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 Abstract 

The pricing of options has been a very important problem encountered in financial 
engineering since the advent of organized option trading in 1973. As more computation has 
been applied to finance-related problems, finding efficient implementations of option pricing 
models on modern architectures has become more important. This white paper describes an 
implementation of the Monte Carlo approach to option pricing in CUDA.  For complete 
implementation details, please see the “MonteCarlo” example in the NVIDIA CUDA SDK. 
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Introduction 

The most common definition of an option is an agreement between two parties, the option 
seller and the option buyer, whereby the option buyer is granted a right (but not an obligation), 
secured by the option seller, to carry out some operation (or exercise the option) at some 
moment in the future. [1] 

Options come in several varieties: A call option grants its holder the right to buy some 
underlying asset (stock, real estate, or any other good with inherent value) at a fixed 
predetermined price at some moment in the future. The predetermined price is referred to as 
the strike price, and the future date is called the expiration date. Similarly, a put option gives its 
holder the right to sell the underlying asset at a strike price on the expiration date. 

For a call option, the profit made on the expiration date—assuming a same-day sale 
transaction—is the difference between the price of the asset on the expiration date and the 
strike price, minus the option price. For a put option, the profit made on the expiration date 
is the difference between the strike price and the price of the asset on the expiration date, 
minus the option price. 

The price of the asset at expiration and the strike price therefore strongly influence how 
much one would be willing to pay for an option. 

Other factors are: 

The time to the expiration date, T: Longer periods imply wider range of possible values 
for the underlying asset on the expiration date, and thus more uncertainty about the value of 
the option. 

The risk-free rate of return, R, which is the annual interest rate of Treasury Bonds or 

other “risk-free” investments: any amount P of dollars is guaranteed to be worth 
RTeP   

dollars T years from now if placed today in one of theses investments. In other words, if an 

asset is worth P dollars T years from now, it is worth 
RTeP   today, which must be taken 

in account when evaluating the value of the option today. 

Exercise restrictions: So far only so-called European options, which can be exercised only 
on the expiration date, have been discussed. But options with different types of exercise 
restriction also exist. For example, American-style options are more flexible as they may be 
exercised at any time up to and including expiration date and as such, they are generally 
priced at least as high as corresponding European options. 



  

    

 

 

December 2013 

The Monte Carlo Method in Finance 

The price of the underlying asset tS  follows a geometric Brownian motion with constant 

drift  and volatility v  follows stochastic differential equation: tttt dWSvdtSdS   , 

where tW is the Wiener random process: ),0(~0 TNWWX T   ( ),( 2N is normal 

distribution with average  and standard deviation  ) 

The solution of this equation is: 
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possible end stock price depending on the random sample N(0, 1), which one can think of as 
“describing” how exactly the stock price moved. 

The possible prices of derivatives at the period end are derived from the possible price of 
the underlying asset.  For example, the price of a call option is 

)0,max(),( XSTSV Tcall  . If the market stock price at the exercise date is greater than 

the strike price, a call option makes its holder a profit of XST   dollars, and zero 

otherwise.  Similarly, the price of a put option is )0,max(),( Tput SXTSV  .  If the 

strike price at the exercise date is greater than the market stock price, a put option makes its 

holder a profit of TSX  , and zero otherwise. 

One method to mathematically estimate the expectation of ),( TSVcall and ),( TSVput is 

Monte Carlo numeric integration: generate N  numeric samples with the required )1,0(N  

distribution, corresponding to the underlying Wiener process, then average the possible end-

period stock profits ),( TSVi , corresponding to each of the sample values: 





N

i

imean TSV
N

TSV
1

),(
1

),(    (2) 

This is the core of the Monte Carlo approach to option pricing. 

Discounting the approximate future price by the discount factor 
Tre 

we get an 

approximation of the present-day fair derivative price: 
Tr

meanfair eTSVSV  ),()0,(  
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In our chosen example problem, pricing European options, closed-form expressions for 

)),(( TSVE call  and )),(( TSVE put  are known from the Black-Scholes formula [2, 3]. We 

use these closed-form solutions to compute reference values for comparison against our 
Monte Carlo integration results.  However, the Monte Carlo approach is often applied to 
more complex problems, such as pricing American options, for which closed-form 
expressions are unknown. 

Pseudorandom and Quasirandom 
Sequences 

The first stage of the computation is the generation of a normally distributed )1,0(N  

number sequence, which comes down to uniformly distributed sequence generation. The 
“true” Monte Carlo method is based on pseudorandom number sequences, for which most 
of the probability theory laws hold, like the Law of Large Numbers and the Central Limit 
Theorem. However, to apply the method to numeric integration we only need the samples to 
be uniformly distributed over the integration space (without clustering in subvolumes, 
“white spots”, etc.). For this purpose specially constructed quasirandom sequences are now 
widely used, turning “true” Monte Carlo simulation into Quasi-Monte Carlo integration with 
noticeably faster convergence (up to one order of magnitude and above). Moreover, for a 
1D problem we can just use an ascending uniformly distributed (0..1) number sequence 
without any permutations, as in this case different quasirandom sequences only mean 
different order of the samples in the samples array, leaving the a posteriori distribution intact, 
i.e. still uniform. 

Normally Distributed Sample Generation 
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 is the Cumulative Normal Distribution function. 

Since )(yCNDz  is a strictly ascending function, )1,0(),(1   zzCNDy  exists. 

Now given a uniform distribution )}1,0(:{ xX  as an output from a quasirandom 

generator (or just linearly generated as in our implementation), which by definition means 

xxXP  )( , let’s try to find a mapping )}(:{ xFyXY  , so that ).1,0(NY   
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Because )(1 xCND
 is strictly ascending  )}()({}{ 11 xCNDXCNDxX   ,  

xxCNDXCNDP   ))()(( 11
. By using the )(yCNDx  substitution (equivalent to 

the )}(:{ 1 xCNDyXY   mapping), the last expression reduces to 

)()( yCNDyYP  , which means that Y has the desired distribution. Actually, since no 

properties specific to the Normal distribution were used in the calculations above, this is the 

general solution for deriving any desired a posteriori distribution out of a )1,0( uniformly 

distributed sequence. 

Even though there are no known closed-form expressions for the Inverse Cumulative 
Normal Distribution Function, there exist several good polynomial approximations, two of 
which (Moro or Acklam) are used in our sample. 

Unlike many normal distribution generators (e.g. Box-Müller transform), this method doesn’t 
demand statistical randomness properties of the underlying uniformly distributed sequence, which is 
important for co-operation with quasirandom number sequence generators. 

 

Multiple Blocks Per Option 

Once we’ve generated the desired number of )1,0(N  samples, we use them to compute an 

expected value and confidence width for the underlying option.  This is just a matter of 
computing Equation (2), which boils down to evaluating equation (1) (often called the payoff 
function, endCallValue() in our code) for many integration paths and computing the mean of 

the results.  For a European call option, the computation code for a )1,0(N single sample (r 

) is shown in Listing 1. 

 

Listing 1. Computation of the expected value of a random sample. 

There are multiple ways we could go about computing the mean of all of the samples.  The 
number of options is typically in the hundreds or fewer, so computing one option per thread 
will likely not keep the GPU efficiently occupied.  Therefore, we will concentrate on using 
multiple threads per option.  Given that, we have two choices; we can either use one thread 
block per option, or multiple thread blocks per option.  To begin, we’ll assume we are 
computing a very large number (hundreds of thousands) of paths per option.  In this case, it 
will probably help us hide the latency of reading the random input values if we divide the 

__device__ float endCallValue( 

    float S, 

    float X, 

    float r, 

    float MuByT, 

    float VBySqrtT 

){ 

    float callValue = S * __expf(MuByT + VBySqrtT * r) - X; 

    return (callValue > 0) ? callValue : 0; 

} 
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work of each option across multiple blocks.  As we’ll see later, depending on the number of 
underlying options and the number of samples, we may want to choose a different method 
to get the highest performance.   

Pricing a single European option using Monte Carlo integration is inherently a one-
dimensional problem, but if we are pricing multiple options, we can think of the problem in 
two dimensions.  We’ll choose to represent paths for an option along the x axis, and options 
along the y axis.  This makes it easy to determine our grid layout: we’ll launch a grid X blocks 
wide by Y blocks tall, where Y is the number of options we are pricing.   

We also use the number of options to determine X; we want XY to be large enough to 
have plenty of thread blocks to keep the GPU busy.  After some experiments on a Tesla 
C870 GPU, we determined a simple heuristic that gives good performance in general: if the 
number of options is less than 16, we use 64 blocks per option, and otherwise we use 16.  
Or, in code: 

const int blocksPerOption = (OPT_N < 16) ? 64 : 16;   

Listing 2 shows the core computation of the CUDA kernel code for Monte Carlo 
integration. Each thread computes and sums the payoff for multiple integration paths and 
stores the sum and the sum of squares (which is used in computing the confidence of the 
estimate) into a device memory array. 

 

Listing 2. The main loop of the Monte Carlo integration.  Each thread 
executes this code. 

After this kernel executes we have an array of partial sums, d_sumCall, in device memory.  
This array has Y rows of T elements each, where T is the number of threads per option, 
which depends on the number of threads we launch per block.  In our experiments the best 
performance was achieved with blocks of 256 threads.  To compute the expected price and 
confidence width for each option, we need to sum all T values per option.  To do so, we 
must launch a second kernel which uses a parallel reduction to compute the sums. 

A parallel reduction is a tree-based summation of values which takes log(n) parallel steps to 
sum n values.  Parallel reduction is an efficient way to combine values on a data-parallel 
processor like a GPU.  For more information on parallel reductions, please see the 
“reduction” example in the CUDA SDK.  In this example, the reduction is performed by 
launching the kernel MonteCarloReduce(). 

const int   iSum = blockIdx.x * blockDim.x + threadIdx.x; 

const int accumN = blockDim.x * gridDim.x; 

 

//Cycle through the entire random paths array: 

//derive end stock price for each path 

TOptionValue sumCall = {0, 0}; 

for(int i = iSum; i < pathN; i += accumN){ 

    float         r = d_Samples[i]; 

    float callValue = endCallValue(S, X, r, MuByT, VBySqrtT); 

    sumCall.Expected   += callValue; 

    sumCall.Confidence += callValue * callValue; 

} 

//accumulate into intermediate global memory array 

d_SumCall[optionIndex * accumN + iSum] = sumCall; 
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After this first implementation, we evaluated performance, and found that performance was 
very good for large numbers of paths.  On a Tesla C870 GPU we were able to reach a rate of 
almost 400 options per second with 32 million paths per option.  However, such large path 
numbers are not often used in the real world of computational finance.  For a more realistic 
path counts of 256 thousand paths, performance was not as good.  While we could achieve 
over 36,000 options per second, in terms of the number of paths per second that is 
significantly slower.  This is made clear Figure 1, in which performance obviously decreases 
as the number of paths decreases.   Note that above one million paths, the plot is roughly 
horizontal.  In an ideal implementation the entire graph should be horizontal—the GPU 
should be able to sustain that computation rate if we can reduce the overhead for small path 
counts.  

Monte Carlo Paths Per Second (multiple blocks per option)
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Figure 1. This plot shows paths per second achieved on a Tesla 
C870 GPU using multiple thread blocks to price each option.  Notice 
that performance decreases as the number of paths decreases. 

One Block Per Option 

When the number of paths is large, each thread has many payoffs to evaluate.  By doing a lot 
of computation per thread, we are able to amortize overhead such as the cost of kernel 
launches and stores to device memory.  But when the number of paths is small, launch and 
store costs become a more substantial portion of the total computation time.  Currently in 
order to do the final summation of each option’s path values, we must store intermediate 
results to global memory, finish the first kernel, and then launch the parallel reduction kernel 
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to compute the final sum.  The second kernel launch is necessary because there is no way for 
thread blocks to synchronize and share their results. 

To optimize this, we can treat smaller path counts differently, and compute their values 
using a single thread block per option.  To do this, each thread can store its sum to shared 
memory instead of global memory, and the parallel reduction can be performed in shared 
memory.  This saves a global store per thread and an extra kernel invocation, and results in 
big performance improvements for smaller path counts.  The main computational loops of 
the new Monte Carlo kernel are shown in Listing 3.  Notice that there is a new outer loop 
which modifies the index iSum. This loop allows each thread to compute multiple partial 

sums and store them in the shared memory arrays s_SumCall and s_Sum2Call. By 
performing a larger parallel reduction (i.e. more leaves in the tree), we improve accuracy, as 
discussed in the Section “Accurate Summation”.   

 

Listing 3.  This modified Monte Carlo code computes all paths for an 
option wthin a single thread block.  This is more efficient for smaller 
path counts. 

Combining Both Implementations 

Now we have two Monte Carlo option pricing implementations; one is optimized for large 
path counts, and the other for small path counts.  To get best performance across all path 
counts, we need to be able to choose between them.  By comparing the performance of the 
two implementations across a range of option and path counts, we found that the break-
even point is related to the ratio of the number of paths per option to the number of 
options.  On a Tesla C870 GPU, we determined that performance is generally higher with 

// Cycle through the entire random paths array: derive end  

// stock price for each path and accumulate partial integrals  

// into intermediate shared memory buffer 

for(int iSum = threadIdx.x; iSum < SUM_N; iSum += blockDim.x){ 

  TOptionValue sumCall = {0, 0}; 

  for(int i = iSum; i < pathN; i += SUM_N){ 

    float         r = d_Samples[i]; 

    float callValue = endCallValue(S, X, r, MuByT, VBySqrtT); 

    sumCall.Expected   += callValue; 

    sumCall.Confidence += callValue * callValue; 

  } 

  s_SumCall[iSum]  = sumCall.Expected; 

  s_Sum2Call[iSum] = sumCall.Confidence; 

} 

//Reduce shared memory accumulators 

//and write final result to global memory 

sumReduce<SUM_N>(s_SumCall, s_Sum2Call); 

if(threadIdx.x == 0){ 

    TOptionValue sumCall = {s_SumCall[0], s_Sum2Call[0]}; 

    d_ResultCall[optionIndex] = sumCall; 

} 
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multiple blocks per option when # paths / # options >= 8192.  The condition we use in the 
code is the following. 

const int doMultiBlock = (PATH_N / OPT_N) >= 8192; 

By choosing between these two implementations using the above criterion, we are able to 
achieve much more consistent throughput, as shown in Figure 2.  While the perfomance still 
tails off a bit for very small path counts, overall it is much more consistent, largely staying 
above 10 billion paths per second. 

Monte Carlo Paths Per Second (After Optimization)
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Figure 2.  By using a single thread block per option when the ratio of 
paths to options is small, we reduce overhead and achieve a more 
constant paths per second rate (compare to Figure 1). 

Accurate Summation 

Floating point summation is an extremely important and common computation for a wide 
variety of numerical applications.  As a result, there is a large body of literature on the 
analysis of accuracy of many summation algorithms [6, 7].  The most common sequential 
approach, often called recursive summation, in which values are added sequentially, can lead to a 
large amount of round-off error.  Intuitively, as the magnitude of the sum gets very large 
relative to the summands, the amount of round-off error increases.  This can lead to 
catastrophic errors.  By reordering the summation (i.e. sorting in order of increasing 
magnitude) error can be reduced, but this doesn’t help if all of the input values have similar 
values (which may be the case in Monte Carlo option pricing). 
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Instead of adding all the values into a single sum, we can maintain multiple partial sums.  If 
we add the same number of values into each partial sum, and the input values are similar in 
magnitude, the partial sums will likewise all have similar magnitude, so that when they are 
added together, the round-off error will be reduced.  If we extend this idea, we get pair-wise 
summation [6], which results in a summation tree just like the one we use in our parallel 
reduction.  Thus, not only is parallel reduction efficient on GPUs, but it can improve 
accuracy! 

In practice, we found that by increasing the number of leaf nodes in our parallel reduction, 
we can significantly improve the accuracy of summation (as measured by the relative 
difference between single-precision GPU Monte Carlo implementation results and their 
CPU double-precision counterpart). Specifically, the relative difference improved by an 
order of magnitude from 7.6e-7 to 6e-8 after increasing the size of the shared memory 
reduction array s_SumCall from 128 to 1024 elements.  The “MonteCarlo” SDK sample 
however does not do this by default, because, as shown in the “Accuracy Measurements” 
section, for real-world sample point counts of 1M and below this “pure” reduction accuracy 
improvement is negligible compared to the relative difference from Black-Scholes results (i.e. 
lower by one to two orders of magnitude), and at the same time it introduces observable 
performance overhead (about 5%). This additional accuracy may, however, be important in 
some applications, so we provide it as an option in the code. The size of the reduction array 
in the code can be modified using the SUM_N parameter to sumReduce().  

Accuracy measurements 

Sample count 65k 128k 256k 512k 1M 2M 4M 8M 16M 

GPU 1.1E-5 5.9E-6 3.2E-6 1.7E-6   9.5E-7 5.3E-7 3.2E-7 2.0E-7 1.9E-7 

CPU 1.1E-5 5.8E-6 3.1E-6 1.6E-6 8.6E-7 4.5E-7 2.4E-7 1.1E-7 2.9E-8 

Table 1. Relative difference of GPU (single-precision) and CPU (double-precision) Monte Carlo 
results to Black-Scholes formula 

 

Monte Carlo on Multiple GPUs 

Monte Carlo option pricing is “embarrassingly parallel”, because the pricing of each option 
is independent of all others.  Therefore the computation can be distributed across multiple 
CUDA-capable GPUs present in the system. Monte Carlo pricing of European options with 
multi-GPU support is demonstrated in the “MonteCarloMultiGPU” example in the CUDA 
SDK.  This example shares most of its CUDA code with the “MonteCarlo” example. To 
provide parallelism across multiple GPUs, the set of input options is divided into contiguous 
subsets (the number of subsets equals the number of CUDA-capable GPUs installed in the 
system), which are then passed to host threads driving individual GPU CUDA contexts. 
CUDA API state is encapsulated inside a CUDA context, so there is always a one-to-one 
correspondence between host threads and CUDA contexts. 
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Conclusion 

This white paper and the “MonteCarlo” code sample in the NVIDIA SDK demonstrate that 
CUDA-enabled GPUs are capable of efficient and accurate Monte Carlo options pricing 
even for small path counts.   We have shown how using performance analysis across a wide 
variety of problem sizes can point the way to important code optimizations.  We have also 
demonstrated how performing more of the summation using parallel reduction and less 
using sequential summation in each thread can improve accuracy. 
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