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 Abstract 

Optical flow is the apparent motion of objects in image sequence. It has a number of 
applications ranging from medical imaging to visual effects. This report describes a CUDA 
implementation of a 2D optical flow method referred to as Hierarchical Horn and Schunck. 
This optical flow method is based on two assumptions: brightness constancy and spatial 
flow smoothness. These assumptions are combined in a single energy functional and 
solution is found as its minimum point. The numerical scheme behind the solver is based on 
a finite differences approximation of the corresponding Euler-Lagrange equation. 
Implementation incorporates coarse-to-fine approach with warping to deal with large 
displacements. 
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Motivation 

When working with image sequences or video it’s often useful to have information about 
objects movement. Optical flow describes apparent motion of objects in image sequence. It 
can be understood as a per-pixel displacement field. 

 

Figure 1. a – camera looking at a moving object; b – optical flow 
field on a pixel grid of the image (zero vectors are not shown); c – 

left view of object from a; d – right view of the same object 

Figure 1 shows an example of brightness pattern movement. Relative motion of the object 
and the camera results in the movement of brightness patterns in the image. Optical flow 
describes per-pixel correspondence between old and new locations of an object within 
image. 

Optical flow has a number of applications in visual effects and robotics. Examples of such 
applications are retiming, 3D reconstruction, tracking, and autonomous navigation. 
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How Does It Work? 

The rest of the paper applies to the case of grayscale images, but this approach can be 
extended to the case of multichannel images. Example of such extension is (Mileva, Bruhn, 
& Weickert, 2007). 

Model 

Horn & Schunck optical flow method is based on two assumptions (Horn & Schunck, 
1981). 

First assumption is called brightness constancy assumption. It states that the apparent 
brightness of objects in scene remains constant. 

Let   be an image and by  (     ) denote brightness of a pixel (   ) at a moment  , which 

can be considered as a frame number. Let ( (   )  (   )) be a displacement field defined 

on  , then the brightness constancy assumption can be written as follows: 

  (           )   (     ) (1)  

Second assumption states that neighboring pixels move similarly. In other words flow field is 
smooth. One of the ways to describe degree of smoothness at a particular point is to 
compute the square of the magnitude of the velocity gradient: 
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Deviations from brightness constancy assumption and flow smoothness assumption can be 
penalized with the following energy functionals: 

   (   )  ∫ ( (           )   (     ))
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Weighted sum of these functionals gives us idea of how good particular displacement field is. 
The problem is then to find a global minimum point of the following energy functional: 

  (   )    (   )     (   )     (4)  

Original Horn & Schunck approach uses linearized version of (1): 

 (           )   (     )    (     )      (     )      (     )    

 (           )   (     )             

And (2) becomes 

   (   )  ∫ (          )
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According to the calculus of variations   and   must satisfy the Euler-Lagrange equations 

 
(          )    (       )    

(          )    (       )    
(6)  

with reflecting (Neumann) boundary conditions. The displacement field can be found as a 
solution of (6). 

Note:            

The problem with this approach is that it assumes small pixel displacements (due to the use 
of 1st degree Taylor polynomials). The problem can be addressed by the following 

consideration. To the moment we already have estimation of (   ) up to small unknown 

increment (     ). Using conventional Horn & Schunck approach we can find (     ) as 

a displacement field between  (     ) and  (           ): 

 ̃(       )    (           ) 

 ̃(             )   ̃ (       )    ̃ (       )    ̃(       ) 

  (     )  ∫ ( ̃ (     )    ̃ (     )    ̃(     )   (   ))
 

 

   

Finally we have the following partial differential equations for       

 
( ̃     ̃     ̃   ) ̃   (         )    

( ̃     ̃     ̃   ) ̃   (         )    
(7)  

 

Note:  ̃(       ) is  (       ) warped with vector field (   ), i.e. every pixel (   ) in  ̃ is 

the pixel (       ) from  . 

Once we have found the unknown increment,         can be updated. We can keep 
refining the displacement field until convergence. Such incremental approach can be 
combined with the coarse-to-fine strategy. We start with solving problem for simplified 
downsampled images, where large displacements become order of pixel, and use the solution 
as the starting point for larger resolution images. In such way we can solve the original 
problem step by step. 

Putting all the ideas together, we come up with the following method: 

1. Prepare downsampled versions of original images, i.e. generate image pyramid. 

2. Initialize     with zero 
3. Select the lowest resolution 

4. Warp image  (       ) with current     

5. Compute  ̃   ̃  and  ̃    

6. Solve (7) for       

7. Update               

8. If       are not small enough, go to step 4 
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9. If current resolution is less than original, proceed to the finer scale and go to 
step 4 

Steps 4-7 are called warping iteration. 

 

Figure 2. Method outline 

 Solving PDE 

The most complex problem of the algorithm above is to solve (7). It can be done with finite 
differences method.  

Laplace operator is approximated with the standard 5-point stencil: 

 (  )    (                   )  (                  ) (8)  

Note: In image processing applications grid spacing is usually taken equal to one 

Using (8) we can rewrite (7) as a system of linear equations 

 
( ̃       ̃       ̃   ) ̃   (   )     

( ̃       ̃       ̃   ) ̃   (   )     
(9)  

These equations can be solved by applying Jacobi method (Horn & Schunck, 1981): 
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Where  
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Border conditions are approximated as follows: 
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The same holds for   . 

Computing image derivatives 

Image derivatives are approximated with 5-point derivative filter 
 

  
(           ) and 

then averaged temporally as suggested in (Black & Sun, 2010). For example,  ̃ (   ) is 

replaced with   
 

 
( ̃ (       )    (     )). Points outside of the image domain are 

reflected across borders. 

 

Figure 3. Handling points outside of the image. Image borders are 
marked with green. 

Restriction and Prolongation 

Restriction and prolongation are two of the most important operations in the coarse-to-fine 
approach. These terms originate from the theory of multigrid methods. Restriction is 
responsible for injecting a function into the coarse grid from the fine grid. Prolongation is 
the opposite operation: it restores function on the fine grid from its coarse grid 
representation. In our case restriction is downsampling. 

It’s shown in (Black & Sun, 2010) that downscaling factor of 0.5 should provide good 
enough solution. We need to blur source image before downsampling to avoid aliasing. 
Simple 2x2 averaging provides good enough quality. 
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Figure 4. Restriction 

We perform prolongation by simple bilinear interpolation followed by appropriate scaling. 
Since pyramid downscaling factor is of 0.5, we need to scale interpolated vector by a factor 

of   
 

   
  . 

 

Figure 5. Prolongation 

Implementation Details 

This section focuses on CUDA implementation. The reference CPU implementation is quite 
similar. 

CUDA Memory Organization 

2D data are represented as linear arrays. The memory layout is depicted in Figure 6. Indices 

are explicitly calculated by the kernels. For example, element (   ) has index 

                 

Note: The multiprocessor creates, manages, schedules, and executes threads in groups of 32 
parallel threads called warps (CUDA Programming Guide, Chapter Hardware Implementation). 

Note: When a warp executes an instruction that accesses global memory, it coalesces the 
memory accesses of the threads within the warp into one or more of these memory 
transactions (CUDA Programming Guide, Chapter Performance Guidelines, section Global 

Memory 
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Arrays are padded in such way that        is always a multiple of warp size. This ensures 
coalesced loads. 

                     

 

Figure 6. Memory layout 

Texture unit has several features that are especially useful in our case: 

 Mirror addressing mode 

 Bilinear interpolation 

 Cache 

Mirror addressing mode allows automatically handle out-of-range coordinates. It eases 
computing derivatives and warping whenever we need to reflect out-of-range coordinates 
across borders. 

Bilinear interpolation is used in restriction, prolongation and warping. Texture unit performs 
interpolation in fixed point arithmetic but its precision is enough for our case. 

Texture cache is organized to handle 2D locality and our application can benefit from it due 
to the following reasons: 

 Derivative filters are local by their nature 

 Neighboring pixels undergo similar motion which leads to 2D locality during 
image warping 

Shared memory can be efficiently utilized in Jacobi iterations. Each thread block processes 
its own image tile. Data for this tile can be loaded into shared memory to allow data reuse. 

CUDA Kernels 

Recall the method outline: 

1. Generate image pyramid (one for source image and one for target) 

2. Initialize     
3. Select the top level of the pyramid 
4. Warp target image with current flow 
5. Compute derivatives 
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6. Solve for       

7. Update     
8. Go to step 4 if required (i.e. if solution has not converged) 
9. If current level isn’t the lowest pyramid level 

a. Prolong     to a finer grid 
b. Go to step 4 

Let’s go through this algorithm step by step. The first step is the image pyramid generation. 

We can recursively obtain pyramid levels one by one. This approach is faster than generation 
of levels “on the fly” but at the expense of additional memory consumption. An overhead 
isn’t as large as it may seem: asymptotically, for a pyramid with scale factor of two we’ll need 
only twice as much memory space as required for an original image. All output pixels can be 

computed independently, therefore we create thread for each output location (   ) and 
obtain output value by averaging over four source locations: 

(
 

 
(     ) 

 

 
(     ))  (

 

 
(     ) 

 

 
(     ))   
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(     ) 

 

 
(     ))        (

 

 
(     ) 

 

 
(     )) 

Image warping is quite straightforward: we create thread for each output pixel (   ) and 

fetch from a source texture at location (       ). Texture addressing mode is set to 
cudaAddressModeMirror, texture coordinates are normalized. 

Once we have the warped image, derivatives become simple to compute. For each pixel we 
fetch required stencil points from texture and convolve them with filter kernel. In terms of 
CUDA we create a thread for each pixel. This thread fetches required data and computes 
derivative. 

Step 6 employs several Jacobi iterations with respect to formulas (10). Border conditions are 

explicitly handled within the kernel. Each thread updates one component of    and one 

component of   . The number of iterations is held fixed during computations. This 
eliminates the need for checking error on every iteration. The required number of iterations 
can be determined experimentally. 

In order to perform one iteration of Jacobi method in a particular point we need to known 
results of previous iteration for its four neighbors. If we simply load these values from global 
memory each value will be loaded four times. We store these values in shared memory. This 
approach significantly reduces number of global memory accesses, provides better 
coalescing, and improves overall performance. 

Updating of     is a simple element-wise vector addition. It is done once per warping 
iteration. 

Prolongation is performed with bilinear interpolation followed by scaling.   and   are 
handled independently. For each output pixel there is a thread which fetches output value 
from the texture and scales it. 

Code Organization 

The SDK Project contains both CPU and GPU implementations. For every CUDA kernel 
there is a .cu file containing kernel and its wrapper. 
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The source code is divided into the following files: 

 addKernel.cu: Vector addition. 

 derivativesKernel.cu: Image derivatives: spatial and temporal 

 downscaleKernel.cu: Image downscaling 

 flowCUDA.cu: A high-level structure of GPU implementation, also 
handles host-device transfers. 

 flowGold.cpp: CPU implementation. 

 main.cpp: image I/O related code, calls of CPU and GPU functions and 
results comparison. 

 solverKernel.cu: Jacobi iteration 

 upscaleKernel.cu: Prolongation 

 warpingKernel.cu: Image warping 

Performance 

This sample is not intended to provide the best possible performance but to show one of the 
possible ways to implement modern optical flow methods with CUDA. 

There are several ways to improve the performance. One of them is to replace Jacobi 
iterations with faster solver, PCG for example. Another way is to optimize execution speed 
of Jacobi iterations: one may notice that denominators in formulas (10) are the same. Using 
this observation, it is possible to compute reciprocal of the denominator only once during 
computation of derivatives. In such way the number of required arithmetic operations will 
be reduced along with the number of loads from DRAM. 

Conclusion 

In this paper we described approach to optical flow estimation with CUDA. This 
implementation can be a good starting point for more complex modern variational methods 
because it is already incorporates coarse-to-fine approach with warping and high-order image 
derivatives approximation. 
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