
Getting OpenMP Up To Speed

1

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

IWOMP 2010
CCS, University of Tsukuba

Tsukuba, Japan
June 14-16, 2010

Ruud van der Pas

Senior Staff Engineer
Oracle Solaris Studio

Oracle
Menlo Park, CA, USA

Getting OpenMP Up To Speed

Getting OpenMP Up To Speed

2

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Outline
❑ The Myth

❑ Deep Trouble

❑ Get Real

❑ The Wrapping

Getting OpenMP Up To Speed

3

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

“A myth, in popular use, is something
that is widely believed but false.”

(source: www.reference.com)

Getting OpenMP Up To Speed

4

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Myth
“OpenMP Does Not Scale”

Getting OpenMP Up To Speed

5

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Hmmm What Does That
Really Mean ?

Getting OpenMP Up To Speed

6

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Some Questions I Could Ask

“Do you mean you wrote a parallel program, using OpenMP
and it doesn't perform?”
“I see. Did you make sure the program was fairly well
optimized in sequential mode?”

“Oh. You just think it should and you used all the cores.
Have you estimated the speed up using Amdahl's Law?”

“Oh. You didn't. By the way, why do you expect the program
to scale?”

“No, this law is not a new EU environmental regulation. It is
something else.”
“I understand. You can't know everything. Have you at least
used a tool to identify the most time consuming parts in
your program?”

Getting OpenMP Up To Speed

7

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Some More Questions I Could Ask

“Oh. You didn't. Did you minimize the number of parallel
regions then?”

“Oh. You didn't. It just worked fine the way it was.

“Did you at least use the nowait clause to minimize the use
of barriers?”

“Oh. You've never heard of a barrier. Might be worth to read
up on.”

“Oh. You didn't. You just parallelized all loops in the
program. Did you try to avoid parallelizing innermost loops
in a loop nest?”

“Do all processors roughly perform the same amount of
work?”

“You don't know, but think it is okay. I hope you're right.”

Getting OpenMP Up To Speed

8

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

I Don't Give Up That Easily
“Did you make optimal use of private data, or did you share
most of it?”
“Oh. You didn't. Sharing is just easier. I see.

“You've never heard of that either. How unfortunate. Could
there perhaps be any false sharing affecting performance?”

“Oh. Never heard of that either. May come handy to learn a
little more about both.”
“So, what did you do next to address the performance ?”

“Switched to MPI. Does that perform any better then?”

“Oh. You don't know. You're still debugging the code.”

“You seem to be using a cc-NUMA system. Did you take that
into account?”

Getting OpenMP Up To Speed

9

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Going Into Pedantic Mode

“While you're waiting for your MPI debug run to finish (are
you sure it doesn't hang by the way), please allow me to talk
a little more about OpenMP and Performance.”

Getting OpenMP Up To Speed

10

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Deep Trouble

Getting OpenMP Up To Speed

11

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

OpenMP and Performance
❑ The transparency of OpenMP is a mixed blessing

● Makes things pretty easy
● May mask performance bottlenecks

❑ In the ideal world, an OpenMP application just performs
well

❑ Unfortunately, this is not the case

❑ Two of the more obscure effects that can negatively
impact performance are cc-NUMA behavior and False
Sharing

❑ Neither of these are restricted to OpenMP, but they are
important enough to cover in some detail here

Getting OpenMP Up To Speed

12

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

Getting OpenMP Up To Speed

13

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing

CPUs Caches Memory

A store into a shared cache line invalidates the other
copies of that line:

The system is not able to
distinguish between changes

within one individual line

Getting OpenMP Up To Speed

14

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

False Sharing Red Flags
Be alert, when all of these three conditions are met:

● Shared data is modifi ed by multiple processors
● Multiple threads operate on the same cache line(s)
● Update occurs simultaneously and very frequently

Use local data where possible

Shared read-only data does not lead to false sharing

Getting OpenMP Up To Speed

15

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Considerations for cc-NUMA

Getting OpenMP Up To Speed

16

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A generic cc-NUMA architecture

Cache Coherent
Interconnect

Processor
M

em
o

ry
Processor

M
em

o
r y

Main Issue: How To Distribute The Data ?

Local Access
(fast)

Remote Access
(slower)

Getting OpenMP Up To Speed

17

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About Data Distribution
❑ Important aspect on a cc-NUMA system

● If not optimal - longer access times, memory hotspots
❑ OpenMP does not provide support for cc-NUMA

❑ Placement comes from the Operating System

● This is therefore Operating System dependent
❑ Solaris, Linux and Windows use “First Touch” to place

data

Getting OpenMP Up To Speed

18

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/1

for (i=0; i<100; i++)
 a[i] = 0;

Cache Coherent
Interconnect

Processor

M
em

o
ry

Processor
M

em
o

r y

a[0]
 :
a[99]

First Touch
All array elements are in the memory of

the processor executing this thread

Processor

Getting OpenMP Up To Speed

19

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

About “First Touch” placement/2

for (i=0; i<100; i++)
 a[i] = 0;

Cache Coherent
Interconnect

Processor

M
em

o
ry

Processor
M

em
o

r y

a[0]
 :
a[49]

#pragma omp parallel for num_threads(2)

First Touch
Both memories each have “their half” of

the array

a[50]
 :
a[99]

Processor Processor

Getting OpenMP Up To Speed

20

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Get Real

Getting OpenMP Up To Speed

21

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Block Matrix Update

Getting OpenMP Up To Speed

22

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A 3D matrix update

❑ The loops are correctly nested for
serial performance

❑ Due to a data dependency on J and
K, only the inner loop can be
parallelized

❑ This will cause the barrier to be
executed (N-1) 2 times

Data Dependency Graph

J
j-1 j

k-1
k

I

K

 do k = 2, n
 do j = 2, n
!$omp parallel do default(shared) private(i) &
!$omp schedule(static)
 do i = 1, m
 x(i,j,k) = x(i,j,k-1) + x(i,j-1,k)*scale
 end do
!$omp end parallel do
 end do
 end do

Getting OpenMP Up To Speed

23

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

0 10 20 30 40 50 60
0

50

100

150

200

250

300

350

The performance

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

) Inner loop over I has
been parallelized

Scaling is very poor
(as to be expected)

Number of threads

Getting OpenMP Up To Speed

24

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

 Name Excl. User Incl. Excl.
 CPU User CPU Wall
 sec. % sec. sec.
 <Total> 10.590 100.0 10.590 1.550
 __mt_EndOfTask_Barrier_ 5.740 54.2 5.740 0.240
 __mt_WaitForWork_ 3.860 36.4 3.860 0.
 __mt_MasterFunction_ 0.480 4.5 0.680 0.480
 MAIN_ 0.230 2.2 1.200 0.470
 block_3d_ -- MP doall from line 14 [_$d1A14.block_3d_] 0.170 1.6 5.910 0.170
 block_3d_ 0.040 0.4 6.460 0.040
 memset 0.030 0.3 0.030 0.080

Name Excl. User Incl. Excl.
 CPU User CPU Wall
 sec. % sec. sec.
 <Total> 47.120 100.0 47.120 2.900
 __mt_EndOfTask_Barrier_ 25.700 54.5 25.700 0.980
 __mt_WaitForWork_ 19.880 42.2 19.880 0.
 __mt_MasterFunction_ 1.100 2.3 1.320 1.100
 MAIN_ 0.190 0.4 2.520 0.470
 block_3d_ -- MP doall from line 14 [_$d1A14.block_3d_] 0.100 0.2 25.800 0.100
 __mt_setup_doJob_int_ 0.080 0.2 0.080 0.080
 __mt_setup_job_ 0.020 0.0 0.020 0.020
 block_3d_ 0.010 0.0 27.020 0.010

Performance Analyzer data
scales so

m
ew

h
at

d
o

 n
o

t
sc

al
e

at
 a

ll

Using 10 threads

Question: Why is __mt_WaitForWork so high in the profi le ?

Using 20 threads

Getting OpenMP Up To Speed

25

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Analyzer Timeline overview

__mt_EndOfTask_Barrier

__mt_WaitForWork

Getting OpenMP Up To Speed

26

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

This is False Sharing at work !
!$omp parallel do default(shared) private(i) &
!$omp schedule(static)
 do i = 1, m
 x(i,j,k) = x(i,j,k-1) + x(i,j-1,k)*scale
 end do
!$omp end parallel do

n
o

 s
h

ar
in

g

P=1 P=2 P=4 P=8

False sharing increases as
we increase the number of

threads

Getting OpenMP Up To Speed

27

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Sanity Check: Setting M=75000*

Only a very few barrier calls now

*) Increasing the length of the loop should decrease false sharing

Getting OpenMP Up To Speed

28

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance comparison

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

Number of threads

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

For a higher value of M, the
program scales better

M = 7,500

M = 75,000

Getting OpenMP Up To Speed

29

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Observation
❑ No data dependency on 'I'

❑ Therefore we can split the 3D
matrix in larger blocks and
process these in parallel

J
I

K

do k = 2, n
 do j = 2, n
 do i = 1, m
 x(i,j,k) = x(i,j,k-1) + x(i,j-1,k)*scale
 end do
 end do
end do

Getting OpenMP Up To Speed

30

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Idea

K

J

I

ie is

❑ We need to distribute the M
iterations over the number
of processors

❑ We do this by controlling
the start (IS) and end (IE)
value of the inner loop

❑ Each thread will calculate
these values for it's portion
of the work

do k = 2, n
 do j = 2, n
 do i = is, ie
 x(i,j,k) = x(i,j,k-1) + x(i,j-1,k)*scale
 end do
 end do
end do

Getting OpenMP Up To Speed

31

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

 use omp_lib

 nrem = mod(m,nthreads)
 nchunk = (m-nrem)/nthreads

!$omp parallel default (none)&
!$omp private (P,is,ie) &
!$omp shared (nrem,nchunk,m,n,x,scale)

 P = omp_get_thread_num()

 if (P < nrem) then
 is = 1 + P*(nchunk + 1)
 ie = is + nchunk
 else
 is = 1 + P*nchunk+ nrem
 ie = is + nchunk - 1
 end if

 call kernel(is,ie,m,n,x,scale)

!$omp end parallel

The fi rst implementation
subroutine kernel(is,ie,m,n,x,scale)

do k = 2, n
 do j = 2, n
 do i = is, ie
 x(i,j,k)=x(i,j,k-1)+x(i,j-1,k)*scale
 end do
 end do
end do

Getting OpenMP Up To Speed

32

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Another Idea: Use OpenMP !
 use omp_lib

 implicit none
 integer :: is, ie, m, n
 real(kind=8):: x(m,n,n), scale
 integer :: i, j, k

!$omp parallel default(none) &
!$omp private(i,j,k) shared(m,n,scale,x)
 do k = 2, n
 do j = 2, n
!$omp do schedule(static)
 do i = 1, m
 x(i,j,k) = x(i,j,k-1) + x(i,j-1,k)*scale
 end do
!$omp end do nowait
 end do
 end do
!$omp end parallel

Getting OpenMP Up To Speed

33

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

How this works on 2 threads
Thread 0 Executes:

k=2
j=2

do i = 1,m/2
 x(i,2,2) = ...
end do

k=2
j=3

do i = 1,m/2
 x(i,3,2) = ...
end do

... etc ...

Thread 1 Executes:

k=2
j=2

do i = m/2+1,m
 x(i,2,2) = ...
end do

k=2
j=3

do i = m/2+1,m
 x(i,3,2) = ...
end do

... etc ...

parallel region

work sharing

parallel region

work sharing

This splits the operation in a way that is
similar to our manual implementation

Getting OpenMP Up To Speed

34

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance
❑ We have set M=7500 N=20

● This problem size does not scale at all when we
explicitly parallelized the inner loop over 'I'

❑ We have have tested 4 versions of this program

● Inner Loop Over 'I' - Our fi rst OpenMP version
● AutoPar - The automatically parallelized version of

'kernel'
● OMP_Chunks - The manually parallelized version

with our explicit calculation of the chunks
● OMP_DO - The version with the OpenMP parallel

region and work-sharing DO

Getting OpenMP Up To Speed

35

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

The performance (M=7,500)

Dimensions : M=7,500 N=20
Footprint : ~24 MByte

P
er

fo
rm

an
ce

 (
M

fl
o

p
/s

)

The auto-parallelizing
compiler does really well !

Number of threads

OMP DO

Innerloop

OMP Chunks

Getting OpenMP Up To Speed

36

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Matrix Times Vector

Getting OpenMP Up To Speed

37

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Sequential Source

for (i=0; i<m; i++)
{
 a[i] = 0.0;
 for (j=0; j<n; j++)
 a[i] += b[i][j]*c[j];
}

= *

j

i

Getting OpenMP Up To Speed

38

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The OpenMP Source

#pragma omp parallel for default(none) \
 private(i,j) shared(m,n,a,b,c)
for (i=0; i<m; i++)
{
 a[i] = 0.0;
 for (j=0; j<n; j++)
 a[i] += b[i][j]*c[j];
 }

= *

j

i

Getting OpenMP Up To Speed

39

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Performance - 2 Socket Nehalem

0.1 1 10 100 1000 10000 100000 1000000
0

5000

10000

15000

20000

25000

30000

35000

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Wait a minute, this
operation is highly

parallel Speed-up is ~1.6x
only

Getting OpenMP Up To Speed

40

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

A Two Socket Nehalem System

hw thread 0
hw thread 1

core 0caches

hw thread 0
hw thread 1

core 1caches

hw thread 0
hw thread 1

core 2caches

hw thread 0
hw thread 1

core 3caches

socket 0

sh
ar

ed
 c

ac
he

m
em

or
y

hw thread 0
hw thread 1

core 0caches

hw thread 0
hw thread 1

core 1caches

hw thread 0
hw thread 1

core 2caches

hw thread 0
hw thread 1

core 3caches

socket 1

sh
ar

ed
 c

ac
he

m
em

or
y

Q
P

I I
nt

er
co

nn
ec

t
0

1

2

3

4

5

6

7

Processor Number

8

9

10

12

11

13

14

15

Getting OpenMP Up To Speed

41

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Data Initialization

#pragma omp parallel default(none) \
 shared(m,n,a,b,c) private(i,j)
{
#pragma omp for
 for (j=0; j<n; j++)
 c[j] = 1.0;

#pragma omp for
 for (i=0; i<m; i++)
 {
 a[i] = -1957.0;
 for (j=0; j<n; j++)
 b[i[]j] = i;
 } /*-- End of omp for --*/

} /*-- End of parallel region --*/

= *

j

i

Getting OpenMP Up To Speed

42

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Exploit First Touch

0.1 1 10 100 1000 10000 100000 1000000
0

5000

10000

15000

20000

25000

30000

35000

1 Thread
2 Threads
4 Threads
8 Threads
16 Threads

Memory Footprint (KByte)

Pe
rf

or
m

an
ce

 (M
flo

p/
s)

Max speed up
is ~3.2x

The only change is the way
the data is distributed over

the system

Getting OpenMP Up To Speed

43

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Summary Case Studies
❑ There are several important basic aspects to consider

when it comes to writing an effi cient OpenMP program

❑ Moreover, there are also obscure additional aspects:

● cc-NUMA
● False Sharing

❑ Key problem is that most developers are not aware of
these rules and blaming OpenMP is all that easy

● In some cases it is a trade-off between ease of use
and performance

● OpenMP typically goes for the former, but
✔ With some extra effort can be made to scale well in

many cases

Getting OpenMP Up To Speed

44

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

The Wrapping

Getting OpenMP Up To Speed

45

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

Wrapping Things Up
“While we're still waiting for your MPI debug run to finish, I
want to ask you whether you found my information useful.”
“Yes, it is overwhelming. I know.”

“And OpenMP is somewhat obscure in certain areas. I know
that as well.”
“I understand. You're not a Computer Scientist and just
need to get your scientific research done.”

“I agree this is not a good situation, but it is all about
Darwin, you know. I'm sorry, it is a tough world out there.”

Getting OpenMP Up To Speed

46

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

It Never Ends

“Oh, your MPI job just finished! Great.”

“Your program does not write a file called 'core' and it
wasn't there when you started the program?”

“You wonder where such a file comes from? Let's get a big
and strong coffee first.”

Getting OpenMP Up To Speed

47

RvdP/V1 Tutorial IWOMP 2010 – CCS Un. of Tsukuba, June 14, 2010

That's It

Thank You and Stay Tuned !

Ruud van der Pas
ruud.vanderpas@sun.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

