

Rechen- und Kommunikationszentrum (RZ)

Parallel Computer Architecture

- Basics -

Christian Terboven <terboven@rz.rwth-aachen.de>

29.07.2013 / Aachen, Germany

Stand: 22.07.2013

Version 2.3

RZ: Christian Terboven

Folie 2

 Overview: HPC Systems

 Processor Microarchitecture

 Shared-Memory Parallel Systems

 Distributed-Memory Parallel Systems (Cluster)

 General Purpose Graphic Processing Units (GPGPUs)

 Intel Xeon Phi Coprocessor

 Summary and Conclusions

Agenda

RZ: Christian Terboven

Folie 3

Overview: HPC Systems

RZ: Christian Terboven

Folie 4

 FLOPS = Floating Point Operation per Second

 Megaflops = 106 FLOPS

 Gigaflops = 109 FLOPS

 Teraflops = 1012 FLOPS

 Petaflops = 1015 FLOPS

 Memory Bandwidth: Rate at which data can be read from or stored

into a semiconductor memory by a processor.

 Memory Latency: Delay incurred when a processors accesses data

inside the main memory (data not in the cache).

Performance Metrics

RZ: Christian Terboven

Folie 5

 The theoretical peak performance is defined by the clock rate and

cannot be achieved by a real application.

 The 500 fastest computer systems of the world are compared in the

Top500 list:

 Updated in June at ISC (Germany) and November at SC (USA)

 LINPACK benchmark (www.top500.org): Parallel solution

of a dense (random) linear equation system, performance measured in

FLOPS

 Currently fastest system: MilkyWay-2 (China), 22.86 PF, 17.8 MW power

 Cluster of >32.000 cpus (Intel Xeon E5-2600) with >48.000 Intel Xeon Phi

 Example: Our Bull Cluster with about 1500 nodes

 Peak: 292.135,94 GFLOPS, 25448 cores (3.0 GHz Intel Xeon)

 Linpack: 219,8 TFLOPS (ranked 32 in 06/2011, ranked 111 in 11/2012)

LINPACK Benchmark

http://www.top500.org/

RZ: Christian Terboven

Folie 6

Top500 List Statistics: Processor Family

X86 has evolved

as the main

architecture for

HPC systems.

RZ: Christian Terboven

Folie 7

Top500 List Statistics: Number of Cores

The number of

processor cores

per system is

exploding.

NEC/HP, IBM, Raytheon/Aspen

Systems, NRCPCET, HP, Megware, RSC

SKIF, Atipa, Itautec,HP/WIPRO, Adtech, Clus

tervision/Supermicro, Dell/Sun/IBM, IPE,

Nvidia, Tyan, Dell, SGI, Appro,Cray

Inc., Xenon Systems, Bull, NUDT, Acer

Group, Lenovo, Intel, NEC, Self-

made, Fujitsu,Oracle, Inspur, Dawning, Supe

rmicro, Hitachi, Eurotech, ManyCoreSoft, T-

Platforms, RSC Group

RZ: Christian Terboven

Folie 8

Our HPC Cluster from Bull: Overview

IB Fabric / GigE Fabric

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L

SMP S/L
SMP S/L

SMP S/L
SMP S/L HPC

Filesystem
Home

Filesystem

75x Bullx B Chassis

1350 Nodes
171x Bullx S/8

171 Nodes
1.5PB 1.5PB

Login (8/2)

ScaleMP

Admin

Quelle: Bull

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node

MPI-Small 1098 161 26 TB 2 x Westmere-EP
(3,06 GHz, 6 Cores,

12 Threads)

24 GB

MPI-Large 252 37 24 TB 96 GB

SMP-Small 135 69 17 TB 4x Nehalem-EX
(2,0 GHz, 8 Cores,

16 Threads)
BCS: 4, vSMP: 16

128 GB

SMP-Large 36 18 18 TB 512 GB

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt

Quelle: Bull

RZ: Christian Terboven

Folie 9

Processor Microarchitecture

RZ: Christian Terboven

Folie 10

 The program code (instructions) of the high level language (i.e.

C/C++, Fortran) is translated into machine code by a compiler.

 The instructions are fetched from the main memory, decoded and

executed in multiple steps (Pipelining). Conflicts are detected

automatically and might lead to stall cycles.

o Modern (superscalar) processors are capable of executing multiple

instructions in parallel (ILP = Instruction Level Parallelism).

o CPI = Clocks per Instruction, usually 0.5 to 2.0

o Loops have the highest potential for efficient execution

Properties of modern Microarchitectures

RZ: Christian Terboven

Folie 11

 Processor

 Fetch program from memory

 Execute program instructions

 Load data from memory

 Process data

 Write results back to memory

 Main Memory

 Store program

 Store data

 Input / Output is not covered here!

Single Processor System (dying out) (1/2)

core

memory

RZ: Christian Terboven

Folie 12

 Pipelining: An implementation technique whereby multiple

instructions are overlapped in execution (think of an assembly

line for automobiles).

 Throughput: Number of instructions per time interval

 Speedup of pipelining:

 Example: Assume any (RISC) instruction can be implemented in at

most 5 clock cycles:

 Instruction fetch cycle (IF)

 Instruction decode / register fetch cycle (ID)

 Execution / effective address cycle (EX)

 Memory access (MEM)

 Write-back cycle (WB)

Pipelining (1/2)

Time per instructions on unpipelined machine

Number of pipeline stages

RZ: Christian Terboven

Folie 13

 Pipeline model of example architecture: On each clock cycle,

another instruction is fetched and begins its 5-cycle exec.:

 The major problems of pipelines:

 Structural hazards: Resource conflicts when hardware cannot support all

possible combinations of overlapped instructions

 Data hazards: Instruction depends on result of previous instr.

 Control hazards: Branches or other interrupting events

→ Any hazard leads to a pipeline stall.

Pipelining (2/2)

RZ: Christian Terboven

Folie 14

 There is a gap between core and memory performance.

Memory Bottleneck

RZ: Christian Terboven

Folie 15

 CPU is fast

 Order of 3.0 GHz

 Caches:

 Fast, but expensive

 Thus small, order of MB

 Memory is slow

 Order of 0.3 GHz

 Large, order of GB

 A good utilization of caches is

crucial for good performance of HPC applications!

Single Processor System (dying out) (2/2)

core

memory

off-chip cache

on-chip cache

RZ: Christian Terboven

Folie 16

 Latency on our Intel Westmere-EP systems

Visualization of the Memory Hierarchy

0

2

4

6

8

10

12

14

16

18

20

1
 B

4
 B

1
6

 B

6
4

 B

2
5

6
 B

1
 K

B

4
 K

B

1
6

 K
B

6
4

 K
B

2
5

6
 K

B

1
 M

B

4
 M

B

1
2

 M
B

3
2

 M
B

1
2

8
 M

B

5
1

2
 M

B

2
 G

B

La
te

n
cy

 in
 n

s

Memory Footprint

L1
 c

ac
h

e

L2
 c

ac
h

e

L3
 c

ac
h

e

RZ: Christian Terboven

Folie 17

physical memory

physical memory

Memory Model: C/C++ vs. Fortran

 The order of multi-dimensional arrays (= matrices!) in C/C++ is

different from the order in Fortran:

 C: int a[2][3]

a[0][0] a[0][1] a[0][2] a[1][0] a[1][1] a[1][2] …

 Fortran: INTEGER, DIMENSION(2, 3) :: A

a(1,1) a(2,1) a(1,2) a(2,2) a(1,3) a(2,3) …

 Thus, the following is equivalent:

 C: int i[4][3][2]

 Fortran: INTEGER, DIMENSION(2, 3, 4) :: I

 C: Increment in the rightmost loop index for next element in cache

 Fortran: Incr. in the leftmost loop index for next element in cache

RZ: Christian Terboven

Folie 18

 Since a large and fast memory is not feasible, the memory hierarchy

has evolved and is getting deeper and deeper ...

Memory Hierarchy

on-chip

cache registers

datapath

control

processor

Second
level cache

(SRAM)

Main
memory

(DRAM)

Secondary
storage (Disk)

Tertiary
storage

(Disk/Tape)

caching caching

paging
swapping

backup
archive

Latency Dimension: nsec 10 nsec 100 nsec 10 msec 10 sec

Size: ~32 KB 1-8 MB 1-100 GB Tera-/Petabytes Peta-/Exabytes

RZ: Christian Terboven

Folie 19

 Because that beast would get too hot!

 Fast clock cycles

 make processor

 chips more ex-

 pensive, hotter

 and more power

 consuming.

Why can‘t you buy a 4.0 GHz x86 CPU?

RZ: Christian Terboven

Folie 20

 The number of transistors

 on a chip is still doubling

 every 24 months …

 … but the clock speed is no

 longer increasing that fast!

 Instead, we will see many

 more cores per chip!

 Source: Herb Sutter

 www.gotw.ca/publications/concurrency-ddj.htm

Moore‘s Law still holds!

RZ: Christian Terboven

Folie 21

 Traditional single-core processors can only process one thread

at a time, spending a majority of time waiting for data from memory

 CMT refers to a processor‘s ability to process multiple software

threads. Such capabilities can be implemented

using a variety of methods, such as

 Having multiple cores on a single chip:

Chip Multi-Processing (CMP)

 Executing multiple threads on a single core:

Simultaneous Multi-Threading (SMT)

 A combination of both CMP and SMT.

Chip Multi-Threading (CMT)

RZ: Christian Terboven

Folie 22

 Since 2005/2006 Intel and AMD

are producing dual-core pro-

cessors for the mass market!

 In 2006/2007 Intel and AMD

introduced quad-core

processors.

 → Any recently bought PC or

laptop is a multi-core system

already!

Dual-Core Processor System

Core

memory

off-chip cache

Core

on-chip cache

RZ: Christian Terboven

Folie 23

 Each Core executes multiple threads simultaneously

 Typically there is one register set thread per thread

 But compute units are shared

Simultaneous Multi-Threading (SMT)

RZ: Christian Terboven

Folie 24

 Combination of CMP and SMT at work:

Today: Multiple Multi-Threaded Cores

RZ: Christian Terboven

Folie 25

Shared-Memory

Parallelism

RZ: Christian Terboven

Folie 26

 Dual-socket Intel Woodcrest

(dual-core) system

 Two cores per chip, 3.0 GHz

 Each chip has 4 MB of L2

cache on-chip, shared by

both cores

 No off-chip cache

 Bus: Frontsidebus

 SMP: Symmetric Multi Processor

 Memory access time is

uniform on all cores

 Limited scalabilty

Example for a SMP system

Core

memory

Core

on-chip cache

Core Core

on-chip cache on-chip cache

bus

RZ: Christian Terboven

Folie 27

 If there are multiple caches not shared by all cores in the system,

the system takes care of the cache coherence.

 Example:
 int a[some_number]; //shared by all threads

 thread 1: a[0] = 23; thread 2: a[1] = 42;

 --- thread + memory synchronization (barrier) ---

 thread 1: x = a[1]; thread 2: y = a[0];

 Elements of array a are stored in continuous memory range

 Data is loaded into cache in 64 byte blocks (cache line)

 Both a[0] and a[1] are stored in caches of thread 1 and 2

 After synchronization point all threads need to have the

same view of (shared) main memory

 False Sharing: Parallel accesses to the same cache line may have a

significant performance impact!

Cache Coherence (cc)

RZ: Christian Terboven

Folie 28

 False Sharing: Parallel accesses to the same cache line may have a

significant performance impact!

False Sharing

Core

memory

Core

on-chip cache

Core Core

on-chip cache on-chip cache

bus

a[0 – 4]

1: a[0]+=1; 2: a[1]+=1;
3: a[2]+=1; 4: a[3]+=1;

Caches are organized in lines of typically

64 bytes: integer array a[0-4] fits into

one cache line.

Whenever one element of a cache line

is updated, the whole cache line is

invalidated.

Local copies of a cache line have to be

re-loaded from the main memory and

the computation may have to be

repeated.

RZ: Christian Terboven

Folie 29

 Dual-socket AMD Opteron

(dual-core) system

 Two cores per chip, 2.4 GHz

 Each core has separate 1 MB

of L2 cache on-chip

 No off-chip cache

 Interconnect: HyperTransport

 cc-NUMA:

 Memory access time is

non-uniform

 Scalable (only if you do it

right, as we will see)

Example for a cc-NUMA system

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

RZ: Christian Terboven

Folie 30

 Serial code: all array elements are allocated in the memory of the

NUMA node containing the core executing this thread

double* A;

A = (double*)

 malloc(N * sizeof(double));

for (int i = 0; i < N; i++) {

 A[i] = 0.0;

}

Non-uniform Memory

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N]

RZ: Christian Terboven

Folie 31

 First Touch w/ parallel code: all array elements are allocated in the

memory of the NUMA node containing the core executing the

thread initializing the

respective partition
double* A;

A = (double*)

 malloc(N * sizeof(double));

omp_set_num_threads(2);

#pragma omp parallel for

for (int i = 0; i < N; i++) {

 A[i] = 0.0;

}

First Touch Memory Placement

Core

memory

Core

on-chip
cache

Core Core

memory

interconnect

on-chip
cache

on-chip
cache

on-chip
cache

A[0] … A[N/2] A[N/2] … A[N]

RZ: Christian Terboven

Folie 32

 Performance of OpenMP-parallel STREAM vector assignment

measured on 2-socket Intel® Xeon® X5675 („Westmere“) using

Intel® Composer XE 2013 compiler with different thread binding

options:

Serial vs. Parallel Initialization

0

5000

10000

15000

20000

25000

30000

1 2 4 6 8 12 16 20 24

M
em

o
ry

 B
an

d
w

id
th

 [
M

B
/s

]

#Threads

STREAM (vector assignment) on 2x Intel Xeon X5675

parallel init., compact binding parallel init., scatter binding

serial init., scatter binding

RZ: Christian Terboven

Folie 33

Intel‘s Nehalem (1/3)

on-chip interconnect

c0: t 0
 t 1

L1 $

L2 $

c1: t 2
 t 3

L1 $

L2 $

c3: t 6
 t 7

L1 $

L2 $

L3 $

memory controller

memory

memory

memory

memory memory

memory

memory

memory

memory

I/O
via QuickPath

Other Socket
via QuickPath

RZ: Christian Terboven

Folie 34

 With each improvement in production technology the num-

 ber of cores per

 chip increases.

 Minor modification

to cache hierarchy:

L3 cache is shared

by all cores, L1 and

L2 caches are per

core.

Intel‘s Nehalem (2/3)

RZ: Christian Terboven

Folie 35

 Technology

 45 nm manufacturing process

 Integrated memory controller

 Intel QuickPath Interconnect replaces FrontsideBus

 Will offer cc-NUMA characteristics (see below)

 Simultaneous Multi-Threading (SMT) = Hyper-Threading

 Cache Hierarchy

 32 KB L1 instruction cache + 32 KB L1 data cache per core

 256 KB L2 cache per core

 2 or 3 MB L3 cache per core, but shared by all cores

 Number of pipeline stages: Core microarchitecture has only 12 stages

(compared to 30 in latest Netburst architecture)

Intel‘s Nehalem (3/3)

RZ: Christian Terboven

Folie 36

 Memory can be accessed by several threads running on different

cores in a multi-socket multi-core system:

Shared Memory Parallelization

a=4

CPU1 CPU2

a

c=3+a

Look for tasks that can be executed
simultaneously (task parallelism)

RZ: Christian Terboven

Folie 37

Distributed-Memory

Parallelelism

RZ: Christian Terboven

Folie 38

 Second level interconnect (network) is not cache coherent

 Typically used in High Performane Computing: InfiniBand

 Latency: <= 5 us

 Bandwidth: >= 1200 MB/s

 Also used: GigaBit Ethernet:

 Latency: <= 60 us

 Bandwidth: >= 100 MB/s

Example for a Cluster of SMP nodes

2nd level interconnect (network) Latency: Time required to
send a message of size zero
(that is: time to setup the
communication)

Bandwidth: Rate at which
large messages (>= 2 MB) are
transferred

RZ: Christian Terboven

Folie 39

 Each process has it‘s own distinct memory

 Communication via Message Passing

Distributed Memory Parallelization

send a

CPU1 CPU2

a receive a a

local memory

transfer

Example:

ventricular

assist device

(VAD)

Decompose data into distinct
chunks to be processed

independently (data parallelism)

RZ: Christian Terboven

Folie 40

Our HPC Cluster from Bull: Overview

IB Fabric / GigE Fabric

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L
MPI S/L

MPI S/L

SMP S/L
SMP S/L

SMP S/L
SMP S/L HPC

Filesystem
Home

Filesystem

75x Bullx B Chassis

1350 Nodes
171x Bullx S/8

171 Nodes
1.5PB 1.5PB

Login (8/2)

ScaleMP

Admin

Quelle: Bull

Group # Nodes Sum TFLOP Sum Memory # Procs per Node Memory per Node

MPI-Small 1098 161 26 TB 2 x Westmere-EP
(3,06 GHz, 6 Cores,

12 Threads)

24 GB

MPI-Large 252 37 24 TB 96 GB

SMP-Small 135 69 17 TB 4x Nehalem-EX
(2,0 GHz, 8 Cores,

16 Threads)
BCS: 4, vSMP: 16

128 GB

SMP-Large 36 18 18 TB 512 GB

ScaleMP-vSMP 8 gekoppelt 4 4 TB 4 TB gekoppelt

Quelle: Bull

RZ: Christian Terboven

Folie 41

General Purpose Graphic

Processing Units (GPGPUs)

RZ: Christian Terboven

Folie 42

Motivation

 Why to care about accelerators?

 Towards exa-flop computing (performance gain, but power constraints)

 Accelerators provide good performance per watt ratio (first step)

S
o
u
rc

e
:
T

o
p
5
0
0
,
6
/2

0
1
3

RZ: Christian Terboven

Folie 43
S

o
u
rc

e
:
T

o
p
5
0
0
,
6
/2

0
1
3

Motivation

 Accelerators/ co-processors

 GPGPUs (e.g. NVIDIA, AMD)

 Intel Many Integrated Core (MIC) Arch.

(Intel Xeon Phi)

 FPGAs (e.g. Convey), …

System Share Performance Share

None

Xeon

Phi

NVIDIA

GPU

RZ: Christian Terboven

Folie 44

 GPGPUs = General Purpose Graphics Processing Units

 From fixed-function graphics pipeline to programmable processors for general

purpose computations

 Programming paradigms

 CUDA, OpenCL, OpenACC, OpenMP 4.0,…

 Main vendors

 NVIDIA, e.g. Quadro, Tesla, Fermi, Kepler

 AMD, e.g. FireStream, Radeon

 “Manycore architecture”

GPGPUs

CPU GPU

8 cores

2880 cores

RZ: Christian Terboven

Folie 45

 Different design

Comparison CPU GPU

CPU GPU

 Optimized for low latencies

 Huge caches

 Control logic for out-of-order and

speculative execution

 Optimized for data parallel

throughput

 Architecture tolerant of memory

latency

 More transistors dedicated to

computation

© NVIDIA Corporation 2010

RZ: Christian Terboven

Folie 46

GPU architecture: NVIDIA Kepler

 7.1 billion transistors

 13-15 streaming multiprocessors

extreme (SMX)

 Each comprises 192 cores

 2496-2880 cores

 Memory hierarchy

 Peak performance

 SP: 3.52 TFlops

 DP: 1.17 TFlops

 ECC support

 Compute capability: 3.5

 E.g. dynamic parallelism =

possibility to launch dynamically new work from GPU

h
tt

p
:/

/w
w

w
.n

v
id

ia
.c

o
m

/c
o
n
te

n
t/

P
D

F
/k

e
p
le

r/
N

V
ID

IA
-K

e
p
le

r-
G

K
1

1
0
-A

rc
h
it
e
c
tu

re
-W

h
it
e
p
a
p
e
r.

p
d
f

SMX

GPU

RZ: Christian Terboven

Folie 47

Memory & Execution Model

 (Weak) memory model

 Host + device memory = separate entities

 No coherence between host + device

 Data synchronization/transfers (triggered by host)

 Host-directed execution model

1. Copy input data from CPU memory to GPU memory.

2. Execute the GPU program.

3. Copy results from GPU memory to CPU memory.

CPU

GPU

GPU

T
IM

E

processing flow

PCI Bus

CPU

MEMORY

GPU

MEMORY

1

2

3

RZ: Christian Terboven

Folie 48

 Parallel portion of application is executed as kernel on the device

 Kernel is executed as an array of threads

 All threads execute the same code

 GPU is a simple architecture

 Only few applications suit onto GPUs

 Optimize data accesses

(e.g. SoA instead of AoS, use on-chip memory)

 Launch many many threads to hide latencies

 GPU-“threads” are lightweight and fast

switching

 Stalls are hidden by switching to another

without a stall

Programming Model

float x = input[threadID];
float y = func(x);
output[threadID] = y; ©

 N
V

ID
IA

 C
o

rp
o

ra
ti

o
n

 2
0

1
0

RZ: Christian Terboven

Folie 50

Intel Xeon Phi Coprocessor

RZ: Christian Terboven

Folie 51

 Many Integrated Core (MIC) Architecture

 PCI Express Card (“co-processor”)

 60 cores @ 1090 MHz

 4 HW threads per core

 512-bit SIMD vectors

 Peak Performance

 DP: ~ 1 TFlops

 Memory hierarchy

MIC Architecture

S
o
u
rc

e
:
In

te
l

S
o
u
rc

e
:
J
a
m

e
s
 R

e
in

d
e
rs

,
In

te
l

a7 a6 a5 a4 a3 a2 a1 a0

512 bit

8 x DP
+

b7 b6 b5 b4 b3 b2 b1 b0 8 x DP

a7+

b7

a6+

b6

a5+

b5

a4+

b4

a3+

b3

a2+

b2

a1+

b1

a0+

b0
8 x DP

=

0

500

1000

1500

2000

2500

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

P
e

rf
o

rm
an

ce

Threads

Xeon Phi Peak

Xeon Peak

RZ: Christian Terboven

Folie 52

Architecture (1/2)

Instruction Decode

32k/32k L1 Cache inst/data

512k L2 Cache

Scalar
Unit

Scalar
Registers

Vector
Unit

Vector
Registers

Ring

Intel Xeon Phi Coprocessor
• 1 x Intel Xeon Phi @ 1090 MHz
• 60 Cores (in-order)
• ~ 1 TFLOPS DP Peak
• 4 hardware threads per core
• 8 GB GDDR5 memory
• 512-bit SIMD vectors (32 registers)
• Fully-coherent L1 and L2 caches
• Plugged into PCI Express bus

Source: Intel

RZ: Christian Terboven

Folie 53

Architecture (2/2)

M
em

o
ry &

 I/O
 in

terface

Core

L1

Core

L1

Core

L1

Core

L1

L2 L2 L2 L2

L2 L2 L2 L2

L1 L1 L1 L1

Core Core Core Core

…

Ring network

Ring network

…

…

…

…

…

GDDR5 GDDR5
GDDR5

GDDR5
GDDR5

RZ: Christian Terboven

Folie 54

Xeon Phi Nodes at RWTH Aachen

Xeon
(8 Cores

@ 2 GHz)

Xeon
(8 Cores

@ 2 GHz)

DDR3
(16 GB)

DDR3
(16 GB)

Xeon Phi
(60 Cores
@ 1GHz)

Xeon Phi
(60 Cores
@ 1GHz)

GDDR5
(8 GB)

GDDR5
(8 GB)

Shared Virtual
Memory

PCI Express

QPI

Host System

MIC System

MIC System

Compute Node

RZ: Christian Terboven

Folie 55

Summary and Conclusions

RZ: Christian Terboven

Folie 56

 With a growing number of cores per system, even the desktop or

notebook has become a parallel computer.

 Only parallel programs will profit from new processors!

 SMP boxes are building blocks of large parallel systems.

 Memory hierarchies

will grow further.

 CMP + SMT architecture

is very promising for large,

memory bound problems.

 Program optimization strategies:

 Memory Hierarchy

 Many Cores

 Tree-like networks

Summary and Conclusion

2004 2005 2006 2007 200x 201x

Cores per Socket
O(1000)

cores

Sun
2 cores

AMD
2 cores

Intel
2 cores

Sun
8 cores

AMD
4 cores

Intel
4 cores

8/16
cores

O(100)
 cores

IBM
4 cores

Sun
8 cores

Intel
80 cores

(experimental
)

multi core

many core

RZ: Christian Terboven

Folie 57

Thank you for your attention.

The End

