

February 2007

High Quality DXT
Compression using
CUDA

Ignacio Castaño
icastano@nvidia.com

mailto:icastano@nvidia.com

February 2007 ii

Document Change History

Version Date Responsible Reason for Change

0.1 02/01/2007 Ignacio Castaño First draft

Month 2007 1

Abstract

DXT is a fixed ratio compression format designed for real-time hardware decompression of
textures. While it’s also possible to encode DXT textures in real-time, the quality of the resulting
images is far from the optimal. In this white paper we will overview a more expensive
compression algorithm that produces high quality results and we will see how to implement it
using CUDA to obtain much higher performance than the equivalent CPU implementation.

High Quality DXT Compression using CUDA

February 2007 2

Motivation

With the increasing number of assets and texture size in recent games, the time required to
process those assets is growing dramatically. DXT texture compression takes a large portion of
this time. High quality DXT compression algorithms are very expensive and while there are
faster alternatives [1][9], the resulting quality of those simplified methods is not very high.

The brute force nature of these compression algorithms makes them suitable to be parallelized
and adapted to the GPU. Cheaper compression algorithms have already been implemented [2]
on the GPU using traditional GPGPU approaches. However, with the traditional GPGPU
programming model it’s not possible to implement more complex algorithms where threads
need to share data and synchronize.

How Does It Work?

In this paper we will see how to use CUDA to implement a high quality DXT1 texture
compression algorithm in parallel. The algorithm that we have chosen is the cluster fit algorithm
as described by Simon Brown [3]. We will first provide a brief overview of the algorithm and
then we will describe how did we parallelize and implement it in CUDA.

DXT1 Format

DXT1 is a fixed ratio compression scheme that partitions the image into 4x4 blocks. Each
block is encoded with two 16 bit colors in RGB 5-6-5 format and a 4x4 bitmap with 2 bits per
pixel. Figure 1 shows the layout of the block.

Color 0

Color 1

xx xx xx xx

xx xx xx xx

xx xx xx xx

xx xx xx xx

Figure 1. DXT1 block layout

The block colors are reconstructed by interpolating one or two additional colors between the
given ones and indexing these and the original colors with the bitmap bits. The number of
interpolated colors is chosen depending on whether the value of ‘Color 0’ is lower or greater
than ‘Color 1’.

Bitmap

Colors

High Quality DXT Compression using CUDA

February 2007 3

The total size of the block is 64 bits. That means that this scheme achieves a 6:1 compression
ratio. For more details on the DXT1 format see the specification of the OpenGL S3TC
extension [4].

Cluster Fit

In general, finding the best two points that minimize the error of a DXT encoded block is a
highly discontinuous optimization problem. However, if we assume that the indices of the block
are known the problem becomes a linear optimization problem instead: minimize the distance
from each color of the block to the corresponding color of the palette.

Unfortunately, the indices are not known in advance. We would have to test them all to find
the best solution. Simon Brown [3] suggested pruning the search space by considering only the
indices that preserve the order of the points along the least squares line.

Doing that allows us to reduce the number of indices for which we have to optimize the
endpoints. Simon Brown provided a library [5] that implements this algorithm. We use this
library as a reference to compare the correctness and performance of our CUDA
implementation.

The next section goes over the implementation details.

CUDA Implementation

Partitioning the Problem
We have chosen to use a single thread block to compress each 4x4 color block. Threads that

process a single block need to cooperate with each other, but DXT blocks are independent and
do not need synchronization or communication. For this reason our grid size is equal to the
number of blocks in the image.

We also parameterize the problem so that we can change the number of threads per block to
determine what configuration provides better performance. For now, we will just say that the
number of threads is n and later we will discuss what the best configuration is.

During the first part of the algorithm, only 16 threads out of n are active. These threads start
reading the input colors and loading them to shared memory.

Finding the best fit line
To find a line that best approximates a set of points is a well known regression problem. The

colors of the block form a cloud of points in 3D space. This can be solved by computing the
largest eigenvector of the covariance matrix. This vector gives us the direction of the line.

Each element of the covariance matrix is just the sum of the products of different color
components. We implement these sums using parallel reductions.

Once we have the covariance matrix we just need to compute its first eigenvector. We haven’t
found an efficient way of doing this step in parallel. Instead, we use a very cheap sequential
method that doesn’t add much to the overall execution time of the block.

High Quality DXT Compression using CUDA

February 2007 4

Since we only need the dominant eigenvector, we can compute it directly using the Power
Method [6]. This method is an iterative method that returns the largest eigenvector and only
requires a single matrix vector product per iteration. Our tests indicate that in most cases 8
iterations are more than enough to obtain an accurate result.

Once we have the direction of the best fit line we project the colors onto it and sort them
along the line using brute force parallel sort. This is achieved by comparing all the elements
against each other as follows:

cmp[tid] = (values[0] < values[tid]);

cmp[tid] += (values[1] < values[tid]);

cmp[tid] += (values[2] < values[tid]);

cmp[tid] += (values[3] < values[tid]);

cmp[tid] += (values[4] < values[tid]);

cmp[tid] += (values[5] < values[tid]);

cmp[tid] += (values[6] < values[tid]);

cmp[tid] += (values[7] < values[tid]);

cmp[tid] += (values[8] < values[tid]);

cmp[tid] += (values[9] < values[tid]);

cmp[tid] += (values[10] < values[tid]);

cmp[tid] += (values[11] < values[tid]);

cmp[tid] += (values[12] < values[tid]);

cmp[tid] += (values[13] < values[tid]);

cmp[tid] += (values[14] < values[tid]);

cmp[tid] += (values[15] < values[tid]);

The result of this search is an index array that references the sorted values. However, this
algorithm has a flaw, if two colors are equal or are projected to the same location of the line, the
indices of these two colors will end up with the same value. We solve this problem comparing all
the indices against each other and incrementing one of them if they are equal:

if (tid > 0 && cmp[tid] == cmp[0]) ++cmp[tid];

if (tid > 1 && cmp[tid] == cmp[1]) ++cmp[tid];

if (tid > 2 && cmp[tid] == cmp[2]) ++cmp[tid];

if (tid > 3 && cmp[tid] == cmp[3]) ++cmp[tid];

if (tid > 4 && cmp[tid] == cmp[4]) ++cmp[tid];

if (tid > 5 && cmp[tid] == cmp[5]) ++cmp[tid];

if (tid > 6 && cmp[tid] == cmp[6]) ++cmp[tid];

if (tid > 7 && cmp[tid] == cmp[7]) ++cmp[tid];

if (tid > 8 && cmp[tid] == cmp[8]) ++cmp[tid];

if (tid > 9 && cmp[tid] == cmp[9]) ++cmp[tid];

if (tid > 10 && cmp[tid] == cmp[10]) ++cmp[tid];

if (tid > 11 && cmp[tid] == cmp[11]) ++cmp[tid];

if (tid > 12 && cmp[tid] == cmp[12]) ++cmp[tid];

if (tid > 13 && cmp[tid] == cmp[13]) ++cmp[tid];

if (tid > 14 && cmp[tid] == cmp[14]) ++cmp[tid];

During all these steps only 16 threads are being used. For this reason, it’s not necessary to
synchronize them. All computations are done in parallel and at the same time step, because 16 is
less than the warp size.

Index evaluation
All the possible ways in which colors can be clustered while preserving the order on the line

are known in advance and for each clustering there’s a corresponding index. For 4 clusters there
are 975 indices that need to be tested, while for 3 clusters there are only 151. We precompute
these indices and store them in global memory.

High Quality DXT Compression using CUDA

February 2007 5

We have to test all these indices and determine which one produces the lowest error. In
general there are more threads than indices. So, we partition the total number of indices by the
number of threads and each thread loops over the set of indices assigned to it.

It’s tempting to store the indices in constant memory, but since indices are used only once for
each block, and since each thread access a different element, coalesced global memory loads
perform better than constant loads.

Solving the Least Squares Problem
For each index we have to solve an optimization problem. We have to find the two end points

that produce the lowest error. For each input color we know what index it’s assigned to it, so we
have 16 equations like this:

iii xba

Where ii , are 0,1 , 32,31 , 21,21 , 31,32 or 1,0 depending on the

index and the interpolation mode. We look for the colors a and b that minimize the least
square error of these equations. The solution of that least squares problem is the following:

ii

ii

iii

iii

x

x

b

a

1

2

2

Note: The matrix inverse is constant for each index set, but it’s cheaper to compute it every
time on the kernel than to load it from global memory. That’s not the case of the CPU

implementation.

Computing the Error
Once we have a potential solution we have to compute its error. However, colors aren’t stored

with full precision in the DXT block, so we have to quantize them to 5-6-5 to estimate the error
accurately. In addition to that, we also have to take in mind that the hardware expands the
quantized color components to 8 bits replicating the highest bits on the lower part of the byte as
follows:

R = (R << 3) | (R >> 2);

G = (G << 2) | (G >> 4);

B = (B << 3) | (B >> 2);

Converting the floating point colors to integers, clamping, bit expanding and converting them
back to float can be time consuming. Instead of that, we clamp the color components using
floating point saturation, round the floats to integers using rintf [8] and approximate the bit
expansion using a multiplication. We found the factors that produce the lowest error using an
offline optimization that minimized the average error.

r = rintf(__saturatef(r) * 31.0f);

g = rintf(__saturatef(g) * 63.0f);

b = rintf(__saturatef(b) * 31.0f);

r *= 0.03227752766457f;

g *= 0.01583151765563f;

b *= 0.03227752766457f;

Our experiment show that in most cases the approximation produces the same solution as the
accurate solution.

High Quality DXT Compression using CUDA

February 2007 6

Selecting the Best Solution
Finally, each thread has evaluated the error of a few indices and has a candidate solution. To

determine which thread has the solution that produces the lowest error, we store the errors in
shared memory and use a parallel reduction to find the minimum. The winning thread writes the
endpoints and indices of the DXT block back to global memory.

High Quality DXT Compression using CUDA

February 2007 7

Implementation Details

The source code is divided into the following files:

 dxtc.cu: This file contains the implementation of the algorithm described here.

 CudaMath.h: This file contains some math utilities and the line fitting code.

 permutations.h: This file contains the code used to precompute the indices.
dds.h: This file contains the DDS file header definition.

Performance

We have measured the performance of the algorithm on different GPUs and CPUs
compressing the standard Lena. The design of the algorithm makes it insensitive to the actual
content of the image. So, the performance depends only on the size of the image.

Figure 2. Standard picture used for our tests.

As shown in Table 1, the GPU compressor is at least 10x faster than our best CPU
implementation. The version of the compressor that runs on the CPU uses a SSE2 optimized
implementation of the cluster fit algorithm. This implementation precomputes the factors that
are necessary to solve the least squares problem, while the GPU implementation computes them
on the fly. Without this CPU optimization the difference between the CPU and GPU version is
even larger.

High Quality DXT Compression using CUDA

February 2007 8

Table 1. Performance Results

Image GeForce
8800 GTX

GeForce
8800 GTS

GeForce
8600

Intel Core
2 X6800

AMD Athlon64
Dual Core 4400

Lena
512x512

54.66 ms 72.88 ms 186.84 ms 563.0 ms 1,251.0 ms

We also experimented with different number of threads, and as indicated in Table 2 we found
out that it performed better with the minimum number of threads.

Table 2. Thread Number

64 128 256

54.66 ms 56.47 ms 68.13 ms

The reason why the algorithm runs faster with a low number of threads is because during the
first and last sections of the code only a small subset of threads is active. That causes most of
warps to remain idle waiting for these computations to finish. This is reflected by the profiler
that indicates that the occupancy of the hardware during the kernel execution is only 0.33.

A future improvement would be to reorganize the code to eliminate or minimize these stages
of the algorithm. This could be achieved by loading multiple color blocks and processing them in
parallel inside of the same thread block.

Conclusion

We have shown how it is possible to use CUDA to implement an existing CPU algorithm in
parallel on the GPU, and obtain an order of magnitude performance improvement. We hope this
will encourage developers to attempt to accelerate other computationally-intensive offline
processing using the GPU.

High Quality DXT Compression using CUDA

February 2007 9

References

[1] “Real-Time DXT Compression”, J.M.P. van Waveren.
www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm

[2] “Compressing Dynamically Generated Textures on the GPU”, Oskar Alexandersson,
Christoffer Gurell, Tomas Akenine-Möller.
http://graphics.cs.lth.se/research/papers/gputc2006/

[3] “DXT Compression Techniques”, Simon Brown.
http://www.sjbrown.co.uk/?article=dxt

[4] “OpenGL S3TC extension spec”, Pat Brown.
http://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt

[5] “Squish – DXT Compression Library”, Simon Brown.
http://www.sjbrown.co.uk/?code=squish

[6] “Eigenvalues and Eigenvectors”, Dr. E. Garcia.
http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-
eigenvectors.html

[7] “An Experimental Analysis of Parallel Sorting Algorithms”, Guy E. Blelloch, C. Greg
Plaxton, Charles E. Leiserson, Stephen J. Smith
http://citeseer.ist.psu.edu/blelloch98experimental.html

[8] “NVIDIA CUDA Compute Unified Device Architecture Programming Guide”.

[9] NVIDIA OpenGL SDK 10 “Compress DXT” sample
http://developer.download.nvidia.com/SDK/10/opengl/samples.html#compress_DXT

http://www.intel.com/cd/ids/developer/asmo-na/eng/324337.htm
http://graphics.cs.lth.se/research/papers/gputc2006/
http://www.sjbrown.co.uk/?article=dxt
http://www.opengl.org/registry/specs/EXT/texture_compression_s3tc.txt
http://www.sjbrown.co.uk/?code=squish
http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
http://www.miislita.com/information-retrieval-tutorial/matrix-tutorial-3-eigenvalues-eigenvectors.html
http://citeseer.ist.psu.edu/blelloch98experimental.html

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and
product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007-2013 NVIDIA Corporation. All rights reserved.

