

September 2013

Optical Flow
Estimation
with CUDA

Mikhail Smirnov
msmirnov@nvidia.com

September 2013

Document Change History

Version Date Responsible Reason for Change

 Mikhail Smirnov Initial release

September 2013 1

 Abstract

Optical flow is the apparent motion of objects in image sequence. It has a number of
applications ranging from medical imaging to visual effects. This report describes a CUDA
implementation of a 2D optical flow method referred to as Hierarchical Horn and Schunck.
This optical flow method is based on two assumptions: brightness constancy and spatial
flow smoothness. These assumptions are combined in a single energy functional and
solution is found as its minimum point. The numerical scheme behind the solver is based on
a finite differences approximation of the corresponding Euler-Lagrange equation.
Implementation incorporates coarse-to-fine approach with warping to deal with large
displacements.

 Optical Flow Estimation with CUDA

September 2013

Motivation

When working with image sequences or video it’s often useful to have information about
objects movement. Optical flow describes apparent motion of objects in image sequence. It
can be understood as a per-pixel displacement field.

Figure 1. a – camera looking at a moving object; b – optical flow
field on a pixel grid of the image (zero vectors are not shown); c –

left view of object from a; d – right view of the same object

Figure 1 shows an example of brightness pattern movement. Relative motion of the object
and the camera results in the movement of brightness patterns in the image. Optical flow
describes per-pixel correspondence between old and new locations of an object within
image.

Optical flow has a number of applications in visual effects and robotics. Examples of such
applications are retiming, 3D reconstruction, tracking, and autonomous navigation.

 Optical Flow Estimation with CUDA

September 2013

How Does It Work?

The rest of the paper applies to the case of grayscale images, but this approach can be
extended to the case of multichannel images. Example of such extension is (Mileva, Bruhn,
& Weickert, 2007).

Model

Horn & Schunck optical flow method is based on two assumptions (Horn & Schunck,
1981).

First assumption is called brightness constancy assumption. It states that the apparent
brightness of objects in scene remains constant.

Let be an image and by () denote brightness of a pixel () at a moment , which

can be considered as a frame number. Let (() ()) be a displacement field defined

on , then the brightness constancy assumption can be written as follows:

 () () (1)

Second assumption states that neighboring pixels move similarly. In other words flow field is
smooth. One of the ways to describe degree of smoothness at a particular point is to
compute the square of the magnitude of the velocity gradient:

‖ ‖ (

)

 (

)

 ‖ ‖ (

)

 (

)

Deviations from brightness constancy assumption and flow smoothness assumption can be
penalized with the following energy functionals:

 () ∫ (() ())

 (2)

 () ∫‖ ‖
 ‖ ‖

 (3)

Weighted sum of these functionals gives us idea of how good particular displacement field is.
The problem is then to find a global minimum point of the following energy functional:

 () () () (4)

Original Horn & Schunck approach uses linearized version of (1):

 () () () () ()

 () ()

And (2) becomes

 () ∫ ()

 (5)

 Optical Flow Estimation with CUDA

September 2013

According to the calculus of variations and must satisfy the Euler-Lagrange equations

() ()

() ()
(6)

with reflecting (Neumann) boundary conditions. The displacement field can be found as a
solution of (6).

Note:

The problem with this approach is that it assumes small pixel displacements (due to the use
of 1st degree Taylor polynomials). The problem can be addressed by the following

consideration. To the moment we already have estimation of () up to small unknown

increment (). Using conventional Horn & Schunck approach we can find () as

a displacement field between () and ():

 ̃() ()

 ̃() ̃ () ̃ () ̃()

 () ∫ (̃ () ̃ () ̃() ())

Finally we have the following partial differential equations for

(̃ ̃ ̃) ̃ ()

(̃ ̃ ̃) ̃ ()
(7)

Note: ̃() is () warped with vector field (), i.e. every pixel () in ̃ is

the pixel () from .

Once we have found the unknown increment, can be updated. We can keep
refining the displacement field until convergence. Such incremental approach can be
combined with the coarse-to-fine strategy. We start with solving problem for simplified
downsampled images, where large displacements become order of pixel, and use the solution
as the starting point for larger resolution images. In such way we can solve the original
problem step by step.

Putting all the ideas together, we come up with the following method:

1. Prepare downsampled versions of original images, i.e. generate image pyramid.

2. Initialize with zero
3. Select the lowest resolution

4. Warp image () with current

5. Compute ̃ ̃ and ̃

6. Solve (7) for

7. Update

8. If are not small enough, go to step 4

 Optical Flow Estimation with CUDA

September 2013

9. If current resolution is less than original, proceed to the finer scale and go to
step 4

Steps 4-7 are called warping iteration.

Figure 2. Method outline

 Solving PDE

The most complex problem of the algorithm above is to solve (7). It can be done with finite
differences method.

Laplace operator is approximated with the standard 5-point stencil:

 () () () (8)

Note: In image processing applications grid spacing is usually taken equal to one

Using (8) we can rewrite (7) as a system of linear equations

(̃ ̃ ̃) ̃ ()

(̃ ̃ ̃) ̃ ()
(9)

These equations can be solved by applying Jacobi method (Horn & Schunck, 1981):

 ̅̅̅̅

 ̃ (̃ ̅̅̅̅

 ̃ ̅̅̅̅
 ̃)

 ̅̅̅̅

 ̃ (̃ ̅̅̅̅

 ̃ ̅̅̅̅
 ̃)

(10)

Where

 Optical Flow Estimation with CUDA

September 2013

 ̅̅̅̅

(

),

 ̅̅̅̅

(

)

Border conditions are approximated as follows:

{

 ()

 ()

 ()

 ()

 ()

The same holds for .

Computing image derivatives

Image derivatives are approximated with 5-point derivative filter

() and

then averaged temporally as suggested in (Black & Sun, 2010). For example, ̃ () is

replaced with

(̃ () ()). Points outside of the image domain are

reflected across borders.

Figure 3. Handling points outside of the image. Image borders are
marked with green.

Restriction and Prolongation

Restriction and prolongation are two of the most important operations in the coarse-to-fine
approach. These terms originate from the theory of multigrid methods. Restriction is
responsible for injecting a function into the coarse grid from the fine grid. Prolongation is
the opposite operation: it restores function on the fine grid from its coarse grid
representation. In our case restriction is downsampling.

It’s shown in (Black & Sun, 2010) that downscaling factor of 0.5 should provide good
enough solution. We need to blur source image before downsampling to avoid aliasing.
Simple 2x2 averaging provides good enough quality.

 Optical Flow Estimation with CUDA

September 2013

Figure 4. Restriction

We perform prolongation by simple bilinear interpolation followed by appropriate scaling.
Since pyramid downscaling factor is of 0.5, we need to scale interpolated vector by a factor

of

 .

Figure 5. Prolongation

Implementation Details

This section focuses on CUDA implementation. The reference CPU implementation is quite
similar.

CUDA Memory Organization

2D data are represented as linear arrays. The memory layout is depicted in Figure 6. Indices

are explicitly calculated by the kernels. For example, element () has index

Note: The multiprocessor creates, manages, schedules, and executes threads in groups of 32
parallel threads called warps (CUDA Programming Guide, Chapter Hardware Implementation).

Note: When a warp executes an instruction that accesses global memory, it coalesces the
memory accesses of the threads within the warp into one or more of these memory
transactions (CUDA Programming Guide, Chapter Performance Guidelines, section Global

Memory

 Optical Flow Estimation with CUDA

September 2013

Arrays are padded in such way that is always a multiple of warp size. This ensures
coalesced loads.

Figure 6. Memory layout

Texture unit has several features that are especially useful in our case:

 Mirror addressing mode

 Bilinear interpolation

 Cache

Mirror addressing mode allows automatically handle out-of-range coordinates. It eases
computing derivatives and warping whenever we need to reflect out-of-range coordinates
across borders.

Bilinear interpolation is used in restriction, prolongation and warping. Texture unit performs
interpolation in fixed point arithmetic but its precision is enough for our case.

Texture cache is organized to handle 2D locality and our application can benefit from it due
to the following reasons:

 Derivative filters are local by their nature

 Neighboring pixels undergo similar motion which leads to 2D locality during
image warping

Shared memory can be efficiently utilized in Jacobi iterations. Each thread block processes
its own image tile. Data for this tile can be loaded into shared memory to allow data reuse.

CUDA Kernels

Recall the method outline:

1. Generate image pyramid (one for source image and one for target)

2. Initialize
3. Select the top level of the pyramid
4. Warp target image with current flow
5. Compute derivatives

 Optical Flow Estimation with CUDA

September 2013

6. Solve for

7. Update
8. Go to step 4 if required (i.e. if solution has not converged)
9. If current level isn’t the lowest pyramid level

a. Prolong to a finer grid
b. Go to step 4

Let’s go through this algorithm step by step. The first step is the image pyramid generation.

We can recursively obtain pyramid levels one by one. This approach is faster than generation
of levels “on the fly” but at the expense of additional memory consumption. An overhead
isn’t as large as it may seem: asymptotically, for a pyramid with scale factor of two we’ll need
only twice as much memory space as required for an original image. All output pixels can be

computed independently, therefore we create thread for each output location () and
obtain output value by averaging over four source locations:

(

()

()) (

()

())

 (

()

()) (

()

())

Image warping is quite straightforward: we create thread for each output pixel () and

fetch from a source texture at location (). Texture addressing mode is set to
cudaAddressModeMirror, texture coordinates are normalized.

Once we have the warped image, derivatives become simple to compute. For each pixel we
fetch required stencil points from texture and convolve them with filter kernel. In terms of
CUDA we create a thread for each pixel. This thread fetches required data and computes
derivative.

Step 6 employs several Jacobi iterations with respect to formulas (10). Border conditions are

explicitly handled within the kernel. Each thread updates one component of and one

component of . The number of iterations is held fixed during computations. This
eliminates the need for checking error on every iteration. The required number of iterations
can be determined experimentally.

In order to perform one iteration of Jacobi method in a particular point we need to known
results of previous iteration for its four neighbors. If we simply load these values from global
memory each value will be loaded four times. We store these values in shared memory. This
approach significantly reduces number of global memory accesses, provides better
coalescing, and improves overall performance.

Updating of is a simple element-wise vector addition. It is done once per warping
iteration.

Prolongation is performed with bilinear interpolation followed by scaling. and are
handled independently. For each output pixel there is a thread which fetches output value
from the texture and scales it.

Code Organization

The SDK Project contains both CPU and GPU implementations. For every CUDA kernel
there is a .cu file containing kernel and its wrapper.

 Optical Flow Estimation with CUDA

September 2013

The source code is divided into the following files:

 addKernel.cu: Vector addition.

 derivativesKernel.cu: Image derivatives: spatial and temporal

 downscaleKernel.cu: Image downscaling

 flowCUDA.cu: A high-level structure of GPU implementation, also
handles host-device transfers.

 flowGold.cpp: CPU implementation.

 main.cpp: image I/O related code, calls of CPU and GPU functions and
results comparison.

 solverKernel.cu: Jacobi iteration

 upscaleKernel.cu: Prolongation

 warpingKernel.cu: Image warping

Performance

This sample is not intended to provide the best possible performance but to show one of the
possible ways to implement modern optical flow methods with CUDA.

There are several ways to improve the performance. One of them is to replace Jacobi
iterations with faster solver, PCG for example. Another way is to optimize execution speed
of Jacobi iterations: one may notice that denominators in formulas (10) are the same. Using
this observation, it is possible to compute reciprocal of the denominator only once during
computation of derivatives. In such way the number of required arithmetic operations will
be reduced along with the number of loads from DRAM.

Conclusion

In this paper we described approach to optical flow estimation with CUDA. This
implementation can be a good starting point for more complex modern variational methods
because it is already incorporates coarse-to-fine approach with warping and high-order image
derivatives approximation.

 Optical Flow Estimation with CUDA

September 2013

Bibliography

Black, M. J., & Sun, D. (2010). Secrets of Optical Flow and Their Principles. CVPR.

Horn, B. K., & Schunck, B. G. (1981). Determining Optical Flow. Artificial Intelligence , 17,
pp. 185-203.

Mileva, Y., Bruhn, A., & Weickert, J. (2007). Illumination-robust variational optical flow with
photometric invariants. Pattern Recognition. Lecture Notes in Computer Science , 4713 , 152-162. (F.
A. Hamprecht, C. Schnorr, & B. Jahne, Eds.) Berlin: Springer.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any
patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, NVIDIA Quadro, and NVIDIA CUDA are trademarks or
registered trademarks of NVIDIA Corporation in the United States and other countries. Other
company and product names may be trademarks of the respective companies with which they
are associated.

Copyright

© 2011-2013 NVIDIA Corporation. All rights reserved.

