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Chapter 1

Introduction

GLFW is a portable API (Application Program Interface) that handles operating system specific tasks
related to OpenGL R© programming. While OpenGL R© in general is portable, easy to use and often
results in tidy and compact code, the operating system specific mechanisms that are required to set up
and manage an OpenGL R© window are quite the opposite. GLFW tries to remedy this by providing the
following functionality:

• Opening and managing an OpenGL R© window.

• Keyboard, mouse and joystick input.

• High precision time input.

• Multi-threading support.

• Support for querying and using OpenGL R© extensions.

• Rudimentary image file loading support.

All this functionality is implemented as a set of easy-to-use functions, which makes it possible to write
an OpenGL R© application framework in just a few lines of code. The GLFW API is operating system
and platform independent, making it very simple to port GLFW based OpenGL R© applications between
the supported platforms.

Currently supported platforms are:

• Microsoft Windows R©

• Unix R© or Unix-like systems running the X Window SystemTMwith GLX version 1.3 or later

• Mac OS X R© 10.5 and later, using Cocoa1

There is also deprecated support for Mac OS X versions 10.3 and 10.4, using the Carbon API.

1Support for joysticks missing at the time of writing.
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Chapter 2

Getting Started

In this chapter you will learn how to write a simple OpenGL R© application using GLFW. We start by
initializing GLFW, then we open a window and read some user keyboard input.

2.1 Including the GLFW header

The usual way of including the GLFW header is:� �
#include <GL/glfw.h>� �
This header defines all the constants, types and function prototypes of the GLFW API. It also by default
includes the OpenGL R© and GLU header files provided by your development environment and defines
all the necessary constants and types that are necessary for these headers to work on that particular
platform.

By default, the regular gl.h header is included. If you wish to include the draft gl3.h header instead,
define GLFW_INCLUDE_GL3 before the inclusion of the GLFW header.

Also by default, the glu.h header is included. If you wish to avoid this, define GLFW_NO_GLU
before the inclusion of the GLFW header.

2.2 Initializing GLFW

Before using any of the GLFW functions, it is necessary to call glfwInit. It initializes the parts of
GLFW that are not dependent on a window, such as threading, timer and joystick input. The C syntax is:� �
int glfwInit( void )� �
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glfwInit returns GL_TRUE if initialization succeeded, or GL_FALSE if it failed.

When your application is done using GLFW, typically at the very end of the program, you should call
glfwTerminate. The C syntax is:� �
void glfwTerminate( void )� �
This releases any resources allocated by GLFW, closes the window if it is open and kills any secondary
threads created by GLFWȦfter this call, you must call glfwInit again before using any GLFW
functions).

2.3 Opening An OpenGL Window

Opening an OpenGL R© window is done with the glfwOpenWindow function. The function takes nine
arguments, which are used to describe the following properties of the requested window:

• Window dimensions (width and height) in pixels.

• Color and alpha buffer bit depth.

• Depth buffer (Z-buffer) bit depth.

• Stencil buffer bit depth.

• Whether to use fullscreen or windowed mode.

The C language syntax for glfwOpenWindow is:� �
int glfwOpenWindow( int width, int height,

int redbits, int greenbits, int bluebits,
int alphabits, int depthbits, int stencilbits,
int mode )� �

glfwOpenWindow returns GL_TRUE if the window was opened correctly, or GL_FALSE if GLFW
failed to open the window.

GLFW tries to open a window that best matches the requested parameters. Some parameters may be
omitted by setting them to zero, which will result in GLFW either using a default value, or the related
functionality to be disabled. For instance, if width and height are both zero, GLFW will use a window
resolution of 640x480. If depthbits is zero, the opened window may not have a depth buffer.

The mode argument is used to specify if the window is to be a fullscreen window or a regular window.

If mode is GLFW_FULLSCREEN, the window will cover the entire screen and no window border or
decorations will be visible. If possible, the video mode will be changed to the mode that closest matches
the width, height, redbits, greenbits, bluebits and alphabits arguments. Furthermore, the mouse pointer
will be hidden, and screensavers are prohibited. This is usually the best mode for games and demos.
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If mode is GLFW_WINDOW, the window will be opened as a normal, decorated window on the
desktop. The mouse pointer will not be hidden and screensavers are allowed to be activated.

To close the window, you can either use glfwTerminate, as described earlier, or you can use the more
explicit approach by calling glfwCloseWindow, which has the C syntax:� �
void glfwCloseWindow( void )� �
Note that you do not need to call glfwTerminate and glfwInit before opening a new window after
having closed the current one using glfwCloseWindow.

2.4 Using Keyboard Input

GLFW provides several means for receiving user input, which will be discussed in more detail in
chapter 4. One of the simplest ways of checking for keyboard input is to use the function glfwGetKey:� �
int glfwGetKey( int key )� �
It queries the current status of individual keyboard keys. The argument key specifies which key to
check, and it can be either an uppercase printable ISO 8859-1 (Latin 1) character (e.g. ‘A’, ‘3’ or ‘.’), or
a special key identifier (see the GLFW Reference Manual for a list of special key identifiers).
glfwGetKey returns GLFW_PRESS if the key is currently held down, or GLFW_RELEASE if the key
is not being held down. For example:� �
A_pressed = glfwGetKey( ’A’ );
esc_pressed = glfwGetKey( GLFW_KEY_ESC );� �
In order for glfwGetKey to have any effect, you need to poll for input events on a regular basis. This
can be done in one of two ways:

1. Implicitly by calling glfwSwapBuffers often.

2. Explicitly by calling glfwPollEvents often.

In general you do not have to care about this, since you will normally call glfwSwapBuffers to swap
front and back rendering buffers every animation frame anyway. If, however, this is not the case, you
should call glfwPollEvents in the order of 10-100 times per second in order for GLFW to maintain an
up to date input state.

2.5 Putting It Together: A Minimal GLFW Application

Now that you know how to initialize GLFW, open a window and poll for keyboard input, let us
exemplify this with a simple OpenGL R© program:
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� �
#include <GL/glfw.h>
#include <stdlib.h>

int main( void )
{

int running = GL_TRUE;

// Initialize GLFW
if( !glfwInit() )
{

exit( EXIT_FAILURE );
}

// Open an OpenGL window
if( !glfwOpenWindow( 300,300, 0,0,0,0,0,0, GLFW_WINDOW ) )
{

glfwTerminate();
exit( EXIT_FAILURE );

}

// Main loop
while( running )
{

// OpenGL rendering goes here...
glClear( GL_COLOR_BUFFER_BIT );

// Swap front and back rendering buffers
glfwSwapBuffers();

// Check if ESC key was pressed or window was closed
running = !glfwGetKey( GLFW_KEY_ESC ) &&

glfwGetWindowParam( GLFW_OPENED );
}

// Close window and terminate GLFW
glfwTerminate();

// Exit program
exit( EXIT_SUCCESS );

}� �
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The program opens a 300x300 window and runs in a loop until the escape key is pressed, or the window
was closed. All the OpenGL R© “rendering” that is done in this example is to clear the window.
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Chapter 3

Window Operations

In this chapter, you will learn more about window related GLFW functionality, including setting and
getting window properties, buffer swap control and video mode querying.

3.1 Setting Window Properties

In the previous chapter the glfwOpenWindow function was described, which specifies the sizes of the
color, alpha, depth and stencil buffers. It is also possible to request a specific minimum OpenGL
version, multisampling anti-aliasing, an accumulation buffer, stereo rendering and more by using the
glfwOpenWindowHint function:� �
void glfwOpenWindowHint( int target, int hint )� �
The target argument can be one of the constants listed in table 3.1, and hint is the value to assign to the
specified target.

For a hint to have any effect, the glfwOpenWindowHint function must be called before opening the
window with the glfwOpenWindow function.

To request an accumulation buffer, set the GLFW_ACCUM_x_BITS targets to values greater than zero
(usually eight or sixteen bits per component). To request auxiliary buffers, set the
GLFW_AUX_BUFFERS target to a value greater than zero. To request a stereo rendering capable
window, set the GLFW_STEREO target to GL_TRUE.

If you want to enable fullscreen antialiasing, set the GLFW_FSAA_SAMPLES target to a value greater
than zero. If the windowing system is unable to fulfil the request, GLFW will degrade gracefully and
disable FSAA if necessary.

The GLFW_REFRESH_RATE target should be used with caution, since it may result in suboptimal
operation, or even a blank or damaged screen.
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Name Default Description
GLFW_REFRESH_RATE 0 Vertical monitor refresh rate in Hz (only used

for fullscreen windows). Zero means system
default.

GLFW_ACCUM_RED_BITS 0 Number of bits for the red channel of the ac-
cumulation buffer.

GLFW_ACCUM_GREEN_BITS 0 Number of bits for the green channel of the
accumulation buffer.

GLFW_ACCUM_BLUE_BITS 0 Number of bits for the blue channel of the ac-
cumulation buffer.

GLFW_ACCUM_ALPHA_BITS 0 Number of bits for the alpha channel of the
accumulation buffer.

GLFW_AUX_BUFFERS 0 Number of auxiliary buffers.
GLFW_STEREO GL_FALSE Specify if stereo rendering should be sup-

ported (can be GL_TRUE or GL_FALSE).
GLFW_WINDOW_NO_RESIZE GL_FALSE Specify whether the window can be resized

by the user (not used for fullscreen windows).
GLFW_FSAA_SAMPLES 0 Number of samples to use for the multisam-

pling buffer. Zero disables multisampling.
GLFW_OPENGL_VERSION_MAJOR 1 Major number of the desired minimum

OpenGL version.
GLFW_OPENGL_VERSION_MINOR 1 Minor number of the desired minimum

OpenGL version.
GLFW_OPENGL_FORWARD_COMPAT GL_FALSE Specify whether the OpenGL context should

be forward-compatible (i.e. disallow legacy
functionality). This should only be used when
requesting OpenGL version 3.0 or above.

GLFW_OPENGL_DEBUG_CONTEXT GL_FALSE Specify whether a debug context should be
created.

GLFW_OPENGL_PROFILE 0 The OpenGL profile the context should
implement, or zero to let the sys-
tem choose. Available profiles are
GLFW_OPENGL_CORE_PROFILE and
GLFW_OPENGL_COMPAT_PROFILE.

Table 3.1: Targets for glfwOpenWindowHint
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If you want to create a forward-compatible OpenGL R© context, set the
GLFW_OPENGL_FORWARD_COMPAT hint to GL_TRUE. Note that such contexts are only
available for OpenGL R© version 3.0 and above, so you will need to specify a valid minimum version
using the GLFW_OPENGL_VERSION_MAJOR and GLFW_OPENGL_VERSION_MINOR hints.

If you want to create a context using the core profile as available in OpenGL R© version 3.2 and above,
set the GLFW_OPENGL_PROFILE hint accordingly. Note that as above you have to set a valid
minimum version for this to work.

Note that versions of Mac OS X before 10.7 does not support OpenGL R© 3.0 or later, and that at the
time of this release, Mac OS X 10.7 only supports forward-compatible OpenGL R© 3.2 core profile
contexts. Due to the way default values work in GLFW you do not need to specify either
GLFW_FORWARD_COMPAT or GLFW_OPENGL_PROFILE for this to work.

Besides the parameters that are given with the glfwOpenWindow and glfwOpenWindowHint
functions, a few more properties of a window can be changed after the window has been opened,
namely the window title, window size, and window position.

To change the window title of an open window, use the glfwSetWindowTitle function:� �
void glfwSetWindowTitle( const char *title )� �
title is a null terminated ISO 8859-1 (8-bit Latin 1) string that will be used as the window title. It will
also be used as the application name (for instance in the application list when using Alt+Tab under
Windows, or as the icon name when the window is iconified under the X Window System). The default
window name is “GLFW Window”, which will be used unless glfwSetWindowTitle is called after the
window has been opened.

To change the size of a window, call glfwSetWindowSize:� �
void glfwSetWindowSize( int width, int height )� �
Where width and height are the new dimensions of the window.

To change the position of a window, call glfwSetWindowPos:� �
void glfwSetWindowPos( int x, int y )� �
Where x and y are the new desktop coordinates of the window. This function does not have any effect
when in fullscreen mode.

3.2 Getting Window Properties

When opening a window, the opened window will not necessarily have the requested properties, so you
should always check the parameters that your application relies on (e.g. number of stencil bits) using
glfwGetWindowParam, which has the C syntax:
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� �
int glfwGetWindowParam( int param )� �
The argument param can be one of the tokens listed in table 3.2, and the return value is an integer
holding the requested value.

Another useful function is glfwSetWindowSizeCallback, which specifies a user function that will be
called every time the window size has changed. The C syntax is:� �
void glfwSetWindowSizeCallback( GLFWwindowsizefun cbfun )� �
The user function fun should be of the type:� �
void GLFWCALL fun( int width, int height )� �
The first argument passed to the user function is the width of the window, and the second argument is
the height of the window. Here is an example of how to use a window size callback function:� �
int windowWidth, windowHeight;

void GLFWCALL WindowResize( int width, int height )
{

windowWidth = width;
windowHeight = height;

}

int main( void )
{

...
glfwSetWindowSizeCallback( WindowResize );
...

}� �
Using a callback function for getting the window size is mostly useful for windowed applications, since
the window size may be changed at any time by the user. It can also be used to determine the actual
fullscreen resolution.

An alternative to using a callback function for getting the window size, is to use the function
glfwGetWindowSize:� �
void glfwGetWindowSize( int *width, int *height )� �
The variables pointed to by width and height are set to the current window dimensions. Note that either
of these may be NULL; that argument is then ignored.
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Name Description
GLFW_OPENED GL_TRUE if window is opened, else GL_FALSE.
GLFW_ACTIVE GL_TRUE if window has focus, else GL_FALSE.
GLFW_ICONIFIED GL_TRUE if window is iconified, else GL_FALSE.
GLFW_ACCELERATED GL_TRUE if window is hardware accelerated, else

GL_FALSE.
GLFW_RED_BITS Number of bits for the red color component.
GLFW_GREEN_BITS Number of bits for the green color component.
GLFW_BLUE_BITS Number of bits for the blue color component.
GLFW_ALPHA_BITS Number of bits for the alpha buffer.
GLFW_DEPTH_BITS Number of bits for the depth buffer.
GLFW_STENCIL_BITS Number of bits for the stencil buffer.
GLFW_REFRESH_RATE Vertical monitor refresh rate in Hz. Zero indicates an unknown

or a default refresh rate.
GLFW_ACCUM_RED_BITS Number of bits for the red channel of the accumulation buffer.
GLFW_ACCUM_GREEN_BITS Number of bits for the green channel of the accumulation

buffer.
GLFW_ACCUM_BLUE_BITS Number of bits for the blue channel of the accumulation

buffer.
GLFW_ACCUM_ALPHA_BITS Number of bits for the alpha channel of the accumulation

buffer.
GLFW_AUX_BUFFERS Number of auxiliary buffers.
GLFW_STEREO GL_TRUE if stereo rendering is supported, else GL_FALSE.
GLFW_WINDOW_NO_RESIZE GL_TRUE if the window cannot be resized by the user, else

GL_FALSE.
GLFW_FSAA_SAMPLES Number of multisampling buffer samples. Zero indicated mul-

tisampling is disabled.
GLFW_OPENGL_VERSION_MAJOR Major number of the actual version of the context.
GLFW_OPENGL_VERSION_MINOR Minor number of the actual version of the context.
GLFW_OPENGL_FORWARD_COMPAT GL_TRUE if the context is forward-compatible, else

GL_FALSE.
GLFW_OPENGL_DEBUG_CONTEXT GL_TRUE if the context is a debug context.
GLFW_OPENGL_PROFILE The profile implemented by the context, or zero.

Table 3.2: Window parameters for glfwGetWindowParam
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3.3 Buffer Swapping

GLFW windows are always double buffered. That means that you have two rendering buffers; a front
buffer and a back buffer. The front buffer is the buffer that is being displayed, and the back buffer is not
displayed. OpenGL R© lets you select which of these two buffers you want to render to (with the
glDrawBuffer command), but the default (and preferred) rendering buffer is the back buffer. This way
you will avoid flickering and artifacts caused by graphics being only partly drawn at the same time as
the video raster beam is displaying the graphics on the monitor.

When an entire frame has been rendered to the back buffer, it is time to swap the back and the front
buffers in order to display the rendered frame, and begin rendering a new frame. This is done with the
command glfwSwapBuffers. The C syntax is:� �
void glfwSwapBuffers( void )� �
After swapping the front and back rendering buffers, glfwSwapBuffers by default calls
glfwPollEvents1. This is to ensure frequent polling of events, such as keyboard and mouse input, and
window reshaping events. Even if a given application does not use input events, without frequent
polling of events (at least once every few seconds), most modern window systems will flag the
application as unresponsive and may suggest that the user terminate it.

Sometimes it can be useful to select when the buffer swap will occur. With the function
glfwSwapInterval it is possible to select the minimum number of vertical retraces the video raster line
should do before swapping the buffers:� �
void glfwSwapInterval( int interval )� �
If interval is zero, the swap will take place immediately when glfwSwapBuffers is called, without
waiting for a vertical retrace (also known as “vsync off”). Otherwise at least interval retraces will pass
between each buffer swap (also known as “vsync on”). Using a swap interval of zero can be useful for
benchmarking purposes, when it is not desirable to measure the time it takes to wait for the vertical
retrace. However, a swap interval of 1 generally gives better visual quality.

It should be noted that not all OpenGL R© implementations and hardware support this function, in which
case glfwSwapInterval will have no effect. ATI Radeon cards under Microsoft Windows are especially
notorious in this regard. Sometimes it is only possible to affect the swap interval through driver settings
(e.g. the display settings under Windows, or as an environment variable setting under Unix).

3.4 Querying Video Modes

Although GLFW generally does a good job at selecting a suitable video mode for you when you open a
fullscreen window, it is sometimes useful to know exactly which modes are available on a certain

1This behavior can be disabled by calling glfwDisable with the argument GLFW_AUTO_POLL_EVENTS.
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system. For example, you may want to present the user with a list of video modes to select from. To get
a list of available video modes, you can use the function glfwGetVideoModes:� �
int glfwGetVideoModes( GLFWvidmode *list, int maxcount )� �
The argument list is a vector of GLFWvidmode structures, and maxcount is the maximum number of
video modes that your vector can hold. glfwGetVideoModes will return the number of video modes
detected on the system, up to maxcount.

The GLFWvidmode structure looks like this:� �
typedef struct {

int Width, Height; // Video resolution
int RedBits; // Red bits per pixel
int GreenBits; // Green bits per pixel
int BlueBits; // Blue bits per pixel

} GLFWvidmode;� �
Here is an example of retrieving all available video modes:� �
int nummodes;
GLFWvidmode list[ 200 ];
nummodes = glfwGetVideoModes( list, 200 );� �
The returned list is sorted, first by color depth (RedBits+GreenBits+BlueBits), and then by
resolution (Width×Height), with the lowest resolution, fewest bits per pixel mode first.

To get the desktop video mode, use the function glfwGetDesktopMode:� �
void glfwGetDesktopMode( GLFWvidmode *mode )� �
The function returns the resolution and color depth of the user desktop in the mode structure. Note that
the user desktop mode is independent of the current video mode if a GLFW fullscreen window has been
opened.
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Chapter 4

Input Handling

In this chapter you will learn how to use keyboard, mouse and joystick input, using either polling or
callback functions.

4.1 Event Polling

The first thing to know about input handling in GLFW is that all keyboard and mouse input is collected
by checking for input events. This has do be done manually by calling either glfwPollEvents or
glfwSwapBuffers (which implicitly calls glfwPollEvents for you). Normally this is not a cause for
concern, as glfwSwapBuffers is called every frame, which should be often enough (about 10-100 times
per second for a normal OpenGL R© application) that the window will feel responsive.

One exception is when an application is updating its view only in response to input. In this case the
glfwWaitEvents is useful, as it blocks the calling thread until an event arrives. The refresh callback, set
with glfwSetWindowRefreshCallback, may also be useful for such applications, especially on
unbuffered window systems.

If it is not desirable that glfwPollEvents is called implicitly from glfwSwapBuffers, call glfwDisable
with the argument GLFW_AUTO_POLL_EVENTS.

Note that event polling is not needed for joystick input, since all relevant joystick state is gathered every
time a joystick function is called.

4.2 Keyboard Input

GLFW provides three mechanisms for getting keyboard input:

• Manually polling the state of individual keys.
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• Automatically receive new key state for any key, using a callback function.

• Automatically receive characters, using a callback function.

Depending on what the keyboard input will be used for, different methods may be preferred. The main
difference between the two last methods is that while characters are affected by modifier keys (such as
shift), key state is independent of any modifier keys. Also, special keys (such as function keys, cursor
keys and modifier keys) are not reported to the character callback function.

4.2.1 Key state

To check if a key is held down or not at any given moment, use the function glfwGetKey:� �
int glfwGetKey( int key )� �
It queries the current status of individual keyboard keys. The argument key specifies which key to
check, and it can be either an uppercase ISO 8859-1 character, or a special key identifier. glfwGetKey
returns GLFW_PRESS (or 1) if the key is currently held down, or GLFW_RELEASE (or 0) if the key is
not being held down.

In most situations, it may be useful to know if a key has been pressed and released between two calls to
glfwGetKey (especially if the animation is fairly slow, which may allow the user to press and release a
key between two calls to glfwGetKey). This can be accomplished by enabling sticky keys, which is
done by calling glfwEnable with the argument GLFW_STICKY_KEYS, as in the following example:� �
glfwEnable( GLFW_STICKY_KEYS );� �
When sticky keys are enabled, a key will not be released until it is checked with glfwGetKey. To disable
sticky keys, call glfwDisable witht the argument GLFW_STICKY_KEYS. Then all keys that are not
currently held down will be released and future key releases will take place immediately when the user
releases the key without waiting for glfwGetKey to check the key. By default sticky keys are disabled.

Sticky keys are often very useful and should be used in most cases where glfwGetKey is used. There is
however a danger involved with enabling sticky keys, and that is that keys that are pressed by the user
but are not checked with glfwGetKey, may remain “pressed” for a very long time. A typical situation
where this may be dangerous is in a program that consists of two or more sections (e.g. a menu section
and a game section). If the first section enables sticky keys but does not check for keys which the
second section checks for, there is a potential of recording many key presses in the first section that will
be detected in the second section. To avoid this problem, always disable sticky keys before leaving a
section of a program.

A usually better alternative to using glfwGetKey is to register a keyboard input callback function with
glfwSetKeyCallback:� �
void glfwSetKeyCallback( GLFWkeyfun cbfun )� �
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The argument fun is a pointer to a callback function. The callback function shall take two integer
arguments. The first is the key identifier, and the second is the new key state, which can be
GLFW_PRESS or GLFW_RELEASE. To unregister a callback function, call glfwSetKeyCallback
with fun = NULL.

Using the callback function, you can be sure not to miss any key press or release events, regardless of
how many may have occurred during the last frame. It also encourages event-based design, where the
application responds only to actual events instead of having to poll for every supported event.

4.2.2 Character input

If the keyboard is to be used as a text input device (e.g. in a user dialog) rather than as a set of
independent buttons, a character callback function is more suitable. To register a character callback
function, use glfwSetCharCallback:� �
void glfwSetCharCallback( GLFWcharfun cbfun )� �
The argument fun is a pointer to a callback function. The callback function shall take two integer
arguments. The first is a Unicode code point, and the second is GLFW_PRESS if the key that generated
the character was pressed, or GLFW_RELEASE if it was released. To unregister a callback function,
call glfwSetCharCallback with fun = NULL.

The Unicode character set is an international standard for encoding characters. It is much more
comprehensive than seven or eight bit character sets (e.g. US-ASCII and Latin 1), and includes
characters for most written languages in the world. It should be noted that Unicode character codes 0 to
255 are the same as for ISO 8859-1 (Latin 1), so as long as a proper range check is performed on the
Unicode character code, it can be used just as an eight bit Latin 1 character code (which can be useful if
full Unicode support is not possible).

4.2.3 Key repeat

By default, GLFW does not report key repeats when a key is held down. To activate key repeat, call
glfwEnable with the argument GLFW_KEY_REPEAT:� �
glfwEnable( GLFW_KEY_REPEAT );� �
This will let a registered key or character callback function receive key repeat events when a key is held
down.

4.2.4 Special system keys

On most systems there are some special system keys that are normally not intercepted by an application.
For instance, under Windows it is possible to switch programs by pressing ALT+TAB, which brings up
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a list of running programs to select from. In certain situations it can be desirable to prevent such special
system keys from interfering with the program. With GLFW it is possible to do by calling glfwDisable
with the argument GLFW_SYSTEM_KEYS:� �
glfwDisable( GLFW_SYSTEM_KEYS );� �
By doing so, most system keys will have no effect and will not interfere with your program. System
keys can be re-enabled by calling glfwEnable with the argument GLFW_SYSTEM_KEYS. By default,
system keys are enabled.

4.3 Mouse Input

Just like for keyboard input, mouse input can be realized with either polling or callback functions.

4.3.1 Mouse position

To query the position of the mouse cursor, call glfwGetMousePos:� �
void glfwGetMousePos( int *x, int *y )� �
The variables pointed to by x and y will be updated with the current position of the mouse cursor
relative to the upper-left corner of the client area of the GLFW window.

An alternative is to use a callback function, which can be set with glfwSetMousePosCallback:� �
void glfwSetMousePosCallback( GLFWmouseposfun cbfun )� �
The function that fun points to will be called every time the mouse cursor moves. The first argument to
the callback function is the cursor x-coordinate and the second the cursor y-coordinate, both relative to
the upper-left corner of the client area of the GLFW window.

Note that while the glfwGetMousePos function only reports the final position after cursor movement
events have been processed, using a callback function lets the application see each and every such event.

4.3.2 Mouse buttons

To query the state of a mouse button, call glfwGetMouseButton:� �
int glfwGetMouseButton( int button )� �
The argument button can be any GLFW mouse button token, i.e. GLFW_MOUSE_BUTTON_1
through GLFW_MOUSE_BUTTON_8 or one of GLFW_MOUSE_BUTTON_LEFT,
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GLFW_MOUSE_BUTTON_RIGHT or GLFW_MOUSE_BUTTON_MIDDLE.
glfwGetMouseButton will return GLFW_PRESS (which is a non-zero value) if the corresponding
mouse button is held down, otherwise it will return GLFW_RELEASE (which is equal to zero).

Just as it is possible to make keys “sticky”, it is also possible to make each mouse button appear as held
down until it is checked with glfwGetMouseButton. To enable sticky mouse buttons, call glfwEnable
with the argument GLFW_STICKY_MOUSE_BUTTONS.

When sticky mouse buttons are enabled, a mouse button will not be released until it is checked with
glfwGetMouseButton. To disable sticky mouse buttons, call glfwDisable with the argument
GLFW_STICKY_MOUSE_BUTTONS. Then all mouse buttons that are not currently held down will
be released and future mouse button releases will take place immediately when the user releases the
mouse button without waiting for glfwGetMouseButton to check for the mouse button. By default
sticky mouse buttons are disabled.

There is also a callback function for mouse button activities, which can be set with
glfwSetMouseButtonCallback:� �
void glfwSetMouseButtonCallback( GLFWmousebuttonfun fun )� �
The argument fun specifies a function that will be called whenever a mouse button is pressed or
released, or NULL to unregister a callback function. The first argument to the callback function is a
mouse button identifier, and the second is either GLFW_PRESS or GLFW_RELEASE, depending on
the new state of the corresponding mouse button.

4.3.3 Mouse wheel

Some mice have a mouse wheel, most commonly used for vertical scrolling. Also, most modern
touchpads allow the user to scroll at least vertically, either by reserving an area for scrolling or through
multi-finger gestures. To get the position of the mouse wheel, call glfwGetMouseWheel:� �
int glfwGetMouseWheel( void )� �
The function returns an integer that represents the position of the mouse wheel. When the user turns the
wheel, the wheel position will increase or decrease. Note that since scrolling hardware has no absolute
position, GLFW simply sets the position to zero when the window is opened.

It is also possible to register a callback function for mouse wheel events with the
glfwSetMouseWheelCallback function:� �
void glfwSetMouseWheelCallback( GLFWmousewheelfun fun )� �
The argument fun specifies a function that will be called whenever the mouse wheel is moved, or NULL
to unregister a callback function. The argument to the callback function is the position of the mouse
wheel.
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4.3.4 Hiding the mouse cursor

It is possible to hide the mouse cursor with the function call:� �
glfwDisable( GLFW_MOUSE_CURSOR );� �
Hiding the mouse cursor has three effects:

1. The cursor becomes invisible.

2. The cursor is guaranteed to be confined to the window.

3. Mouse coordinates are not limited to the window size.

To show the mouse cursor again, call glfwEnable with the argument GLFW_MOUSE_CURSOR:� �
glfwEnable( GLFW_MOUSE_CURSOR );� �
By default the mouse cursor is hidden if a window is opened in fullscreen mode, otherwise it is not
hidden.

4.4 Joystick Input

GLFW has support for up to sixteen joysticks, and an infinite1 number of axes and buttons per joystick.
Unlike keyboard and mouse input, joystick input does not need an opened window, and glfwPollEvents
or glfwSwapBuffers does not have to be called in order for joystick state to be updated.

4.4.1 Joystick capabilities

First, it is often necessary to determine if a joystick is connected and what its capabilities are. To get
this information the function glfwGetJoystickParam can be used:� �
int glfwGetJoystickParam( int joy, int param )� �
The joy argument specifies which joystick to retrieve the parameter from, and it should be
GLFW_JOYSTICK_n, where n is in the range 1 to 16. The param argument specifies which parameter
to retrieve. To determine if a joystick is connected, param should be GLFW_PRESENT, which will
cause the function to return GL_TRUE if the joystick is connected, or GL_FALSE if it is not. To
determine the number of axes or buttons that are supported by the joystick, param should be
GLFW_AXES or GLFW_BUTTONS, respectively.

Note that GLFW supports both D-pads and POVs, even though they are not explicitly mentioned in the
API. D-pads are exposed as a set of four buttons and POVs are as two axes.

1There are of course actual limitations posed by the underlying hardware, drivers and operation system.
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4.4.2 Joystick position

To get the current axis positions of the joystick, the glfwGetJoystickPos is used:� �
int glfwGetJoystickPos( int joy, float *pos, int numaxes )� �
As with glfwGetJoystickParam, the joy argument specifies which joystick to retrieve information
from. The numaxes argument specifies how many axes to return positions for and the pos argument
specifies an array in which they are stored. The function returns the actual number of axes that were
returned, which could be less than numaxes if the joystick does not support all the requested axes, or if
the joystick is not connected.

For instance, to get the position of the first two axes (the X and Y axes) of joystick 1, the following code
can be used:� �
float position[ 2 ];

glfwGetJoystickPos( GLFW_JOYSTICK_1, position, 2 );� �
After this call, the first element of the position array will hold the X axis position of the joystick, and the
second element will hold the Y axis position. In this example we do not use the information about how
many axes were really returned.

The position of an axis can be in the range -1.0 to 1.0, where positive values represent right, forward or
up directions, while negative values represent left, back or down directions. If a requested axis is not
supported by the joystick, the corresponding array element will be set to zero. The same goes for the
situation when the joystick is not connected (all axes are treated as unsupported).

4.4.3 Joystick buttons

A function similar to the glfwGetJoystickPos function is available for querying the state of joystick
buttons, namely the glfwGetJoystickButtons function:� �
int glfwGetJoystickButtons( int joy, unsigned char *buttons,

int numbuttons )� �
The function works just like the glfwGetJoystickAxis function, except that it returns the state of
joystick buttons instead of axis positions. Each button in the array specified by the buttons argument can
be either GLFW_PRESS or GLFW_RELEASE, indicating whether the corresponding button is
currently held down or not. Unsupported buttons will have the value GLFW_RELEASE.
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Chapter 5

Timing

5.1 High Resolution Timer

In most applications, it is useful to know exactly how much time has passed between point A and point
B in a program. A typical situation is in a game, where you need to know how much time has passed
between two rendered frames in order to calculate the correct movement and physics etc. Another
example is when you want to benchmark a certain piece of code.

GLFW provides a high-resolution timer, which reports a double precision floating point value
representing the number of seconds that have passed since glfwInit was called. The timer is accessed
with the function glfwGetTime:� �
double glfwGetTime( void )� �
The precision of the timer depends on which computer and operating system you are running, but it is
almost guaranteed to be better than 10 ms, and in most cases it is much better than 1 ms (on a modern
PC you can get resolutions in the order of 1 ns).

It is possible to set the value of the high precision timer using the glfwSetTime function:� �
void glfwSetTime( double time )� �
The argument time is the time, in seconds, that the timer should be set to.

5.2 Sleep

Sometimes it can be useful to put a program to sleep for a short time. It can be used to reduce the CPU
load in various situations. For this purpose, there is a function called glfwSleep, which has the
following C syntax:
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� �
void glfwSleep( double time )� �
The function will put the calling thread to sleep for the time specified with the argument time, which has
the unit seconds. When glfwSleep is called, the calling thread will be put in waiting state, and thus will
not consume any CPU time.

Note that there is generally a minimum sleep time that will be recognized by the operating system,
which is usually coupled to the task-switching interval. This minimum time is often in the range
5 − 20ms, and it is not possible to make a thread sleep for less than that time. Specifying a very small
sleep time may result in glfwSleep returning immediately, without putting the thread to sleep.
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Chapter 6

Image and Texture Import

In many, if not most, OpenGL R© applications you want to use pre-generated 2D images for surface
textures, light maps, transparency maps etc. Typically these images are stored with a standard image
format in a file, which requires the program to decode and load the image(s) from file(s), which can
require much work from the programmer.

To make life easier for OpenGL R© developers, GLFW has built-in support for loading images from files.

6.1 Texture Loading

To load a texture from a file, you can use the function glfwLoadTexture2D:� �
int glfwLoadTexture2D( const char *name, int flags )� �
This function reads a 2D image from a Truevision Targa format file (.TGA) with the name given by
name, and uploads it to texture memory. It is similar to the OpenGL R© function glTexImage2D, except
that the image data is read from a file instead of from main memory, and all the pixel format and data
storage flags are handled automatically. The flags argument can be used to control how the texture is
loaded.

If flags is GLFW_ORIGIN_UL_BIT, the origin of the texture will be the upper left corner (otherwise it
is the lower left corner). If flags is GLFW_BUILD_MIPMAPS_BIT, all mipmap levels will be
generated and uploaded to texture memory (otherwise only one mipmap level is loaded). If flags is
GLFW_ALPHA_MAP_BIT, then any gray scale images will be loaded as alpha maps rather than
luminance maps.

To make combinations of the flags, or them together (e.g. like this: GLFW_ORIGIN_UL_BIT |
GLFW_BUILD_MIPMAPS_BIT).

Here is an example of how to upload a texture from a file to OpenGL R© texture memory, and configure
the texture for trilinear interpolation (assuming an OpenGL R© window has been opened successfully):
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� �
// Load texture from file, and build all mipmap levels
glfwLoadTexture2D( "mytexture.tga", GLFW_BUILD_MIPMAPS_BIT );

// Use trilinear interpolation for minification
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER,

GL_LINEAR_MIPMAP_LINEAR );

// Use bilinear interpolation for magnification
glTexParameteri( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER,

GL_LINEAR );

// Enable texturing
glEnable( GL_TEXTURE_2D );� �

As you can see, glfwLoadTexture2D is very easy to use. Since it can also automatically create
mipmaps when required, it is also a very powerful function.

6.2 Image Loading

In certain cases it may be useful to be able to load an image into client memory (application memory),
without directly uploading the image to OpenGL R© texture memory. For example, one may wish to
retain a copy of the texture in local memory for future use. Another example is when the image is not to
be used as a texture at all, e.g. if it is to be used as a height map.

GLFW also offers the possibility to load an image to application memory, using the glfwReadImage
function:� �
int glfwReadImage( const char *name, GLFWimage *img, int flags )� �
The function reads the image given by the argument name, and upon success stores the relevant image
information and pixel data in the GLFWimage structure img. The GLFWimage structure is defined as:� �
typedef struct {

int Width, Height; // Image dimensions
int Format; // OpenGL pixel format
int BytesPerPixel; // Number of bytes per pixel
unsigned char *Data; // Pointer to pixel data

} GLFWimage;� �
Data points to the loaded pixel data. If the function loaded the image successfully, GL_TRUE is
returned, otherwise GL_FALSE is returned.
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Possible flags for the flags argument are GLFW_ORIGIN_UL_BIT, GLFW_NO_RESCALE_BIT and
GLFW_ALPHA_MAP_BIT. GLFW_ORIGIN_UL_BIT and GLFW_ALPHA_MAP_BIT work as
described for the glfwLoadTexture2D function. If the GLFW_NO_RESCALE_BIT flag is set, the
image will not be rescaled to the closest larger 2m × 2n resolution, which is otherwise the default action
for images with non-power-of-two dimenstions.

When an image that was loaded with the glfwReadImage function is not used anymore (e.g. when it
has been uploaded to texture memory), you should use the function glfwFreeImage to free the
allocated memory:� �
void glfwFreeImage( GLFWimage *img )� �
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Chapter 7

OpenGL Extension Support

One of the benefits of OpenGL R© is that it is extensible. Independent hardware vendors (IHVs) may
include functionality in their OpenGL R© implementations that exceed that of the OpenGL R© standard.

An extension is defined by:

1. An extension name (e.g. GL_ARB_multitexture).

2. New OpenGL tokens (e.g. GL_TEXTURE1_ARB).

3. New OpenGL functions (e.g. glActiveTextureARB).

A list of official extensions, together with their definitions, can be found at the OpenGL Registry
(http://www.opengl.org/registry/).

To use a certain extension, the following steps must be performed:

1. A compile time check for the support of the extension.

2. A run time check for the support of the extension.

3. Fetch function pointers for the extended OpenGL R© functions (done at run time).

How this is done using GLFW is described in the following sections. Please note that this chapter
covers some advanced topics, and is quite specific to the C programming language.

For a much easier way to get access to OpenGL R© extensions, you should probably use a dedicated
extension loading library such as GLEW or GLee. This kind of library greatly reduces the amount of
work necessary to use OpenGL R© extensions. GLEW in particular has been extensively tested with and
works well with GLFW.

http://www.opengl.org/registry/
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7.1 Compile Time Check

The compile time check is necessary to perform in order to know if the compiler include files have
defined the necessary tokens. It is very easy to do. The include file GL/gl.h will define a constant
with the same name as the extension, if all the extension tokens are defined. Here is an example of how
to check for the extension GL_ARB_multitexture:� �
#ifdef GL_ARB_multitexture

// Extension is supported by the include files
#else

// Extension is not supported by the include files
// Get a more up-to-date <GL/gl.h> file!

#endif� �
7.2 Runtime Check

Even if the compiler include files have defined all the necessary tokens, a given machine may not
actually support the extension (it may have a graphics card with a different OpenGL R© implementation,
or an older driver). That is why it is necessary to do a run time check for the extension support as well.
This is done with the GLFW function glfwExtensionSupported, which has the C syntax:� �
int glfwExtensionSupported( const char *extension )� �
The argument extension is a null terminated ASCII string with the extension name.
glfwExtensionSupported returns GL_TRUE if the extension is supported, otherwise it returns
GL_FALSE.

Let us extend the previous example of checking for support of the extension GL_ARB_multitexture.
This time we add a run time check, and a variable which we set to GL_TRUE if the extension is
supported, or GL_FALSE if it is not supported.� �
int multitexture_supported;

#ifdef GL_ARB_multitexture
// Check if extension is supported at run time
multitexture_supported =

glfwExtensionSupported( "GL_ARB_multitexture" );
#else

// Extension is not supported by the include files
// Get a more up-to-date <GL/gl.h> file!
multitexture_supported = GL_FALSE;

#endif� �
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Now it is easy to check for the extension within the program, simply do:� �
if( multitexture_supported )
{

// Use multi texturing
}
else
{

// Use some other solution (or fail)
}� �

7.3 Fetching Function Pointers

Some extensions, though not all, require the use of new OpenGL R© functions. These entry points are not
necessarily exposed by your link libraries, making it necessary to find them dynamically at run time.
You can retrieve these entry points using the glfwGetProcAddress function:� �
void * glfwGetProcAddress( const char *procname )� �
The argument procname is a null terminated ASCII string holding the name of the OpenGL R© function.
glfwGetProcAddress returns the address to the function if the function is available, otherwise NULL is
returned.

Obviously, fetching the function pointer is trivial. For instance, if we want to obtain the pointer to
glActiveTextureARB, we simply call:� �
glActiveTextureARB = glfwGetProcAddress( "glActiveTextureARB" );� �
However, there are many possible naming and type definition conflicts involved with such an operation,
which may result in compiler warnings or errors. My proposed solution is the following:

• Do not use the function name for the variable name. Use something similar, perhaps by adding a
prefix or suffix, and then use #define to map the function name to your variable.

• The standard type definition naming convention for function pointers is PFNxxxxPROC, where
xxxx is the uppercase version of the function name (e.g. PFNGLACTIVETEXTUREARBPROC).
Either make sure your compiler uses a compatible gl.h and/or glext.h file and rely on it to
define these types, or use define the types yourself using a different naming convention (for
example xxxx_T) and do the type definitions yourself.

Here is a slightly longer example of how to use an extension, this time using our own function pointer
type definition):� �
// Type definition of the function pointer
typedef void (APIENTRY * GLACTIVETEXTUREARB_T) (GLenum texture);
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// Function pointer
GLACTIVETEXTUREARB_T _ActiveTextureARB;
#define glActiveTextureARB _ActiveTextureARB

// Extension availability flag
int multitexture_supported;

#ifdef GL_ARB_multitexture
// Check if extension is supported at run time
if( glfwExtensionSupported( "GL_ARB_multitexture" ) )
{

// Get the function pointer
glActiveTextureARB = (GLACTIVETEXTUREARB_T)

glfwGetProcAddress( "glActiveTextureARB" );

multitexture_supported = GL_TRUE;
}
else
{

multitexture_supported = GL_FALSE;
}

#else
// Extension is not supported by the include files
multitexture_supported = GL_FALSE;

#endif� �
Even this example leaves some things to be desired. First of all, the GL_ARB_multitexture extension
defines many more functions than the single function used above. Secondly, checking if an extension is
supported using glfwExtensionSupported is not enough to ensure that the corresponding functions will
be valid. You also need to check that the all function pointers returned by glfwGetProcAddress are
non-NULL.

7.3.1 Function pointer type definitions

To make a function pointer type definition, you need to know the function prototype. This can often be
found in the extension definitions (e.g. at the OpenGL Registry). All the entry points that are defined by
an extension are listed with their C prototype definitions under the section New Procedures and
Functions in the extension definition.

For instance, if we look at the definition of the GL_ARB_texture_compression extension, we find a list
of new functions. One of these is declared like this:� �
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void GetCompressedTexImageARB(enum target, int lod, void *img);� �
Like in most official OpenGL R© documentation, all the GL and gl prefixes have been left out. In other
words, the real function prototype would look like this:� �
void glGetCompressedTexImageARB(GLenum target, GLint lod, void *img);� �
All we have to do to turn this prototype definition into a function pointer type definition, is to replace
the function name with (APIENTRY * xxxx_T), where xxxx is the uppercase version of the name
(according to the proposed naming convention). The keyword APIENTRY is needed to be compatible
between different platforms. The GLFW header file GL/glfw.h ensures that APIENTRY is properly
defined on all supported platforms.

In other words, for the function glGetCompressedTexImageARB we get:� �
typedef void (APIENTRY * GLGETCOMPRESSEDTEXIMAGEARB_T)

(GLenum target, GLint level, void *img);� �
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Chapter 8

Multi-threading

The initial intent of GLFW was to provide only the basic functionality needed to create an OpenGL R©

application, but as GLFW grew to be a platform for portable OpenGL R© applications, it came to include
a basic operating system independent multi-threading layer.

However, this layer is fairly isolated from the rest of GLFW and most of the rest of the API is not
thread-safe. This is important to keep in mind when using GLFW in a multi-threaded application.

8.1 Why Use Multi-threading?

Most computers being sold today have at least two CPU cores and many have four or more. Even the
cheapest netbooks have a semblance of multi-core in the form of hyper-threading. With the individual
cores not getting much faster, increased performance can only be had by using the additional CPU cores.

However, the OpenGL R© API itself is single-threaded and a given context should only be used by a
single thread at a time. This means that the primary use for multi-threading in the area of computer
graphics isn’t to distribute rendering across multiple threads, but rather to relieve the render thread from
doing other kinds of work. Examples include collision and dynamics ticks, audio processing and
playback, networking and even rendering steps that don’t involve calling OpenGL R©.

The downside of using multi-threading is the added complexity that comes from making a program
non-sequential and to ensure that one thread does not interfere with the data being used by another.
Whether or not it is worth making a given application multi-threaded is a complex question and as
always, there is no substitute for data and experience. Profile, measure and experiment.

8.1.1 Avoid unnecessary waiting

In many situations, an application is placed in a wait state, waiting for a task to complete. Examples of
such situations are: waiting for a file to load from disk, waiting for a vertical retrace (when using a
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double buffered display, such as a GLFW window), waiting for a display to be cleared or data to be sent
to the graphics card.

Some or all of these operations can be done asynchronously, if the conditions are right and the operating
system supports it, but a simple and efficient way of avoiding unnecessary waits is to use multi
threading. If there are several active threads in an application, a thread that was waiting for CPU time
can start running as soon as another thread enters a wait state. This will speed up an application on both
single and multi processor systems.

8.1.2 Improve real time performance

It is a known fact that an application becomes more responsive and exhibits less timing problems if
different jobs are assigned to separate threads.

A typical example is streaming audio: when an audio buffer is empty, it has to be filled with new sound
again within a limited amount of time, or strange sound loops or clicks may be the result. If a program
is displaying graphics, loading files and playing audio at the same time (a typical game), it is very
difficult to guarantee that the program will update the audio buffers in time if everything is performed in
a single thread. On the other hand, if the audio buffer is updated from a separate thread, it becomes a
very simple task.

8.2 How To Use Multi Threading

In general, every process, i.e. instance of a program, has its own memory space and its own set of
resources, such as opened files etc. As a consequence, each process is coupled with a fairly large set of
state. When the processor changes the execution from one process to another process, all this state has
to be changed too (this is often referred to as a context switch), which can be quite costly.

Threads are sometimes referred to as “lightweight processes”, which gives you a clue of what they are.
In contrast to a process, a thread is a separate execution path within a process, which shares the same
memory area and resources. This means that very little state has to be changed when switching
execution between different threads (basically only the stack pointer and the processor registers). It also
means that data exchange between threads is very simple, and there is little or no overhead in
exchanging data, since program variables and data areas can be shared between threads.

Writing threaded applications may be very awkward before you get used to it, but there are a few key
rules that are fairly simple to follow:

1. ALWAYS assure exclusive access to data that is shared between threads!

2. Make sure that threads are synchronized properly!

3. NEVER busy wait!
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In the following sections you will learn how to use the functionality of GLFW to create threads and meet
these rules, and hopefully you will find that it is not very difficult to write a multi threaded application.

8.3 Creating Threads

Creating a thread in GLFW is very simple. You just call the function glfwCreateThread:� �
GLFWthread glfwCreateThread( GLFWthreadfun fun, void *arg )� �
The argument fun is a pointer to a function that will be executed by the new thread, and arg is an
argument that is passed to the thread. glfwCreateThread returns a positive thread ID number if the
thread was created successfully, or a negative number if the thread could not be created.

When the thread function returns, the thread will die. In most cases, you want to know when the thread
has finished. A thread can wait for another thread to die with the command glfwWaitThread:� �
int glfwWaitThread( GLFWthread ID, int waitmode )� �
The argument ID is the thread handle that was obtained when creating the thread. If waitmode is
GLFW_NOWAIT, glfwWaitThread will return immediately with the value GL_TRUE if the thread
died, or GL_FALSE if it is still alive. This can be useful if you only want to check if the thread is alive.
If waitmode is GLFW_WAIT, glfwWaitThread will wait until the specified thread has died. Regardless
of what waitmode is, glfwWaitThread will return immediately if the thread does not exist (e.g. if the
thread has already died or if ID is an invalid thread handle).

In some situations, you may want to brutally kill a thread without waiting for it to finish. This can be
done with glfwDestroyThread:� �
void glfwDestroyThread( GLFWthread ID )� �
It should be noted that glfwDestroyThread is a very dangerous operation, which may interrupt a thread
in the middle of an important operation, which can result in lost data or deadlocks (when a thread is
waiting for a condition to be raised, which can never be raised). In other words, do not use this function
unless you really have to do it, and if you really know what you are doing (and what the thread that you
are killing is doing)!

To sum up what we have learned so far, here is an example program which will print “Hello world!”
(error checking has been left out for brevity):
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� �
#include <stdio.h>
#include <GL/glfw.h>

void GLFWCALL HelloFun( void *arg )
{

printf( "Hello " );
}

int main( void )
{

GLFWthread thread;

glfwInit();
thread = glfwCreateThread( HelloFun, NULL );
glfwWaitThread( thread, GLFW_WAIT );
printf( "world!\n" );
glfwTerminate();

return 0;
}� �
The program starts by initializing GLFW, as always, and then it goes on by creating a thread that will
execute the function HelloFun. The main thread then waits for the created thread to do its work and
finish. Finally the main thread prints “world!”, terminates GLFW and exits. The result is that “Hello
world!” will be printed in the console window.

You may have noticed that we have already used a simple form of thread synchronization, by waiting
for the child thread to die before we print “world!”. If we would have placed the wait command after
the print command, there would be no way of knowing which word would be printed first (“Hello” or
“world!”). Our program would then suffer from a race condition, which is a term used to describe a
situation where two (or more) threads are competing to complete a task first.

In section 8.5 you will learn how to do advanced thread synchronization using condition variables,
which let threads wait for certain conditions before continuing execution.

8.4 Data Sharing Using Mutex Objects

In many situations you need to protect a certain data area while reading or modifying it, so that other
threads do not start changing or reading the data while you are only half way through.

For instance, consider that you have a vector vec, and a variable N telling how many elements there are
in the vector. What happens if thread A adds an element to the vector at the same time as thread B is
removing an element from the vector? Figure 8.1 shows a possible scenario.
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We have created a possible race condition. The result in this case is that thread B reads an invalid
element from the vector, and thread A overwrites an already existing element, which is not what we
wanted.

The solution is to only let one thread have access to the vector at a time. This is done with mutex
objects (mutex stands for mutual exclusion). The proper use of mutexes eliminates race conditions. To
create a mutex object in GLFW, you use the function glfwCreateMutex:� �
GLFWmutex glfwCreateMutex( void )� �
glfwCreateMutex returns NULL if a mutex object could not be created, otherwise a mutex handle is
returned. To destroy a mutex object that is no longer in use, call glfwDestroyMutex:� �
void glfwDestroyMutex( GLFWmutex mutex )� �
Mutex objects by themselves do not contain any useful data. They act as a lock to any arbitrary data.
Any thread can lock access to the data using the function glfwLockMutex:� �
void glfwLockMutex( GLFWmutex mutex )� �
The argument mutex is the mutex handle that was obtained when creating the mutex. glfwLockMutex
will block the calling thread until the specified mutex is available (which will be immediately, if no
other thread has locked it).

Once a mutex has been locked, no other thread is allowed to lock the mutex. Only one thread at a time
can get access to the mutex, and only the thread that has locked the mutex may use or manipulate the
data which the mutex protects. To unlock a mutex, the thread calls glfwUnlockMutex:� �
void glfwUnlockMutex( GLFWmutex mutex )� �
As soon as glfwUnlockMutex has been called, other threads may lock it again.

Figure 8.2 shows the scenario with the two threads trying to access the same vector, but this time they
use a mutex object (vecmutex).

In this example, thread A successfully obtains a lock on the mutex and directly starts modifying the
vector data. Next, thread B tries to get a lock on the mutex, but is placed on hold since thread A has
already locked the mutex. Thread A is free to continue its work, and when it is done it unlocks the
mutex. Now thread B locks the mutex and gains exclusive access to the vector data, performs its work,
and finally unlocks the mutex.

The race condition has been avoided, and the code performs as expected.
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Thread A Thread B� �
N ++;� � waiting to exectue

waiting to exectue

� �
x = vec[ N-1 ];
N --;� �� �

vec[ N-1 ] = y;� � waiting to exectue

Figure 8.1: Data sharing without mutex protection

Thread A Thread B� �
glfwLockMutex( vecmutex );
N ++;� � waiting to exectue

waiting to exectue
� �
glfwLockMutex( vecmutex );� �� �

vec[ N-1 ] = y;
glfwUnlockMutex( vecmutex );� � waiting to exectue

waiting to exectue

� �
x = vec[ N-1 ];
N --;
glfwUnlockMutex( vecmutex );� �

Figure 8.2: Data sharing with mutex protection
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8.5 Thread Synchronization Using Condition Variables

Now you know how to create threads and how to safely exchange data between threads, but there is one
important thing left to solve for multi threaded programs: conditional waits. Very often it is necessary
for one thread to wait for a condition that will be satisfied by another thread.

For instance, a thread A may need to wait for both thread B and thread C to finish a certain task before
it can continue. For starters, we can create a mutex protecting a variable holding the number of
completed threads:� �
GLFWmutex mutex;
int threadsdone;� �
Now, thread B and C will lock the mutex and increase the threadsdone variable by one when they are
done, and then unlock the mutex again. Thread A can lock the mutex and check if threadsdone is equal
to 2.

If we assume that mutex has been created successfully, the code for the three threads (A, B and C)
could be the following:

Thread A: Wait for both thread B and C to finish.� �
do
{

glfwLockMutex( mutex );
done = (threadsdone == 2);
glfwUnlockMutex( mutex );

}
while( !done );� �
Thread B and C: Tell thread A that I am done.� �
glfwLockMutex( mutex );
threadsdone ++;
glfwUnlockMutex( mutex );� �
The problem is that when thread A discovers that thread B and C are not done, it needs to check
threadsdone over and over again until threadsdone is 2. We have created a busy waiting loop!

The method will work without a doubt, but thread A will consume a lot of CPU power doing nothing.
What we need is a way for thread A to halt until thread B or C tells it to re-evaluate the conditions
again. This is exactly what condition variables do.

GLFW supports three condition variable operations: wait, signal and broadcast. One or more threads
may wait to be woken up on a condition, and one or more threads may signal or broadcast a condition.
The difference between signal and broadcast is that broadcasting a condition wakes up all waiting
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threads (in an unspecified order, which is decided by task scheduling rules), while signaling a condition
only wakes up one waiting thread (again, which one is unspecified).

An important property of condition variables, which separates them from other signaling objects such
as events, is that only currently waiting threads are affected by a condition. A condition is “forgotten”
as soon as it has been signaled or broadcasted. That is why a condition variable is always associated
with a mutex, which protects additional condition information, such as the “done” variable construct
described above.

This may all be confusing at first, but you will see that condition variables are both simple and
powerful. They can be used to construct more abstract objects such as semaphores, events or gates
(which is why GLFW does not support semaphores natively, for instance).

Before we go on by solving the busy waiting scenario, let us go through the GLFW condition variable
functions. Just like for mutexes, you can create and destroy condition variable objects. The functions
for doing this are glfwCreateCond and glfwDestroyCond:� �
GLFWcond glfwCreateCond( void )� �� �
void glfwDestroyCond( GLFWcond cond )� �
glfwCreateCond returns NULL if a condition variable object could not be created, otherwise a
condition variable handle is returned. To destroy a condition variable that is no longer in use, call
glfwDestroyCond.

To wait for a condition variable, you use glfwWaitCond, which has the C syntax:� �
void glfwWaitCond( GLFWcond cond, GLFWmutex mutex, double timeout )� �
When glfwWaitCond is called, the locked mutex specified by mutex will be unlocked, and the thread
will be placed in a wait state until it receives the condition cond. As soon as the waiting thread is woken
up, the mutex mutex will be locked again. If timeout is GLFW_INFINITY, glfwWaitCond will wait
until the condition cond is received. If timemout is a positive time (in seconds), glfwWaitCond will
wait until the condition cond is received or the specified time has passed.

To signal or broadcast a condition variable, you use the functions glfwSignalCond and
glfwBroadcastCond, respectively:� �
void glfwSignalCond( GLFWcond cond )� �� �
void glfwBroadcastCond( GLFWcond cond )� �
glfwSignalCond will wake up one threads that is waiting for the condition cond. glfwBroadcastCond
will wake up all threads that are waiting for the condition cond.

Now that we have the tools, let us see what we can do to solve the busy waiting situation. First, we add
a condition variable to our data set:
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� �
GLFWcond cond;
GLFWmutex mutex;
int threadsdone;� �
If we assume that mutex and cond have been created successfully, the code for the three threads (A, B
and C) could be the following:

Thread A: Wait for both thread B and C to finish.� �
glfwLockMutex( mutex );
do
{

done = (threadsdone == 2);
if( !done )
{

glfwWaitCond( cond, mutex, GLFW_INFINITY );
}

}
while( !done );
glfwUnlockMutex( mutex );� �
Thread B and C: Tell thread A that I am done.� �
glfwLockMutex( mutex );
threadsdone ++;
glfwUnlockMutex( mutex );
glfwSignalCond( cond );� �
With the addition of a condition variable, the busy waiting loop turned into a nice condition waiting
loop, and thread A no longer wastes any CPU time. Also note that the mutex locking and unlocking is
moved outside of the waiting loop. This is because glfwWaitCond effectively performs the necessary
mutex locking and unlocking for us.

8.6 Calling GLFW Functions From Multiple Threads

The current release of GLFW is not 100% thread safe. In other words, most GLFW functions may
cause conflicts and undefined behaviour if they are called from different threads.

To avoid conflicts, only the following GLFW API functions should be regarded as thread safe (i.e. they
can be called from any thread at any time):

1. All functions that deal with threads, mutexes and condition variables (e.g. glfwCreateThread,
glfwLockMutex etc).
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2. The timing function glfwSleep.

All other GLFW API function calls should be done from a single thread. This also makes for better
future compatibility, since future versions of GLFW may implement per thread window contexts (much
in the same way as OpenGL R© has per thread rendering contexts), for instance.
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