

terboven@rz.rwth-aachen.de Exercises_OMP-Summer_Courses.docx

1 / 6 Introduction to OpenMP: Exercises and Handout

Introduction to OpenMP

Christian Terboven, Dirk Schmidl, Paul Kapinos

Center for Computing and Communication, RWTH Aachen University

Seffenter Weg 23, 52074 Aachen, Germany

{terboven, schmidl, kapinos}@rz.rwth-aachen.de

Abstract
This document guides you through the hands-on examples and the exercises. Please follow the

instructions given during the lecture/exercise session on how to login to the cluster. You can find this

document in PDF version as well as an archive containing all files required to work on the following

tasks at the event website: www.rz.rwth-aachen.de/go/id/ttt, navigate to Material.

Linux: Please download the (F)ex_omp_ppces.tar(.gz) archive and execute the following

command to extract the exercises to your $HOME directory:

C/C++ exercises:

cd $HOME

 cp Downloads/ex_omp_ppces.tar.gz .

 tar –xzvf ex_omp_ppces.tar.gz

Fortran exercises:

cd $HOME

cp Downloads/Fex_omp_ppces.tar.gz .

tar –xzvf Fex_omp_ppces.tar.gz

If you need help or have any question please do not hesitate to ask.

Linux: The prepared makefiles provide several targets to compile and execute the code:

 debug: The code is compiled with OpenMP enabled, still with full debug support.

 release: The code is compiled with OpenMP and several compiler optimizations enabled,

should not be used for debugging.

 run: Execute the compiled code. The OMP_NUM_THREADS environment variable should be set

in the calling shell.

 clean: Clean any existing build files.

http://www.rz.rwth-aachen.de/go/id/ttt

terboven@rz.rwth-aachen.de Exercises_OMP-Summer_Courses.docx

2 / 6 Introduction to OpenMP: Exercises and Handout

1 Hello World
Go to the hello directory. Compile the hello code via ‘make [debug|release]’ and execute the

resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes the number

of threads to be used.

Exercise 1: Change the code that (a) the thread number (thread id) and (b) the total number of

threads in the team are printed. Re-compile and execute the code in order to verify your changes.

C/C++: In order to print a decimal number, use the %d format specifier with printf():

int i1 = value;

int i2 = other_value;

printf(“Value of i1 is: %d, and i2 is: %d”, i1, i2);

Exercise 2: In which order did you expect the threads to print out the Hello World message? Did your

expectations meet your observations? If not, is that wrong?

2 Parallelization of Pi (numerical integration)
Go to the pi directory. This code computes Pi via numerical integration. Compile the pi code via

‘make [debug|release]’ and execute the resulting executable via ‘OMP_NUM_THREADS=procs

make run’, where procs denotes the number of threads to be used.

Exercise 1: Parallelize the Pi code with OpenMP. The compute intensive part resides in one single

loop in the CalcPi() function, hence the parallel region should be placed there as well. Re-compile

and execute the code in order to verify your changes.

Note: Make sure that your code does not contain any data race – that is two threads writing to the

same shared variable without proper synchronization.

Exercise 2: If you work on a multicore system (e.g. the cluster at RWTH Aachen University) measure

the speedup and the efficiency of the parallel Pi program.

Threads Runtime [sec] Speedup Efficiency

1

2

3

4

6

8

12

terboven@rz.rwth-aachen.de Exercises_OMP-Summer_Courses.docx

3 / 6 Introduction to OpenMP: Exercises and Handout

3 First steps with Tasks: Fibonacci and two small code snippets
During these two exercises you will examine the new Tasking feature of OpenMP 3.0.

Exercise 1: Go to the fibonacci directory. This code computes the Fibonacci number using a

recursive approach – which is not optimal from a performance point of view, but well-suited for this

exercise.

Examine the fibonacci code. Parallelize the code by using the Task concept of OpenMP 3.0.

Remember: The Parallel Region should reside in main() and the fib() function should be entered the

first time with one thread only. You can compile the code via ‘gmake [debug|release]’.

Exercise 2: The code below performs a traversal of a dynamic list and for each list element the

process() function is called. The for-loop continues until e->next points to null. Such a loop could

not be parallelized in OpenMP so far, as the number if loop iterations (= list elements) could not be

computed. Parallelize this code using the Task concept of OpenMP 3.0. State the scope of each

variable explicitly.

01 List l;

02 Element e;

03

04

05

06

07 for(e = l->first; e; e = e->next)

08 {

09

10

11 process(e);

12

13 }

4 Min/Max-Reduction in C/C++
Go to the minmaxreduction directory. Compile the MinMaxReduction code via ‘make

[debug|release]’ and execute the resulting executable via ‘OMP_NUM_THREADS=procs make

run’, where procs denotes the number of threads to be used.

Exercise 1: Neither OpenMP 2.5 nor OpenMP 3.0 provide min/max reduction operations in C/C++

(but OpenMP 3.1 does). The task of this exercise is to implement this functionality manually. Add the

necessary code to compute dMin and dMax (as denoted in lines 29 and 30) in parallel. Think about

various options and select the one delivering the best performance / scalability.

terboven@rz.rwth-aachen.de Exercises_OMP-Summer_Courses.docx

4 / 6 Introduction to OpenMP: Exercises and Handout

5 Reasoning about Work-Distribution
Go to the for directory. Compile the for code via ‘make [debug|release]’ and execute the

resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes the number

of threads to be used.

Exercise 1: Examine the code and think about where to put the parallelization directive(s).

Exercise 2: Measure the speedup and the efficiency of the parallelized code. How good does the

code scale and which scaling did you expect?

Threads Runtime [sec] Speedup Efficiency

1

Is this what you expected?

Exercise 3: After hearing about the Intel VTune Amplifier XE you can perform an analysis to

investigate your parallel code for possible load imbalances.

Linux: Load the appropriate module (‘module load intelvtune’). You than have to start the

GUI with ‘amplxe-gui’. When you finished using the Amplifier return to your previous session

(‘exit’) for the other exercises.

To create a project the following steps are required after you opened the GUI:

1. Click File -> New -> Project
2. Choose any name you like and a directory to store the project and click ‘create project’
3. Select “for.exe” as application out of your example directory with the browse button.

4. Click the ‘new analysis‘ button , choose ‘Locks and Waits’ and click to
start the analysis.

5. Change to the timeline view and investigate how long different threads are waiting.
Can you see a load imbalance?

6 Finding Data Races: Primes
Go to the primes directory. Compile the PrimeOpenMP code via ‘make [debug|release]’ and

execute the resulting executable via ‘OMP_NUM_THREADS=procs make run’, where procs denotes

the number of threads to be used.

Exercise 1: Execute the program twice, with a given number of threads (at least two). You will find

that the number of primes found in the specified interval will change - which of course is not the

correct result. Try to find the Data Race by looking at the source code …

Exercise 2: Use the Intel Inspector XE (this tool has not been taught during PPCES 2013, but

instructions how to use it are below, and instructors are ready to help you) to find the datarace. In

order to not wait for the analysis result too long, shorten the search interval. The interval is provided

terboven@rz.rwth-aachen.de Exercises_OMP-Summer_Courses.docx

5 / 6 Introduction to OpenMP: Exercises and Handout

as arguments to the program. The input arguments need to be specified in the Inspector project.

Note: To use the Inspector, you have to load the appropriate module (‘module load intelixe’),

but you do not have to switch to a different machine. Set OMP_NUM_THREADS to at least 2

(‘export OMP_NUM_THREADS=2’) and start the GUI with ‘inspxe-gui’.

Linux: The following steps are needed to check for dataraces.

1. Click “File -> New -> Project”

2. Enter any name you like and chose a location to store the result data.

3. Choose “PrimeOpenMP.exe” as application in your example directory by using the “browse”

button.

4. As application argument specify a small search interval (e.g. “0 1000”).

5. Click the “new analysis” button .

6. Choose “Locate Deadlocks and Data Races” as analysis type and press the button.

Exercise 3: Correct the PrimeOpenMP code using appropriate OpenMP synchronization constructs.

Use the Inspector XE to verify that you have eliminated all Data Races.

Exercise 4: What are the limitations of Data Race detection tools like the Intel Inspector XE?

Exercise 5: Can you image why program verification at compile time can only be very limited and why

it cannot detect the issues the thread checking tools are able to report?

7 From MPI and OpenMP to Hybrid Parallelization
You learned about MPI to program for Clusters, i.e. Distributed-Memory systems, and you learned

about OpenMP to program for Multicore / Multisocket Systems, i.e. Shared-Memory systems. Of

course we can combine both in one program, which is then called Hybrid Parallelization. Go to the

jacobi_hybrid directory. Compile the jacobi.c code via ‘make [debug|release]’ and

execute the resulting executable via ‘OMP_NUM_THREADS=procs2 make MPI_PROCS=procs1

run’, where procs1 and procs2 denotes the number of processes and/or threads to be used.

Exercise 1: First, parallelize this code with OpenMP. Second, parallelize this code with MPI by

applying the following hints:

 Only the process with rank 0 should be responsible for the I/O parts of the program.

 The parallelization, i.e. the work distribution among the MPI processes, should be

implemented in the jacobi() function, side-by-side with the OpenMP parallelization.

Exercise 2: Extend the program by collecting the runtime and performance information (in MFLOPS)

per process and per thread and print the summary at the end of the program.

terboven@rz.rwth-aachen.de Exercises_OMP-Summer_Courses.docx

6 / 6 Introduction to OpenMP: Exercises and Handout

8 OpenMP Puzzles
The following declarations and definitions occur in all exercises before the Parallel Region:

int i;

double A[N] = { ... }, B[N] = { ... }, C[N], D[N];

const double c = ...;

const double x = ...;

double y;

Exercise 1: Insert missing OpenMP directives to parallelize this loop:

for (i = 0; i < N; i++)

{

 y = sqrt(A[i]);

 D[i] = y + A[i] / (x * x);

}

Exercise 2: Insert missing OpenMP directives to make both loops run in parallel:

#pragma omp parallel

{

for (i = ; i < N; i +=)

{

 D[i] = x * A[i] + x * B[i];

}

#pragma omp for

for (i = 0; i < N; i++)

{

 C[i] = c * D[i];

}

} // end omp parallel

Exercise 3: Can you parallelize this loop – if yes how, if not why?

#pragma omp parallel for

for (int i = 1; i < N; i++)

{

 A[i] = B[i] – A[i – 1];

}

