

Rechen- und Kommunikationszentrum (RZ)

Parallel Computer Architecture

- Basics -

Christian Terboven <terboven@rz.rwth-aachen.de>

29.07.2013 / Aachen, Germany

Stand: 22.07.2013

Version 2.3

RZ: Christian Terboven

Folie 2

 Overview: HPC Systems

 Processor Microarchitecture

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems (Cluster)

 General Purpose Graphic Processing Units (GPGPUs)

 Intel Xeon Phi Coprocessor

 Summary and Conclusions

Agenda

RZ: Christian Terboven

Folie 3

Overview: HPC Systems

RZ: Christian Terboven

Folie 4

 FLOPS = Floating Point Operation per Second

 Megaflops = 106 FLOPS

 Gigaflops = 109 FLOPS

 Teraflops = 1012 FLOPS

 Petaflops = 1015 FLOPS

 Memory Bandwidth: Rate at which data can be read from or stored

into a semiconductor memory by a processor.

 Memory Latency: Delay incurred when a processors accesses data

inside the main memory (data not in the cache).

Performance Metrics

RZ: Christian Terboven

Folie 5

 The theoretical peak performance is defined by the clock rate and

cannot be achieved by a real application.

 The 500 fastest computer systems of the world are compared in the

Top500 list:

 Updated in June at ISC (Germany) and November at SC (USA)

 LINPACK benchmark (www.top500.org): Parallel solution

of a dense (random) linear equation system, performance measured in

FLOPS

 Currently fastest system: MilkyWay-2 (China), 22.86 PF, 17.8 MW power

 Cluster of >32.000 cpus (Intel Xeon E5-2600) with >48.000 Intel Xeon Phi

 Example: Our Bull Cluster with about 1500 nodes

 Peak: 292.135,94 GFLOPS, 25448 cores (3.0 GHz Intel Xeon)

 Linpack: 219,8 TFLOPS (ranked 32 in 06/2011, ranked 111 in 11/2012)

LINPACK Benchmark

http://www.top500.org/

RZ: Christian Terboven

Folie 6

Top500 List Statistics: Processor Family

X86 has evolved

as the main

architecture for

HPC systems.

RZ: Christian Terboven

Folie 7

Top500 List Statistics: Number of Cores

The number of

processor cores

per system is

exploding.

NEC/HP, IBM, Raytheon/Aspen

Systems, NRCPCET, HP, Megware, RSC

SKIF, Atipa, Itautec,HP/WIPRO, Adtech, Clus

tervision/Supermicro, Dell/Sun/IBM, IPE,

Nvidia, Tyan, Dell, SGI, Appro,Cray

Inc., Xenon Systems, Bull, NUDT, Acer

Group, Lenovo, Intel, NEC, Self-

made, Fujitsu,Oracle, Inspur, Dawning, Supe

rmicro, Hitachi, Eurotech, ManyCoreSoft, T-

Platforms, RSC Group

RZ: Christian Terboven

Folie 8

Our HPC Cluster from Bull: Overview

IB Fabric / GigE Fabric

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L

SMP S/L
SMP S/L

SMP S/L
SMP S/L HPC

Filesystem
Home

Filesystem

75x Bullx B Chassis

1350 Nodes
171x Bullx S/8

171 Nodes
1.5PB 1.5PB

Login (8/2)

ScaleMP

Admin

Quelle: Bull

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node

MPI-Small 1098 161 26 TB 2 x Westmere-EP
(3,06 GHz, 6 Cores,

12 Threads)

24 GB

MPI-Large 252 37 24 TB 96 GB

SMP-Small 135 69 17 TB 4x Nehalem-EX
(2,0 GHz, 8 Cores,

16 Threads)
BCS: 4, vSMP: 16

128 GB

SMP-Large 36 18 18 TB 512 GB

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt

Quelle: Bull

RZ: Christian Terboven

Folie 9

Processor Microarchitecture

RZ: Christian Terboven

Folie 10

 The program code (instructions) of the high level language (i.e.

C/C++, Fortran) is translated into machine code by a compiler.

 The instructions are fetched from the main memory, decoded and

executed in multiple steps (Pipelining). Conflicts are detected

automatically and might lead to stall cycles.

o Modern (superscalar) processors are capable of executing multiple

instructions in parallel (ILP = Instruction Level Parallelism).

o CPI = Clocks per Instruction, usually 0.5 to 2.0

o Loops have the highest potential for efficient execution

Properties of modern Microarchitectures

RZ: Christian Terboven

Folie 11

 Processor

 Fetch program from memory

 Execute program instructions

 Load data from memory

 Process data

 Write results back to memory

 Main Memory

 Store program

 Store data

 Input / Output is not covered here!

Single Processor System (dying out) (1/2)

core

memory

RZ: Christian Terboven

Folie 12

 Pipelining: An implementation technique whereby multiple

instructions are overlapped in execution (think of an assembly

line for automobiles).

 Throughput: Number of instructions per time interval

 Speedup of pipelining:

 Example: Assume any (RISC) instruction can be implemented in at

most 5 clock cycles:

 Instruction fetch cycle (IF)

 Instruction decode / register fetch cycle (ID)

 Execution / effective address cycle (EX)

 Memory access (MEM)

 Write-back cycle (WB)

Pipelining (1/2)

Time per instructions on unpipelined machine

Number of pipeline stages

RZ: Christian Terboven

Folie 13

 Pipeline model of example architecture: On each clock cycle,

another instruction is fetched and begins its 5-cycle exec.:

 The major problems of pipelines:

 Structural hazards: Resource conflicts when hardware cannot support all

possible combinations of overlapped instructions

 Data hazards: Instruction depends on result of previous instr.

 Control hazards: Branches or other interrupting events

→ Any hazard leads to a pipeline stall.

Pipelining (2/2)

RZ: Christian Terboven

Folie 14

 There is a gap between core and memory performance.

Memory Bottleneck

RZ: Christian Terboven

Folie 15

 CPU is fast

 Order of 3.0 GHz

 Caches:

 Fast, but expensive

 Thus small, order of MB

 Memory is slow

 Order of 0.3 GHz

 Large, order of GB

 A good utilization of caches is

crucial for good performance of HPC applications!

Single Processor System (dying out) (2/2)

core

memory

off-chip cache

on-chip cache

RZ: Christian Terboven

Folie 16

 Latency on our Intel Westmere-EP systems

Visualization of the Memory Hierarchy

0

2

4

6

8

10

12

14

16

18

20

1
 B

4
 B

1
6

 B

6
4

 B

2
5

6
 B

1
 K

B

4
 K

B

1
6

 K
B

6
4

 K
B

2
5

6
 K

B

1
 M

B

4
 M

B

1
2

 M
B

3
2

 M
B

1
2

8
 M

B

5
1

2
 M

B

2
 G

B

La
te

n
cy

 in
 n

s

Memory Footprint

L1
 c

ac
h

e

L2
 c

ac
h

e

L3
 c

ac
h

e

RZ: Christian Terboven

Folie 17

physical memory

physical memory

Memory Model: C/C++ vs. Fortran

 The order of multi-dimensional arrays (= matrices!) in C/C++ is

different from the order in Fortran:

 C: int a[2][3]

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] …

 Fortran: INTEGER, DIMENSION(2, 3) :: A

a(1,1) a(2,1) a(1,2) a(2,2) a(1,3) a(2,3) …

 Thus, the following is equivalent:

 C: int i[4][3][2]

 Fortran: INTEGER, DIMENSION(2, 3, 4) :: I

 C: Increment in the rightmost loop index for next element in cache

 Fortran: Incr. in the leftmost loop index for next element in cache

RZ: Christian Terboven

Folie 18

 Since a large and fast memory is not feasible, the memory hierarchy

has evolved and is getting deeper and deeper ...

Memory Hierarchy

on-chip

cache registers

datapath

control

processor

Second
level cache

(SRAM)

Main
memory

(DRAM)

Secondary
storage (Disk)

Tertiary
storage

(Disk/Tape)

caching caching

paging
swapping

backup
archive

Latency Dimension: nsec 10 nsec 100 nsec 10 msec 10 sec

Size: ~32 KB 1-8 MB 1-100 GB Tera-/Petabytes Peta-/Exabytes

RZ: Christian Terboven

Folie 19

 Because that beast would get too hot!

 Fast clock cycles

 make processor

 chips more ex-

 pensive, hotter

 and more power

 consuming.

Why can‘t you buy a 4.0 GHz x86 CPU?

RZ: Christian Terboven

Folie 20

 The number of transistors

 on a chip is still doubling

 every 24 months …

 … but the clock speed is no

 longer increasing that fast!

 Instead, we will see many

 more cores per chip!

 Source: Herb Sutter

 www.gotw.ca/publications/concurrency-ddj.htm

Moore‘s Law still holds!

RZ: Christian Terboven

Folie 21

 Traditional single-core processors can only process one thread

at a time, spending a majority of time waiting for data from memory

 CMT refers to a processor‘s ability to process multiple software

threads. Such capabilities can be implemented

using a variety of methods, such as

 Having multiple cores on a single chip:

Chip Multi-Processing (CMP)

 Executing multiple threads on a single core:

Simultaneous Multi-Threading (SMT)

 A combination of both CMP and SMT.

Chip Multi-Threading (CMT)

RZ: Christian Terboven

Folie 22

 Since 2005/2006 Intel and AMD

are producing dual-core pro-

cessors for the mass market!

 In 2006/2007 Intel and AMD

introduced quad-core

processors.

 → Any recently bought PC or

laptop is a multi-core system

already!

Dual-Core Processor System

Core

memory

off-chip cache

Core

on-chip cache

RZ: Christian Terboven

Folie 23

 Each Core executes multiple threads simultaneously

 Typically there is one register set thread per thread

 But compute units are shared

Simultaneous Multi-Threading (SMT)

RZ: Christian Terboven

Folie 24

 Combination of CMP and SMT at work:

Today: Multiple Multi-Threaded Cores

RZ: Christian Terboven

Folie 25

Shared-Memory

Parallelism

RZ: Christian Terboven

Folie 26

 Dual-socket Intel Woodcrest

(dual-core) system

 Two cores per chip, 3.0 GHz

 Each chip has 4 MB of L2

cache on-chip, shared by

both cores

 No off-chip cache

 Bus: Frontsidebus

 SMP: Symmetric Multi Processor

 Memory access time is

uniform on all cores

 Limited scalabilty

Example for a SMP system

Core

memory

Core

on-chip cache

Core Core

on-chip cache on-chip cache

bus

RZ: Christian Terboven

Folie 27

 If there are multiple caches not shared by all cores in the system,

the system takes care of the cache coherence.

 Example:
 int a[some_number]; //shared by all threads

 thread 1: a[0] = 23; thread 2: a[1] = 42;

 --- thread + memory synchronization (barrier) ---

 thread 1: x = a[1]; thread 2: y = a[0];

 Elements of array a are stored in continuous memory range

 Data is loaded into cache in 64 byte blocks (cache line)

 Both a[0] and a[1] are stored in caches of thread 1 and 2

 After synchronization point all threads need to have the

same view of (shared) main memory

 False Sharing: Parallel accesses to the same cache line may have a

significant performance impact!

Cache Coherence (cc)

RZ: Christian Terboven

Folie 28

 False Sharing: Parallel accesses to the same cache line may have a

significant performance impact!

False Sharing

Core

memory

Core

on-chip cache

Core Core

on-chip cache on-chip cache

bus

a[0 – 4]

1: a[0]+=1; 2: a[1]+=1;
3: a[2]+=1; 4: a[3]+=1;

Caches are organized in lines of typically

64 bytes: integer array a[0-4] fits into

one cache line.

Whenever one element of a cache line

is updated, the whole cache line is

invalidated.

Local copies of a cache line have to be

re-loaded from the main memory and

the computation may have to be

repeated.

RZ: Christian Terboven

Folie 29

 Dual-socket AMD Opteron

(dual-core) system

 Two cores per chip, 2.4 GHz

 Each core has separate 1 MB

of L2 cache on-chip

 No off-chip cache

 Interconnect: HyperTransport

 cc-NUMA:

 Memory access time is

non-uniform

 Scalable (only if you do it

right, as we will see)

Example for a cc-NUMA system

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

RZ: Christian Terboven

Folie 30

 Serial code: all array elements are allocated in the memory of the

NUMA node containing the core executing this thread

double* A;

A = (double*)

 malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

 A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

RZ: Christian Terboven

Folie 31

 First Touch w/ parallel code: all array elements are allocated in the

memory of the NUMA node containing the core executing the

thread initializing the

respective partition
double* A;

A = (double*)

 malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

 A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

RZ: Christian Terboven

Folie 32

 Performance of OpenMP-parallel STREAM vector assignment

measured on 2-socket Intel® Xeon® X5675 („Westmere“) using

Intel® Composer XE 2013 compiler with different thread binding

options:

Serial vs. Parallel Initialization

0

5000

10000

15000

20000

25000

30000

1 2 4 6 8 12 16 20 24

M
em

o
ry

 B
an

d
w

id
th

 [
M

B
/s

]

#Threads

STREAM (vector assignment) on 2x Intel Xeon X5675

parallel init., compact binding parallel init., scatter binding

serial init., scatter binding

RZ: Christian Terboven

Folie 33

Intel‘s Nehalem (1/3)

on-chip interconnect

c0: t 0
 t 1

L1 $

L2 $

c1: t 2
 t 3

L1 $

L2 $

c3: t 6
 t 7

L1 $

L2 $

L3 $

memory controller

memory

memory

memory

memory memory

memory

memory

memory

memory

I/O
via QuickPath

Other Socket
via QuickPath

RZ: Christian Terboven

Folie 34

 With each improvement in production technology the num-

 ber of cores per

 chip increases.

 Minor modification

to cache hierarchy:

L3 cache is shared

by all cores, L1 and

L2 caches are per

core.

Intel‘s Nehalem (2/3)

RZ: Christian Terboven

Folie 35

 Technology

 45 nm manufacturing process

 Integrated memory controller

 Intel QuickPath Interconnect replaces FrontsideBus

 Will offer cc-NUMA characteristics (see below)

 Simultaneous Multi-Threading (SMT) = Hyper-Threading

 Cache Hierarchy

 32 KB L1 instruction cache + 32 KB L1 data cache per core

 256 KB L2 cache per core

 2 or 3 MB L3 cache per core, but shared by all cores

 Number of pipeline stages: Core microarchitecture has only 12 stages

(compared to 30 in latest Netburst architecture)

Intel‘s Nehalem (3/3)

RZ: Christian Terboven

Folie 36

 Memory can be accessed by several threads running on different

cores in a multi-socket multi-core system:

Shared Memory Parallelization

a=4

CPU1 CPU2

a

c=3+a

Look for tasks that can be executed
simultaneously (task parallelism)

RZ: Christian Terboven

Folie 37

Distributed-Memory

Parallelelism

RZ: Christian Terboven

Folie 38

 Second level interconnect (network) is not cache coherent

 Typically used in High Performane Computing: InfiniBand

 Latency: <= 5 us

 Bandwidth: >= 1200 MB/s

 Also used: GigaBit Ethernet:

 Latency: <= 60 us

 Bandwidth: >= 100 MB/s

Example for a Cluster of SMP nodes

2nd level interconnect (network) Latency: Time required to
send a message of size zero
(that is: time to setup the
communication)

Bandwidth: Rate at which
large messages (>= 2 MB) are
transferred

RZ: Christian Terboven

Folie 39

 Each process has it‘s own distinct memory

 Communication via Message Passing

Distributed Memory Parallelization

send a

CPU1 CPU2

a receive a a

local memory

transfer

Example:

ventricular

assist device

(VAD)

Decompose data into distinct
chunks to be processed

independently (data parallelism)

RZ: Christian Terboven

Folie 40

Our HPC Cluster from Bull: Overview

IB Fabric / GigE Fabric

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L

SMP S/L
SMP S/L

SMP S/L
SMP S/L HPC

Filesystem
Home

Filesystem

75x Bullx B Chassis

1350 Nodes
171x Bullx S/8

171 Nodes
1.5PB 1.5PB

Login (8/2)

ScaleMP

Admin

Quelle: Bull

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node

MPI-Small 1098 161 26 TB 2 x Westmere-EP
(3,06 GHz, 6 Cores,

12 Threads)

24 GB

MPI-Large 252 37 24 TB 96 GB

SMP-Small 135 69 17 TB 4x Nehalem-EX
(2,0 GHz, 8 Cores,

16 Threads)
BCS: 4, vSMP: 16

128 GB

SMP-Large 36 18 18 TB 512 GB

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt

Quelle: Bull

RZ: Christian Terboven

Folie 41

General Purpose Graphic

Processing Units (GPGPUs)

RZ: Christian Terboven

Folie 42

Motivation

 Why to care about accelerators?

 Towards exa-flop computing (performance gain, but power constraints)

 Accelerators provide good performance per watt ratio (first step)

S
o
u
rc

e
:
T

o
p
5
0
0
,
6
/2

0
1
3

RZ: Christian Terboven

Folie 43
S

o
u
rc

e
:
T

o
p
5
0
0
,
6
/2

0
1
3

Motivation

 Accelerators/ co-processors

 GPGPUs (e.g. NVIDIA, AMD)

 Intel Many Integrated Core (MIC) Arch.

(Intel Xeon Phi)

 FPGAs (e.g. Convey), …

System Share Performance Share

None

Xeon

Phi

NVIDIA

GPU

RZ: Christian Terboven

Folie 44

 GPGPUs = General Purpose Graphics Processing Units

 From fixed-function graphics pipeline to programmable processors for general

purpose computations

 Programming paradigms

 CUDA, OpenCL, OpenACC, OpenMP 4.0,…

 Main vendors

 NVIDIA, e.g. Quadro, Tesla, Fermi, Kepler

 AMD, e.g. FireStream, Radeon

 “Manycore architecture”

GPGPUs

CPU GPU

8 cores

2880 cores

RZ: Christian Terboven

Folie 45

 Different design

Comparison CPU  GPU

CPU GPU

 Optimized for low latencies

 Huge caches

 Control logic for out-of-order and

speculative execution

 Optimized for data parallel

throughput

 Architecture tolerant of memory

latency

 More transistors dedicated to

computation

© NVIDIA Corporation 2010

RZ: Christian Terboven

Folie 46

GPU architecture: NVIDIA Kepler

 7.1 billion transistors

 13-15 streaming multiprocessors

extreme (SMX)

 Each comprises 192 cores

 2496-2880 cores

 Memory hierarchy

 Peak performance

 SP: 3.52 TFlops

 DP: 1.17 TFlops

 ECC support

 Compute capability: 3.5

 E.g. dynamic parallelism =

possibility to launch dynamically new work from GPU

h
tt

p
:/

/w
w

w
.n

v
id

ia
.c

o
m

/c
o
n
te

n
t/

P
D

F
/k

e
p
le

r/
N

V
ID

IA
-K

e
p
le

r-
G

K
1

1
0
-A

rc
h
it
e
c
tu

re
-W

h
it
e
p
a
p
e
r.

p
d
f

SMX

GPU

RZ: Christian Terboven

Folie 47

Memory & Execution Model

 (Weak) memory model

 Host + device memory = separate entities

 No coherence between host + device

 Data synchronization/transfers (triggered by host)

 Host-directed execution model

1. Copy input data from CPU memory to GPU memory.

2. Execute the GPU program.

3. Copy results from GPU memory to CPU memory.

CPU

GPU

GPU

T
IM

E

processing flow

PCI Bus

CPU

MEMORY

GPU

MEMORY

1

2

3

RZ: Christian Terboven

Folie 48

 Parallel portion of application is executed as kernel on the device

 Kernel is executed as an array of threads

 All threads execute the same code

 GPU is a simple architecture

 Only few applications suit onto GPUs

 Optimize data accesses

(e.g. SoA instead of AoS, use on-chip memory)

 Launch many many threads to hide latencies

 GPU-“threads” are lightweight and fast

switching

 Stalls are hidden by switching to another

without a stall

Programming Model

float x = input[threadID];
float y = func(x);
output[threadID] = y; ©

 N
V

ID
IA

 C
o

rp
o

ra
ti

o
n

 2
0

1
0

RZ: Christian Terboven

Folie 50

Intel Xeon Phi Coprocessor

RZ: Christian Terboven

Folie 51

 Many Integrated Core (MIC) Architecture

 PCI Express Card (“co-processor”)

 60 cores @ 1090 MHz

 4 HW threads per core

 512-bit SIMD vectors

 Peak Performance

 DP: ~ 1 TFlops

 Memory hierarchy

MIC Architecture

S
o
u
rc

e
:
In

te
l

S
o
u
rc

e
:
J
a
m

e
s
 R

e
in

d
e
rs

,
In

te
l

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

8 x DP
+

b7 b6 b5 b4 b3 b2 b1 b0 8 x DP

a7+

b7

a6+

b6

a5+

b5

a4+

b4

a3+

b3

a2+

b2

a1+

b1

a0+

b0
8 x DP

=

0

500

1000

1500

2000

2500

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

P
e

rf
o

rm
an

ce

Threads

Xeon Phi Peak

Xeon Peak

RZ: Christian Terboven

Folie 52

Architecture (1/2)

Instruction Decode

32k/32k L1 Cache inst/data

512k L2 Cache

Scalar
Unit

Scalar
Registers

Vector
Unit

Vector
Registers

Ring

Intel Xeon Phi Coprocessor
• 1 x Intel Xeon Phi @ 1090 MHz
• 60 Cores (in-order)
• ~ 1 TFLOPS DP Peak
• 4 hardware threads per core
• 8 GB GDDR5 memory
• 512-bit SIMD vectors (32 registers)
• Fully-coherent L1 and L2 caches
• Plugged into PCI Express bus

Source: Intel

RZ: Christian Terboven

Folie 53

Architecture (2/2)

M
em

o
ry &

 I/O
 in

terface

Core

L1

Core

L1

Core

L1

Core

L1

L2 L2 L2 L2

L2 L2 L2 L2

L1 L1 L1 L1

Core Core Core Core

…

Ring network

Ring network

…

…

…

…

…

GDDR5 GDDR5
GDDR5

GDDR5
GDDR5

RZ: Christian Terboven

Folie 54

Xeon Phi Nodes at RWTH Aachen

Xeon
(8 Cores

@ 2 GHz)

Xeon
(8 Cores

@ 2 GHz)

DDR3
(16 GB)

DDR3
(16 GB)

Xeon Phi
(60 Cores
@ 1GHz)

Xeon Phi
(60 Cores
@ 1GHz)

GDDR5
(8 GB)

GDDR5
(8 GB)

Shared Virtual
Memory

PCI Express

QPI

Host System

MIC System

MIC System

Compute Node

RZ: Christian Terboven

Folie 55

Summary and Conclusions

RZ: Christian Terboven

Folie 56

 With a growing number of cores per system, even the desktop or

notebook has become a parallel computer.

 Only parallel programs will profit from new processors!

 SMP boxes are building blocks of large parallel systems.

 Memory hierarchies

will grow further.

 CMP + SMT architecture

is very promising for large,

memory bound problems.

 Program optimization strategies:

 Memory Hierarchy

 Many Cores

 Tree-like networks

Summary and Conclusion

2004 2005 2006 2007 200x 201x

Cores per Socket
O(1000)

cores

Sun
2 cores

AMD
2 cores

Intel
2 cores

Sun
8 cores

AMD
4 cores

Intel
4 cores

8/16
cores

O(100)
 cores

IBM
4 cores

Sun
8 cores

Intel
80 cores

(experimental
)

multi core

many core

RZ: Christian Terboven

Folie 57

Thank you for your attention.

The End

