

September 2013

Particle Simulation
using CUDA

Simon Green
sdkfeedback@nvidia.com

September 2013 Page ii of 12

Document Change History

Version Date Responsible Reason for Change

1.0 Sept 19 2007 Simon Green Initial draft

1.1 Nov 3 2007 Simon Green Fixed some mistakes, added detail.

1.2 June 10 2007 Simon Green Updated to match code in CUDA 2.0 release

1.3 May 10 2010 Simon Green Updated for CUDA 3.1

September 2013 Page 1 of 12

 Abstract

Particle systems [1] are a commonly used technique for simulating physical systems. In this document
we will describe how to efficiently implement a particle system in CUDA, including interactions
between particles using a uniform grid data structure.

Figure 1. Particle simulation in CUDA.

 Particle Simulation using CUDA

September 2013 Page 2 of 12

Introduction

Particle-based techniques are used in many applications - from interactive simulation of fluids and
smoke for games to astrophysics simulations and molecular dynamics. Recent research has also
applied particle methods to soft body and cloth simulation [4], and there is some hope that one day
these techniques will allow an efficient unification of rigid, soft body and fluid simulations where
everything can interact with everything else seamlessly.

There are two basic types of simulation – Eulerian (grid-based) methods, which calculate the
properties of the simulation at a set of fixed points in space, and Lagrangian (particle) methods,
which calculate the properties of a set of particles as they move through space.

Particle-based methods have several advantages over grid-based methods.

 They only perform computation where necessary.

 They require less storage and bandwidth since the model properties are only stored at
the particle positions, rather than at every point in space.

 They are not necessarily constrained to a finite box.

 Conservation of mass is simple (since each particle represents a fixed amount of mass).

The main disadvantage of particle-based methods is that they require a very large number of particles
to obtain realistic results. There are also techniques (such as the particle level-set method) that
attempt to combine the strengths of both methods.

Fortunately, it is relatively easy to parallelize particle systems and the massive parallel computation
capabilities of modern GPUs now makes it possible to simulate large systems at interactive rates.

This document describes how to implement a simple particle system in CUDA, including particle
collisions using a uniform grid data structure.

The accompanying code is intended to provide a framework to which more complicated particle
interactions such as smoothed particle hydrodynamics [2, 3] or soft body simulation can be added.

 Particle Simulation using CUDA

September 2013 Page 3 of 12

Demo Usage

Press ‘v’ to enter view mode. In view mode:

 Hold down the left mouse button to rotate the camera.

 Hold down the middle mouse button to translate the camera.

 Hold down the left and middle buttons and move up and down to zoom.

Press ‘m’ to change to move mode, where you can move the collision sphere to interact with the
particles.

Press ‘1’ or ‘2’ to reset the particles. ‘3’ drops a ball of particles into the system.

Press ‘h’ to display the sliders, which enable you to modify the simulation parameters interactively.

For an interesting effect, try turning the gravity to zero, and the collision attraction to 0.1. This will
cause the particles to group together like a sticky substance.

If you have a compute capability 1.1 GPU, you can enable the atomic processing path by editing the
file “particles_kernel.cuh” so that USE_SORT is set to 0, and changing the custom build setup on
“particleSystem.cu” so that nvcc is called with “-arch=sm_11”.

 Particle Simulation using CUDA

September 2013 Page 4 of 12

Implementation

There are three main steps to the performing the simulation:

1. Integration.

2. Building the grid data structure

3. Processing collisions

Rendering of the particles is performed using OpenGL, making use of point sprites and a GLSL
pixel shader that makes the points appear spherical.

Integration

The integration step is the simplest step. It integrates the particle attributes (position and velocity) to
move the particles through space. We use Euler integration for simplicity - the velocity is updated
based on applied forces and gravity, and then the position is updated based on the velocity. Damping
and interactions with the bounding cube are also applied in this stage.

The particle positions and velocities are both stored in float4 arrays. The positions are actually
allocated in an OpenGL vertex array object (VBO) so that they can be rendered from directly. This
VBO memory is mapped for use by CUDA using “cudaGLMapBufferObject”. The arrays are
double-buffered so that updating the new values will not affect particles not yet processed.

Particle-Particle Interactions

It is relatively simple to implement a particle system where particles do not interact with each other.
Most particle systems used in games today fall into this category. In this case each particle is
independent and they can be simulated trivially in parallel.

The “nbody” sample included in the CUDA SDK includes interactions in the form of gravitational
attraction between bodies. It demonstrates that it is possible to get excellent performance for n-body
gravitational simulation using CUDA when performing the interaction calculations in a brute-force
manner – computing all n2 interactions for n bodies. The use of shared memory means that this
method does not become bound by memory bandwidth.

However, for local interactions (such as collisions) we can improve performance by using spatial
subdivision.

The key insight here is that for many types of interaction, the interaction force drops off with
distance. This means that we can compute the force for a given particle by only comparing it with all
its neighbors within a certain radius.

Spatial subdivision techniques divide the simulation space so that it is easier to find the neighbors of
a given particle.

 Particle Simulation using CUDA

September 2013 Page 5 of 12

Uniform Grids

In this sample we use a uniform grid [11], which is the simplest possible spatial subdivision. (The
techniques described could be extended to more sophisticated structures such as hierarchical grids,
but we don’t discuss this here.)

A uniform grid subdivides the simulation space into a grid of uniformly sized cells. For simplicity, we
use a grid where the cell size is the same as the size of the particle (double its radius). This means that
each particle can cover only a limited number of grid cells (8 in 3 dimensions). Also, if we assume no
inter-penetration between particles, there is a fixed upper bound on the number of particles per grid
cell (4 in 3 dimensions).

We use a so-called “loose” grid, where each particle is assigned to only one grid cell based on its
center point. Since each particle can potentially overlap several grid cells, this means that when
processing collisions we must also examine the particles in the neighboring cells (3 x 3 x 3 = 27 in
total) to see if they are touching the particle in question. This method allows us to bin the particles
into the grid cells simply by sorting them by their grid index.

The alternative approach, where particles are stored in every cell that they touch, requires less work
when processing collisions, but more work when building the grid, and is generally more expensive
on the GPU in our experience.

The grid data structure is generated from scratch each time step. It is possible to perform incremental
updates to the grid structure on the GPU, but this approach is simple and the performance is
constant regardless of the movement of the particles.

We examine two different methods for generating the grid structure.

Building the Grid using Atomic Operations

On GPUs that support atomic operations (compute capability 1.1), there is a relatively simple
algorithm for building the grid. Atomic operations allow multiple threads to update the same value in
global memory simultaneously without conflicts.

We use 2 arrays in global memory:

gridCounters – this stores the number of particles in each cell so far. It is initialized to
zero at the start of each frame.

gridCells – this stores the particle indices for each cell, and has room for a fixed
maximum number of particles per cell.

The “updateGrid” kernel function updates the grid structure. It runs with one thread per particle.

Each particle calculates which grid cell it is in, and uses the atomicAdd function to atomically
increment the cell counter corresponding to this location. It then writes its index into the grid array
at the correct position (using a scattered global write). We clamp the cell particle count so that it
doesn’t exceed the maximum number of particles per cell.

Figure 2 shows a simple example with 6 particles in a 2D grid.

 Particle Simulation using CUDA

September 2013 Page 6 of 12

Figure 2 – Uniform Grid using Atomics

Note that the global memory writes in this pass are essentially random (depending on the position of
the particles), and so will not be coalesced. In addition, if multiple particles write to the same cell
location simultaneously, the writes will be serialized, causing further performance degradation.

This method assumes a fixed maximum number of particles per grid cell. It can be extended to
support a variable number of particles by using a two-pass approach. In the first pass, we count the
number of particles per grid cell using an atomic increment as above. We then perform a parallel
prefix sum (scan) operation to calculate the destination addresses for each particle (see the “scan”
sample in the SDK). In the final pass we examine all the particles again, and write them to
contiguous locations in the grid array using the results of the scan. Note that this is a very similar
algorithm to a single pass of a parallel radix sort.

Building the Grid using Sorting

An alternative approach which does not require atomic operations is to use sorting.

The algorithm consists of several kernels. The first kernel “calcHash” calculates a hash value for
each particle based on its cell id. In this example we simply use the linear cell id as the hash, but it
may be beneficial to use other functions such the Z-order curve [8] to improve the coherence of
memory accesses. The kernel stores the results to the “particleHash” array in global memory as

a uint2 pair (cell hash, particle id).

We then sort the particles based on their hash values. The sorting is performed using the fast radix
sort provided by the CUDPP library, which uses the algorithm described in [12]. This creates a list of
particle ids in cell order.

In order for this sorted list to useful, we need to be able to find the start of any given cell in the
sorted list. This is achieved by running another kernel “findCellStart”, which uses a thread per
particle and compares the cell index of the current particle with the cell index of the previous particle
in the sorted list. If the index is different, this indicates the start of a new cell, and the start address is
written to another array using a scattered write. The current code also finds the index of the end of
each cell in a similar way.

Cell
id

Count Particle
id

0 0

1 0

2 0

3 0

4 2 3, 5

5 0

6 3 1, 2, 4

7 0

8 0

9 1 0

10 0

11 0

12 0

13 0

14 0

15 0

10

1 2 3

5 6 7

14

2

0

1

4

9 11

13 15

4

8

12

3

5

0

 Particle Simulation using CUDA

September 2013 Page 7 of 12

Note that this method was not possible on pre-CUDA architectures because of the lack of scattered
memory writes and a binary search would have to be used instead [9].

Figure 3 demonstrates creating the grid using the sorting method.

Figure 3 – Uniform Grid using Sorting

As an additional optimization, we re-order the position and velocity arrays into sorted order to
improve the coherence of the texture lookups during the collision processing stage.

Particle Collisions

Once we have built the grid structure we can use it to accelerate particle-particle interactions. In the
sample code we perform simple collisions between particles using the DEM method [5]. This
collision model consists of several forces, including a spring force which forces the particles apart,
and a dashpot force which causes damping.

Each particle calculates which grid cell it is in. It then loops over the neighboring 27 grid cells (3x3x3
cells) and checks for collisions with each of the particles in these cells. If there is a collision the
particle’s velocity is modified.

Performance

On most hardware the sorting-based algorithm achieves the highest performance. This is because the
sorting improves the memory access coherency when performing the collisions, and also tends to
reduce warp divergence (particles in the same warp tend to be close together in space and therefore
have similar numbers of neighbors).

The atomic-based method is also more sensitive to the distribution of the particles, with random
distributions being significantly slower.

Index Unsorted list
(cell id, particle id)

List
sorted by
cell id

Cell
start

0 (9, 0) (4, 3)

1 (6, 1) (4, 5)

2 (6, 2) (6, 1)

3 (4, 3) (6, 2)

4 (6, 4) (6, 4) 0

5 (4, 5) (9, 0)

6 2

7

8

9 5

10

11

12

13

14

15

10

1 2 3

5 6 7

14

2

0

1

4

9 11

13 15

4

8

12

3

5

0

 Particle Simulation using CUDA

September 2013 Page 8 of 12

Memory accesses to fetch the neighboring particles’ positions and velocities will typically be non-
coalesced. For this reason we bind the global memory arrays to textures and use texture lookups
(tex1Dfetch) instead, which improves performance by up to 45% since texture reads are cached.

The code included in the CUDA SDK can simulate 65,536 colliding particles at about 175 frames per
second (fps) in the steady state on a GeForce GTX 280. Improvements in the Fermi architecture
mean that the same code on a GeForce GTX 480 runs at around 460 frames per second, more than
two and a half times faster.

Conclusion

The ability of CUDA to perform scattered memory writes makes it possible to build dynamic data
structures directly on the GPU. Sorting can be used to bin particles into a uniform grid, and also
improves memory coherence when accessing the grid. This combined with the computational power
of the GPU makes it possible to simulate large systems of interacting particles at interactive rates.

The code included in this sample is by no means optimal and there are many possible further
optimizations to this algorithm [see 10 and 13 for details].

 Particle Simulation using CUDA

September 2013 Page 9 of 12

Bibliography
1. Reeves, W. T. 1983. Particle Systems—a Technique for Modeling a Class of Fuzzy Objects.

ACM Trans. Graph. 2, 2 (Apr. 1983), 91-108.

2. Monaghan J.: Smoothed particle hydrodynamics. Annu. Rev. Astron. Physics 30 (1992), 543.
12, 13

3. Müller M., Charypar D., Gross M.: Particle-based fluid simulation for interactive
applications. Proceedings of 2003 ACM SIGGRAPH Symposium on Computer Animation
(2003), 154–159.

4. Müller, M., Heidelberger, B., Hennix, M., and Ratcliff, J. 2007. Position based dynamics. J.
Vis. Comun. Image Represent. 18, 2 (Apr. 2007), 109-118.

5. Harada, T.: Real-Time Rigid Body Simulation on GPUs. GPU Gems 3. Addison Wesley,
2007

6. Le Grand, S.: Broad-Phase Collision Detection with CUDA. GPU Gems 3, Addison Wesley,
2007

7. Nyland, L., Harris, M., Prins, J.: Fast N-Body Simulation with CUDA. GPU Gems 3.
Addison Wesley, 2007

8. Z-order (curve), Wikipedia http://en.wikipedia.org/wiki/Z-order_(curve)

9. Ian Buck and Tim Purcell, A Toolkit for Computation on GPUs, GPU Gems, Addison-
Wesley, 2004

10. Qiming Hou, Kun Zhou, Baining Guo, BSGP: Bulk-Synchronous GPU Programming,
ACM TOG (SIGGRAPH 2008)

11. Ericson, C., Real-Time Collision Detection, Morgan Kaufmann 2005

12. Satish, N., Harris, M., Garland, M., Designing Efficient Sorting Algorithms for Manycore
GPUs, 2009.

13. Joshua A. Anderson, Chris D. Lorenz, and Alex Travesset General purpose molecular
dynamics simulations fully implemented on graphics processing units, Journal of
Computational Physics 227 (2008)

http://en.wikipedia.org/wiki/Z-order_(curve)
http://research.microsoft.com/users/kunzhou/
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://mgarland.org/files/papers/gpusort-ipdps09.pdf
http://codeblue.umich.edu/hoomd-blue/about.html#paper
http://codeblue.umich.edu/hoomd-blue/about.html#paper

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

