MB 

of L2 cache on-chip 

 No off-chip cache 

 Interconnect: HyperTransport 

 

 cc-NUMA: 

 Memory access time is 

non-uniform 

 Scalable (only if you do it 

right, as we will see) 

Example for a cc-NUMA system 

Core 

memory 

Core 

on-chip 
cache 

Core Core 

memory 

interconnect 

on-chip 
cache 

on-chip 
cache 

on-chip 
cache 
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 Serial code: all array elements are allocated in the memory of the 

NUMA node containing the core executing this thread 
 

 

double* A; 

A = (double*) 

    malloc(N * sizeof(double)); 

 

 

 

 

for (int i = 0; i < N; i++) { 

   A[i] = 0.0; 

} 

Non-uniform Memory 

Core 

memory 

Core 

on-chip 
cache 

Core Core 

memory 

interconnect 

on-chip 
cache 

on-chip 
cache 

on-chip 
cache 

A[0] … A[N] 
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 First Touch w/ parallel code: all array elements are allocated in the 

memory of the NUMA node containing the core executing the 

thread initializing the 

respective partition 
double* A; 

A = (double*) 

    malloc(N * sizeof(double)); 

 

omp_set_num_threads(2); 

 

#pragma omp parallel for 

for (int i = 0; i < N; i++) { 

   A[i] = 0.0; 

} 

First Touch Memory Placement 

Core 

memory 

Core 

on-chip 
cache 

Core Core 

memory 

interconnect 

on-chip 
cache 

on-chip 
cache 

on-chip 
cache 

A[0] … A[N/2] A[N/2] … A[N] 
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 Performance of OpenMP-parallel STREAM vector assignment 

measured on 2-socket Intel® Xeon® X5675 („Westmere“) using 

Intel® Composer XE 2013 compiler with different thread binding 

options: 

Serial vs. Parallel Initialization 
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Intel‘s Nehalem (1/3) 

on-chip interconnect 

c0: t 0 
       t 1 

L1 $ 

L2 $ 

c1: t 2 
       t 3 

L1 $ 

L2 $ 

c3: t 6 
       t 7 

L1 $ 

L2 $ 

L3 $ 

memory controller 

memory 

memory 

memory 

memory memory 

memory 

memory 

memory 

memory 

I/O 
via QuickPath 

Other Socket 
via QuickPath 
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 With each improvement in production technology the num- 

       ber of cores per 

        chip increases. 

 

 

 

 

 Minor modification 

to cache hierarchy: 

L3 cache is shared 

by all cores, L1 and 

L2 caches are per 

core. 

Intel‘s Nehalem (2/3) 
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 Technology 

 45 nm manufacturing process 

 Integrated memory controller 

 Intel QuickPath Interconnect replaces FrontsideBus 

 Will offer cc-NUMA characteristics (see below) 

 Simultaneous Multi-Threading (SMT) = Hyper-Threading 

 Cache Hierarchy 

 32 KB L1 instruction cache + 32 KB L1 data cache per core 

 256 KB L2 cache per core 

 2 or 3 MB L3 cache per core, but shared by all cores 

 Number of pipeline stages: Core microarchitecture has only 12 stages 

(compared to 30 in latest Netburst architecture) 

Intel‘s Nehalem (3/3) 
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 Memory can be accessed by several threads running on different 

cores in a multi-socket multi-core system: 

Shared Memory Parallelization 

a=4 

CPU1 CPU2 

a 

c=3+a 

Look for tasks that can be executed 
simultaneously (task parallelism) 
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Distributed-Memory 

Parallelelism 
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 Second level interconnect (network) is not cache coherent 

 Typically used in High Performane Computing: InfiniBand 

 Latency: <= 5 us 

 Bandwidth: >= 1200 MB/s 

 Also used: GigaBit Ethernet: 

 Latency: <= 60 us 

 Bandwidth: >= 100 MB/s 

Example for a Cluster of SMP nodes 

2nd level interconnect (network) Latency: Time required to 
send a message of size zero 
(that is: time to setup the 
communication) 
 
Bandwidth: Rate at which 
large messages (>= 2 MB) are 
transferred 



 
RZ: Christian Terboven 

 

Folie 39 

 Each process has it‘s own distinct memory 

 Communication via Message Passing 

Distributed Memory Parallelization 

send a 

CPU1 CPU2 

a receive a a 

local memory 

transfer 

Example: 

ventricular 

assist device 

(VAD) 

Decompose data into distinct 
chunks to be processed 

independently (data parallelism) 
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Our HPC Cluster from Bull: Overview 

IB Fabric / GigE Fabric 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 
MPI S/L 

MPI S/L 

SMP S/L 
SMP S/L 

SMP S/L 
SMP S/L HPC 

Filesystem 
Home 

Filesystem 

75x Bullx B Chassis 

1350 Nodes 
171x Bullx S/8 

171 Nodes 
1.5PB 1.5PB 

Login (8/2)  

ScaleMP 

Admin 

Quelle: Bull 

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node 

MPI-Small 1098 161 26 TB 2 x Westmere-EP 
(3,06 GHz, 6 Cores, 

12 Threads) 

24 GB 

MPI-Large 252 37 24 TB 96 GB 

SMP-Small 135 69 17 TB 4x Nehalem-EX 
(2,0 GHz, 8 Cores, 

16 Threads) 
BCS: 4, vSMP: 16 

128 GB 

SMP-Large 36  18 18 TB 512 GB 

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt 

Quelle: Bull 
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General Purpose Graphic 

Processing Units (GPGPUs) 



 
RZ: Christian Terboven 

 

Folie 42 

Motivation 

 Why to care about accelerators? 

 Towards exa-flop computing (performance gain, but power constraints) 

 Accelerators provide good performance per watt ratio (first step) 
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Motivation 

 Accelerators/ co-processors 

 GPGPUs (e.g. NVIDIA, AMD) 

 Intel Many Integrated Core (MIC) Arch. 

(Intel Xeon Phi) 

 FPGAs (e.g. Convey), … 

 

 

 

System Share Performance Share 

None 

Xeon 

Phi 

NVIDIA 

GPU 
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 GPGPUs = General Purpose Graphics Processing Units 

 From fixed-function graphics pipeline to programmable processors for general 

purpose computations 

 Programming paradigms 

 CUDA, OpenCL, OpenACC, OpenMP 4.0,… 

 Main vendors 

 NVIDIA, e.g. Quadro, Tesla, Fermi, Kepler 

 AMD, e.g. FireStream, Radeon 

 

 “Manycore architecture” 

 

GPGPUs 

 

CPU GPU 

8 cores 

2880 cores 
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 Different design 

Comparison CPU  GPU 

CPU GPU 

 Optimized for low latencies 

 Huge caches 

 Control logic for out-of-order and 

speculative execution 

 Optimized for data parallel 

throughput 

 Architecture tolerant of memory 

latency 

 More transistors dedicated to 

computation 

 

 

© NVIDIA Corporation 2010 
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GPU architecture: NVIDIA Kepler 

 7.1 billion transistors 

 13-15 streaming multiprocessors 

extreme (SMX) 

 Each comprises 192 cores 

 2496-2880 cores 

 Memory hierarchy 

 

 Peak performance 

 SP: 3.52 TFlops 

 DP: 1.17 TFlops 

 ECC support 

 Compute capability: 3.5 

 E.g. dynamic parallelism = 

possibility to launch dynamically new work from GPU 
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Memory & Execution Model 

 (Weak) memory model 

 Host + device memory = separate entities 

 No coherence between host + device 

 Data synchronization/transfers (triggered by host) 

 

 

 

 

 

 Host-directed execution model 

1. Copy input data from CPU memory to GPU memory. 

2. Execute the GPU program. 

3. Copy results from GPU memory to CPU memory. 

 

CPU 

GPU 

GPU 

T
IM

E
 

processing flow 

PCI Bus 

CPU 

MEMORY 

GPU 

MEMORY 

1 

2 
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 Parallel portion of application is executed as kernel on the device 

 Kernel is executed as an array of threads 

 All threads execute the same code 

 

 GPU is a simple architecture 

 Only few applications suit onto GPUs 

 Optimize data accesses  

(e.g. SoA instead of AoS, use on-chip memory) 

 Launch many many threads to hide latencies 

 GPU-“threads” are lightweight and fast  

switching 

 Stalls are hidden by switching to another 

without a stall 

 

 

 

Programming Model 

float x = input[threadID]; 
float y = func(x); 
output[threadID] = y; ©

 N
V
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Intel Xeon Phi Coprocessor 
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 Many Integrated Core (MIC) Architecture 

 PCI Express Card (“co-processor”) 

 60 cores @ 1090 MHz 

 4 HW threads per core 

 512-bit SIMD vectors 

 

 

 

 

 Peak Performance 

 DP: ~ 1 TFlops 

 Memory hierarchy 

 

MIC Architecture 
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Architecture (1/2) 

Instruction Decode 

32k/32k L1 Cache inst/data 

512k L2 Cache 

Scalar  
Unit 

Scalar 
Registers 

Vector 
Unit 

Vector 
Registers 

Ring 

Intel Xeon Phi Coprocessor 
• 1 x Intel Xeon Phi @ 1090 MHz 
• 60 Cores (in-order) 
• ~ 1 TFLOPS DP Peak 
• 4 hardware threads per core 
• 8 GB GDDR5 memory 
• 512-bit SIMD vectors (32 registers) 
• Fully-coherent L1 and L2 caches 
• Plugged into PCI Express bus 

Source: Intel 
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Architecture (2/2) 

M
em

o
ry &

 I/O
 in

terface 
 

Core 

L1 

Core 

L1 

Core 

L1 

Core 

L1 

L2 L2 L2 L2 
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L1 L1 L1 L1 

Core Core Core Core 

… 

Ring network 

Ring network 
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… 
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… 

GDDR5 GDDR5 
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GDDR5 
GDDR5 



 
RZ: Christian Terboven 

 

Folie 54 

Xeon Phi Nodes at RWTH Aachen 

Xeon 
(8 Cores 

@ 2 GHz) 

Xeon 
(8 Cores 

@ 2 GHz) 

DDR3 
(16 GB) 

DDR3 
(16 GB) 

Xeon Phi 
(60 Cores 
@ 1GHz) 

Xeon Phi 
(60 Cores 
@ 1GHz) 

GDDR5 
(8 GB) 

GDDR5 
(8 GB) 

Shared Virtual 
Memory 

PCI Express 

QPI 

Host System 

MIC System 

MIC System 

Compute Node 
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Summary and Conclusions 
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 With a growing number of cores per system, even the desktop or 

notebook has become a parallel computer. 

 Only parallel programs will profit from new processors! 

 

 SMP boxes are building blocks of large parallel systems. 

 Memory hierarchies 

will grow further. 

 CMP + SMT architecture 

is very promising for large, 

memory bound problems. 
 

 Program optimization strategies: 

 Memory Hierarchy 

 Many Cores 

 Tree-like networks 

Summary and Conclusion 

2004     2005      2006      2007      200x     201x   

Cores per Socket 
O(1000)  

cores 

Sun 
2 cores 

AMD 
2 cores 

Intel 
2 cores 

Sun  
8 cores 

AMD 
4 cores 

Intel 
4 cores 

8/16  
cores 

O(100) 
 cores 

IBM 
4 cores 

Sun  
8 cores 

Intel 
80 cores 

(experimental
) 

multi core 

many core 
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Thank you for your attention. 

The End 


