

Rechen- und Kommunikationszentrum (RZ)

Introduction to OpenMP

part III of III & Outlook on OpenMP 4.0 for Accelerators

Christian Terboven <terboven@rz.rwth-aachen.de>

31.07.2013 / Aachen, Germany

Stand: 22.07.2013

Version 2.3

RZ: Christian Terboven

Folie 2

 Avoiding Overhead: nowait, collapse, if, final and mergeable

 Iterator Loops and User-defined Reductions

 Task Scheduling and Task Dependencies

 Outlook: OpenMP for Accelerators

 What is an Accelerator in OpenMP?

 Execution and Data Model

 Target Construct

 Example: SAXPY

 Outlook: Asynchronicity

 OpenMP 4.0 Feature Overview

Agenda

RZ: Christian Terboven

Folie 3

Avoiding Overhead

RZ: Christian Terboven

Folie 4

 A worksharing construct (do/for, sections, single) has no barrier

on entry – however, an implied barrier exists at the end of the

worksharing region, unless the nowait clause is specified.

 Static schedule guarantees since OpenMP 3.0:

#pragma omp for schedule(static) nowait

 for(i = 1; i < N; i++)

 a[i] = …

#pragma omp for schedule(static)

 for (i = 1; i < N; i++)

 c[i] = a[i] + …

The nowait Clause

Allowed in OpenMP 3.0 if and only if:
 - Number of iterations is the same
 - Chunk is the same (or not specified)

RZ: Christian Terboven

Folie 5

 Loop collapsing: Ask the compiler to fuse perfectly nested loops to

exploit a larger iteration space for the parallelization:

#pragma omp for collapse(2)

 for(i = 1; i < N; i++)

 for(j = 1; j < M; j++)

 for(k = 1; k < K; k++)

 foo(i, j, k);

The collapse Clause

Iteration space from i-loop and j-loop is
collapsed into a single one, if loops are
perfectly nested and form a rectangular
iteration space.

RZ: Christian Terboven

Folie 6

 If the expression of an if clause on a Parallel Region evaluates to

false

 The Parallel Region is executed with a Team of one Thread only

→ Used for optimization, e.g. avoid going parallel

 OpenMP data scoping rules still apply!

if Clause: Parallel Region

C/C++

#pragma omp parallel if(expr)

 ...

Fortran

!$omp parallel if(expr)

 ...

RZ: Christian Terboven

Folie 7

 If the expression of an if clause on a task

evaluates to false

 The encountering task is suspended

 The new task is executed immediately

 The parent task resumes when new tasks finishes

→ Used for optimization, e.g. avoid creation of small tasks

if Clause: Tasks

C/C++

#pragma omp task if(expr)

 ...

Fortran

!$omp task if(expr)

 ...

RZ: Christian Terboven

Folie 8

 For recursive problems that perform task decomposition, stop

task creation at a certain depth exposes enough parallelism

and reduces the overhead.

 final task: forces all child tasks to be final and included = execution is

sequentially included in the task region (undeferred execution).

 But: merging the data environment may have side-effects
void foo(bool arg)

{

 int i = 3;

 #pragma omp task final(arg) firstprivate(i)

 i++;

 printf(“%d\n”, i); // will print 3 or 4 depending on expr

}

final Clause

C/C++

#pragma omp task final(expr)

Fortran

!$omp task final(expr)

RZ: Christian Terboven

Folie 9

 If the mergeable clause is present, the implementation is allowed

to merge the task‘s data environment with the enclosing region

 if the generated task is undeferred or included

 undeferred: if clause present and evaluates to false

 included: final clause present and evaluates to true

 Personal Note: As of today (07/2013), no compiler or runtime

implement final and/or mergeable in a way that-real world

application may profit from using these clauses .

mergeable Clause

C/C++

#pragma omp task mergeable

Fortran

!$omp task mergeable

RZ: Christian Terboven

Folie 10

 The taskyield directive specifies that the current task can be

suspended in favor of execution of a different task.

 Hint to the runtime for optimization and/or deadlock prevention

The taskyield Directive

C/C++

#pragma omp taskyield

Fortran

!$omp taskyield

RZ: Christian Terboven

Folie 11

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

 for(int i = 0; i < n; i++)

 #pragma omp task

 {

 something_useful();

 while(!omp_test_lock(lock)) {

 #pragma omp taskyield

 }

 something_critical();

 omp_unset_lock(lock);

 }

}

taskyield Example (1/2)

RZ: Christian Terboven

Folie 12

#include <omp.h>

void something_useful();

void something_critical();

void foo(omp_lock_t * lock, int n)

{

 for(int i = 0; i < n; i++)

 #pragma omp task

 {

 something_useful();

 while(!omp_test_lock(lock)) {

 #pragma omp taskyield

 }

 something_critical();

 omp_unset_lock(lock);

 }

}

taskyield Example (2/2)

The waiting task may be
suspended here and allow the
executing thread to perform

other work. This may also
avoid deadlock situations.

RZ: Christian Terboven

Folie 13

Iterator Loops and User-

defined Reductions

RZ: Christian Terboven

Folie 14

 This computes a bounding box of a 2D point cloud:

struct Point2D; /* data structure as you would expect it */

Point2D lb(RANGE, RANGE) /* lower bound – init with max */

Point2D ub(0.0f, 0.0f); /* upper bound – init with min */

for (std::vector<Point2D>::iterator it = points.begin();

 it != points.end(); it++) {

 Point2D &p = *it; /* compare every point to lb, ub*/

 lb.setX(std::min(lb.getX(), p.getX()));

 lb.setY(std::min(lb.getY(), p.getY()));

 ub.setX(std::max(ub.getX(), p.getX()));

 ub.setY(std::max(ub.getY(), p.getY()));

}

 „Problems“ for an OpenMP parallelization?

 Reduction operation has to work with non-POD datatypes

 Loop employs C++ iterator over std::vector datatype elements

Example: Bounding Box Code

RZ: Christian Terboven

Folie 15

 OpenMP 3.0 introduced Worksharing support for iterator loops

#pragma omp for

 for (std::vector<Point2D>::iterator it =

 points.begin(); it != points.end(); it++) {

 ...

 OpenMP 4.0 brings user-defined reductions

 name: minp, datatype: Point2D

 read: omp_in, written to: omp_out, initialization: omp_priv

#pragma omp declare reduction(minp : Point2D :

 omp_out.setX(std::min(omp_in.getX(), omp_out.getX())),

 omp_out.setY(std::min(omp_in.getY(), omp_out.getY())))

 initializer(omp_priv = Point2D(RANGE, RANGE))

#pragma omp parallel for reduction(minp:lb) reduction(maxp:ub)

 for (std::vector<Point2D>::iterator it =

 points.begin(); it != points.end(); it++) {

 ...

Bounding Box w/ OpenMP 4.0

RZ: Christian Terboven

Folie 16

Task Scheduling and

Task Dependencies

RZ: Christian Terboven

Folie 17

 Default: Tasks are tied to the thread that first executes them → not

neccessarily the creator. Scheduling constraints:

 Only the thread a task is tied to can execute it

 A task can only be suspended at a suspend point

 Task creation, task finish, taskwait, barrier, taskyield

 If task is not suspended in a barrier, executing thread can only switch to a

direct descendant of all tasks tied to the thread

 Tasks created with the untied clause are never tied

 No scheduling restrictions, e.g. can be suspended at any point

 But: More freedom to the implementation, e.g. load balancing

Tasks in OpenMP: Scheduling

RZ: Christian Terboven

Folie 18

 Problem: Because untied tasks may migrate between threads at any

point, thread-centric constructs can yield unexpected results

 Remember when using untied tasks:

 Avoid threadprivate variables

 Avoid any use of thread-ids (i.e. omp_get_thread_num())

 Be careful with critical region and locks

 Simple Solution:

 Create a tied task region with

 #pragma omp task if(0)

Unsafe use of untied Tasks

RZ: Christian Terboven

Folie 19

 The task dependence is fulfilled when the predecessor

task has completed

 in dependency-type: the generated task will be a dependent task of all

previously generated sibling tasks that reference at least one of the list items

in an out or inout clause.

 out and inout dependency-type: The generated task will be a dependent

task of all previously generated sibling tasks that reference at least one of the

list items in an in, out, or inout clause.

 The list items in a depend clause may include array sections.

The depend Clause

C/C++

#pragma omp task depend(dependency-type: list)

... structured block ...

RZ: Christian Terboven

Folie 20

 Note: variables in the depend clause do not necessarily have to

indicate the data flow

Concurrent Execution w/ Dep.

void process_in_parallel) {

 #pragma omp parallel

 #pragma omp single

 {

 int x = 1;

 ...

 for (int i = 0; i < T; ++i) {

 #pragma omp task shared(x, ...) depend(out: x) // T1

 preprocess_some_data(...);

 #pragma omp task shared(x, ...) depend(in: x) // T2

 do_something_with_data(...);

 #pragma omp task shared(x, ...) depend(in: x) // T3

 do_something_independent_with_data(...);

 }

 } // end omp single, omp parallel

}

T1 has to be completed
before T2 and T3 can be
executed.

T2 and T3 can be
executed in parallel.

RZ: Christian Terboven

Folie 21

„Real“ Task Dependencies

void blocked_cholesky(int NB, float A[NB][NB]) {

 int i, j, k;

 for (k=0; k<NB; k++) {

 #pragma omp task depend(inout:A[k][k])

 spotrf (A[k][k]) ;

 for (i=k+1; i<NT; i++)

 #pragma omp task depend(in:A[k][k]) depend(inout:A[k][i])

 strsm (A[k][k], A[k][i]);

 // update trailing submatrix

 for (i=k+1; i<NT; i++) {

 for (j=k+1; j<i; j++)

 #pragma omp task depend(in:A[k][i],A[k][j])

 depend(inout:A[j][i])

 sgemm(A[k][i], A[k][j], A[j][i]);

 #pragma omp task depend(in:A[k][i]) depend(inout:A[i][i])

 ssyrk (A[k][i], A[i][i]);

 }

 }

}

RZ: Christian Terboven

Folie 22

Outlook: OpenMP for

Accelerators

RZ: Christian Terboven

Folie 23

What is an Accelerator in OpenMP?

RZ: Christian Terboven

Folie 24

 In how differs an accelerator from just another core?

 different functionality, i.e. optimized for something special

 different (possibly limited) instruction set

→ heterogeneous device

 Assumptions used as design goals for OpenMP 4.0:

 every accelerator device is attached to one host device

 it is probably heterogeneous

 it may not be programmable in the same language as the host, or it may not

implement all operations available on the host

 it may or may not share memory with the host device

 some accelerators are specialized for loop nests

What kind of devices shall be supported?

RZ: Christian Terboven

Folie 25

Execution Model and Data Model

RZ: Christian Terboven

Folie 26

 Host-centric: the execution of an OpenMP program starts on the

host device and it may offload target regions to target devices

 In principle, a target region also begins as a single thread of execution: when

a target construct is encountered, the target region is executed by the implicit

device thread and the encountering thread/task [on the host] waits at the

construct until the execution of the region completes

 If a target device is not present, or not supported, or not available,

the target region is executed by the host device

 If a construct creates a data environment, the data environment is

created at the time the construct is encountered

Execution Model

RZ: Christian Terboven

Folie 27

 When an OpenMP program begins, each device has an initial device

data environment

 Directives accepting data-mapping attribute clauses determine how

an original variable is mapped to a corresponding variable in a

device data environment

 original: the variable on the host

 corresponding: the variable on the device

 the corresponding variable in the device data environment may share

storage with the original variable (danger of data races)

 If a corresponding variable is present in the enclosing device data

environment, the new device data environment inherits the

corresponding variable from the enclosing device

Data Model

RZ: Christian Terboven

Folie 28

 Data environment is lexically scoped

 Data environment is destroyed at closing curly brace

 Allocated buffers/data are automatically released

 Use target construct to

 Transfer control from the host to the device

 Establish a data environment (if not yet done)

 Host thread waits until offloaded region completed

Execution + Data Model

Host Device

#pragma omp target \

alloc(…)

1

from(…)

4

to(…)

2

pA

 map(alloc:...) \

 map(to:...) \

{ ... }

3

 map(from:...)

RZ: Christian Terboven

Folie 29

 Environment Variable OMP_DEFAULT_DEVICE=<int>: sets the

device number to use in target constructs

 map variable B to device, then execute parallel region on device, works

probably pretty well on Intel Xeon Phi

 same as above, but code probably better optimized for NVIDIA GPGPUs

Example: Execution and Data Model

double B[N] = ...; // some initialization
#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)
 B[i] += sin(B[i]);

double B[N] = ...; // some initialization
#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)
 #pragma omp parallel for
 for (b = i; b < i+num_blocks; b++)
 B[b] += sin(B[b]);

RZ: Christian Terboven

Folie 30

 OpenMP 4.0 – for Intel Xeon Phi:

 OpenMP 4.0 – for NVIDIA GPGPU:

 OpenACC – for NVIDIA GPGPU:

Comparing OpenMP with OpenACC

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)
 B[i] += sin(B[i]);

#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

 vector_length(bsize)

#pragma acc loop gang vector

 for (i=0; i<N; ++i) {

 B[i] += sin(B[i]);

 }

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)
 #pragma omp parallel for
 for (b = i; b < i+num_blocks; b++)
 B[b] += sin(B[b]);

RZ: Christian Terboven

Folie 31

 OpenMP 4.0 – for Intel Xeon Phi:

 OpenMP 4.0 – for NVIDIA GPGPU:

 OpenACC – for NVIDIA GPGPU:

Comparing OpenMP with OpenACC

#pragma omp target device(0) map(tofrom:B)
#pragma omp parallel for
for (i=0; i<N; i++)
 B[i] += sin(B[i]);

#pragma acc parallel copy(B[0:N]) num_gangs(numblocks)\

 vector_length(bsize)

#pragma acc loop gang vector

 for (i=0; i<N; ++i) {

 B[i] += sin(B[i]);

 }

#pragma omp target device(0) map(tofrom:B)
#pragma omp teams num_teams(num_blocks) num_threads(bsize)
#pragma omp distribute
for (i=0; i<N; i += num_blocks)
 #pragma omp parallel for
 for (b = i; b < i+num_blocks; b++)
 B[b] += sin(B[b]);

Changed to RC2:

Combined directive
#pragma omp teams distribute parallel for

RZ: Christian Terboven

Folie 32

Target Construct

RZ: Christian Terboven

Folie 33

 Creates a device data environment for the extent of the region

 when a target data construct is encountered, a new device data environment

is created, and the encountering task executes the target data region

 when an if clause is present and the if-expression evaluates to false, the

device is the host

 C/C++:

target data construct

RZ: Christian Terboven

Folie 34

 Map a variable from the current task's data environment to the

device data environment associated with the construct

 the list items that appear in a map clause may include array sections

 alloc-type: each new corresponding list item has an undefined initial value

 to-type: each new corresponding list item is initialized with the original lit

item's value

 from-type: declares that on exit from the region the corresponding list item's

value is assigned to the original list item

 tofrom-type: the default, combination of to and from

 C/C++:

map clause

RZ: Christian Terboven

Folie 35

 Creates a device data environment and execute the construct on the

same device

 superset of the target data constructs - in addition, the target construct

specifies that the region is executed by a device and the encountering task

waits for the device to complete the target region

 C/C++:

target construct

RZ: Christian Terboven

Folie 36

Example: Target Construct

#pragma omp target device(0)

#pragma omp parallel for

{

 for (i=0; i<N; i++) ...

}

#pragma omp target

#pragma omp teams num_teams(8) num_threads(4)

#pragma omp distribute

 for (k = 0; k < NUM_K; k++)

 {

 #pragma omp parallel for

 for (j = 0; j < NUM_J; j++)

 {

 ...

 }

 }

RZ: Christian Terboven

Folie 37

 Makes the corresponding list items in the device data environment

consistent with their original list items, according to the specified

motion clauses

 C/C++:

target update construct

RZ: Christian Terboven

Folie 38

 Specifies that [static] variables, functions (C, C++ and Fortran) and

subroutines (Fortran) are mapped to a device

 if a list item is a function or subroutine then a device-specific version of the

routines is created that can be called from a target region

 if a list item is a variable then the original variable is mapped to a

corresponding variable in the initial device data environment for all devices (if

the variable is initialized it is mapped with the same value)

 all declarations and definitions for a function must have a declare target

directive

 C/C++:

declare target directive

RZ: Christian Terboven

Folie 39

 Creates a league of thread teams where the master thread of each

team executes the region

 the number of teams is determined by the num_teams clause, the number of

threads in each team is determined by the num_threads clause, within a team

region team numbers uniquely identify each team (omp_get_team_num())

 once created, the number of teams remeinas constant for the duration of the

teams region

 The teams region is executed by the master thread of each team

 The threads other than the master thread to not begin execution

until the master thread encounteres a parallel region

 Only the following constructs can be closely nested in the team

region: distribute, parallel, parallel loop/for, parallel sections and

parallel workshare

teams construct (1/2)

RZ: Christian Terboven

Folie 40

 A teams construct must be contained within a target construct,

which must not contain any statements or directives outside of the

teams construct

 After the teams have completed execution of the teams region, the

encountering thread resumes execution of the enclosing target

region

 C/C++:

teams construct (2/2)

RZ: Christian Terboven

Folie 41

 Specifies that the iteration of one or more loops will be executed by

the thread teams, the iterations are distributed across the master

threads of all teams

 there is no implicit barrier at the end of a distribute construct

 a distribute construct must be closely nested in a teams region

 C/C++:

distribute construct

RZ: Christian Terboven

Folie 42

SAXPY

Example

RZ: Christian Terboven

Folie 43

SAXPY: Serial (Host)

int main(int argc, const char* argv[]) {

 int n = 10240; float a = 2.0f; float b = 3.0f;

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Initialize x, y

 // Run SAXPY TWICE

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

 free(x); free(y); return 0;

}

RZ: Christian Terboven

Folie 44

SAXPY: OpenACC v2 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

 int n = 10240; float a = 2.0f; float b = 3.0f;

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Initialize x, y

 // Run SAXPY TWICE

#pragma acc data copyin(x[0:n])

{

#pragma acc parallel copy(y[0:n])

#pragma acc loop

 for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

#pragma acc parallel copy(y[0:n])

#pragma acc loop

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

 free(x); free(y); return 0;

}

RZ: Christian Terboven

Folie 45

SAXPY: OpenMP 4.0 (NVIDIA GPGPU)

int main(int argc, const char* argv[]) {

 int n = 10240; float a = 2.0f; float b = 3.0f;

 float *x = (float*) malloc(n * sizeof(float));

 float *y = (float*) malloc(n * sizeof(float));

 // Initialize x, y

 // Run SAXPY TWICE

#pragma omp target data map(to:x)

{

#pragma omp target map(tofrom:y)

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

for (int i = 0; i < n; ++i){

 y[i] = a*x[i] + y[i];

 }

#pragma omp target map(tofrom:y)

#pragma omp teams

#pragma omp distribute

#pragma omp parallel for

 for (int i = 0; i < n; ++i){

 y[i] = b*x[i] + y[i];

 }

}

 free(x); free(y); return 0;

}

RZ: Christian Terboven

Folie 46

Outlook: Asynchronicity

RZ: Christian Terboven

Folie 47

 For asynchronous execution use the task construct and task

dependencies:

Example: Asynchronous Offload via Tasks

#pragma omp target data map(alloc:Z)
{
 #pragma omp parallel for
 for (c = 0; c < nchunks; c += chunksz)
 {
 #pragma omp task dep(out:c)
 #pragma omp target update map(to: Z[c:chunksz])

 #pragma omp task dep(in:c)
 #pragma omp target
 #pragma omp parallel for
 for (i = c; i < c + chunksz; i++)
 Z[i] = f(Z[i]);
 }
}

RZ: Christian Terboven

Folie 48

OpenMP 4.0 Feature

Overview

RZ: Christian Terboven

Folie 49

 End of a long road? A brief rest stop along the way…

 Addressed several major open issues for OpenMP

 Did not break existing code unnecessarily

 Included 103 passed tickets

 Focus on major tickets initially

 Builds on two comment drafts (“RC1” and “RC2”)

 Many small tickets after RC2, a few large ones

 Final vote was held on July 11

 Already starting work on OpenMP 5.0

OpenMP 4.0 Achievements

RZ: Christian Terboven

Folie 50

 Covered previously

 Device constructs

 Task dependences and task groups

 Thread affinity control

 Support for array sections (including in C and C++)

 User-defined reductions

 Not covered during this week

 SIMD constructs

 Cancellation

 Initial support for Fortran 2003

 Sequentially consistent atomics

 Display of initial OpenMP internal control variables

Overview of major 4.0 additions

RZ: Christian Terboven

Folie 51

Thank you for your attention.

The End

