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DIS: An Architecture for Fast Lisp Execution

Abstract

DIS is an architecture for very fast execution of LISP and other artificial
intelligence languages. The DIS architecture uses a number of functional
units controlled by a wide (256 bit) instruction. A simulator, compiler, and
optimizer have been constructed for the DIS architecture. A simulated 100
nanosecond cycle time single-processor DIS machine appears to run LISP
on the order of twice as fast as a CRAY-1, and on the order of ten to fifteen
times faster than other LISP-directed architectures.

William S. Yerazunis
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Chapter 1
Introduction

In this thesis we will pursue the question of how to execute LISP quickly. We
will attack this problem with a number of tools, such as special-purpose hardware,
high-bandwidth memories and interconnects, and artificial intelligence techniques
in the compilers and optimizers. Our target is to design a hardware and software
system that uses non-exotic technology but runs LISP faster than the most powerful
supercomputers existing today. The simulated DIS machine runs a test set of LISP
programs about twice as fast as the Cray-1, and ten to fifteen times faster than other
LISP-directed architectures.

1.1. Why LISP?

LISP was chosen as the target language for this thesis for a number of reasons.
LISP is one of the few popular languages which is applicative in nature, and we find
that we can use this applicative nature to achieve parallelism.

LISP is a language well suited for Al-based manipulation of program struc-
tures, because all LISP functions are also LISP data structures. LISP programs can
manipulate other LISP programs easily and effectively. We will find that this auto-
matic manipulation of program structure by compilers and optimizers is necessary
to achieve parallelism over a wide variety of programs.

1.2. Why special-purpose hardware?

We chose to design special-purpose hardware to take advantage of the rapid
decrease in memory prices. In this design, we found cases that implied a single addi-
tional memory could increase our speed by a factor of two (such as separate memories
for instructions and stack space). Other cases (such as separating data memory from
symbol table memory, separating stack data from stack control information, etc.)
all showed great promise for increased speed.

No commercial design met our needs for this high-bandwidth multiple-ported
memory. No commercial design had the internal data path flexibility to allow the DIS
compiler enough degrees of freedom to use the bandwidth, even if the bandwidth was
available. Commercial designs had been running LISP compilers for twenty years,
and we felt it was unlikely that we could do any better with a conventional datapath
and single memory.

Our feelings were vindicated by the results of testing the DIS compiler on actual
LISP code; the compiler is generally able to keep at least four different operations
happening at the same time. Often the compiler does better than this. Having
hardware with less internal flexibility would make the intellegent compiler useless.
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1.3. Why AI compilers and optimizers?

We chose to use the artificial intelligence techniques of forward and backward
tracking [Tjaden 1970],and both conflict-based and rule-based operations, because
conventional compiler technology has been notably unsuccessful in automatically
detecting parallelism in programs. Most commercial parallelizing compilers require
the user to insert special vectorization statements [Hoffman|, which severely limits
the usefulness of those compilers. We wanted automatic detection and utilization of
as much parallelism as the compiler and optimizer could find. We feel that we were
moderately successful in detecting and utilizing the available parallelism.

1.4. Proposed New Architecture

This thesis describes in detail the DIS machine, both the hardware architecture
and the system software.

The DIS architecture provides hardware support to minimize the number of in-
structions needed to execute typical LISP functions. The DIS architecture supports
parallelism at multiple levels. Multiple functional units operate concurrently within
a single processor, and provision is made for multiple processors to be used.
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Chapter 2
Background and Machine Survey

This section discusses current designs for commercially available high-perform-
ance computers. Machines which internally overlap instructions in a non-program-
visible way will be considered equivalent to purely serial general purpose machines.
Machines which have program-visible overlapped or parallel instructions such as
vector instructions will be considered separately.

Under the program-visibility criterion, all current supercomputers are vector
machines. By appropriate use of the vector instructions a great increase in speed is
obtained for certain numerical array oriented problems. Speedups on the order of
fifty to one hundred times are experienced for certain problems.

2.1. Critique of Conventional Architectures

Unfortunately, call-intensive languages such as LISP cannot be efficiently exe-
cuted on vector supercomputers. This is because the vectorization hardware does not
include subroutine call as a vectorizable operation. Several language oriented ma-
chines are commercially available for execution of LISP, but the price/performance
gatio is poor, a single-user machin< zuck as a Symbolics 3670 costing approximately

100,000.

2.1.1. Shortcomings of Conventional Architectures

General-purpose computers often have a number of high-speed registers located
within the CPU. These registers fall into two classes: dedicated registers, such as the
program counter and stack pointer, and general purpose registers, which are used
by the program for arbitrary purposes. Each register’s contents in the CPU must
be saved in memory when a subroutine is called, and restored properly when the
subroutine returns (unless the subroutine returns the result in a register, then care
must be taken NOT to overwrite the result).

Because modern designs often have large numbers of available registers in the
CPU, it is not unusual to have subroutine call be one of the slowest instructions in
the processor. Many memory cycles must be used to save the registers to memory.
For example, a VAX has over half a kilobit of user-visible register storage, all of
which must be saved under the “caller-saves” convention [Digital 1979]. Even if
memory interleaving is “caught” correctly, eight doubleword transfers must still be
run, before the first instruction of the subroutine may be executed. It may be
concluded that large CPU-resident, program-visible register files are an impediment
to execution of structured programs.

Conventional architectures are often designed with non-program-visible paral-
lelism, such as overlapped instruction fetches, instruction decoding, operand fetches,
and instruction execution. These overlapped operations provide some speedup at the

3
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cost of extra hardware needed to interlock the user program against faulty execution
due to timing mesh. For example:

Load Regl, Memory(123)

Inc Regl

Store Memory(123), Regl

Load Stackpointer, Memory(123)

has results which are clearly dependent on whether or not the Store is completed
before the operands are fetched for the Load Stackpointer. The machine designer
must decide whether to provide interlock hardware or to require the software to obey
more restrictive rules concerning instruction sequencing. Nearly all designers choose
the extra hardware option [Norrie 1984], [Torng 1984]. Doran gives an excellent
method for determination of optimal scheduling of various stages of an instruction
by the use of Group Theory [Doran 1979).

2.1.2. Shortcomings of Vector Architectures

To provide better support to large numerical analysis problems such as weather
simulation, finite element modeling, and image processing, the “vector processor”
has been pursued. The concept is that the elementary data structures the machine
deals with at the single instruction level are extended to include the one-dimensional
array. Instructions which use one-dimensional arrays as arguments are included in
the instruction set. The use of these vector instructions is very common in the
supercomputer business; so much so that the terms “supercomputer” and “vector
computer” are often used interchangeably in the literature.

The Cray Research Cray-1, Cray X-MP, Cray-2 and Control Data Corp. Star-
100 and Cyber 20x series machines are of the vector type. The Cray-1 has sixteen
vector registers, each vector register holds sixty-four numbers, each number is sixty-
four bits long. This large amount of data is not saved when a subroutine is called;
it is the responsibility of the using subroutine to preserve the vector registers. The
CDC Star and Cyber 205’s use a strictly memory-to-memory approach when dealing
with vectors. This approach drastically decreases the responsibility of the call/return
instruction but increases the setup time to execute a vectorized instruction.

Unfortunately, the current supercomputers are super-specialists. Vectorized in-
structions are generally restricted to the form (for Cray machines)

for i = 1 to 64
c(i) = A(i) + B(i)
next i

or CDC vector machines (n and j being 16-bit integers):

for i =1 ton step j
Z(i) = S * X(i) + Y(i)
next i
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No current commercial vector computer can execute the following example in
vector mode (A and B being integers, X, Y, and Z being vectors of integers):

Function MyAdd ( A, B)
MyAdd = A + B

return

end

for i =1 to 10
Z(i) = MyAdd (X(i), Y(i))
next i

Another deficiency is that the vector computer is nowhere near as “super” in
pon-vectorized mode as it is in vectorized mode. For example, a Cyber 205 super-
computer, when equipped with the maximum number of floating point units (pipes)
can execute about 800 million floating point operations per second (for long vectors).
However, the 205 can only execute about 20 million non-vector instructions per sec-
ond. This ratio of 40:1 is not atypical; the Cray X-MP is capable of about 480 million
vector instructions per second vectorized and only about 10 million instructions per
second nonvectorized [Hack 1986].

One reason for this discrepancy is that different hardware is used for vector
operations than for scalar operations. The repeat-counts and vector pointers are
not available for use by any but the vector instructions. Furthermore, most vector
instructions are restricted to floating point operations, (in some cases, to floating
point operands stored in special “vector registers” of fixed length). No provision
exists to allow an “increment-and-repeat” instruction modifier.

2.1.3. Lack of Multiprocessor Support

Neither general-purpose computers nor vector supercomputers are not designed
with mass multiprocessing in mind (having tens or hundreds of processors all oper-
ating concurrently). A general-purpose computer might supply a read-modify-write
synchronization primitive, and many supercomputers have no synchronization prim-
itive at all. In CDC machines, synchronization and process exchange is carried
out by peripheral processors halting and restarting the fast main processor. Con-
text change not only must save all program-visible registers, but must also save the
process-dependent information such as page table locations, virtual memory state,
and system protection and security information, making context change extremely
expensive and slow.

Some multiprocessor machines have been commercially successful, but it has
been questioned whether any system makes good utilization of additional processors
[Fuller 1978). The literature indicates that it is about average to obtain performance
of 1.6 times the uniprocessor performance with a dual processor. A large proportion
of this is due to the cost of interlocking the processors so that no task is lost, and
no task is executed more than once [Agrawala 1983].
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2.1.4. Defects with Current LISP Designs

In order to support call-intensive languages such as LISP, special purpose ar-
chitectures have been designed. These architectures typically use a large vertical
microcode to map a virtual LISP machine onto a relatively simple physical machine

[Chu 1981].

LISP processors are commercially available. A typical system costs $100,000,
and each system can serve only one user at a time [Weinreb 1981]. Xerox produces
the 1108SIP for $20,000 , but hardware limitations (maximum memory and disk
size restrictions) make the 1108 less useful than the other commercially available
systems.

A further disappointment is that the special purpose LISP machines are slow.
Typical designs use ECL in the processing unit, but due to the vertical microcode
the performance barely approaches 1 million machine instructions per second, let
alone one million LISP functions per second [Weinreb 1981]. It is not the case
that these machines are implemented with slow technologies; rather, these systems
are saddled with a large microcode to implement a complex system (LISP) on an
architecture which is not much more powerful than a PDP-11. Overheads of two
hundered microinstructions to execute a function call are not unheard of [Lampson
1981]. The microcode stores are also complex (and therefore error-prone), being on
the order of 6000 words to implement the core set of instructions, which then provide
the basis to execute LISP functions.

Finally, current LISP machines do not have multiprocessor capability. When a
problem becomes sufficiently complex that it overloads a single processor, the only
choice is to go to a faster processor. There is no option to add a second processor
to speed things up.

2.2. Definition of Terms

SISD - Single Instruction Single Data: A computer design which specifies that
one stream of instructions is applied to one set of data. Most general purpose
computers are of this type. Each instruction specifies a particular manipulation
of one piece of data, and the instructions are carried out serially (or appear to be
carried out serially, from the programmer’s point of view)

SIMD - Single Instruction Multiple Data: A computer design in which a single
instruction stream performs manipulations on multiple sets of data. Each data
manipulation specified in the instruction stream is executed by one of a number
of processors, each one containing one data set. All processors perform the same
operation at the same time. This is usually insured by having a central facility read
the instruction stream and broadcast the current operation to all data processors in
the system.

MIMD - Multiple Instruction Multiple Data: A computer design in which a
number of different instruction streams are paired with distinct data sets, and the

6
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instruction streams are executed concurrently on multiple processors. MIMD ma-
chines have the greatest flexibility (they can emulate both SISD and SIMD machines)
but the programming of the multiple instruction streams for coordination of tasks
is nontrivial, and in certain architectures, very difficult.

Cache - A cache is a small, fast memory placed between a storage requestor
and a storage server. On every request to memory, the cache intercepts the address
requested and looks in an internal table to see if that word is stored locally in
the cache. If the word is local, the cache returns the desired word to the storage
requestor. If the word was not local, the cache commands the main memory to fetch
the word. The advantage to cache is that the cache memory, being smaller, can be
implemented with a much faster (and more expensive) technology; perhaps as fast
as the internal processor data paths. Cache design requires the use of a cache control
strategy. This strategy must determine when to load a memory word into the fast
cache memory, (thereby taking up one of the relatively expensive cache words) and
when to write the word to the memory server. Caches are usually demand-driven:
the most recently demanded words are kept in the cache.

Stack - A register-like device which supports not only the operations read and
write, but also the operations push and pop. Push is defined as “store the current
value in a safe place, and make the new current value the input”. Pop is defined
as “throw away the current value and make the value from the ‘safe place’ the new
current value”. Push and pop are defined to be usable repeatedly; an arbitrary
number of pushes followed by the same number of pops should leave the original
value on the stack.

Virtualization - The process of making a system appear to be larger, faster or
equipped with a new instruction set without actually enlarging or improving the
system. For example, virtual memory makes the memory system appear to be very
large, without adding more memory devices. Instead, the memory devices already
in the system contain only the most often used areas of the memory data, and when
a memory location that is not present is requested, a delay is incurred while the
memory location is fetched from a slow bulk store (like a disk). The only program-
visible effect of this virtualization is that some memory locations may be very slow
to access. Likewise, when using a virtualized instruction set, some “instructions”
may really cause unimplemented instruction interrupts, which are then simulated
with software subroutines.

Von Neumann Architecture - A computer design in which no attempt to differen-
tiate program storage and data storage is made. In fact, von Neumann machines are
often touted for their ability to manipulate programs as data and data as programs.
Von Neumann machines typically view memory as a large number of cells, each of
which may be read and written many times. In the course of program execution,
each cell may take many values. There is no concept of “unalterable” storage in the
strict von Neumann computer.

Applicative Architecture - A computer design in which no alteration to data
storage or program storage is permitted. All calculations are performed by “apply-
ing” a function to a piece of data, and the result is not returned in data memory,

7
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but (usually) put on a stack. Later calculations may use the value returned by a
previous calculation but may not alter the value. A completely applicative archi-
tecture cannot be programmed (because it is forbidden to alter program store) but
a mostly-applicative computer has certain advantages over a von Neumann (every-
thing alterable) design, in terms of memory protection and ability to use multiple
processors without concern that processor A and processor B may be engaged in a
“race” to alter a common memory location. Applicative programs or subroutines
are also called “side-effect-free” because they do not alter any element of storage,
they only return a value based upon some calculation using those data elements.

2.3 Machine Survey

This section deals with the previous machines which have implemented multipro-
cessor program execution [Schwartz 1983b], and LISP execution. We will examine
these machines both as to how they fall in the SIMD/MIMD taxonomy, and as
to special features these machines have in order to support parallelism and LISP
execution.

The reader should note that there is a comparative dearth of machines which
are both multiprocessor machines and LISP machines.

2.4. SIMD Processors

This section deals with specific single instruction multiple data computers. Par-
ticular shortcomings of each design are noted.

2.4.1. The Bombe

An early electromechanical multiprocessor was the Bombe, designed by Rejew-
ski at the start of World War II to crack the German Enigma code by exhaustive
search of the key space [Hodges 1983]. Each unit of a Bombe contained six shafts
driven by an electric motor. Each shaft drove six modified encoding units. Each en-
coding unit generated the encoded form of a three-letter code predecessor. When the
output of any encoding unit matched the known code predecessor, a relay tripped
which turned off the electric motor and applied a brake to the shafts. The cor-
rect code key could then be read from the shaft position counters of the triggering
encoding unit.

The Bombe was a SIMD fixed-program machine. All of its elements executed
the same program (encode and test) at the same time, on different data. There was
only one branch allowed, a branch to a global HALT when a solution was found. This
general scheme (having a number of processors execute exactly the same program
on different data) has been used in computer design ever since.
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2.4.2. ILLIAC IV

ILLIAC IV, a “modern” computer in many senses, shared many shortcomings
of the Bombe. ILLIAC IV could use up to 64 (256 in the original design) processors,
each executing instructions broadcast to the processor array by a central controller.
The processor array was designed as a square, with each processor connected to the
four nearest neighbors. Under software control, edge processors could be connected
to the opposite edge, creating a torus, or the processor array could be electronically
switched into a linear array of 64 processors [Hoffman|, [Seban 1984]. ILLIAC IV
became operational in 1972 and was dismantled in 1985.

Individual ILLIAC processors had no independent control logic except that
which allowed it to execute or ignore an instruction based upon the contents of an
internal 8 bit flag register. Branches were performed by inhibiting one subset of pro-
cessors with the flag registers, broadcasting the first branch’s instructions, inhibiting
that branch’s processors, enabling the previously inhibited processors, and broad-
casting the second branch’s instructions. This control mode decreased the speed of
the machine drastically. And like the Bombe, ILLIAC’s individual processors could
only signal the central control via a global control wire which all processors shared.

Interprocessor communication in ILLIAC was similarly primitive: each processor
was connected to only its four nearest neighbors, and there was no provision to
communicate over greater reaches without having the instruction broadcast unit
perform the data transfer with the entire processor array in a halted state.

Despite these limitations, ILLIAC IV was used for considerable work in the areas
of fluid flow and heat transfer modeling, where the short communication distance
and relative lack of branching were not great disadvantages.

ILLIAC IV provided useful insights into the programming methodology of pro-
Cessor arrays.

2.4.3. MPP

In order to process larger problems, NASA contracted for the production of a
Massively Parallel Processor, or MPP. The MPP (located at the NASA Goddard
Space Flight Center in Greenbelt, Maryland, and operational since 1984) contains
an array of 16,374 single-bit processors, which can be connected as a square array,
a vertical or horizontal loop, a torus, or a twisted torus, all under program control.
A spare bank of 4 x 128 processors is provided for redundancy, and can replace any
of the 32 4x128 processor columns. As in ILLIAC IV, instructions are broadcast to
the entire processor array by a central controller. Like the Bombe and ILLIAC IV,
the MPP has a one-bit signal readable by the control processor, which is the global
OR of a status bit in each processor in the array [Batcher 1980], [Edelson 1984].

The MPP can execute in excess of 6 billion 8-bit additions or 400 million 32-bit
floating-point additions per second, provided the structure of the problem can be

mapped onto the available array configurations. Since the processors are 2ll one
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bit wide, even the addition of two two-bit numbers must be accomplished by a
subroutine.

2.4.4. STARAN

The Goodyear Aerospace STARAN processor array, although a temporal pre-
decessor of MPP, exhibits several useful features not present in MPP. The STARAN
array consists of multiple banks of 256 bit-wide processors; a typical STARAN con-
tains 1024 such processors. Only a few state bits are associated with each processor
[Batcher 1982] . The first STARAN became operational in 1972. STARAN systems
are commonly used for multiple-target radar tracking and other military applica-
tions.

The processor array is connected to a very wide memory of 256 bits per processor
bank, via a switch called a “fip unit”’. The flip unit maps a processor address
onto a bit-in-memory address, in a way programmed by the control processor. Each
STARAN processor can directly access the entire 64K bits within the local STARAN
bank.

STARAN processors can pass information via the memory and flip units, or in
the ILLIAC style nearest-neighbor routing. The STARAN is connected linearly only,
so the only obvious data transfers are to the left and to the right. These bit-passings
propagate across STARAN bank boundaries, and they do use the flip units, so that
relatively arbitrary interconnections may be achieved.

The STARAN was not designed to perform fast floating-point calculations,
rather, it was designed to track multiple radar targets simultaneously. Perhaps
a better way to consider a STARAN is not as a large number of small processors,
but a block of programmable associative memory. The STARAN design concept
has been extended to other machines, including a STARAN-equivalent processor of
roughly one cubic foot, for airborne applications [Christ 1984]. This concept of
programmable associative memory can also be seen as the basis for the Connection
Machine [Hillis 1985].

2.4.5. Systolic Arrays

The above systems all use the same model for computation; many processing
elements, all elements doing the same instruction at the same time. It has been
peinted out that this is not the only way to do parallel computation; Zakharov [Za-
kharov 1984] shows that a pipeline of communicating processing elements provides
parallelism as well. In a pipeline, each element reads an input from a predecessor
processor, performs some computation, and writes an output for successor processors
to utilize.

Ordinarily, processors in a pipeline are memoryless. If local storage is included
in the pipeline processors, the resulting design is called a systolic array.
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H.T. Kung’s method for systolic arrays provide a design basis for construction of
arbitrary pipelined functions. A one-dimensional systolic design may be constructed
of a series of programmable blocks. Each block receives information only from its
nearest neighbor on the left, and transmits information only to its nearest neighbor
on the right. Each block is independently programmable, and there is 2 method
of synchronization to keep the blocks in step. The result of a computation may be
stored in the local memories of the blocks, or it may be emitted from the last block
in the chain.

Multiple-dimensioned systolic arrays may be constructed by similar rules of com-
munication. The multidimensional systolic array may be based on other grid patterns
than the square, such as hexagonal or body-centered cubic.

2.4.6. Vector Processors

Vector processors such as the Cray-1, Cray X-MP, BSP, and Cyber 205
exist, but these machines are completely inflexible concerning the operation to be
performed on the data array. If a processor was not specifically designed to acco-
modate a particular manipulation, then that manipulation cannot be performed in
high speed (vector) mode. For example, the Cray systems do not have a “divide” in-
struction for vectors. All divides are accomplished by reciprocal approximation and
then multiplication. If the result is needed to some accuracy, then several convergent
reciprocal approximations are used [Kuck 1982], [Lincoln 1982].

2.4.7. Connection Machines

Thinking Machines, Inc. has built and is offering for sale a SIMD processor,
known as a Connection Machine, designed for manipulation of data structures
known as xectors (eXtended vVECTORS). A pair of xectors may have some one-to-
one association between their elements, called a xapping (eXtended mAPPING).
Composition of xectors into xappings may be done with an arbitrary function (cur-
rently a LISP routine in the Thinking Machines Inc. product), so that the xapping
operator can be utilized to sort, sum, cull, or select data objects in a xector. Sys-
tem software also provides the ability to appear to replicate a single data object a
large number of times (without actually doing so), and to manipulate xapping type
objects as inputs to other xapping operations. Details of connectionist designs are
to be found in [Bawden 1984], [Hillis 1985], [Knight 1984], and [Waltx 1987 ].

The software which provides this capability is mapped onto a 64K processor
array with a pair of interconnection systems, with overall control done by a Symbolics
3670. Each processor is only one bit wide, with 1Kbit of local storage. A special
controller (itself controlled by the 3670) broadcasts instructions to the processor
array. Like ILLIAC IV, each processor can perform the instruction broadcast, or
ignore it. Each of the 64K processors has access to a WIRED-OR status line, so
that the controller can query the entire processor array.

Interprocessor communications in the connection machine is performed on an
n-dimensional (n = 16 in the current design) cube. A message to be sent to another
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processor is prefixed by the address of that processor. Each communications con-
troller stores and forwards messages. Because of the n-dimensional communication
network, the distance (in hops) a message must travel between any two nodes is
equal to the Hamming distance between the two node addresses.

The major difficulties in the connectionist design are that the communication
network is too slow, and that the current (but hopefully not future) design is SIMD.
The xector/xapping approach generalizes the vector/array processing approach to
allow any function which does not contain a conditional element as the kernel op-
erator. If the kernel operator contains a conditional, then the Connection machine
must serially execute all of the possible paths.

2.5. MIMD machines

This section is deals with various systems of the multiple-instruction multiple-
data form. These designs are capable of executing more than one instruction stream
simultaneously.

2.5.1. Cm*

Both C.mmp and Cm* are based upon the DEC PDP-11 computer architec-
ture. The C.mmp uses a shared-memory system and PDP-11/03 processors, while
Cm* uses a circuit-switched hierarchial bus memory system and PDP-11/23 proces-

sors. In other respects, C.mmp and Cm* are nearly identical, and only the more
recent (and flexible) Cm* will be discussed [Fuller 1978].

Each of the processors in Cm* is a full-fledged computer, except that only a
few processors have I/O devices attached. Memory, although distributed with the
processors, appears to all processors as a large, unbroken linear array, shared by
all the processors. The only program-visible effect is that memory addresses have
varying access times, depending on where the addressed word physically resides,
relative to the requesting processor.

Each of the processors in Cm* executes a program which (preferably) resides
in the local store of that processor. If a processor accesses a nonlocal word, the
processor waits for the hierarchical bus network to acquire the contents of that word.
A prefix mechanism is provided in the network hardware to allow each processor to
map other processor memories in any way that the programmer desires.

Despite the flexibility of this scheme, the difficulty in programming Cm* is
in dividing up the problem into a series of tasks which may execute concurrently.
Task allocation is done by the human programmer, as well as the mapping of other
processor memories into the address space of each processor.

No synchronization primitives are given in the hardware to allow convenient
multiprocessing; the interlocks which cause a spawned process to execute on one and
only one processor are done in software. This restriction makes process spawning
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an extremely expensive event. Cm™* literature varies in the quotations for process
spawn overhead; however, no report indicates any reason to believe that more than
40 processors could be used on any problem, before the overhead of processor control
became the dominant factor in run time. ‘

2.5.2. EMPRESS

A system similar to Cm* is EMPRESS, at the Federal Technical Institute, in
Zurich, Switzerland. EMPRESS is based on the PDP-11 processor like Cm*, but has
a control processor and 16 slave processors. EMPRESS was specifically optimized
for execution of simulations written in the language Parallel Power-Series Continu-
ous Simulation Program. Since there is a control processor, a bottleneck occurs in
synchronization when tasks in independent slave processors wish to exchange infor-
mation. A significant part of the control processor’s time is spent keeping track of
which slaves are available, what data is available, and what tasks have not yet been
assigned [Buehrer 1982], [Manner 1984].

2.5.3. ZMOB

ZMOB, a multimicroprocessor, uses a circular structure for both information
transfer and process control. A complete ZMOB consists of 256 Z-80 micropro-
cessors, arranged as successive stages on a 48-bit wide shift register. Every 100
nanoseconds, the register shifts the value in processor n to processor n+1. The shift
register has 257 stages; the extra stage is used by the host processor [Kushner 1982].

Each Z-80 in ZMOB is a complete system. There is 2 1K ROM which boot-loads
the Z-80, and 63K of RAM. Each Z-80 also has a floating-point unit (AMD9511)
and an asynchronous serial I/O device. The individual Z-80s run CP/M.

ZMOB, like Cm*, does not have hardware support for spawning of processes.
To start a process running in another processor requires either cooperative software
running in both processors or the intervention of the control processor (a Vax).
Although the shift register provides a general communication network, ZMOB has
been promoted for image processing applications, because the cooperating software
problem is simpler.
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2.5.4. Ultracomputer

Based on work by Schwartz on the idealized model of a paracomputer, NYU is
developing a multiprocessor known as the Ultracomputer.The paracomputer model
is a model that allows a large number of readers and writers to access a memory
word without conflict. Each reader returns a word which was either the value of the
word before any of the writers accessed the word, or else one of the words written
by a writer task. The paracomputer model specifically prevents “partial writes”,
where only part of the word has been written by a writer task before a reader task
reads the location. Thus, the paracomputer model requires that the final result of
some set of simultaneous reads and writes be the same result as some possible serial
exem]ltion of the same reads and writes [Gottleib 1983], [Schwartz 1983a], [Stone
1984].

In order to implement this model, the Ultracomputer has a large memory (di-
vided into modules) attached to a number of processors via a switching network.
The network is of the Banyan type, but with the addition that the nodes of the
switch are locally intelligent. Because of the paracomputer model of serialization,
the intelligent switch node can discard certain operations. For example, if a switch
node notes two writes to the same location, one of the writes may be thrown away.
This can be done because there exists at least one serialization in which the first
write is immediately followed by the second write. Since there is no intervening read,
no possible reader task could have seen the first write value in the location. The
first write is therefore superfluous and may be discarded.

In like manner, the intelligent switch nodes can combine read operations so
that switch nodes deeper in the Banyan tree see only one read, rather than two. A
read and a write operation to the same location can return the argument value of
the write, because there is at least one serialization in which the read immediately
follows the write and therefore the read will get the value of the write.

The intelligent switch nodes also are necessary to the “fetch and add” instruction
provided for task dispatch in parallel. Fetch and add of n and q is defined to the
user as “fetch location n, return me the value there, and store the fetched value + q
in that location, without allowing any other task (readers or writers) access to the
location for the duration of the fetch, addition, and store”. This instruction provides
a fast process dispatch mechanism with a minimal amount of software.

One can observe that fetch-and-add is combinable at a smart network node.
For example, if processor 14 fetch-and-adds location 2 with q=1 and processor 23
fetch-and-adds location 2 with g=1, the network node can pass along a message
to fetch-and-add location 2 with g=2. The result is returned to the network node,
which then returns the value of the fetch-and-add to processor 14, and the fetch-
and-add + 1 to processor 23. The memory module containing location 2 has only
serviced one read request, not two, and each of the processors see a result which
satisfies the Schwartz paracomputer serialization model.

Fetch-and-add is also combinable with the other load/store primitives and still
satisfy the paracomputer model. A write may be combined with a fetch-and-add,
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returning the written value to the processor requesting the fetch-and-add, and for-
warding a modified write to the memory unit.

The most interesting aspect of fetch-and-add is its use for process dispatch. Each
processor in an ultracomputer which is available to execute a new task executes a
fetch-and-add with ¢ = 1 on a location in memory which is a pointer into an array
of tasks to be executed. The returned value is a pointer into the array, and the
memory location has now been updated to point to the new next task to be executed.
Multiple processors may execute the fetch-and-add simultaneously, since each will
get a different number back, each processor will get a separate task to execute. Each
task will be executed on one and only one processor. This results in a considerable
decrease in overhead compared to previous methods for software synchronization.

2.5. LISP machines

Of the commercial LISP machines available, there are four principal manufac-
turers; Symbolics, Inc., of Cambridge, Mass., Lisp Machine Inc., of Sunnyvale, CA.
(now in receivership), Texas Instruments, and Xerox. The offerings of Symbolics,
LMI, and Texas Instruments are somewhat compatible (source-code compatibility-
they all use the dialect of LISP known as ZetaLISP).

The Symbolics, LMI, and Texas Instruments LISP machines all use an allo-
cation of bits within a word known as “tagging”. Several bits (usually in the upper
part of the word) are defined by the system designer to indicate special attributes of
the data within the word. Tag bits are often used to indicate that the low order bits
of the word contain a pointer, or an integer, etc. Tag bits are also used to indicate
that a word has been visited in the current garbage collection cycle.

The Symbolics 3600 also uses tag bits to accellerate arithmetic. When the 3600
executes an ADD instruction, the adder immediately begins to perform an integer
addition. Once the addition is underway, the microcode checks the tag bits of
the operands. If both operands are integers, the addition is allowed to proceed. If
either operand is not an integer, a microcode interrupt occurs and fixup software is
invoked to perform type conversion. The net advantage in this scheme is to overlap
the addition and the checking of tag information.

2.5.1. Xerox PARC

The Xerox products are the so-called D-machines. The machines (in order of
increasing speed) are the Dandelion, Dolphin, and Dorado. All three machines were
designed to be microcoded to the task at hand, rather than specifically designed to
run LISP. Smalltalk and Mesa (a Pascal derivative) environments are also available,
and in fact run considerably faster than the InterLISP environment. Xerox indi-
cates that it takes about 200 microinstructions (at 60 nSec each) to execute a “call
function” in Dorado InterLISP; hardly an encouraging statistic [Byte 1981], [Clark
1981], [Lampson 1981a], [Lampson 1981b).

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.5.2. M.I.T. CADR derivatives

The Lisp Machine Inc. hardware, the Texas Instruments hardware, and the
older Symbolics hardware were based on the original MIT LISP Machine, a greatly
altered PDP-10 called the CADR. In 1981 Symbolics redesigned the entire system
for greater speed, at the cost of incompatibility of microcode. Symbolics has not
offered a multiprocessor system. The Texas Instruments Explorer system supposedly
can support multiple CPUs but no software exists to use multiple processors. Lisp
Machine Inc. produces machines which are essentially four single-processor machines
CADR’s sharing a common disk system.

In 2 CADR-type machine, the simplest operation (not even a complete function
execution) is the stack-pushing of a “small constant”. Done by the microcode; this
takes about 2 microseconds. Most instructions take longer, up to 30 microseconds
[Verac], [Weinreb 1981].

The newer Symbolics offering (the 3600 family of machines) has a slightly wider
microword than the CADR-based systems. The 3600 also supports tag bits in a
more useful way than the CADR systems do [Moon 1987]. Instead of the microcode
checking tags before an arithmetic operation is started, the operation is started and
then the tags are checked. If the tags indicate that the operands are of the incorrect
type, then a microcode trap occurs and a software fixup routine is entered.

In an exploratory effort, Steele and Sussman successfully produced a simplified
LSI version of a CADR. This chip, called Scheme-79, did not support arithmetic
functions beyond increment and decrement [Steele 1981].

2.6. Multiprocessor Lisp machines

In order to speed up program execution, several designs have been proposed
which execute LISP in parallel. The method of detecting and utilizing parallelism
varies between machines, but most designs use the applicative aspects of the LISP
language to increase the liklihood of available parallelism. Once parallelism has been
detected it is necessary to provide a means to allocate processors to the parallel
programs to be executed.

2.6.1. Evlis

The multiprocessor allocation problem has been addressed to a small extent by
the Osaka University Evlis machine. Evlis contains up to four processors which
evaluate arguments to functions in parallel, on the assumption that evaluating one
argument to a function will not affect the values of any other argument. A fifth
processor performs I/O. The Evlis machine is based on the Intel 1-3000 bit-slice
chips {Yamamoto 1981].
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2.6.2. MEF

MIT has proposed a research system for multiprocessor systems called the MEF
(Multiprocessor Emulation Facility). The MEF is a network of 64 commercial LISP
machines (Symbolics 3600 series) connected by an Ethernet-like cable. Because the
entire operating system of the 3600 machine is an “open” system (there is no inter-
task protection) any task may start or reference another task, including references
via the network and network servers.

2.6.3. AMPS

A proposed machine by the University of Utah is the AMPS, or Applicative
Multi-Processing System. This design uses a tree structure of processors. Inter-
nal nodes in the tree do not perform calculation, but are message routing nodes.
Calculation is performed in the leaf nodes of the tree [Keller, 1979].

The internal nodes perform task allocation by means of a load managing al-
gorithm. When a new task initiation request is created by a processing node, the
message routing nodes move it throughout the tree to an area where little compu-
tation is taking place and therefore little contention will occur.

Because the intended software of the AMPS is applicative (applicative program-
ming is discussed in the next chapter), each processing node has its own cache
memory. There is no need for a cache invalidate signal, since no data element in an
applicative system is ever altered once it has been written once. Unlike data-flow
machines, the AMPS is demand-driven; a function is only evaluated if there is a need
for the result. The AMPS uses a variant of LISP called FGL (Flow Graph Lisp).

The weakness of the AMPS design is that the tree network is subject to sat-
uration as the tree grows deeper. If one level is added to the tree, the tree will
have twice as many processor (leaf) nodes and the traffic through the root node will
double. Thus, there is a fixed limit for any given technology in implementing an
AMPS architecture.

2.6.4. AHR

Another applicative system proposed at the University of Mexico is the AHR.
This design is similar to ZMOB in that it utilizes a number of Z-80’s operating in
parallel, but in this case, the Z-80’s are executing an applicative variant of LISP.
Evaluations are demand-driven, as in the AMPS, but a central memory store is used
to satisfy requests for evaluations as well as to hold the results of the evaluations.
This hardware, called the distributor, is the bottleneck in expanding the system
without limit. The AHR was in operation in 1981 with 16 Z-80’s [Guzman 1981].
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2.7. Other Architectures

In attempting to gain performance, several new architectures have been pro-
posed. These architectures do not fit neatly into the SIMD /MIMD taxonomy, and
are discussed in this section.

2.7.1. The Warren Prolog Machine

D. H. Warren has proposed an alternate architecture for rapid execution of
Prolog systems. The exceptional components of the Warren architecture are the large
microstore, the Prolog-directed instruction set, the number of hardware-supported
stacks, and the datapath oriented toward Prolog [Despain 1985], [Dobry 1985],
[Tick 1983], [Nilsson 1984], [Warren 1983].

The most pertinent aspect of the Warren design with respect to LISP is a “par-
allel evolution” argument. The Warren design uses four stacks, one for dynamic
storage of compound data items (the Heap), one for choice points and environments
(the Stack), one for retaining binding/unbinding information (the Trail), and one
for use as a scratchpad (the Push Down List). Instruction and data memory are
separate and memory cycles can be run on both simultaneously.

As will be discussed later, partitioning of a single central stack into multiple spe-
cial purpose stacks is a very powerful idea. By providing multiple physical hardware
devices, the overall internal bandwidth is increased, and by requiring the localization
of information of various types, the control system is greatly simplified. The appli-
cability of the Warren approach will be seen in the DIS program-visible architecture.
Although the DIS architecture does not use the Warren model of computation, and
explicitly avoids the Warren microcoded control, any program which runs on the
Warren architecture can be made to run easily on the DIS architecture.

A modification of the Warren architecture has been made commercially available
as a two-board coprocessor from Xenologic, Inc, Newark, California.

2.7.2. VLIW Architectures

J. Ellis and J. Fisher have proposed an architecture called VLIW (Very Long
Instruction Word) which has the potential for fast execution of non-vectorizable code.
Their method (now being built by Multiflow Computer, Inc.) involves having a very
wide instruction word with multiple fields, each field controlling a functional unit or
register bank. All instruction fields in a given instruction execute simultaneously
[Ellis 1986], [Fisher 1981], [Fisher 1984], [Fisher 1987].

The 1987 Multifiow offering could be ordered in configurations with one to four
cardsets, each cardset having a 256-bit instruction. Each 256-bit instruction is par-
titioned into eight fields. Three fields control three integer arithmetic units, one field
each are used for a floating-point unit, a register-to-register datamover, a register-to-
memory datamover, a next-instruction-address (branch control unit), and a 32-bit
field for “immediate data”.
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The major advantage of this design is that no interlocking of a pipeline is required
by the hardware; the compiler can determine at compile time that a given register
or ALU output is stable and valid. In this way, the compiler can determine proper
pipelineing and can obtain significant parallelism even in non-vectorized FORTRAN
code.

As a secondary consideration, the VLIW architecture permits compiler-gener-
ated rollback and rollforward of registers, so that when an operation is “optimized
ahead” of a conditional branch, and the branch taken, the compiler has inserted a
register rollback to re-obtain the unaltered state of the register. Likewise, when an
operation is “optimized behind” a conditional jump, the operation is inserted into
the code stream of both the branched and unbranched paths [Tjaden 1970], [Foster
1972], [Riseman 1972].

2.8. Summary of Current Architectures
We can summarize many of the computer design trends in a simple Venn dia-

gram. The reader is referred to figure 2.8a . The open area in the center of the Venn
diagram reasonably describes a multiprocessor DIS machine.
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Current computer designs have significant weaknesses for high-speed comput-
of efficiently executing conditional operations

ing. SIMD machines are not capable

(because all conditional paths must be broadcast, the time to broadcast and execute

the program is proportional to the sum of the lengths of the different individual
). Current MIMD designs suffer from 2 lack of

control paths through the program
support software to automatically detect and utilize parallelism. Current pipelined
machines cannot pipeline past a branch or conditional test.

Nearly all conventional serial computer designs have large amounts of state
stored in the processor, which must be transferred to the memory on subroutine
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call and restored on subroutine return. Vector machines also lack the ability to
use the vector hardware in relation to any instruction (including subroutine call
instructions).

The goal of this thesis is to show (by example and by simulation) that it is
possible to execute LISP quickly with parallelism, to detect and use this parallelism

automatically, and to thereby achieve “supercomputer” performance in the execution
of LISP.
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Chapter 3

Applicative Programming and Parallelism

3.1. Pure applicative programming

Pure applicative programming is based on the contract that a function shall
execute and return a result without altering any memory location. The result is
allowed to exist in some “alternate” area. Applicative functions must allocate their
own local storage from a pool of unused memory and return all local storage to the
unused pool on completion. Alterations to the locally-allocated pool are permitted
in pure applicative programming, because the local pool is not accessible to any
function except the one which performed the allocation.

Pure applicative programming is very convenient for multiprocessors, because
of the applicative contract (no modifications to memory). Two applicative functions
may execute in either serial order, or may be executed concurrently, and the results
are guaranteed to be the same, because no modifications to memory have occurred.
By a recursive argument, it can be shown that any number of applicative functions
may execute concurrently without interference.

From a hardware standpoint, the applicative function contract has another con-
venient attribute; it is never necessary to invalidate a cache entry. Each processor
can keep its own cache, under whatever cache discipline it chooses, and the values in
the cache will never be different from the “current” values stored in main memory.

Applicative functions make the cache control strategy simpler, because there
is never a “dirty” word in cache. Dirty cache words are words which have been
changed by the central processor executing a store instruction; the cache has stored
the new value, but the main memory has not been updated. Some cache strategies
avoid this problem by using a “write-through” mode, where all writes to the cache
immediately access main memory as well, but this misses a significant speedup that
a “writeback” cache takes advantage of.

It should be noted that one can substitute the words “separate memory” for the
words “separate cache” in the preceding argument without change in validity. Thus,
an applicative language system is easily mapped onto a non-shared-memory multi-
processor without needing extra hardware to keep various memories synchronized.
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3.2. Applicative Programming Variants

Pure applicative programming is impossible; the act of loading a program into
memory involves making a change to memory. For this reason a looser interpreta-
tion of the applicative contract is usually taken: No function may alter an already
allocated memory location. Unallocated locations may be modified once, at which
point they become allocated locations and may not be modified. Local storage is
drawn from a pool of temporary locations, and may be discarded at the function
completion. A “garbage collection” system is invoked to gather up used temporary
storage and make it available for reallocation as temporary storage.

This looser interpretation of applicative programming makes programming pos-
sible. Certain functions (such as the garbage collector) are permitted to violate the
applicative contract and modify memory that has already been allocated. Function
definition may redefine a function to have a new meaning (necessary for interactive
debugging). Most of the functions in a system remain applicative; that is, remain
side-effect free.

For an example, let us consider the difference between the statements

A=B+¢C

and

B+C

The first statement takes the value of B, adds to it the value of ¢, and then stores
this in location A. Clearly this statement has side effects (modification of location A)
and is not applicative. Any other program using location A must have some sort of
synchronization contract with A = B + € if update errors are to be avoided.

The second statement, B + C , only performs the addition of the value of B to
the value of €. The function containing B + C sees the result, but no other function
can be affected. No synchronization contract is needed.

3.3. Applicative Result Passing

For the applicative statement B + C to be useful, the result must be available
to the calling function. This can be done by allocating an unused word, placing the
result in this new word, and returning a pointer to the word, or it can be done by
placing the the result on a stack. Both methods (and combinations of the methods)
are useful.

The stack placement has several advantages over the memory placement. First,
recursive functions need a stack-like construct for their local storage in any case.
Second, removing a word from a stack returns the word to the free storage area
automatically, a great advantage over garbage collection. Finally, if the function
is written in such a way that it obtains its arguments from the stack (where they
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were placed by previous functions) and places its result on the stack, then argument
pass/result return is greatly facilitated.

3.4. Single-Assignment Programming

Similar to the applicative programming systems are the single-assignment pro-
gramming systems. In a single-assignment system, no variable is written more than
once. Under this contract, cache word invalidate is not needed. Pipeline processor
design is also eased, because there is only a single small window where a value in
memory does not have the “current” value. Instructions may be shuffled by the com-
piler freely, as long as all reads to X occur after the end of the assignment window
of X.

Unfortunately, single-assignment languages cannot perform iterative loops. This
deficiency, as well as the inability to reuse storage, has motivated the dataflow design.

3.5. Dataflow Programming

In 2 dataflow design, there is no instruction “sequence”. It can be imagined that
each variable is represented by a value calculator, and each value calculator waits for
each of its arguments (which are the outputs of other value calculators) to complete
their calculations and make a value available to the world. The synchronization
contract here is that each value calculator must wait for each of its input arguments
to be explicitly made available, before execution, and must wait for each value
calculator which will use the current value to indicate that it has obtained a copy
of the current value before it may process another value [Dennis 1984], [Gostelow
1980], [Rumbaugh 1977).

In implementation of data flow, each value calculator has a list of other value
calculators which must be notified when a value becomes available. This elimi-
nates “polling” of each value calculator. However, there is a heavy process-exchange
overhead associated with dataflow processing whenever the number of possible cal-
culations to be performed is greater than the number of available processors.

Dataflow systems have another disadvantage- ALL values which are calculable in
a given problem are calculated, rather than just the ones that are necessary. Those
values which are not needed are thrown away. It would seem preferable to have some
method of directing the course of a calculation other than explicitly switching the
writing of an output variable to one of several reading functions.
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3.6. Loosely Applicative Languages

There are several loosely applicative languages in common use today. For real-
world use, the applicative contract is usually not rigidly enforced; any program may
contain or execute a function with a side effect. Loosely-applicative languages in
common use today include LISP and APL.

In LISP and APL, the syntax of the language and the system-supplied func-
tions encourage applicative programming. Both languages support the concept of
a function result being the immediate argument to another function, without being
explicitlty stored into a memory location. In contrast, FORTRAN programming
discourages applicative style; there is no way for one statement to pass a data item
on to another statement except via an assignment (which places the data item into
a fixed (therefore probably re-used) memory location).

LISP provides the programmer the choice of whether or not to use an applicative
or non-applicative form of a function in many cases. As an example, LISP provides
two functions to reverse the order of entries in a list. Reverse allocates new memory
to hold the reversed list while nreverse (the non-applicative form of reverse) reverses
the list “in place”, destroying the old list but hopefully saving memory.

3.6.1. Applicative LISP

In general, a function in LISP is side-effect-free if it calls no function with a
side effect. LISP does not distinguish between user-supplied and system-supplied
functions, so this definition is sufficient to determine whether or not any function in
a LISP environment is side-effect-free.

A LISP function which may or may not cause a permanent modification to mem-
ory is not be considered to be side-effect-free. Data dependency is not considered
in determining whether or not a function is side-effect-free (with the exception for
the pathological case of a data-dependent error which prints out a message is not
considered a side effect).

3.6.2. Non-Applicative LISP Functions

There are some LISP functions which only exist in the non-applicative form.
The significant non-applicative LISP functions are defun, putd, put, putprop, rplaca,
rplacd, store, setq, makunbound and the I/O functions. Defun and Putd create or
change the definition of a function (defun actually calls putd). Rplaca and Rplacd
replace the head and tail of a list with a new value. Setq permanently changes the
value of a variable (until the next setq, that is). Store permanently changes the
value of an element of an array. Put and putprop place a piece of information about
a variable on the the variable’s property list- this is different information than the
value of a variable. Makunbound erases the existence of a variable. Finally, the
I/O functions are all non-applicative, because from the point of view of the user,
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execution of an I/O function changes blanks on the paper or in a file to character
output.

3.7. Computability of Applicativeness

We can determine for a given set of LISP functions forming a program which
functions are applicative and which are not. This can be done by:

1) Search the text of input functions, obtaining the name of every func-
tion defined. Assume (for now) that all the user functions are applicative.
Call this the Assumed Applicative list, or, for short, the AA list.

2) For each user function defined, make a list of every function it ex-
plicitly calls, ignoring data dependent function calling.

3) Obtain a list of non-applicative system-supplied functions (perhaps
from a permanent file). Call this list the known-non-applicative list, or KNA
list for short.

4) For each function on the AA list:
IF the function calls any routine on the KNA list:
4.1) remove the function from the AA list.
4.2) place the function on the KNA list.
5) IF in step 4 we removed any function from AA, goto step 4.
6) Done. All functions named in AA are applicative.

This algorithm may not be optimal, but it is guaranteed to terminate for a
finite set of input functions. This termination is forced because the list AA must
get at least one element smaller every time step 4 is executed, or else the program
terminates immediately. Since AA is finite and decreasing with every execution of
step 4, the program must terminate.

Once we know what functions in a LISP program are applicative, we may use
this information opportunistically at runtime to provide parallelism. For example:

for I = 1 to 1000 step 1
<any-applicative-function>
<another-applicative-function>
<yet-another-applicative-function>

next I

can be subjected to the applicative-determination algorithm, and found to have
3000-fold parallelism, exclusive of any parallelism that might lie inside each of the

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



three called functions. The reason for using LISP instead of FORTRAN is that
it is nearly impossible to write applicative FORTRAN functions, but most LISP
functions are applicative, with no special effort made by the programmer.

3.8. Costs of Applicative Programming

Applicative programming on general-purpose machines has been hampered by
the style in which applicative programming has been promoted. In particular, there
is a tendency to make every function redefineable, including such primitives as “ad-
dition” and “equality”. Allowing redefinition of these functions means that the
compiler for an applicative language must not insert inline code; instead, it must
search a symbol table for the current definition bindings of each operation, including
primitive operations.

This searching essentially eliminates the possible optimizations allowed by inline
coding, and places the procedure-call instruction as the most common instruction
in the program. Since procedure call is also usually one of the slowest instructions
to execute, applicative languages have gained a reputation for slowness. Common
LISP attacks this problem by specifically declaring that certain primitive functions
will be compiled “inline”, unless a redefinition of them is seen by the compiler
lexically before the actual call. This method gives some speedup but greatly reduces
flexibility.

It is a goal of this thesis to construct a computer architecture which has a very

low (if possible, zero) overhead for procedure calling, and can therefore execute LISP
and other applicative languages at high speed. '
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Chapter 4
The LISP Language

This section is concerned with the syntax and style of the LISP language. The
syntax of LISP is based upon Church’s lambda calculus, and although it is necessary
to have some understanding of the syntax of LISP, it is the style generated by the
syntax of LISP that causes a large proportion of the functions to be applicative.

LISP, like many other languages, has several dialects. The Franz LISP dialect
is described in [Foderaro 1981]. The dialect we will use for the majority of this
work is Common LISP. A complete description of Common LISP may be found in

[Steele 1984].

4.1. Parenthesis

The first thing which strikes a non-LISP programmer when seeing LISP is “look
at all those parentheses!”. The parentheses in LISP specify groupings of one operator
with its operands. For example:
everything following a
semicolon is a comment

(+23) -->5

4.1.1 Prefix Notation

LISP functions may have any number of arguments (including zero arguments).
In LISP, the function name is the first element of a list, and each element of the list
following the first is an argument to the function (prefix notation). One function
may be evaluated to give the result which is immediately passed on as an argument
to another function. Because of the prefix notation and the pass-back ability it is
common to write:

(+
(*23) ; intermediate result of 6
(+11) ; intermediate result of 2
) ; -—> 8
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4.1.2. Argument Passing

Arguments to LISP functions are passed as defined by Church; what is passed is
a copy of the actual argument. The called function may modify the local argument
freely; the caller has its own copy which is not modified. If a called function performs
some non-applicative function on the argument, like following a pointer and then
altering the location pointed to, then the caller may see the altered value. This type
of variable passing is called lambda-binding.

We should note that this form of argument-passing maintains the applicative-
programming contract, even if the called function performs a non-applicative oper-
ation on an operand (but not on an object pointed to by an operand). ‘

4.1.3. Program Representation

LISP is different from most other programming languages in that LISP programs
are represented in the same way as LISP data, namely, as lists. The internal repre-
sentation of (+ 2 3) is the same for noncompiled code and for data. It is possible
to call the LISP evaluator function on a data list; as long as the first element in the
data list is the name of a function which has been defined somewhere, the evaluator
will return the same value as if the list had been typed in at the keyboard.

4.2. Variable Scoping

Lambda-bound variables have certain difficult attributes in a compiled-code sys-
tem; this is often called the variable-scoping problem. In classical interpretive LISPs,
a variable referenced in a function which did not lambda-bind that variable gets the
value bound to that variable in the calling function. If the calling function did not
bind the variable, then it gets the value bound in the caller of the caller. This pro-
cedure continues until the top level is reached. If the variable was not bound (by 2
setq) at the top level, then an error is generated.

An example is in order here. We will set the value of global variable X, print X,
bind X (with a lambda-binding), print X, unbind X, and print X again.

(setq x 99) ; X now is 99

(print x)
99

(defun test-bind (x) ; define our test function
(print x) ; which lambda-binds X
(setq x ’forty-two)
(print x))

(test-bind ’test-val) ; run the test function
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test-val

forty-two ;results as expected
(print x)
99 ;and the old value

;has been restored.

Compiled-code LISP systems usually do not support this backward searching for
lambdabound variables. The difficulty is that binding and unbinding the variable
on every call and return takes a lot of time, and in most cases, the lambda-bound
variable is only used locally, so the effort of saving and restoring the lambda-bound
variable in the global table is totally wasted. For this reason, most compiled-code
LISPs (including LISP Machine LISP and Common LISP) specifically do NOT allow
a lambda-bound value to propagate down a call tree.

This non-dynamic scoping of lambda-bindings would cause great compatibility
problems, so a compromise route is taken in most compiled LISP systems. By
default, a variable binding is not propagated to the called functions, which makes
the code run quickly. If the user really needs to propagate a variable to all callees,
he may declare the variable “special”. Special variables are known to the compiler,
and the code which references special variables is intentionally modified to chase the
call tree and obtain the correct value.

By allowing a “special” declaration, the compiled LISP systems maintain fast
code in the great majority of cases, and allow compatibility in the few cases where a
variable really does need to be passed down the call sequence. Some LISP compilers
can automatically detect that a variable probably should have been declared special
(but not always in time - it may be necessary to recompile certain functions because
of a concealed special requirement). It is generally accepted that the compiler should
warn the user of such “automatic special” declarations, because the automatic special
declaration is usually a symptom of a typographic error, rather than an intentional
variable passing.

In terms of hardware, the choice becomes whether to keep only a stack of bound
values (called deep binding), or to keep a list of current values and a stack of values-
to-be-restored (called shallow binding). Deep binding binds and unbinds in constant
time, while searches take time linear with the number of bindings done. Shallow
binding searches in constant time, while binding and unbinding may take linear time
(if 2 non-nested binding form is allowed). Hence, most InterLISP implementations
use deep binding (because the InterLISP spaghetti stack allows non-nested binding
forms). Common LISP implementations generally use shallow binding, because the
Common LISP PROGYV function generates strictly nested forms.
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4.3. Functions as Arguments

Because LISP functions are stored as LISP data, it is possible to write a function
which takes another function as an argument. This provides a succinct way of
indicating iteration:

(dotimes i 100 ( primt i ) )
prints the integers from 0 to 99.

LISP provides an iterative facility based on lists instead of arrays:

(mapcar
(lambda (x) ( +1 x) )
list-of-numbers

)

returns a list of numbers, where each number in the returned list is equal to one
plus the number in the corresponding position of the input list-of-numbers. There is
no need to know how many numbers are in list-of-numbers; any number of elements,
including zero, is permissible. The lambda function may also be a function of more
than one variable:
(mapcar

(lambda (x y) (* x ¥))

first-list

second-list

)

which returns a list of numbers, each element in the list being the product of
the corresponding elements in first-list and second-list.

The lambda-definition in a mapcar may be replaced with any function, by using
the “getd” function. Getd of a function returns the function’s lambda-definition:
(defun my-product (x1 x2)
(*x1x2))

(mapcar
(getd ’my-product)
first-list
second-list

)
which is equivalent to the previous example.

LISP provides more general operators than the “do” and “mapcar” used as
examples. In particular, any user-defined function may be used to obtain the next
element of a list to be processed by a map function, and any user defined function
may be used to define the start value, next value, and termination test of a do
function.
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4.4 An Abstract LISP Engine Design

With the above knowledge of LISP, we can now consider an abstract model of
how a LISP supercomputer ought to look.

4.4.1. Data Needs of LISP

Because LISP is applicative, we know that a LISP machine ought to provide
direct support for applicative function calling and return. Stacks provide this kind
of support for applicative languages. We should therefore expect a stack-intensive
rather than memory-intensive architecture.

Because the applicative contract applies to machine instructions, we expect that
a separate program-storage memory may exist.

Because LISP is more a language for pointer manipulation than a language for
arithmetic, we will need the ability to follow a pointer quickly (perhaps even the
ability to pipeline pointer following), instead of the ability to do arithmetic quickly.
Since it rarely makes sense to dissect various parts of a pointer (unlike floating-point
numbers, with separate mantissa and exponent), we expect a word-oriented rather
than a byte-oriented design.

Because LISP is call-intensive, we should expect a minumum of context to be
saved and restored during a procedure call.

4.4.2. Needs for Parallelism

If we are going to evaluate LISP with parallelism, we need the raw ability to
execute different operations at the same time. We can achieve this easily by having
multiple functional units within a single processor.

We will expect a flexible inter-unit data communications system, so that when
several units need to communicate, the chance is small that a restriction in the
datapath will keep those units from communicating. '

Since we are hoping to execute multiple operations in parallel, we should expect
to see either a deep pipeline, with a large control structure (microcode), or the
ability for the compiler to generate, at compile time, very complex instructions that
choreograph multiple unit operations.

The only “choice point” available in the above abstract design is whether to
use a complex microcode to control the multiple functional units and data paths,
or whether to allow the compiler to configure and optimize them at compile time.
Considering that the compiler and microcode are both programs, either one could
perform any optimization that the other could perform if it had sufficient time.

Unfortunately, microcode doesn’t have a lot of time available. The compiler can
spend as long as it takes (minutes, if necessary) trying different arrangements of
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instructions in an effort to find the fastest alternative. The microcode will have at
most a few hundred nanoseconds. For this reason, we choose to have a very wide
instruction word, with a very smart (and slow) compiler.

4.4.3. The Abstract LISP Supercomputer - DIS

Assimilating the above requirements, we can envision what a LISP supercom-
puter should look like. This abstract model comes very close to the actual DIS
design (see chapter 7). To summarize, we expect:

Multiple Functional Units
Stack-Oriented
Separate Memories for Instructions and Data
Memories designed for Pointer Following
Wide, Flexible Datapath Interconnections
Ability to control all of the above simultaneously
Weak (or no) Floating Point

The DIS architecture exhibits all of these features.
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Chapter 5
System Design Constraints

This section deals with the design constraints on this project. Some of these
constraints are “essential” in that they are requirements for any supercomputer
design, and some are technology or previous work constraints.

5.1. Uniprocessor/Multiprocessor
A uniprocessor configuration should be able to do useful work

Even if the design is a multiprocessor design, it must be capable of useful work
with only a single processor. We wish to solve the problem of previous designs
concerning uniprocessor speed. Our proposed solution is that the addition or sub-
traction of processors should be transparent to the software, and should only affect
speed of execution. Clearly, a problem which runs on a multiprocessor but does not
run on a uniprocessor violates this concept.

5.2. Maximum Processors
No artificial limit on the number of processors
The maximum number of processors in a system should be upwards of one
million. Many problems currently under consideration have 1000 x 1000 arrays of
information. Because we wish to take advantage of the applicative nature of LISP
to obtain parallelism, we should be able to include sufficient processors to allocate
one processor per data element.
5.3. Language Orientation
A LISP-oriented architecture
The design will be oriented toward applicative languages such as LISP. This con-
straint is due to previous work and commercial products which use non-applicative
language models. It is a contention of this thesis that an applicative model of pro-
cessing provides a great opportunity for parallelism and therefore greater speed.
5.4. Package Pinout
No limitation on packaege pinout
The number of connections within a single processor is specifically not limited.

Packaging technology is currently limited by cost rather than ability. 145-pin IC’s are
in limited use, and there is no reason to believe that 512-pin IC’s are unachieveable.
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5.5. Gate Delay Speed
Use commercially available part speeds
The technology used to implement the processor is specifically limited to the
speed of currently available parts. Although an actual fabrication may be in mixed

NMOS, CMOS, TTL, and ECL, we will not assume any speeds which have not been
achieved in the fastest parts available in the marketplace.

5.6. Network Interconnect
Use a standard network interconnect
We will take a network interconnect from the published literature [Agrawal
1983], [Bhuyan 1983], [Bhuyan 1984], [Chu 1984], [Gonzalez 1972], [Marsan

1983|, [Oruc 1984a, 1984b], [Von Conta 1983]. The communications network itself
is not part of this design.
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Chapter 6
Design Methodology

This section is concerned with the methodology to be employed in the design
of an applicative supercomputer. Commonly held considerations are discussed, and
the preliminary results are discussed.

6.1. Ranking Methods

A major difficulty in the area of computer design is that there are no strong
theoretical bases to assert one design is “better” than another. After a design has
been in use, some metrics may be applied to gain a qualitative ranking (which is often
based on the software generated for the architecture), but these are employable only
after the design has been built and made available for users to program. This design
will leave the qualitative measurement of computer design as an open question.

Some authors have based appraisal of computer architectures on the presence of
desirable “features” (desirability being in the mind of the author). This approach has
been validly questioned by the Reduced Instruction Set Computer promoters, who
show that the presence of special instructions and features may be counterproductive
to increased throughput [Ponder 1983].

6.2. Orthogonality versus Preferentiality

Despite the “black art” nature of computer design, severai concepts have emerg-
ed as worthy of discussion. Many machines are designed with the concept of “or-
thogonality” in the instruction set. This means that if an option, such as indirect
addressing, is available on one instruction, the same option should be available on all
other instructions. Likewise, there should be no “preferred” registers; every register
is usable as an operand for any instruction.

Orthogonality in a design can lead to large instruction sets and large microcode
loads. Unfortunately, the flexibility of a completely orthogonal instruction set is
usually unused in a compiled language, because the code emitter generally dedicates
certain registers to certain operations. A superior optimizing compiler might use the
extra registers, but it is unclear how many optimizers take advantage of this. The
typical peephole optimizer cannot utilize extra registers in most cases.

There are machines with un-orthogonal instruction sets; the Intel 8086 series
CPUs have several preferred registers. The advantages of a preferred register archi-
tecture include a more compact instruction set, and a smaller microcode(less likely
to contain bugs). By coercing the compiler writer to use the preferred registers in
the designed-for manner, the CPU designer and microcoder can arrange the internal
data connections to give greater speed in most cases.
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There should be strong consideration of the amount of information stored with
the CPU. Although CPU-local information may be the fastest to access, it must
be stored on every context-switch operation, including subroutine call. The VAX is
particularly prone to this problem; there is over half a kilobit of user-visible registers
alone to be saved and restored on every subroutine call in a VAX CPU.

6.3. Iterative Design

Although the author is unaware of any firm theoretical basis for computer design,
there is an informal method based on compatibility and iteration. If the computer
is to be compatible with previous models, then the user-visible architecture will not
change at all. If the computer is a “new line”, then the design is arbitrary. After
completing the arbitrary design, create a simulator, and write programs to run on
the simulator. As programming weaknesses show up, modify the design and the
simulator. The process terminates when either time or money is exhausted.

This iterative process for design of a computer implies the use of another com-
puter to execute the simulation. Some designs have been simulated on paper “com-
puters” rather than electronic computers; the design proposed in this thesis exists
only as a large (5000+ line) set of VAX Common LISP macros and functions. One
of the tasks in fully developing this design has been the production of a simulation
system accurate and flexible enough for testing purposes.

This iterative process does lead to a number of different designs being given
attention. It also means that a majority of the design effort is expended on designs
which will not be used. Since the final design is evolutionary rather than revolution-
ary, there will be vestigal features present which are unnecessary and contribute to
the final cost and complexity without providing significant gain.

6.4. Functionality Provided

This design is directed toward LISP execution, so it is reasonable to provide a
significant portion of the basic LISP functions in hardware (or nearly hardware). The
LISP 1.5 definition requires only 6 functions in addition to the purely mathematical
primitives such as add. The six list functions are car, cdr, cons, eq, atom, and
some form of conditional.

The car function returns the head element of a list. The cdr function returns
all but the head element. Cons returns a newly allocated storage cell whose first
pointer points to the first argument, and whose second pointer points to the second
element. Eq compares two pointers, and returns “true” if they point to the same
storage cell, else eq returns “nil”. Atom returns “true” if its argument is an atom,
else atom returns “nil”. A conditional can be expressed in several ways, but the
most common is as consecutive if-then-elses.

Given these primitives, a fairly complete (although inefficient) LISP can be built.
Since we are designing a Common LISP capability, we target our efforts toward an
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architecture which can execute the above primitives in a few microcycles each. Other
LISP primitives are also to be considered for fast implementation, but it has become
experimentally clear that a design which executes the six primitives poorly will have
difficulty with the more abstract functions as well.

6.5. Final Comments on the Design Process

Besides the simulator, system support software has been written and tested. The
support software includes a recursive-descent LISP compiler, an assembly-language
level optimizer, an assembler, and a linker/loader. Heavy use is made of LISP
macros (in fact, macro-defining macros) to keep the design self-consistent, even with
a number of persons simultaneously working on various aspects of the system.

At this point it is reasonable to mention the members of the DIS design team.
I (William Yerazunis) did the overall design and the core system-definition macros.
John Tribble, Eric Luce and I corroborated on constructing the DIS simulator. John
also did the graphic monitor for simulator observation. Paul Charlton did buildabil-
ity analysis for most of the DIS functional units. Randall Shane and I split the
work on the DIS Common LISP compiler, he working on a full-blown multiproces-
sor compiler and I a simpler uniprocessor compiler (which could be completed more
quickly).
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Chapter 7
The DIS Processor Design

We will now describe the DIS (for Direct Instruction Sequencer design. The
DIS design cleanly satisfies the requirements of a fast subroutine call/return and
fast execution of LISP primitives, as well as fast servicing of local variables, special
variables and variables bound through the bind function. The facility for multipro-
cessing will probably be modified in the future to speed up the passing of special
variables. The issue of compiler-generated calls to the multiprocessing facility is
currently being considered separately by Randall Shane.

A simplified drawing of the DIS architecture is shown in figure 7.0a below. The
vertical lines are distribution busses, the dark horizontal lines are distribution bus
drive, and the light horizontal lines are distribution bus receive. Each box represents
a separate functional unit, described below.

Value Memory
Stack PO 11 173 £ 21 2% 1 1P £ 2 4 o o P A =B N0 )

~ Pending -— Memory
Stack One
Return Memory
Stack £ i Two
Bindi
Sigcll(ng '"""'”"”'“5355!:":!555_:":!5!": g i kiguatiss: oo sequencer
Network ALU

Fig 7.0a A Single DIS Processor
The individual processor is organized as a multiple bus machine; each of several
modules drives its output onto a distribution bus, for access by any other module.
Modules also accept data from distribution busses for internal use. The actions
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of the modules in the system are controlled by the sequencer, which sends control
signals determining what busses will be read by what modules, and what actions
will be taken by that module.

Perhaps it is misleading to call the distribution bus system a “bus” system, since
only one module will ever write data to any particular bus. This configuration of
dedicated distribution busses does give us a significant speed advantage in that there
is never any need to run a bus arbitration cycle, nor are there any wait states needed
for a functional unit to obtain a needed bus.

Because of the wide instruction word (256 bits) each module is controlled by
dedicated bits in the instruction word. The sequencer has no need for an instruction
decoder because command bits to one module do not depend on command bits to
another. Essentially, the instruction word is stored in the decoded form in memory.

It is from this idea of direct storage of an unencoded instruction word that
the acronym DIS is formed- DIS stands for Direct Instruction Sequencer. By not
encoding the instruction, we retain complete flexibility to control each functional
unit (stack, memory, ALU, next-address-generator) independently of other actions
occurring in the same instruction cycle. The control loop is now to read a bus,
broadcast the bits to the appropriate functional units (which can be done with
wires, as the bit location defines exactly where that particular instruction bit is to
go), wait for all modules to indicate completion, and repeat.

DIS is also a pun on “The Inferno”, by Dante Aligheiri, as the name of the
Fortress of Hell, whose ramparts are made of red-hot iron [Aligheiri 1315]. The
concept of red-hot, glowing iron is somehow strangely attractive when one considers
designs for supercomputer systems.

Storing the unencoded form of an instruction is not new. A. M. Turing proposed
a very similar idea for his design of the Mark II in the early 1950’s [Hodges 1983].
It was discarded then because the cost of memory was high compared to the cost
of hardwired controllers. Since it appears that the cost of memory will continue to
decrease, we have adopted the idea of storing direct instructions for this design.

The DIS machine is not designed to operate as a standalone processor. It is
expected that a parallel interface (probably 32-bit) will exist between a uniprocessor
DIS machine’s Network Interface and a host processor, such as a MicroVAX Work-
station or Sun. The host processor will be responsible for initializing and loading
the DIS machine, for servicing all 1/O, and for serving all interrupts.

7.1. Basic Modules
The basic modules of a DIS machine are the local memories (M0, M1 and M2),
the value stack (VS), the ALU, the pending call stack (PS), the return call stack
(RS), the binding stack (BS), the network interface (NI), the operation sequencer
(SEQ), and the optional input/output unit (I0U),
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In the simulator, no input/output is allowed, the network interface is malleable,
and the debugger is a set of user-invoked LISP functions.

Because some operations in certain modules (such as a page fault in memory or
a floating point divide) may take more time than the nominal 100 nanosecond cycle
time, two synchronization signals are provided. The first signal, which is pulled
down by every module which has not completed the current operation, is led to
the sequencer. After being masked by logic bits in the current instruction (such
as ignore a module, such as the ALU, not being ready), the ready bits are WIRE-
OR’d. This signal, MODULE-WAIT, is read by the sequencer logic and inhibits the
sequencer from moving to the next instruction. When all modules have completed
the operation, MODULE-WAIT goes high and the sequencer proceeds.

The second synchronization signal is GO. GO is asserted high. All modules
latch their command inputs on the rising edge of GO, and proceed to execute their
respective commands. GO is driven out by the sequencer.

It should be noted that all devices with more than a few bits of state information
have “hidden” connections to system memory. All stacks and memory ports reference
local memory, which is partitioned into sixteen areas. Each memory-using device
nominally accesses only one area, and therefore no cache-invalidation signals are
passed. A reference across memory partitions causes the appropriate caches to be
written back before the reference is allowed to proceed. The cross-memory reference
access happens only under program error recovery conditions and does not occur
in normal operation. Cache-invalidate is passed as a one-bit connection within a
module.

This hidden interconnect is called the “back door bus”, and it is accepted that
whenever the a cross-module reference occurs the machine will spend a cycle stalling
while the addressed memory performs the extra cycles necessary. The current com-
piler never generates any such back-door bus references.

Note: In the DIS simulator, it is assumed that cache always misses for timing
calculations. Alternately, one can view the simulator as a machine which has had
cache disabled and therefore has a constant, relatively slow memory cycle time.

System memory partitions may use a virtual translation mechanism to allow
the use of rotating mass storage on a processor. This virtual translation mechanism
has a private connection to the IOU. Because the IOU is optional, in some cases the
virtual translation mechanism is able to provide relocation but not virtual memory.
In the current simulator, I/O is forbidden, and therefore virtual memory paging
never OCCurs.

The choice to ignore the virtual memory question in this simulation is not un-
reasonable. For a discussion of the advantages of an architecture which never pages
because of a great amount of memory, see the MMM (Massive Memory Machine)
[Garcia-Molina 1984].
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7.1.1. Memory

There are three functional units which use memory in the von Neumann style.
These memory units are designated MO, M1, and M2. Each accepts a 64-bit address
and returns 256 bits of information. The unused higher-order bits of address are used
to contain tags and global-processor addresses. Tag bits are ignored by memories;
global processor addresses are available but the uniprocessor simulator ignores them.

MO, M1, and M2 are physically similar devices. The current compiler uses them
differently, so they appear to support different options, but in fact they are logically
and functionally identical cards.

The four memory operations are Idle, Read, Write, and Fetch-and-Add. Each
memory must perform one of these operations per cycle. Each memory has the
capability to read two distribution busses, one for address, one for data, as well as
accepting a three-bit literal field from the instruction which is used as an offset from
the bus address. The internal data paths needed for these operations are shown in
figure 7.1.1a
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Fig. 7.1.1a A DIS Memory Unit

Idle causes exactly nothing to happen to the value latched in the output port
of a memory unit. The previous value remains there, and will be readable by any
unit reading the distribution bus attached to that memory unit. The purpose of the

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Idle operation is to prevent a possibly costly cache invalidate, partition contention,
or even a useless page fault.

Read causes the memory to accept an address, add to it a three-bit offset (a
literal given in the instruction word), and set it’s output port to the value at that
memory location.

Write causes the memory unit to accept an address and a 256-bit datum word.
The three-bit literal offset is added to the address, and the datum word is written
to the addressed memory location. The memory output port is also given a copy of
the datum word.

Fetch-and-add causes the memory to accept an address and a value. The mem-
ory adds the three-bit literal offset to the address, and fetches that datum word.
The datum word is placed in the output port. The value is then added to the datum
word, and the result stored back into the original location. Note: the current sim-
ulator supports fetch-and-add; however, the current compiler never generates that
instruction.

MO is used only for instruction fetches, and therefore the compiler generates
only READ operations on M0O. MO usually reads the the 64 bit address from the
sequencer Next Address output bus. M1 is used by the current compiler for holding
the shallow-binding symbol table. M2 is used by the current compiler to hold all
other information, such as conses, arrays, strings, etc.

The reader should be aware that no hardware restriction prevents MO, M1, and
M2 from being used interchangeably. Indeed, R. Shane uses a slightly different
mapping of use-to-device in parts of the multiprocessor allocation system [Shane
1987).

7.1.2. Stacks

There are four main stacks in the DIS design. These stacks are the value stack,
the pending frame stack, the return frame stack, and the binding frame stack. Each
stack nominally accesses only one partition of memory. To increase the bandwidth
of the stacks, the stack memories are configured with odd/even address interleaving.
In this way, the top two elements (rather than just the top element) of each stack is
visible to other functional units.

Because no direct access to the stack pointers for the binding, pending, and
return stacks is needed during normal operation, these stack pointers are referenced
via multiplexing onto the same distribution bus used to distribute the instruction
literal data. A two-bit field in the instruction controls which of the four possible
values will be placed on the bus.

Like the memory units, the four stack units are identical physical cards, with
inputs and outputs rerouted. No hardware restriction exists to prevent interchange
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of use nor additional uses being placed on a given stack. Figure 7.1.2a shows the
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Fig 7.1.22 A DIS stack unit

Each stack unit executes at most four operations in one cycle. Valid operatons
are stack idling, pointer selection, pointer modification, value writing, and pointer
writing. Each stack unit also has a pair of distribution bus inputs and a pair of
distribution bus outputs.

In the first phase, a stack pointer is selected from one of two sources; either the
internal (saved) stackpointer is used, or one of the two input busses is selected and
the datum from that bus is used as a stackpointer. Two bits is used here- the extra
state is used to force a stack idle.

In the second phase, a four-bit displaced-by-eight offset is added to the selected
stackpointer. This generates a new effective stackpointer. Four bits are needed in
this phase. The choice of four bits in the displacement was somewhat arbitrary, and
is justified only on the grounds that functions of more than seven arguments were,
in the author’s experience, rare.

In the third phase, zero, one or two words may be written onto the location
pointed to by the new effective stackpointer and one less than that location. Thus,
we can overwrite the new top of stack, overwrite one below the new top of stack,
overwrite both the top of the stack and one below the top, or overwrite neither.
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This level of control requires two bits. It is envisioned that memory be interleaved
at least two ways in order to support this writing of two words in one cycle.

In the fourth phase, the new effective stackpointer is optionally written into the
stack unit’s stackpointer register.

7.1.3. DIS Compiler Stack Usage Model

The model the DIS compiler uses to control stack usage directly influenced the
names of the four stack units. Each stack unit is used for exactly one class of datum,
so that the recursive-descent compiler can (in general) not need to know anything
from previous levels of recursion.

The stack units are permitted to make back-door-bus references, but the current
compiler does not generate such instructions.

7.1.3.1. Value Stack Usage

The value stack holds data or pointers to data. This data might be being
manipulated, or it might be an argument being passed to a function. Results being
returned from a function are also placed on the value stack.

While within a called function, the local variables (in the argument list) may
be quickly referenced by directing the value stack to use a saved argument pointer
as a temporary stack pointer, and indexing from that value with the four-bit offset
field. While only the first seven arguments can be read this way, most functions
have fewer than seven arguments and we save one cycle versus a memory oriented
system. If there are more than seven arguments, the first seven are accessed in this
fast manner and the remaining arguments require an ALU cycle (to calculate an
address) followed by the stack unit cycle for access (total extra cost: one cycle).
Alterations to locally bound variables (SETQ’s to lambda-bound arguments) are
handled similarly, by writing with an offsetted stack pointer.

7.1.3.2. Pending Stack Usage

The pending and return stacks work together to speed subroutine calling and
return. In general, the pending stack holds frames of calls whose argument lists
are being built, and the return stack holds frames of calls or conditionals who are
evaluating their argument lists.

A frame on the Pending stack consists of two words. The upper word is a pointer
to the first instruction of the function being called. The lower word of the frame is
a saved copy of the value stack pointer BEFORE the first argument to the function
was pushed. This saved pointer is used inside the called function as a base for local
variable reference, and is also used to quickly unwind the stack when a function
returns a value.
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The interaction of the Pending and Return stacks with the Sequencer during a
function call are most easily seen in Fig 7.1.3.2a. In this figure, a call frame has
been created and is being executed. Control is transferring to the first instruction of -
the called routine, and the necessary return information (return address, old frame
pointer) are being saved on the return stack.
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Fig 7.1.3.2a Data Flow during Function Call

An obvious question is “Why save the location to be called on a stack, when it
could be supplied as immediate data?” The answer to this is simple: bandwidth.
We can only get one immediate datum into the machine from the instruction stream
per cycle. If a function is being invoked on a constant, then we need two cycles of
instruction just to get mecessary literals into the data path (one literal for function
address, one for the constant).

We have two choices- first send the function address, then the data, or first the
data, then the function. In a strictly von Neumann machine, it would not make any
difference. Because MO (the instruction memory) has a visible input and output, we
need to give the address of the function to MO two cycles before the first instruction
of the function can be distributed to the functional units. If the datum is a fixed
constant (like a number, or an immediate pointer), we need have it available to be
placed on the value stack only one cycle before the first instruction of function is
distributed.

The net result is that the DIS machine can go 50 % faster (two cycles instead
of three) in such cases, by prestacking both the call target as well as the argument
pointer. The cost is a doubling of the memory usage to hold pending call pointers.

Once the pending call frame has been constructed (by pushing of two pointers),
the arguments to the function are pushed onto the value stack. In the case of literals
and symbols, this is done directly by inline code. Certain functional forms are also
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executed by inline code (such forms as cond, setq, integer mathematics, basic list
manipulation, etc). If a form is compiled which is not one of these inline-coded
forms, then the compiler recurses on that form.

Eventually, the argument list is complete and the called function is invoked.
First, the MO memory is instructed to use the top value of the pending stack as a
pointer to the next instruction. Since the current instruction stream is to be returned
to, we must save the next instruction address (generated by the sequencer), and the
argument frame pointer (held on the pending stack), by pushing these values onto
the return stack. Simultaneously, the pending stack is popped twice, discarding the
pending frame, and the sequencer itself is directed to use the address given to MO
as the current address. At this point, one further instruction in the old instruction
stream will be executed (the one that was fetched by MO this cycle)- it will be
distributed next cycle. After that, new instructions will continue to flow from Mo.

We should note that this call invocation, although complicated, does not use the
value stack, the ALU, or either of the data memories (M1 and M2). These functional
units can be used to complete the argument list for the function being called. The
current compiler and optimizer in fact do overlap the completion of the argument
list with the invocation of the call, so for all function calls of more than zero literal
following more than zero calculated arguments, there is no overhead whatsoever in
calling a function except for fetching the arguments.

7.1.3.3. Return Stack Usage

Returning from a function invocation is done similarly to execution of a call.
The data flow in this case is from the return stack saved address to the sequencer
and MO, and from the return stack saved pointer to the value stack. The value stack
is cycled once, to write the returned value into the proper location on the stack.
This leaves the value stack available for all but the lastmost cycle in the return,
and the ALU and both data memories available for both return cycles. Similarly to
the procedure used in calls, the current compiler takes advantage of these available
cycles to complete the computation of a result efter the return instruction has been
executed but is still in the program-visible pipeline.

The careful reader will note that this optimized calling system will fail miserably
if one call instruction immediately follows another. Instead of having both subrou-
tines executed in order, the first instruction of the first routine will be executed,
followed immediately by the entire second routine. On return from the second rou-
tine, the remaining n-1 instructions of the first routine will be executed, and then
control will return to the main program. The current compiler and optimizer are
aware of this phenomenon and interlock against it, by including pseudo-operations
in each such dangerous instruction such that two such instructions will never be
optimized to less than two instructions apart. The actual cases where this occurs
are rare, and when it occurs, the machine merely slows down a little. Currently, the
only cases of this type are the exits from conditionals where no clause was satisfied.
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A second type of frame is sometimes placed on the return stack. This kind of
frame is called a “fake return frame” and it’s purpose is to store a branch location
within the current frame, in a recursive fashion. This is necessary in the case of
COND:s and other nested control structures. A fake return frame carries the address
of the target code in it’s instruction slot, and a copy of the argument pointer in it’s
argument pointer slot. Thus we gain the advantages of increased bandwidth in local
branching as well as global function calling.

7.1.3.4. Binding Stack Usage

According to the syntax of Common LISP, arguments to a function are only
visible within that function. To support globally-visible but dynamically scoped
objects, Common LISP allows a dynamic binding to be established on an object
via the progv special form. In other LISPs (ZetaLISP, MACLISP, etc) the default
binding form is global visibility and dynamic scoping. To further complicate matters,
catch frames are defined as dynamically scoped even in Common LISP.

In order to support this scoping quickly, the binding stack is used. When a sym-
bol is dynamically bound, the symbol address and the old binding are pushed onto
the binding stack. To unbind a symbol, the address and old value are popped from
the stack and are written back into the symbol table. In essence, the binding stack
and M1 provide hardware support for a shallow-binding variable scoping system.

The binding stack is accessed often during catch-throw activity. Because dy-
namic bindings must be unwound in the correct order, the binding stack is repeti-
tively cycled during a THROW to do the unwinds. Because catches themselves are
dynamically scoped, the catch frames are expressed as binding frames and the throw
routine need only look at the tag bits of the address in order to decide whether any
particular binding frame represents a binding to be undone or a catch which might
recieve the throw.

7.14. ALU

The ALU has two 256-bit inputs and two 256-bit outputs. It is assumed that
the ALU can perform most functions in one nominal cycle (100 nanoseconds).

The ALU contains four important sub-modules, and several multiplexors to con-
trol the flow of data between submodules. All submodules are strictly combinational
(memoryless) circuits. The four ALU submodules are a boolean module, a multi-
purpose adder, a barrel shifter, and a status code generator. Only the multifunction
adder and the status code generator require bit interaction across the 256-bit results.

Data flow within the ALU can be seen on figure 7.1.4a . Two inputs from
the distribution bus system are latched upon entry to the ALU module on the rising
edge of the processor GO signal. Command bits from the sequencer control the three
internal multiplexors as well as the operation of the boolean module, the particular
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function performed by the adder, and the amount of shift (or rotate) provided by
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Figure 7.1.4a The DIS ALU Unit

Data coming from the distribution bus immediately go into the boolean oper-
ator submodule. This submodule allows all 16 possible boolean operations on two
variables. This encoding requires four bits and produces a 256-bit result (BOO).
Condition codes are generated directly from the output of the boolean box.

The multifunction adder takes the boolean output BOO as one operand, and has
a multiplexor switch controlling the choice of four second operands. The operands
available on the second input are the first ALU input, 0, +1, and -1.

The multifunction adder has two major modes of operation: fixed point and
floating point. In an actual implementation, there would be separate hardware boxes
with the output selected by a multiplexor. Conceptually all arithmetic operations
are performed by this one submodule.

In fixed-point and floating-point modes, add, subtract, multiply and divide are
supported. The result of floating-point operations are 80-bit IEEE format values,
but the fixed-point versions are carried to a full 256 bits of accuracy. This facilitates
rapid operation on bignum numbers.

The result of the multifunction adder is then supplied to a barrel shifter which
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provides an arbitrary rotation, and then tag bits are masked in. The result is avail-
able on the ALU distribution bus ADO on the cycle following the current instruction.

7.1.5. Sequencer

The sequencer module is responsible for next address calculations, for distribu-
tion of the command bits to the various modules, and for control of the MODULE-
WAIT and GO synchronization lines.

The sequencer has three inputs from the distribution bus system. The first
input is used to read the next instruction to be broadcast to the funtional units, and
therefore usually reads from MO. The second and third inputs are the primary and
secondary next address inputs. The use of these two address inputs are discussed in
detail below.

The sequencer has two “outputs”, one being a distribution bus value, the other
being the instruction being distributed to the various functional units. Only the
output on the distribution bus can be used as a datum by another functional unit.

7.1.5.1 Next Address Processing

The sequencer generates two possible next addresses during each machine cycle.
The generation path is identical for the primary and secondary address inputs. First,
a small constant (the integers zero, one, two, or three) is added to each of the address
inputs. Then, a multiplexor is used to choose between one of the two results. The
result chosen is then output on the sequencer’s distribution bus. Figure 7.1.5.1a
shows the sequencer next address generation logic.
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Figure 7.1.5.1a The DIS Sequencer Address Generator

The multiplexor control is composed of a number of status lines coming from
various parts of the machine, a serles of AND gates allowing each line to be masked
or unmasked, and a multiple input OR gate. The multiplexor is thus defined to
choose the primary input EXCEPT when an unmasked status line is high.

Status lines may come from anywhere, but most come from the ALU. Three
lines are available, and reflect the value generated by the boolean operator box in
the ALU. These lines are currently set on word equal to zero, numeric value less
than zero, and pointer value eq (in the LISP sense) to NIL. These bits are available
six “long” gate delays from the start of an instruction, so there is plenty of time
to switch the sequencer output multiplexor during the instruction. R. Shane has
proposed adding additional lines for use with extended data tags.

7.1.5.2. Command Word Distribution.

The sequencer loads a command word for distribution on the rising edge of GO.
This word is held in a latch and driven out to all other modules on the rising edge
of MODULE-WAIT. The command latch is read from the distribution bus system,
and hence can use the output of any module as an instruction.

The command latch generally contains the output of the MO memory unit.
Because bit fields in the command field are preallocated at the module level, there
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is no instruction decode delay; the same control bit is always routed to the same
module. By having no instruction decode time, I feel a nominal cycle time of 100
nanoseconds is reasonable. If the cycle time were any shorter, (say, 10 nanoseconds),
the memory and stack units would not have sufficient time to complete a read or
write operation, and those units would be consistently causing the sequencer to issue
waits via the MODULE-READY lines.

7.1.6. Network Interface

The Network Interface acts to field memory cycles which refers to memory out-
side of the local processor. In this sense, it (and the other network interfaces it is
attached to) act as a memory server. When a request for a local memory read comes
in over the net, the network interface acts as a memory requestor. The network
normally references the MO, M1 and M2 memory partitions. In the most common
case (a read to the MO program area) there is no cache invalidate needed because
the MO unit is never used for a write operation.

In order to speed references the memory devices are given addresses in such a
way that any reference to a possibly shared memory area (or to 2 memory area which
is resident on another processor in a multiprocessor DIS machine) is a reference to
a network interface partition. In this way the network hardware is automatically
utilized to check for cross-network references, in whatever way is deemed appropriate.

Network communications for task sharing is performed by having the vacant
processor actively check for a task to perform. The network interface provides three
bits of information, encoding three states. The bits are available for testing in the
condition code part of the sequencer.

The network task-related states are No Task Available, At Least One Task
Available, and Too Many Tasks. If a task is available, the processor may “accept”
it. If no task is available, “accepting” a task feeds the processor a dummy task which
contains a only a return instruction (followed by the no-ops necessary due to the
prefetch- see under “sequencer”). Accepting a task simulates a subroutine prepare-
to-call combined with overwriting the top two elements of the value stack (which are
the arguments to the accepted task). Because of the overwrite, a processor executing
a network task accept must first place two words of garbage on the value stack to
reserve storage for the two values passed by the task accept.

Because testing for the presence of a task is independent of accepting it, the
processor may also make a local decision based upon the current state of busyness
of the local part of the network. For example, if the multiprocessor is full of tasks,
it would be unwise for a processor to add another task. Instead, it should execute
the function locally, trading time for a certainty of finding an available processor.
Likewise, if there are few tasks in the system, a processor may split the current task,
if the task is applicative and there are processors available.

Submitting a task requires a pop on the pending stack and a copying of all value
stack elements between the value stack pointer and the pending subhead pointer to
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the network. For all program purposes, the call “disappears” from the local processor
and “appears” in another processor somewhere in the network. Because execution
of the submit removes the call from the stack completely, submit and accept provide
a fast process dispatch mechanism, with low cost to interlock and an easy load-
management mechanism.

7.1.7. Booting, Debugging, and The Host

On power-up, the memory and hardware registers of the processor will no doubt
contain garbage. Before processing may begin, the proper state and initial program
must be loaded into the processor hardware. This is accomplished by either a2 host
processor or a DIS processor-local Boot-Debug Processor (BDP). BDP’s are only
needed in a multiprocessor environment.

We envision that the host processor will not only boot the DIS machine, loading
a saved system into the memories anmd initializing the stack pointers, but will also
do all physical I/0 for the DIS machine. This will probably be implemented by a
32-bit parallel interface between the host and the DIS machine, as well as a number
of DIS status and control lines being available by the host. Because there is no
provision in a DIS machine for interrupts, the host processor will be responsible for
fielding all interrupts as well as handling all user interaction. In this way, the host
or BDP frees the DIS machine to do what DIS machines do best; run LISP.

The BDP is a conventional processor such as a 68020 or a2 MicroVAX running
a server program and with a small amount of local memory. The BDP has access
to the processor memory as well as to the hardware access “partition”, called the
boot/debug partition. The boot/debug partition of memory contains the MicroVAX
local RAM and also accesses all the internal registers (such as stack pointers and
display registers) of the local processor. This allows the BDP to load an initial
state into the processor and to single-step the processor (by forcing a low state on
MODULE-WAIT). Each BDP also has a unique serial number, which is used to
address a specific BDP and also gives the processor a unique number.

BDPs in a multiprocessor system do not communicate via the Network Interface
. Instead, the BDP’s share a common 8-bit bus and have a daisy-chained attention
line to the console BDP. The BDP’s may recieve broadcast messages from the con-
sole, or a single BDP may be selected by the console for some detailed operation.
During a cold boot, the console BDP broadcasts the initial program to all processor
BDP’s. Should any module (such as the network interface module) become suffi-
ciently complex that it requires microcode, then the microcode area should also be
accessible via the boot/debug partition of memory, and can be loaded by the BDP
during cold boot.
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7.2. Intraprocessor Interconnection and Parallelism

The various modules of a processor communicate via sixteen distribution busses.
Each module with a globally accessible output drives a distribution bus. Each
module with a distribution system input may read any of the distribution busses.

For example, memory MO has one 256-bit output, which is available to all other
modules via the B-MDO distribution bus. Likewise M1 has a 256-distribution bus,
B-MD1.

Previous ideas for the DIS architecture had certain hardwired assignments of
interconnection. In the process of designing the compiler, it was found that such
hardwired interconnections were almost invariably accellerated one particular cir-
cumstance (such as function calls with one argument) and impeded most other cir-
cumstances. The regularization of interconnection via the distribution bus system
is as fast as the previous designs, and has much greater flexibility, which the current
compiler does use to increase parallelism.

The full list of distribution busses is as follows:

B-MDO MO data output

B-MD1 M1 data output

B-MD2 M2 data output

B-VDO Value Stack Top Datum
B-VD1 Value Stack Below-Top Datum
B-VSP Value Stack Stackpointer
B-PDO Pending Stack Top Datum
B-PD1 Pending Stack Below-Top Datum
B-RDO Return Stack Top Datum
B-RD1 Return Stack Below-Top Datum
B-BDO Binding Stack Top Datum
B-BD1 Binding Stack Below-Top Datum
B-ADO ALU output

B-SDO Sequencer Next Address
B-NDO Network Interface Datum
B-CML Command-Immediate Datum

Each distribution bus may be read by any or all of a number of input latches.
The distribution bus system may be viewed as a crossbar in this sense.

The full list of input latches is:

MODO MO address latch
MOD1 MO data latch
M1DO M1 address latch
MiD1 M1 data latch
M2D0 M2 address latch
M2D1 M2 data latch
wo Value Stack Top Datum
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w1 Value Stack Below-Top Datum

PVO Pending Stack Top Datum
PV1 Pending Stack Below-Top Datum
RVO Return Stack Top Datum
RV1 Return Stack Below-Top Datum
BVO Binding Stack Top Datum
BV1 Binding Stack Below-Top Datum
AVO ALU first input

AVi ALU second input

NVO Network interface datum
SVo Sequencer Next Instruction
SsV1 Sequencer Primary Address
SV2 Sequencer Secondary Address

7.2.1 Construction of the Crossbar

Actual construction of a DIS crossbar is nontrivial, but it should not be im-
possible. To assure ourselves of this, let us consider a few possible methods of
implementation.

7.2.1.1. Option 1: Brute Force Crossbar

We could attempt to construct a DIS crossbar in the obvious way; by buying a
large number of cables and multiplexors. Let us examine the results of this method.

Each DIS distribution bus is 256 bits wide. There are 16 such busses, each bus
feeding 20 multiplexor inputs. Each multiplexor would drive 256 bits of output to a
functional unit output. The total number of signal pins on a hypothetical crossbar
would then be (16 + 20) x 256 or 9,216 pins.

This is clearly a hard thing to build, so let us partition the task. First, we
observe that a fan-out of twenty is on the edge of acceptability without recourse
to special driver chips. Therefore, we accept production of sixteen distribution bus
driver cards, each one producing sufficient drive to control twenty inputs, over a
256-bit bus. This requires 512 pins, which is acceptable. We then need to construct
twenty switching devices, each one reading all 16 distribution busses, and selecting
one for input to a functional unit.

These sixteen-bus switches require (16x256) or 4096 inputs, plus 256 bits of
output, total 4352 pins. We can partition this module into 64-bit slices, giving 1088
pins per card. Of these pins, 1024 are inputs and 64 are outputs. We can pack the
1024 input pins in groups of 64 via standard connectors, giving 16 such connectors
per board. Each connector will take up about 3 square inches of board area (standard
Eurocard connector), so about 48 square inches or .34 square feet of area per board
will be dedicated to the input connectors. Another three square inches will be used
for the output connectors. The 64 multiplexor chips needed will take on the order of
.5 square inches each, totalling 32 square inches. Total size of a switch card is then
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about 83 square inches, slightly smaller than a standard 8 1 /2 by 11 sheet of paper.
We will need (20 x 4) or 80 such cards, all identical.

A VAX-11/780 has approximately sixty cards, each card being about twice the
size of the above-postulated switch or driver card. This gives about one hundred
and twenty switch-card equivalents per VAX, which leaves us with 24 switch-card
equivalents if we wish to maintain the VAX form factor. This is a reasonable size
for a prototype machine and hence we might conclude that even with brute-force
design, the DIS crossbar is quite buildable.

7.2.1.2. Option 2: Microwave or Fiber Optic

optic If we choose not to build a wide crossbar, we can still construct a crossbar
with full capabilities if we use a sufficiently fast technology. In order to transfer a
full 256 bits of data in 20 nanoseconds (assuming Manchester-coded signals for easy
modulation/demodulation) on a bit-serial line, we need a bus bandwidth of 25 GHz.
This is K-band microwave, and in fact, it is incredibly convenient. The common use
of police speed radar (and hence, police radar detectors) in our society has pushed
production of police K-band (25.525 GHz) devices into the millions per year. Cost
per device is on the order of one to ten dollars retail.

We will now contemplate a DIS crossbar system composed of sixteen K-band
waveguides (approximately 1 cm by .4 cm), each drilled in eleven locations to accept
an insulated probe. Each DIS functional unit card has sixteen insulated probes to
tap the microwave signal out from each waveguide, plus an additional “drive” probe
to transmit an output signal onto each dedicated waveguide/bus. Each DIS card,
when mated into the microwave backplane, can then select whichever waveguide it
wishes to read in order to acquire input data.

In this configuration, we need 320 microwave transistors to act as pass switches,
twenty local-oscillator diode/detector diode pairs to demodulate the microwave sig-
nal and twenty 12.75 GHz shift registers to capture the incoming data stream. This
is clearly constructable if we use GaAs shift registers.

If we wish to use laser diodes and fiber optics instead of microwave intercon-
nects, we need 320 laser/photodetector pairs, and twenty shift registers. Precision
construction techniques for drilling and aligning the backplane are not necessary
with the flexible fiber optics.

The advantages of the microwave/fiber optic system over the brute-force crossbar
is in size. The fiber optic crossbar should take on the order of 40 square inches per
functional unit, so we probably do not need any additional driver or switch cards as
we needed in the brute-force crossbar configuration. This shrinks the minimum size
for a DIS machine from one hundred cards to ten cards.
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7.2.1.3. Option 3: Restricted Configuration Crossbar

If we examine the actual usage of bit fields in code produced by the current
compiler and optimizer, we find that the majority of the high-order bits on Ml, M2,
and the stack units are unused. If we modify the current compiler, we can produce
code which uses only the low-order 32 bits per word on all units ezcept MO, the
Sequencer command input, and the distribution bus connecting those two devices.
This interconnect is shown in figure 7.2.1.3a .

Functional Units
32-bit outpu

from each
unit
| oy
Ii _—3
ad Multiplexor
et Switch Cards
— (10), two
= 32-bit muxes
- per card
480 bits
total
—
Buffer
Cards
2) |

Figure 7.2.1.3a Restricted Crossbar

Let us examine this in more detail. If we interconnect MO and the sequencer
command input directly (remove it from the crossbar entirely), we need construct a
crossbar of size 15 x 19, with a width per bus of only 32 bits. Using logic similar to
that used to determine the size of the brute-force crossbar, we find that we need two
drivers card instead of twenty, and ten switch cards instead of eighty, each switch
card being split into a pair of 32-bit switch paths instead of a single 64-bit switch
path. One each driver path and switch path remain unused in this configuration.

By going to a restricted crossbar configuration, we can shrink the size of a mini-
mal DIS machine from one hundred cards down to twenty-two notebook-sized cards,
with only slight loss of functionality. The BSP [Kuck 1982] used pair of “alignment
networks” , each of which was similar in size and complexity to the proposed DIS
crossbar.
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7.3. Conditional and Call Instructions

As discussed previously, the sequencer may add zero, one, two, or three to the
current location in order to get the address of the next instruction word. Those cases
where both a primary address and a secondary address are allowed are conditional
instructions. Because of the sequential nature of the machine, conditionals, skips,
and calls do NOT take effect on the next machine cycle, but take effect either one
or two cycles after the instruction executes.

If MO can be directed to begin fetching the new instruction stream with certainty
(an unconditional branch or call), one instruction past the current instruction will
be executed before the new stream begins execution. If MO must look at the output
of the sequencer, then two instructions past the current instruction will be executed
before the new stream begins execution. The current compiler knows about uncon-
ditional branches and will give MO the needed address early in order to minimize
this branch latency whenever possible.

To help visualize this user-visible pipeline, consider the following example (with

accompanying figure 7.3a)
2L
MO E
- (21)

21 1

SEQ N
22

(21)

{lat: (20)

AN

Command bits
out to various
units

Fig 7.3a The DIS User-Visible Pipeline

In this example, (seen near the end of the cycle), the sequencer has just generated
absolute address 22. MO latched it’s data at the beginning of the current cycle, so
it is currently completing the fetch of location 21. The sequencer command output
Jatch is currently driving the instruction fetched last cycle (address 20) to the various

functional units.
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7.4. Garbage Collection in DIS

The DIS architecture does not have special-purpose hardware for garbage col-
lection. It was found in the design stage that the complexity of hardware required
for automatic garbage collection was actually greater than the complexity of all
other parts of the DIS architecture together. Instead, the DIS machine does garbage
collection in software.

Garbage collection in DIS is triggered by a storage-allocation function attempt-
ing to allocate a cons cell or array, and finding none available. The storage-allocation
function then calls the garbage-collection function, which traverses all data struc-
tures, marking them as to accessibility, and then creates a new free list from the
inaccessible cells. Garbage collection uses the ALU’s ability to perform boolean
operations and observe the result in a single cycle, rather than by using microcode-
controlling tag bits.

The DIS architecture does not check tag bits directly (for garbage collection or
any other purpose, excepting the reserved bit pattern for NIL). Instead, software
checks the tag bits by ANDing an immediate constant in the ALU with the word
in question, and then performing an XOR with a word of the type desired. If the
status code is zero, the tag bits match, and the questioned word is of the same type
as the desired type word.

Garbage collection does not need to transverse all memories and stacks in a DIS
machine. MO never contains pointers, hence, it is never visited. M1 contains the
symbol table (which is of known length), and so must be visited, but it is unnecessary
to perform any markings in the symbol table. M2 contains cons cells, and must be
both traversed and marked for collection. Only the Value and Binding stacks of a
DIS machine contain pointers to data structure, so only those units need be accessed
during a garbage collection. Both stacks contain only pointers, so we need to perform
only traversal and not marking on the stack units.

It must be stated that although we have worked out kow garbage collection
works in the DIS architecture, we have not actually implemented it. The current
simulator is far too slow to test a garbage-collection implementation.

7.4.1. Estimate of Time to Garbage Collect

If we choose some reasonable numbers for the DIS machine and for the program
environment, we can estimate how long the DIS machine takes to run a complete
garbage collection.

Let us assume there is two megawords of consing space total, and one half of
the space is actually in use (the other half being garbage). Also, let us assume
there are ten thousand active symbols in the symbol table, and five thousand pro-
cedures. Similarly, we assume that a thousand objects are dynamically bound, that
the current recursion depth is one thousand, and that each recursion level has ten
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intermediate pointers. These assumptions are probably overly generous, but since
we wish to look at a worst-case scenario, this is reasonable.

We define a measure of action called a “visit”. A visit is the action taken when
a single pointer is followed to what it points to, and the pointer itself marked with
a tag to show that it has been followed. First we will count visits needed to mark
all active cells, and then we will count visits needed to collect all the inactive cells
into a new free list (called “mark and sweep” garbage collection).

We know that the ten thousand symbol table objects each have at most four
pieces of list structure associated with them, that being the symbol-value, symbol-
function-text, property-list, and object-list. At most, this requires forty thousand
visits, each visit marking one cell in the M2 memory space. Each of the thousand
objects dynamically bound must also be marked into M2 space, and accepting that
each object on the value stack is also a pointer (a very safe assumption), this adds
another one thousand and ten thousand visits, respectively.

Now the only cells which must be visited and followed are in M2. There are (by
our assumptions above) one million such pointers; on the average each one will be
pointed to by just over one other pointer (each full circular list structure will add
.000001 to this average). To visit each of these pointers will require on the order of
one million visits.

We see now that the fifty-one thousand visits required to mark all the cells
pointed to by M1 (the symbol table), the Value Stack, and the Binding Stack are
completely dominated by the million visits needed to follow the pointers pointing
back into M2. In our scenario, to mark every accessible cell requires on the order
of a million visits. The reader should note that we do not do all the M1 marking
and then Value Stack marking, etc. Rather, each tree of list structure is followed
to completion before the next symbol table entry or stack entry is begun. Although
the order is different, the number of visits is the same and only the number of visits
makes any difference.

How long does one million visits take? Because M2 is only single-ported, we will
assume that no pipelining can take place. We need one cycle to read the pointer,
four to check it’s tag bits (and return if the cell has already been visited), four to
check if the pointer points to NIL (but this can be done overlapped with the previous
check, so only one extra cycle is needed), one to set the tag bit, and one to write the
word out. Because these are cons cells rather than single pointers, we must maintain
a reverse path to follow the second pointer of the cons cell (either by stacking the
pointer location on some stack unit or by reversing the pointer chain; the pointer-
chain reversal method is described in [Hillis 1985]). Either method takes an exta
two cycles (either to stack or memory).

The basic concept of pointer-chain reversal is that the car path is followed to
the end, but in each car operation, we replace the car with a pointer to the cell that
pointed to it (with the “visit” tag bit set). Now the tree has been reversed, and we
can move back up the tree, un-reversing the pointers and following the cdr part of
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the tree recursively as we go. The result is that two extra memory cycles (an extra
write, then an extra read) must be run, but that we do not need any space on the
stack to run this marking phase of the garbage collection.

Once all accessible cells have been visited (at a cost of ten million cycles), we
must sweep through M2, chaining all the unmarked cells into a new free list and
resetting all of the accessibility tags. This requires a second visit to each cell. We
need to read the cell, check the tag (four cycles), clear the tag, and write the cell.
For a marked-accessible cell, this is seven cycles. If the cell is not marked accessible,
we need to write the previous end-of-free-list chain (one cycle), and update the free-
list-end (two cycles). Thus, eight cycles are needed for every garbage cell, and seven
for every in-use cell (2 cell contains two pointers, only the first of which will be
marked). This totals to four million cycles for garbage cells, and three and a half
million cycles for in-use cells.

We can therefore conclude that a complete garbage collection in a two-megaword
DIS machine will take on the order 1.8 seconds (eighteen million cycles). Best case
will be with almost no in-use cells, in which case eight million cycles will run (.8
seconds), and worst case will be when almost all of memory is useful data (2.7
seconds). This is probably too slow for real-time system use.

It might be possible to implement a continuous collection system (every call to
cons runs three cycles of mark, or three cycles of sweep), but we have not explored
the overhead inherent in such a scheme.

7.5. Concluding Design Remarks

This concludes the abstract machine definition of the DIS architecture. There
are still a few rough spots concerned with the details of the network interface. That
part of the design is still evolving, and a complete description should be found in R.
Shane’s thesis (pending publication).

The user interested in assembly-level programming of the DIS architecture is
now referred to appendix B, “The DIS Instruction Summary”, and to chapter 9,
“Examples of DIS Machine Code”. The user is also hereby warned that the DIS
LISP compiler and optimizer can probably produce code at least as efficient as the
naive DIS assembly-language programmer, and that the compiler is aware of the user
visible pipeline of the DIS architecture and will avoid pipeline hazards automatically.

The DIS architecture provides an environment rich in potential parallel paths.
The next question is: Can we automatically utilize the potential parallel paths in a
DIS machine and the potential parallelism within LISP expressions in order to gain
a large speedup in LISP execution speed? The answer to that question appears to
be an unequivocal yes, which is demonstrated in the next two chapters.
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Chapter 8
The Compiler, Optimizer, and Simulator

This section describes the software used to evaluate the performance of the DIS
architecture.

The DIS simulation system is written entirely in VAX Common LISP, from the
compiler through to the execution simulator. Overall, there are over 5000 lines of
LISP code. When loaded into the VAX Common LISP environment, slightly over
450 Kbytes of space is needed hold the entire DIS simulation system (source code
only).

The DIS simulation system has four major parts: the compiler, the optimizer, the
linking assembler/loader, and the simulator. Although each part can be considered
separately, the reader should realize that a number of macros define pieces of the
DIS system for use in multiple places.

The DIS design uses these system-definition macros in order to assure that the
compiler, optimizer, and simulator remain consistent with each other. Because up to
four people at once have been actively developing the DIS simulator, compiler, and
optimizer, some means had to be established to assure that bit and field allocations
were consistent throughout the design.

Figure 8.0a gives an overview of how the DIS simulation software interrelates.

DEESYSTEM
Macros

MC
Compiler

DISSIM
Simulator

T

one-cycle

compile-form

Figure 8.0a DIS Simulation Overview
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8.1. System Definition Macros

The deffield macro is an example of a system-definition macro. Deffield de-
fines a bit field in an instruction word, creating a symbol of the name f-<fieldname>.
Deffield also creates a selector function s-<fieldname>, which extracts the given
field from an instruction word, and another function <fieldname> which places a
numeric argument into the field specified. In this way, deffield and other macros
are used to not only define a computer architecture, but to simultaneously create
that architecture’s simulator and generate an assembler for that architecture.

Macros of this type are deffield, defop, defbus, and defspace. These macros
are defined and used in the file disdef (listed in appendix 1). The reader is referred
to that file for greater detail of these macros.

The DIS simulation system is designed to be used similarly to the TASKBUILD-
ER of RSX-11. Modules are compiled, and as they are compiled, a partial symbol
table is constructed. When the modules are loaded, addressing references in the
machine code are resolved by two passes of the linking loader. Because the compiler
only knows that a function foo exists, but not where, two passes of the linker are
required to resolve all function location information and produce both a complete
and updated DIS symbol table in M1, and an executable code image in MO.

8.2. Compiler Internals

The DIS compiler is a recursive-descent compiler which generates a vertically-
oriented microcode stream directly from a LISP expression. The current compiler,
called MC (for Microcode Compiler) generates assembler instructions and assembler
directives for single-processor programming.

Because the LISP read function creates tree-structured lists directly (in fact,
the LISP user must take great pains to read in a list structure as a non-tree datum),
there is no parser or tree generator in MC. Instead, functions are compiled into vertical
microcode from LISP S-expressions already read into memory by the Common LISP
interpreter.

MC generates both symbolic machine instructions and directives to the optimizer
and the loader. Because of the highly parallel nature of the DIS architecture, an in-
struction often contains caveats such as “no other use of the value stack is permitted
in this instruction”, or “this instruction must remain within 2 cycles of the end of
this basic block”.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.2.1. Recursive Descent Modules

The top level of the compiler is the function MC. MC uses the dynamically scoped
variable result to provide a place for emitted code to accumulate. MC then passes
the form to be compiled to compile-form.

Compile-form examines the form and, depending on the form, passes the form on
to one of compile-a-special-form, compile-an-inline-form, compile-a-non-spe-
cial-form, or compile-value-reference. Which of these is called is determined by
the data lists *special-forms* and *inline-forms*. The compiler assumes that any
form not on one of these two lists is neither a special nor an inline form and compiles
a reference to the symbol-function or symbol-value cell of the symbol table to get
the appropriate information.

The special forms currently supported are defun, cond, setq, and let. The
file mcspecials contains LISP routines to compile each of these special forms. These
forms are adequate to run all the benchmarks listed.

Because each special form may itself contain nonspecial forms or implied progn’s,
the compiler may recurse back to compile-form or may call compile-implied-progn
to produce the necessary code.

Of special interest is how the cond special form is compiled. Because a cond
may exist in a recursive loop, it is not feasible to have a statically determined exit
location for a cond. Instead, a “fake return frame” is generated and pushed onto the
return stack. This frame contains an unchanged value stack pointer, but the return
“location” is really the location of the end of the cond. In this way, a clause within
a cond can jump past all remaining clauses in a simple and clean way, by executing
a Return. In most cases the optimizer will overlap the firing off of the Return with
the last part of the clause evaluation.

The cond special form is “smart” about the value of T, in that a clause whose
predicate is T does not evaluate T, it just assumes that T hasn’t been rebound to NIL
by the user and evaluates the consequent clauses.

Inline forms are compiled by functions in the file mcinline. The currently sup-
ported inline forms are +, -, *, /, car, cdr, 1+, 1-, eq, rplaca and rplacd.
These forms generate short microinstruction sequences which accept their arguments
directly from the value stack and return results directly on the value stack. These
routines could have been written as a system software library, but the microinstruc-
tion sequences involved are so short that it did not seem worthwhile compared to
the increased possibilities for action by the optimizer given by inline code.
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8.2.2. Symbol Tables

During compilation of a function, two symbol tables are accessed. The first
symbol table, named symbol-table, “grows” with each compilation, and is a repre-
sentation of the DIS machine symbol table held in memory M1. The second symbol
table is the lambda-variable symbol table locals, and is dynamically scoped within
the compile-a-defun recursive descent form.

Symbols are added to the global table symbol-table whenever the first reference
to them is seen by the compiler. As in other Common LISP interpretations, a
variable not declared lexical (by appearing in an argument list) is assumed by the
compi;er to be global and dynamically scoped (a “special” variable according to
Steele).

An entry in the M1 symbol table is eight elements long. This implies that a
pointer to a symbol is always a multiple of eight. Because address space is not a
problem in the DIS architecture, we directly use this multiple of eight as a sequence
number without an offset, giving an address into M1. If M1 is defined as memory
starting at location 1000, the first symbol (defined as T) will have sequence number
1000, NIL will be at 1008, and the pointer to free cells (for consing) will be at 1016.

The format of the M1 symbol table is as follows:

Displacement: Contains:

0 symbol-value-pointer

1 symbol-function-pointer

2 symbol-name-pointer (printname)

3 symbol-plist-pointer (property list)

4 symbol-package-pointer

§ -7 reserved for a flavor system and other expansions

Because the current compiler does not support packages, and property lists
are not modifiable at compile time, a symbol-table slot is only four elements long.
Symbol-table entries are of the form (symbol-name symbol-table-slot-address
symbol-value-ptr symbol-function-ptr) .

If it is necessary to upgrade the compiler to have a more detailed symbol table,
only the functions make-symbol-table-entry, symbol-seq-lookup, and mc-hard-init
will need to be altered.

8.2.3. Code Generator Stubs

Each of the compiler routines uses a set of lower-level service routines to actually
emit code onto the result special variable. These routines are the app-res-xxx rou-
tines in the file mcstubs. These routines generate one- to four-instruction sequences
which perform tasks at the lowest level in the DIS architecture. These routines
“know” how to emit code to perform their designated tasks, along with the extra
information concerning forbidden interactions that is needed by the optimizer.
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These code-generating stubs are:

vpush-from-cmi
prepare-to-call-vs-addr
prepare-to~call-symbol
execute-prepared-call
symbol-function-location
anonymous-location
pop-vs-one

pop-rs-two
return-to-caller
return-via-fake-frame
vpush-from-local-values
set-local-variable
set-symbol-value
symbol-value-lookup
symbol-function-lookup
create-fake-return-frame
bs-push-global-symbol
global-unwind-bs-and-pop-two
branch~to-location
branch-if-null

Additional service routines emit code for the following inline functions:

add-vs-pair
subtract-vs-pair
multiply-vs-pair
divide-vs-pair
pop-vs-1-overwrite-ALU
add-vs-one
subtract-vs-one
vs-car

vs-cdr

vs-eq

vs-rplaca
vs-rplacd

These routines in general append instructions to the end of result. They may
probe the symbol table (via symbol-seq-lookup) in order to encode an absolute
address.

8.3. Optimizer Internals

The DIS MCA. assembly language optimizer is a single-pass recursive-descent
optimizer which uses compiler-generated constraints, sequence-checking, resource-
checking, and a rule-based peephole system to produce a mostly-horizontal mi-
crocode from the vertical microcode generated by MC. MCA is able to produce about
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a 40 % improvement over the code generated in MC by using knowledge about the
intraprocessor parallelism available in the DIS architecture.

Considering that MC output code already contains significant parallelism (all
of the low-level code-generating stubs were hand-coded for maximum parallelism;
eleven of twenty access multiple functional units in a single instruction), an im-
provement of 40 % is significant. When compiling reasonably-sized programs, it is
uncommon to see an instruction which does not activate at least four functional units
(sequencer, MO, plus two others). Of the remaining functional units, contention is
highest for the value stack, followed by the return stack.

From a heuristic point of view, the optimizer is a constraint-based system, witha
rule-based system allowing overriding of the general constraints in certain specialized
cases. The general constraints are similar to the constraints of a dataflow machine
(waiting for data to become ready, and waiting for data to be accepted by the next
unit in line), while the rule-based system allows special cases (such as multiple stack-
push operations) to be combined. In this way, constraints which are too severe can
be relaxed for those cases in which it is appropriate.

The three major parts of the optimizer are the basic block partitioner, the clash
determination section (constraint-based system), and the resource merge system
(rule-based exceptions to the constraint-based system)

8.3.1. Basic Block Partitioning

The first operation that MCA performs is basic block partitioning. A basic
block is a section of code which has only one entry and one exit, and contains no
branch instructions. Clearly, instructions within a basic block may be rearranged
or combined in any order that does not violate data-flow or resource requirement
constraints.

The function make-code-segments in the file mccrush achieves the breaking of
a code stream into basic block segments. Each basic block is then mapped to an
equivalent but faster basic block via crush-a-segment. Crush-a-segment uses the
Common LISP reduce function to repeatedly attempt to crush a single instruction
onto the end of a partial basic block. The resulting list of basic blocks is then
re-chained back into a long code stream.

The function crush-instruction actually performs the crushing. Crush-inst-
ruction is given two arguments- the current partial basic block, and the new in-
struction. Clash determination is done on the last instruction of the current basic
block versus the new instruction. Depending on the results of the clash determina-
tion, the new instruction might be appended to the basic block, merged with the
last instruction of the basic block, or (if no conflict is found) crush-instruction may
recursively call itself on the current basic block with the last instruction deleted. In
this manner each instruction in a basic block is placed in the instruction stream at
the earliest point where it can be executed correctly.
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8.3.2. Clash Determination

Instructions are crushed onto the tail end of a partial basic block by determi-
nation of conflict, via instr-clash-p. The last instruction in the partial basic block
is compared with instr-clash-p and a decision on how to optimize is made on that
basis. Possible results of instx-clash-p are T (the instructions clash irreconcilably),
NIL (the instructions may be reordered or combined freely), or 2 new instruction
which is a legitimate combination of the two instructions.

Five kinds of conflict between instructions are recognized by the optimizer.
These conflicts are resource conflicts, sequence conflicts, dataflow conflicts, reser-
vation conflicts, and branch conflicts. Resource, sequence, dataflow, and reserva-
tion conflicts are detected by instr-clash-p. Branch conflicts are determinable
without regard to the current basic block environment, and are handled in crush-
instruction.

Some types of conflict, such as sequence or resource conflict, force an irreconcil-
able clash. Other types of conflict such as dataflow or reservation conflict, allow the
two instrcutions to be merged, but not slid past each other.

A sequence conflict occurs when the second instruction needs the result of a
functional unit which is used by the first instruction. Since the result is not yet
ready, the second instruction must be delayed till the first instruction completes.
Hence, sequence conflicts force an irreconcilable clash.

A dataflow conflict is the reverse of a sequence conflict. A dataflow conflict is
triggered by the second instruction commanding a functional unit whose output is
used in the first instruction. Since the crossbar latches will hold the functional unit
output until the end of the cycle, a dataflow conflict allows the two instructions to
be merged into a single instruction, but does not allow the second instruction to be
moved ahead of the first instruction.

A resource conflict occurs when two instructions both wish to use the same
functional unit at the same time. For example, if two instructions both require the
use of the CMI (immediate data bus), a resource conflict exists.

In some cases, a resource conflict can be resolved by the rule-based merger.
This is because some functional units have commands which have the same final
effect as pairs of other commands. For example, pushing one value, then pushing
another value, has the same effect as pushing two values. Please see the section on
the rule-based merger for further details.

A reservation conflict occurs when the second instruction requires a functional
unit be reserved for a following instruction, and that functional unit is already in
use. Reservation conflicts allow the two instructions to be merged, but inhibit the
movement of the second instruction before the first instruction.

A branch conflict is triggered when a CRUSHMAX n compiler directive is encoun-
tered by the crusher. These directives are a necessary consequence of the delayed
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effect of branches on instruction execution. Without artificially limiting the amount
a control-altering instruction may be pushed forward in a basic block, the optimizer
described will generate incorrect code because the control-flow altering instruction
will not clash with any other instruction in the basic block (since basic blocks are
delimited by control-flow instructions), and will float to become the first instruction
in the basic block.

8.3.3. Rule-Based Merger

The rule-based merger is defined in the file mcpeephole (appendix 1), and con-
tains both the driving function resource-peephole-fixup and the rule list *resource-
peephole-options*.

Resource-peephole-fixup accepts a pair of instructions which otherwise would
have irreconcilably clashed, and attempts to match the pair with one or more rules
stored in *resource-peephole-options*. More than one rule can be applied to a pair
of instructions. Any rule which applies will be executed, and the remaining rules in
the sequence will be applied to the result of the preceding rules.

The format of the rules for the resource merger is a list of lists. Each sublist
has four elements. Elements one and two are enumerations of opcode fields which
MUST be found in the first and second instructions, respectively. If both the opcode
fields and values are not matched in the proper instructions, the rule does not fire.

Element three of a rule element is “user data”, used to execute the consequent of
the rule. Element four is a lambda-definition to be executed to produce a new pair
of instructions. The lambda definition is executed with an environment containing
three arguments. These arguments are the first instruction, with the matching
trigger opcodes removed, the second instruction with the matching trigger opcodes
removed, and the user data (the third element of the list). The rule is expected to
return a new instruction pair.

Note that because each rule is allowed to fire in sequence, and the result of one
rule firing becomes the new argument for all subsequent rules, more than one rule
may alter an instruction pair. A rule can be set to fire always by baving elements 1
and 2 of the rule be null. Because the rule-based merger is not called on every pair
of instructions, but only in cases of instruction clash, it isn’t possible to force every
pair of instructions to undergo some transform in the rule-based merger.
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8.4. Linking Assembler/Loader

The linker mclink is defined in the file melink (Appendix 1). The linker is a
two-pass system which accepts as input an instruction stream and a user-supplied
starting address. Mclink loads the memory of the simulator with an image of the
executable and a proper symbol table, and returns the address of next available
location.

On the first pass, mclink scans the instruction stream for LOCATION pseudo-
opcodes. Each location name is queried against the compiler-generated symbol table
in order to generate a location for the symbol-function cell. Both the M1 (hardware)
location and symbol-table (software) are updated.

On the second pass, the individual instructions are assembled since pointers into
the symbol table are now known. Because the compiler codes symbol-table locations
directly into immediate data fields, it is necessary to have knowledge of all branch
addresses before instruction assembly into bit fields can be completed. It would be
possible to preassemble parts of the instructions but the DIS simulation system does
it at load time. There is no loss of generality by doing this.

8.5. Simulator Internals

The DIS simulator per se (not including macros) is defined in the files dissim,
disgraph, and disalias, with some basic functions in franz2common and disbase
(Appendix 1).

As discussed previously, much of the simulator is defined by macro. The
deffield macro defines a field in a horizontal instruction word, plus creator, and
accessor functions for that field. Successive deffields produce non-overlapping fields
automatically.

The defop macro defines a valid symbolic opcode for insertion into a field created
by deffield. Successive symbolic opcodes are created automatically. If too many
opcodes are specified for a given width of field, an error is automatically issued.

The great advantage of this method of architecture specification is that the
symbolic values such as SPUSH2, not hardcoded bit patterns such as “1001”, are used
in the functional unit descriptions.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8.5.1. Order of Execution

Because the DIS machine is a synchronous and parallel machine, some changes
were made to simulate it on a conventional serial architecture. Execution of an
instruction on a real DIS machine is of the following form:

All units latch data busses.
All units execute.
All units drive new results out.

In the DIS simulator, latching of all data is followed by cycling of memories in
ascending order, then value, pending, return, and binding in that order, then the
ALU, then the network interface, then finally the sequencer. As each functional unit
is simulated, it updates it’s distribution busses (which are not seen by any other
unit, because all inputs have already been latched).

The reader is cautioned to examine the “kanban” ALU condition code software
carefully. Because condition codes are seen by the sequencer on the current cycle
(not delayed one cycle), the condition codes are allowed to only express boolean
functions of the ALU inputs, with a maximum nesting depth of two. Currently sup-
ported condition codes are “all bits zero”, “high-order bit one (indicates a negative
number)”, and “EQ to hardware NIL”. In this way, the condition code is available to
control the sequencer’s final multiplexor long before the two adders have completed
producing the possible next addresses.

8.5.2. Functional Unit Simulations

Functional units of the DIS machine are defined by macros. One macro creates
a memory unit, another creates a stack unit. Other macros define regions of memory
address space. Currently, each memory unit is 1000 addresses long, and each Stack
type memory is 2000 addresses long. This can be easily changed by the defspace
macro.

Individual functional unit simulations can provide direct information to the user
via the pbbb function. Pbbb stands for “Print Blow By Blow”. If the symbol blow-
by-blow is non-nil, pbbb prints it’s argument. If blow-by-blow is nil, pbbb is a no-op.

As an aid to running long simulations, the simulated sequencer (but not the real
one) halts the machine when an attempt is made to execute location O of MO. In
this way, a simulation can be started and allowed to run unattended.
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8.5.3. Simulation Support Functions

The DIS simulator is controlled by means of several end-user functions. Besides
nclink, several other steps must be taken to run a program in the simulator.

If it is desired to keep a machine-readable record of the run, dribble must be
executed. Then, final-status can be set. The default value, T, means print a
complete machine status readout at the end of each machine cycle. The value short
means print only the address of the next instruction to be executed. A value of nil
supresses all end-of-cycle user messages.

The user can set a “stopwatch” of how many 100 nS cycles have been executed,
by the global variable cycle-counter. Cycle-counter is incremented at the start of
each cycle.

When all executables needed have been linked into the simulation memory, the
user cold-boots the simulator. Cold-boot accepts a varying number of arguments.
The first argument is the starting location to be executed (normally the load address
of the main routine). All subsequent arguments to cold-boot are taken as arguments
to the program being executed on the DIS simulator. A proper stack-frame is built,
with the return pointer pointing to location 0. In this way, the simulation stops
when the main function returns. In a real DIS machine, the main program would
be a read-eval-print loop, and would never return.

Cold-boot is necessary to properly set up the instruction-fetch pipeline for proper
routine execution. If instruction n were being executed, then instruction n+1 is
currently being output by MO, and instruction n+2 is being addressed by the input
port of MO. Hence, cold-boot must set up the proper output values of all functional
units so that the DIS simulator “looks” like it has been running already.

Finally, the user can run the simulation by disrun. Disrun takes one argument-
the maximum number of cycles to run. This is an upper limit. The simulation will
stop when this limit expires, when the simulation branches to zero (main routine
returns) or when the user hits control-C.

8.6. Testing the DIS Software
The DIS software was tested in three phases.

First, short assembly-language routines were written to exercise each part of the
simulator. The resulting instruction traces were then hand-checked for correctness.

Once the simulator was reasonably debugged, we used it to check the output of
the DIS compiler. The compiler itself emits commented assembly code, which can
be hand-checked. The simulator was then used to execute the compiler output, and
the instruction traces were hand checked.
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Finally, the DIS simulator was used to execute actual routines, with correctness
of results being the final objective. The DIS simulator running DIS compiler output
was used to calculate some short expressions. The longest run was the calculation
of 10!, the result (3,628,800) took several hours, but was correct. Sections of the
instruction traces were hand examined in these long runs, and the DIS simulator
appears to do what it was designed to do, albeit very slowly.

Because the DIS simulator is written as a set of system-definition macros, defin-
ing memories, stacks, etc. it is highly unlikely that some essential part of the DIS
design is not being exercised in some way by at least one of the test functions. For
example, Memory O is never written to, but the same macro that defines Memory
0 is used to define Memory 1 and Memory 2 (which are often written to), so it is
unlikely that there is a bug in the code that defines how MO performs a write. If we
consider that we have tested a code path that is invoked by macro by testing every
path through that macro at least once in the system, there are no paths in the DIS
software (simulator, compiler and optimizer) that have not been covered for testing
purposes.
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Chapter 9
Examples of DIS Machine Code

This section gives examples of DIS processor execution of several simple prob-
lems, as they would be executed in compiled code on the proposed design.

The code streams presented below are abstractions of the compiler result for
easier human comprehension, with chunks of actual compiler output included where
appropriate. Compiler generated output often has comments inserted- the compiler
generates these comments as an aid to debugging the compiler.

The reader should remember that the instructions emitted by the compiler are
incomplete in that they do not contain any module-idle or non-branch sequencer
opcodes. Module-idle and sequencer opcodes are inserted after most other optimiza-
tions are complete.

Most of the included compiler/optimizer output is generated with the resource-
merging phase turned off. The reason for this is that code manipulated by the
resource merger is very obtuse. Where appropriate, resource-merged chunks of
compiler output will be displayed with unmerged chunks, so the reader can see how
the resource merger works.

Three notations are used for describing the state of a processor. The first no-
tation is a stack notation; stack entries are separated by ||”, with the top entry on
the right. In this stack notation we will merge the contents of the pending call stack
and the contents of the value stack, as though only one stack was used. The second
notation is a microinstruction notation; everything between “[” and “|” is executed
in one instruction phase. For example, 42: [ mumble | indicates that the instruction
at 42 is mumble . Lastly, actual compiler-generated code will be presented in the list
notation:

(((0P1 mumble) (OP2 bumble) (OP3 bruise) (OP7 33))
((0P1 droll) (OP4 stumble) (OP5 gargle))
((oP2 fiddle) (OP4 twiddle) (OP5 frobmicate)))

which is a list of three instructions, each instruction having several fields.

Several abbreviations are used to make the horizontal code less verbose and
more understandable. The C language notation FOO++ is used as a shorthand for
an operation that increments the register FOO. The arrow “~— ” represents data

flow. Operations within the ALU are represented by their algebraic equivalent.

Some operations are understood to happen every cycle UNLESS one of the in-
volved modules is explicitly directed to some other use. These assumed operations
are the single incrementation of the next addressed location, the subsequent reload-
ing of the current location from the next address bus, MO instruction fetch, and
command load from the MO output. More formalily:
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SD1 « B-SDO address generator feedback

B-SDO « SD1 + 1 next address is N + 1
MOVO + B-SDO MO fetches next instruction
SDO «— B-MDO MO supplies fetched instructions

Because of the delayed branch and call, it should be noted that although an
instruction indicates a transfer of control, that transfer does not take effect until
after the next two instructions are executed. The compiler worries about this; the
user should never see it.

Finally, we will often abbreviate the various instructions to a2 more easily read-
able form. Instead of specifying the prepare-to-call sequence (see above), we will use
the words Pushcall, Executecall, and Popcall to indicate these in an understandable
shorthand.

9.1. Addition of two literal values
We wish to add two literal values. These values are imbedded in the program.

This is an unnatural program to execute more than once, but it provides a good
example to start with:

(+23)

The stack would look like this

2 ; push the 2
23 ; push the 3
S ; pop and write the result.

A compiler might produce code such as:

20: [ VDO «— Immdata 2, Vpush 1]

21: [ VDO — Immdata 3, Vpush 1]

22: [ ADO +~ B-VDO, AD1 «— B-VD1, Add, Vpop 2]
23: [ VDO — B-ADO, Vpush 1]

which returns a 5 on top of the stack and erases the previous arguments, and
used 4 cycles. The actual compiler output for this (before optimization and default
field insertion) is:

(((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 2))

((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 3))

((COMMENT "Adding top two elements of VS in ALU")
(AVO B-VDO) (AVi B-VD1) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMTFIX) (AC3 COMBADD) (AC4 SHIFTO))
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((COMMENT "Now put result back on value stack")
(VVO B-ADO) (VCO SNORMAL) (VC1i SPOP1) (VC2 SWTOP)
(VC3 SPWRITE)))

Of course, this code fragment doesn’t do any good to anyone- it just trails off
without returning to anywhere. We could compile instead:

(defun z () (+ 2 3))

which could be compiled to:

20: [ VDO « Immdata 2, Vpush 1]

21: [ VDO «~ Immdata 3, Vpush 1]

22: [ ADO «— B-VDO, ADL « B-VD1, Add, Vpop 2]
23: [ VDO — B-ADO, Vpush 1]

24: [ saveresult ]

25: [ Returncall ]

The extra cycles at the end are needed to return to the caller. The compiler
generates (before optimization):

(((LOCATION Z)
(COMMENT "Source code:" (DEFUN Z () (+ 2 3))))

((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(cMI 2))

((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VCi SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 3))

((COMMENT "Adding top two elements of VS in ALU")
(AVO B-VDO) (AV1 B-VD1) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMTFIX) (AC3 COMBADD) (AC4 SHIFTO))

((COMMENT "Now put result back on value stack")

(VVO B-ADO) (VCO SNORMAL) (VCi SPOP1) (VC2 SWTOP)
(VC3 SPWRITE))

((COMMENT "Return to caller using RS data")

(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 2) (RESERVE SEQ VS RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (SVi B-RDO) (SV2 B-RDO)
(sco 1) (sc1 1) (sc2 0) (SC3 0))

((COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (VVO B-VDO) (VVi B-RD1)
(VCO SUBHEAD) (VCi SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(RCO SNORMAL) (RC1 SPOP2) (RC2 SWIDLE)

(RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")))

The ‘instructions’ which contain only comments and LOCATION fields will be
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optimized into other instructions, and the two instruction latency at the tail can be
optimized by overlapping. This translates to:

20: [ VDO «— Immdata 2, Vpush 1]

21: [ VDO «~ Immdata 3, Vpush 1]

22: [ ADO «~ B-VDO, AD1 « B-VD1, Add, Vpop 2]
23: [ VDO «— B-ADO, Vpush 1, Returncall ]

24: [ Saveresult ]

The current compiler and optimizer (with resource-combination disabled) to-
gether produced the following code:

(C((LOCATION Z)
(COMMENT "Source code:" (DEFUN Z () (+ 2 3)))
(COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 2))

((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 3))

((COMMENT "Adding top two elements of VS in ALU")
(AVO B-VDO) (AV1 B-VD1) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMTFIX) (AC3 COMBADD) (AC4 SHIFTO))

((COMMENT "Now put result back on value stack")

(VVO B-ADO) (VCO SNORMAL) (VC1 SPOP1) (VC2 SWTOP)
(VC3 SPWRITE)

(COMMENT "Return to caller using RS data")
(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 2) (RESERVE SEQ VS RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (SV1 B-RDO) (SV2 B-RDO)
(sco 1) (sci1 1) (sc2 0) (sc3 0))

((COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (VVO B-VDO) (VV1 B-RD1)
(VCO SUBHEAD) (VC1i SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(RCO SNORMAL) (RC1 SPOP2) (RC2 SWIDLE)

(RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")))

where it can be seen the return instruction is being fired off while the result is
still in the ALU. This particular case has saved us only one instruction (5 instead
of 6), but in longer codes the optimizer has more possible overlapping to work with,
especially when references to both the symbol table and the data memory occur near
each other.
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9.2. Addition of two variables

Of course, the case of adding two variables is pathological, as the compiler should
(or might) at least notice it was a constant. Much more reasonable is addition of
two variables. If we assume the variables are already on the stack:

which codes as:

. .<previous evaluation of arguments>

20: [ ADO « B-VDO, AD1 « B-VD1, Add ]
21: [ VDO « B-ADO, Vpush 1, Returncall ]
22: [ Saveresult ]

This code fragment by itself is only moderately interesting. Let us compile a
complete expression of the form:

(+ <local-arg> <global-var> )
More specifically, let us compile:
(defun £f1 (x) (+ x y))

This would compile to something like:

20: [ Vsubhead-read ]

21: [ VDO «~ B-VDO, Vpush 1 ]

22: [ M1 «— Immdata (hashloc of Y), M1Read ]
23: [ M2 « B-MD1, M2Read ]

24: [ VDO « B-MD1, Vpush 1 ]

25: [ ADO — B-VDO, AD1 — B-VD1, Add, Vpop 2 ]
26: [ VDO « B-ADO, Vpush 1 ]

27: [ Returncall ]

28: [ Saveresult ]

The actual code generated by the compiler and optimizer (without resource
merging) is:

(((LOCATION F1)
(COMMENT "Source code:" (DEFUN F1 (X) (+ X Y)))
(COMMENT "Getting a local value stacked on VS onto B-VDO")
(COMMENT "Address we want is RD1 + vvO - sidle + 1")
(vc1i 8) (VVi B-RD1) (VCO SUBHEAD) (VC2 SWIDLE)
(VC3 SPIDLE)
(COMMENT "Getting global value of symbol" Y)
(CMI 1032)
(COMMENT "Cycle M1 from CMI addr and get absolute addr")
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(M1VO B-CMI) (M1C MREAD))

((COMMENT "Now we push B-VDO back for local copy on VS")
(VVO B-VDO) (VV1 B-VDO) (VCO SNORMAL) (VCi SPUSH1)
(vc2 SWTOP) (VC3 SPWRITE))

((COMMENT "Take the pointer Mi gave us, put it on VS")
(VV0 B-MD1) (VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP)
(VC3 SPWRITE))

((COMMENT "Adding top two elements of VS in ALU")
(AVO B-VDO) (AV1 B-VD1) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMTFIX) (AC3 COMBADD) (AC4 SHIFTO))

((COMMENT "Now put result back on value stack")

(VV0 B-ADO) (VCO SNORMAL) (vci SPOP1) (VC2 SWTOP)
(VC3 SPWRITE)

(COMMENT "Return to caller using RS data")
(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 2) (RESERVE SEQ VS RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (SV1 B-RDO) (SV2 B-RDO)
(sco 1) (sc1 1) (sc2 0) (SC3 0))

((COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (VVO B-VDO) (VV1 B-RD1)
(VCO SUBHEAD) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(RCO SNORMAL) (RCi SPOP2) (RC2 SWIDLE)

(RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")))

We see that not only were we able to overlap the return with the stacking of the
final result, but we were able to overlap the fetches of the stack-based local variables
with the memory-resident dynamic variables.

The compiler can be told to allow optimizations of resources such as noticing
the two successive Vpushes (in the second and third instruction) could have been
combined into a single Vpush2. The compiler then generates the output stream:

(((LOCATION F1)
(COMMENT "Source code:" (DEFUN F1 (X) (+ X 1))
(COMMENT "Getting a local value stacked on VS onto B-VDO")
(COMMENT "Address we want is RD1 + vv0 - sidle + i)
(VC1 8) (VV1 B-RD1) (VCO SUBHEAD) (VC2 SWIDLE)
(Ve3 SPIDLE)
(COMMENT "Getting global value of symbol" Y)
(CMI 1024)
(COMMENT "Cycle M1 from CMI addr and get absolute addx")
(M1VO B-CMI) (M1iC MREAD))

((COMMENT "Now we push B-VDO back for local copy on vs")
(vvi B-VDO)
(COMMENT "Combining two vpush-1’s into a vpush-2")
(VCO SNORMAL) (VC1 SPUSH2) (VC2 SWBOTH)
(VC3 SPWRITE)
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(COMMENT "Take the pointer M1 gave us, put it on vs")
(VW0 B-MD1))

((COMMENT "Adding top two elements of VS in ALU")
(AVO B-VDO) (AVi B-VD1) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMTFIX) (AC3 COMBADD) (AC4 SHIFTO))

((COMMENT "Now put result back on value stack")

(VVO B-ADO) (VCO SNORMAL) (VC1 SPOP1) (VC2 SWTOP)
(VC3 SPWRITE)

(COMMENT "Return to caller using RS data")
(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 2) (RESERVE SEQ VS RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (SVi B-RDO) (SV2 B-RDO)
(sco 1) (sc1 1) (sc2 0) (sC3 0))

((COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (VVO B-VDO) (VV1 B-RD1)
(VCO SUBHEAD) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(RCO SNORMAL) (RC1 SPOP2) (RC2 SWIDLE)

(RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")))

which buys us another 15 % in speed at the expense of human readability.

9.3. Nested Routine Calls

The compiler generates correct code for nested subroutine calls. Fortunately,
LISP subroutine calls are always expressed as having the argument to a function
being another function evaluation. We can use our call/return stacks to good ad-
vantage here (this is their intended purpose). The compiler simply places arguments
on the value stack as needed and inserts executecalls when the argument list of a
function has been completed.

For an example, suppose we wish to do a sum-of-products. Further, let us
suppose that the arguments are mixed: some are literal, and some are symbols:

(+ (invoke 3 voodoo) (speak 23 skiddoo))

We will suppose that the functions ”invoke” and "speak” are presupplied (maybe
they do type-checking or work for integers, floats, and bignums interchangeably).
From the stack point of view, this function looks like:

+

+ || invoke

+ || invoke || 3

+ || invoke || 3 || voodo
+ || invoke || 3 || 99

+ | 297

+ || 297 || speak

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



+ || 297 || speak || 23

+ || 297 || speak || 23 || skiddoo
+ || 297 || 46

343

The code generated might look like:

50: [ Pushcall to "invoke"]

51: [ VDO — Immdata 3, Vpush 1 ]

52: [ M1DO « Immdata voodoo, MiRead ]
§3: [ M2DO + B-MD1, M2Read ]

54: [ VDO «~ B-MD2, Vpush 1 ]

55: [ Executecall ]

§6: [ latency NOP ]

57: [ Pushcall to "speak" ]

58: [ VDO « Immdata 23 ]

59: [ M1DO « Immdata skidoo, MiRead ]
60: [ M2DO « B-MD1, M2Read ]

61: [ VDO «— B-MD2, Vpush 1 ]

62: [ Executecall ]

63: [ latency NOP ]

64: [ ADO «~ B-VDO, AD1 « B-VD1, Add ]
65: [ VDO «— B-ADO, Vpush 1 ]

66: [ Returncall ]

67: [ Saveresult ]

The actual compiler/optimizer (no resource merger) output is:

((COMMENT "Preparing to call the function named " INVOKE)
(CMI 1040)
(COMMENT "Cycle M1 from CMI addr +1 offset and get absaddr")
(M1VO B-CMI) (M1v2 1) (M1C MREAD))

((COMMENT "Take the pointer Mi gave us, put it on PS with VSP")
(PVO B-MD1) (PV1 B-VSP) (PCO SNORMAL) (PC1 SPUSH2)
(PC2 SWBOTH) (PC3 SPWRITE)
(COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(cMI 3))

((COMMENT "Getting global value of symbol"™ VOODOO)
(CMI 1048)
(COMMENT "Cycle M1 from CMI addr and get absolute addr")
(M1VO B-CMI) (M1C MREAD)
(COMMENT "Execute a prepared call")
(COMMENT "No branch permitted - call latency 2")
(CRUSHMAX 1) (RESERVE SEQ) (RVO B-SDO) (RVi B-PD1)
(RCO SNORMAL) (RC1 SPUSH2) (RC2 SWBOTH)
(RC3 SPWRITE) (MOVO B-PDO) (MOC MREAD) (SVO B-MDO)
(SV1 B-PDO) (SV2 B-PDO) (SCO 1) (SCi 1) (SC2 0)
(sc3 0))
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((COMMENT "Take the pointer M1 gave us, put it on VS")
(VV0o B-MD1) (VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP)
(VC3 SPWRITE)

(COMMENT "No branch permitted - call latency 1")

(CRUSHMAX 1) (SCO SEQNEXT))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")

(COMMENT "Preparing to call the function named " SPEAK)

(CMI 1056)

(COMMENT "Cycle M1 from CMI addr +1 offset and get absaddr")
(M1VO B-CMI) (M1V2 1) (M1C MREAD))

((COMMENT "Take the pointer M1 gave us, put it on PS with VSP")
(PVO B-MD1) (PV1 B-VSP) (PCO SNORMAL) (PCi SPUSH2)
(PC2 SWBOTH) (PC3 SPWRITE)

(COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 23))

((COMMENT "Getting global value of symbol" SKIDDOO)
(CMI 1064)

(COMMENT "Cycle M1 from CMI addr and get absolute addr")
(M1VO B-CMI) (M1C MREAD)

(COMMENT "Execute a prepared call")

(COMMENT "No branch permitted - call latency 2")
(CRUSHMAX 1) (RESERVE SEQ) (RVO B-SDO) (RVi B-PD1)

(RCO SNORMAL) (RC1 SPUSH2) (RC2 SWBOTH)

(RC3 SPWRITE) (MOVO B-PDO) (MOC MREAD) (SVO B-MDO)

(SV1 B-PDO) (SV2 B-PDO) (SCO 1) (ScC1i 1) (SC2 0)

(sc3 0))

((COMMENT "Take the pointer M1 gave us, put it on VS")
(VVO B-MD1) (VCO SNORMAL) (VC1 SPUSH1) (VC2 SWIOP)
(VC3 SPWRITE)

(COMMENT "No branch permitted - call latency 1")
(CRUSHMAX 1) (SCO SEQNEXT))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")
(COMMENT "Adding top two elements of VS in ALU")
(AVO B-VDO) (AV1i B-VD1i) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMTFIX) (AC3 COMBADD) (AC4 SHIFTO))

((COMMENT "Now put result back on value stack")

(VVO B-ADO) (VCO SNORMAL) (VC1 SPOP1) (VC2 SWTOP)
(VCe3 SPWRITE)))

Ten cycles are used, not counting time spent in the functions INVOKE and
SPEAK. Each function will take at least 3 cycles (300 nanoseconds) so the minimum
timing for this program is 1.6 microseconds- quite a reasonable showing. Compared
to a VAX, this is blazing speed; a VAX takes about twice as long just to execute
a subroutine call instruction, not even counting the argument transfer or return
instruction.
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9.4. Recursive Functions

In many applications, a simple recursive function is much easier to program
than the iterative function. This design supports iteration very nicely, thanks to the
pending/return stack mechanism.

At the risk of being conventional, we shall use the factorial function as an
example. Factorial is defined in LISP as:

(defun factorial (n)
(cond
((equal n 1) 1)
( t (times n (factorial (subl n))))))

In English, this function definition says that factorial of x is 1 if x is one, else
it is x times factorial of x minus 1. To see what the stack looks like during a
factorial, let us observe factorial of two, assuming the compiler “open-codes” the
cond function. Special attention must be paid to the conditional function in any
case, because it does NOT get evaluated arguments- cond may or may not evaluate
it’s own arguments.

factorial |2

factorial [|2 |jequal

factorial ||2 |lequal |2

factorial ||2 [lequal [j2 |1

factorial ||2 ||lnil

factorial |[2 ||t

factorial ||2 ||times

factorial [|2 |[times [|2

factorial ||2 |times ||2 [[factorial

factorial ||2 [[times |2 [[factorial ||subil
factorial ||2 [[times |2 |[factorial [[subi |2
factorial [|2 |times [|2 [[factorial |1
factorial [|2 |[times [|2 [[factorial ||1 [jequal
factorial ||2 [[times |2 |[factorial ||1 |lequal [j1
factorial ||2 |[times [[2 |[factorial ||1 |equal |1 |1
factorial [|2 |[times [|2 [|factorial [j1 ||T
factorial ||2 [[times |2 |1

factorial ||2 ||2

2

Because the factorial function is complex, the number of elements on the stack
when the factorial function has completed may not be correct; exactly as many
items should be on the stack as when “factorial” was invoked. We can insure this
by using the Returncall instruction, which reloads the value stack pointer from
the stored subhead pointer. The reloading occurs during the current instruction
phase, and we therefore have two instructions to use this local “abberation” to our
advantage in properly returning a value, no matter how badly the stack may have
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been mismanaged. With a debugged compiler this situation should not occur, but
“firewalls” in the code are always good practice (especially in handmade code).

Assuming that the functions “equal”, “times” and “subl” are available for call-
ing, the compiler might generate the following code:

30: [ Build-fake-return-frame]

31: [ Pushcall to "equal" ]

32: [ Vsubhead-read 1 ]

33: [ VDO « B-VDO ]

34: [ VDO ~ Immdata 1, Vpush 1 ]
35: [ Executecall ]

36: [ latency NOP ]

37: [ Branch-on-NIL to "Futther" ]
38: [ latency NOP ]

39: [ latency NOP ]

40: [ VDO «— Immdata 1, Voverwrite-top ]
41: [ Fakereturn ]

42: [ latency NOP ]

43: FURTHER: [ Pushcall to "times" ]
44: [ Vsubhead-read 1 ]

45: [ VDO +« B-VDO, Vpush 1 ]

46: [ Pushcall to "factorial" ]
47: [ Pushczll to "subl" ]

48: [ Vsubhead-read 1 ]

49: [ VDO «~ B-VDO ]

50: [ Executecall ]

51: [ latemcy NOP ]

52: [ Executecall ]

53: [ latency NOP ]

54: FAKERETURN: [ Saveresult ]

55: [ Returncall ]

56: [ latency NOP ]

A number of optimizations can be done on this program. The current compiler
can inline-code such primitives as subl (Common LISP 1-), as well as times (Com-
mon LISP *). If we also take EQ to be adequate (two equal fixnums are gauranteed
to be EQ), we get the following program from the compiler/optimizer (no resource
merger): ~

(((LOCATION FACT)
(COMMENT "Source code:"
(DEFUN FACT (N)
(conD ((EQ N 1) 1)
(T (x N (FACT (- N 1))
(COMMENT "Creating a fake return frame")
(CMI COND-EXIT-3753) (RVO B-CMI) (RV1 B-RD1)
(RCO SNORMAL) (RC1 SPUSH2) (RC2 SWBOTH)
(RC3 SPWRITE)) .
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((COMMENT "Getting a local value stacked on VS onto B-VDO")
(COMMENT "Address we want is RD1 + vvO - sidle + 1")
(vc1 8) (VVi B-RD1) (VCO SUBHEAD) (VC2 SWIDLE)

(vec3 SPIDLE))

((COMMENT "Now we push B-VDO back for local copy on VS")
(VVo B-VDO) (VVi B-VDO) (VCO SNORMAL) (VCi SPUSH1)

(vc2 SWTOP) (VC3 SPWRITE))

((COMMENT "Pushing a CMI value onto vs") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 1))

((COMMENT "Checking VS and VS-1 for EQness")

(COMMENT "No branch permitted - skip latency 3")
(RESERVE SEQ ALU VS) (CRUSHMAX 3) (AVO B-VDO)
(AV1 B-VD1) (ACO BOOLXOR) (SVi B-SDO) (Sv2 B-SDO)
(SCO SEQNEXT) (SC1 SEQSKIP) (SC2 SEQMASKZERO))

((COMMENT "We pop the VS, and overwrite a T omto it. ")
(COMMENT "No branch permitted - skip latency 2")
(RESERVE SEQ ALU VS) (CRUSHMAX 2) (VVO B-CMI)

(VCO SNORMAL) (VC1 SPOP1) (VC2 SWTOP) (VC3 SPWRITE)
(cMI 1000) (cVi 1) (CV2 1))

((COMMENT "Here we sit and wait. Nothing to do.")
(COMMENT "No branch permitted - skip latency 1")
(RESERVE SEQ ALU VS) (CRUSHMAX 1))

((COMMENT "This instruction may or may not be executed.")
(COMMENT "No branch permitted, skip latency 0 7?7 ")
(COMMENT "It’s here we maybe push a NIL")

(RESERVE SEQ ALU VS) (CRUSHMAX 1) (CMI 0) (cvi 1)
(cv2 0) (VVo B-CMI) (VCO SNORMAL) (VCi SIDLE)
(VC2 SWTOP) (V€3 SPIDLE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")
(COMMENT "Branch-if-null to " COND-NEXT-3754)

(CMI COND-NEXT-3754)

(COMMENT "No branch permitted - cond branch latency 3")
(CRUSEMAX 3) (RESERVE SEQ) (AVO B-VDO) (ACO BOOLA)

(SV1 B-SDO) (SV2 B-CMI) (SCO SEQNEXT) (SC1 SEQSAME)
(SC2 SEQMASKNIL))

((COMMENT "No branch permitted - cond branch latency 2")
(CRUSHMAX 2)

(COMMENT "if branching, MO sees new address this cycle")
(SCO SEQNEXT))

((COMMENT "No branch permitted - cond branch latency i)
(COMMENT "if branching, MO returned new instr. stream to seq")
(CRUSHMAX 1) (SCO SEQNEXT))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")
(COMMENT "Popping VS once") (VCO SNORMAL)
(vei SPOP1) (VC2 SWIDLE) (VC3 SPWRITE)
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(COMMENT "Return to faked caller using RS data")
(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 1) (RESERVE SEQ RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (sVi B-RDO) (SV2 B-RDO)
(sco 1) (sc1 1) (sc2 0) (sC3 0))

((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1i SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 1)

(COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (RCO SNORMAL) (RC1 SPOP2)
(RC2 SWIDLE) (RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration."))

((LOCATION COND-NEXT-3754)

(COMMENT "Source code:"
"Start of the next clause here")
(COMMENT "Popping VS once") (VCO SNORMAL)
(VC1 SPOP1) (VC2 SWIDLE) (VC3 SPWRITE)
(COMMENT "Preparing to call the function named "
FACT)
(CMI 1016)
(COMMENT "Cycle M1 from CMI addr+l and get absolute addr")
(M1VO B-CMI) (M1V2 1) (M1C MREAD))

((COMMENT "Getting a local value stacked on VS onto B-VDO")
(COMMENT "Address we want is RD1 + vvO - sidle + i)
(vcl 8) (VVi B-RD1) (VCO SUBHEAD) (VC2 SWIDLE)

(VC3 SPIDLE))

((COMMENT "Now we push B-VDO back for local copy on VS")
(VVO B-VDO) (VV1 B-VDO) (VCO SNORMAL) (VC1 SPUSH1)

(VC2 SWTOP) (VC3 SPWRITE))

((COMMENT "Take the pointer M1 gave us, put it on PS with VsP")
(PVo B-MD1) (PV1 B-VSP) (PCO SNORMAL) (PC1 SPUSH2)

(PC2 SWBOTH) (PC3 SPWRITE)

(COMMENT "Getting a local value stacked on VS onto B-VD0*;
(COMMENT "Address we want is RD1 + vvO - sidle + 1")

(vci 8) (vvi B-RD1) (VCO SUBHEAD) (VC2 SWIDLE)

(vc3 SPIDLE))

((COMMENT "Now we push B-VDO back for local copy on VS")
(Vvo B-YDO) (Vvi B-VDO) (VCO SNORMAL) (VC1 SPUSH1)

(VC2 SWTOP) (VC3 SPWRITE))

((COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VCi SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 1))

((COMMENT "Subtract top two elements of VS in ALU")

(AVO B-VDO) (AVi B~VD1) (ACO BOOLB) (AC1 SELAVO)
(AC2 FMIFIX) (AC3 COMBSUBTRACT) (AC4 SHIFTO)
(COMMENT "Execute a prepared call")

(COMMENT "No branch permitted - call latency 2")
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(CRUSHMAX 1) (RESERVE SEQ) (RVO B-SDO) (RVi B-PD1)

(RCO SNORMAL) (RC1 SPUSH2) (RC2 SWBOTH)

(RC3 SPWRITE) (MOVO B-PDO) (MOC MREAD) (SVO B-MDO)
(Sv1 B-PDO) (SV2 B-PDO) (SCO 1) (SC1 1) (SC2 0)
(sc3 0))

((COMMENT "Now put result back on value stack")

(VVO B-ADO) (VCO SNORMAL) (VC1 SPOP1) (VC2 SWTOP)
(VC3 SPWRITE)

(COMMENT "No branch permitted - call latency 1")
(CRUSHMAX 1) (SCO SEQNEXT))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")
(COMMENT "Multiplying top two elements of VS in ALU")
(AVO B-VDO) (AVi B-VD1) (ACO BOOLB) (AC1 SELAVO)

(AC2 FMTFIX) (AC3 COMBMULTIPLY) (AC4 SHIFTO)

(COMMENT "Return to faked caller using RS data")
(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 1) (RESERVE SEQ RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (SV1 B-RDO) (SV2 B-RDO)

(sco 1) (sc1i 1) (sc2 0) (sc3 0))

((COMMENT "Now put result back on value stack")

(VVO B-ADO) (VCO SNORMAL) (VC1 SPOP1) (VC2 SWTOP)
(VC3 SPWRITE)

(COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (RCO SNORMAL) (RCi SPOP2)
(RC2 SWIDLE) (RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")
(COMMENT "Pushing a CMI value onto VS") (VVO B-CMI)
(VCO SNORMAL) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(CMI 1024)

(COMMENT "Popping a fake return frame off of RS")
(RCO SNORMAL) (RC1 SPOP2) (RC2 SWIDLE)

(RC3 SPWRITE))

((LOCATION COND-EXIT-3753)

(COMMENT "Source code:" "Where the cond exits")
(COMMENT "Return to caller using RS data")
(COMMENT "No branch permitted - return latency 2")
(CRUSHMAX 2) (RESERVE SEQ VS RS) (MOVO B-RDO)

(MOC MREAD) (SVO B-MDO) (SV1 B-RDO) (SV2 B-RDO)
(sco 1) (sc1 1) (sc2 0) (sc3 0))

((COMMENT "No branch permitted - return latency 1")
(CRUSHMAX 1) (SCO SEQNEXT) (VVO B-VDO) (VV1 B-RD1)
(VCO SUBHEAD) (VC1 SPUSH1) (VC2 SWTOP) (VC3 SPWRITE)
(RCO SNORMAL) (RC1 SPOP2) (RC2 SWIDLE)

(RC3 SPWRITE))

((LOCATION ANONYMOUS)

(COMMENT "labels prevent statement migration.")))
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If we enable resource merging in the compiler, the resulting program becomes
two instructions faster- about 10 % faster.

9.5 Parallel code execution

For an example of parallel code execution, we shall program a simple Al program;
a chess playing program using a parallel searching algorithm. To make the program
parallelism more easily seen by the reader, we will not use any speedups such as
alpha-beta pruning. The “uninteresting” parts of the program will not be described
here; we will assume that the static game evaluator and the plausible move generator
are already written.

The algorithm used is described recursively. The static game evaluator func-
tion “points” gives an evaluation of the current board statically, from the point
of view of the white player, without doing any look-ahead. The plausible move
generator “goodmoves” generates a variable-length list of good moves for the white
player, based upon some board configuration. The “changesides” function creates
a board description in which white and black have exchanged pieces (although the
configuration generated often cannot appear in a real game, the exchanged board
is used by the static evaluator and the plausible move generator). “Board-after-
move” returns a board and a move where the move has been made to the board.
“Bestmove” takes a list of moves and their associated point values, and returns the
move with the highest point value.

Of course, the static evaluator and move generator, and move operator could
have been written to accept a second argument “whose-move” but that would un-
necessarily complicate the program. We need a recursive counter to tell the program
when to stop exploring the tree any deeper. This counter counts game ply (a ply is
one move by either player, sometimes called a half-turn).

For a more detailed description of inter (as opposed to intreprocessor paral-
lelism), the reader is referred to R. Shane’s thesis (in progress).

The LISP code for the interesting part of this program would look something

like:
(defun goodmove (board) .................. )
(defun points (board) ................eens )
(defun changesides (board) ............... )
(defun board-after-move (board move) ..... )

; we can use changesides to get the
; opponent’s best move, as:
(defun black-best-move (board ply)
(white-best-move (changesides (board ply))))
: now the recursive function for exploring
; the game move tree
(defun white-best-move (board ply)
(cond

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



((equal ply 1)
(best (mapcar
(getd ’points)
(goodmoves board))))
(t (best (mapcar
(getd ’points)

(goodmoves
(board-after-move
board
(black-best-move
board
(1- pIYNINN)
(defun best (moves-and-points) ; get move part of
(car (bestmove (moves-and-points) ; best pair
(defun bettermove (mpi mp2)
(cond
((greaterp
(car mp1)
(car mp2)) mpil)
(t mp2)))
(defun bestmove (moves-and-points)
(cond
((null (cdr moves-and-points))
(car moves-and-points)) ; return move
¢
(bettermove

(car moves-and-points)
(bestmove (cdr moves-and-points))))))

The interesting part of the program is the mapcar in “whites-best-move”. On a
conventional processor, the implied iterative path is used, but since we are dealing

with a multiprocessor, we may take advantage of any unused processor and speed
our execution.

...< previous program code >

< the stack state currently: >

< T is a pointer to the reserved result cell>
..< T-1 is a pointer to the data ("goodmoves") >

< PS has a pointer to the "points" function >

< and the subhead pointer points to T-2 >

100: [ SeqPRI «— ::200, SeqSEC — :SCO, SeqMASK « T-OFVL 1

101: [ ... ]

102: [ ... ]

103: [ ExecuteCall ] ; Task-OverFlow true- too many tasks
104:

...... < other code goes here to run function locally>
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...< now the parallel mapcar code >

200:
201:
202:
203:
204:
205:
206:
207:
208:
209:
210:

[ PushLocalVar GOODMOVES]
[ CDR VTOP ]

[ PushCall CONS ]

[ PushImmed NIL ]

[ ExecuteCall ]

] ;Now we have a pointer to a free coms cell...

[..
[ NetTaskOut, PopPending2 ]
[ PushCall POINTS ]

[ PushLocalVar GOODMOVES ]
[ CAR VTOP ]

[ ExecuteCall ]

...<and we go on to execute "points" on the car of >
...<the data, just as if we were using a single proc. >

We should note that the compiler was aware that “points” was an applicative
function, and could be executed in parallel. Of course, some processor must “watch”
for completion of the mapcar; this task would normally be allotted to the outside
function. Code to continue this watch is not shown here, but a simple walking down
the list of results, waiting for each result word to be written (and thereby altered
from the flag “empty” value supplied by the allocate-cons function) is sufficient.

More complex schemes with other advantages are possible.
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Chapter 10
Tests of the DIS architecture

To determine just how good the DIS architecture is for LISP execution, a series
of benchmark programs was run on the DIS simulator, and on several real computers.
The benchmark suite is a combination of problems from the Gabriel report [Gabriel
1984] and several additional problems to explore parts of LISP that I felt were not
well exercised by Gabriel.

The benchmark suite was actually run on the DIS simulator in cases where the
program was expected to complete in a reasonable time. Because the simulator is so
slow (about 200 DIS instructions/hour when full statistics are generated), some pro-
grams could not be run. Instead, path lengths through the compiled and optimized
programs were evaluated by hand. Path repetition counts (from the Gabriel report)
were used to calculate the time to evaluate the function. If it was anticipated that
it would take more than a week of simulation time, the program was not run on the
simulator.

The other machines which ran the benchmark suite were a Symbolics 3670 with
the optional instruction prefetch unit, a Texas Instruments Explorer (courtesy
Texas Instruments), an Al VAXstation (courtesy Digital Equipment Corp), and
a Cray-1 (courtesy RPI Plasma Dynamics Laboratory and Lawrence Livermore
National Laboratory).

First we will describe the benchmarked machines, then the conditions of the
benchmark. Finally, we will describe the results of the benchmarks.

10.1 Benchmarked Machine Implementations

The Cray-1 uses the fastest technology of these four systems, being built exclu-
sively of ECL. The Cray-1 has a base 12.5 nanosecond cycle time. There are no MSI
or LSI parts in a Cray-1, all functions being implemented in SSI gates. The Cray-1
is a three-quarter arc of a cylinder about 6 1/2 feet tall and 5 feet in diameter (not
counting power supplies in the base). The particular Cray-1 tested was equipped
with 4 megawords (32 megabytes) of memory.

The Symbolics 3670 is implemented in a mix of TTL and ECL, with some of
the circuitry in custom MSI gate arrays. The 3670 processor (without memory) has
seven boards in it, each board being about 14” by 24”.

The TI Explorer is similar to the MIT CADR machines (also the predicessor of
the Symbolics 3600 series). The Explorer uses a large number of custom gate-array
chips to make it possible to place the entire processor on one 14 x 24” board.

The AI VAXstation is an implementation of most of the DEC VAX architecture
on a single chip (in CMOS). A second chip is the floating point unit (unused by the
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benchmarks). Rarely used VAX instructions are implemented by software emulation.
The VAXstation CPU card is about 6” by 9”.

10.1.1. DIS Machine Simulator Assumptions

Because the DIS machine tested was only a simulation and not actual hardware,
it is reasonable to discuss what assumptions are embodied in the simulator.

The simulator assumed a single DIS processor. The DIS processor was a very
small machine, with only 1000 words of memory in each memory unit (MO, M1, and
M2), and only 2000 words of memory in each stack unit (value, pending, return, and
binding). All memory and stack units had cache disabled.

Like the Symbolics and the TT Explorer, the DIS machine did not have garbage
collection enabled. Like the Symbolics and Explorer, if consing memory became
exhausted, the DIS system would have crashed. This is perhaps unreasonable, but
most Symbolics and TT users run their machines this way anyway.

The DIS simulator times assumed a 20 nS crossbar and an 80 nS functional unit
cycle time, for an overall cycle time of 100 nanoseconds (and allowing functional
units to have an extra 20 nanoseconds of internal use time overlapping crossbar
transfer time. Because the compiler doesn’t generate any instructions that need
cycle-stretching (like fetch-and-add) on the benchmark set, taking 100 nanoseconds
as the machine cycle time is a worst-case estimate. The DIS machine might be able
to cycle faster on some of the instructions in the benchmark, but we will ignore this
speedup.

10.2. Testing Environment

The Symbolics 3670 ran Release 7 of ZetaLISP, the TI Explorer ran Version
1 of the Explorer operating system, the Al VAXstation ran Version 4.4 of VMS
and Version V2.0 VAX Common LISP, and the Cray ran a LLNL-modified Cray-
optimized version of PSL, version 3.2. The DIS compiler generated code for the
DIS simulation.

The Cray PSL did not support the let special form correctly (it appears in
the manual but the PSL system did not recognize it). Other than that, very little
trouble was encountered in moving the benchmarks from one machine to another.
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10.2.1. Garbage Collection Time Not Included

On the TI Explorer, Symbolics, and DIS machine, garbage collection was turned
off. The VAXstation was commanded to notify the console whenever a garbage col-
lection was invoked. It was possible to run the VAX benchmarks without encoun-
tering a garbage collection if the LISP environment was mostly empty when the
benchmark was started. The Cray PSL system did need to do garbage collections,
but since the PSL system automatically tallies the time spent in garbage collection,
this time was subtracted out from the times shown below.

10.2.2. Paging and I/O Time Minimized but Included

Both the Symbolics and the TI Explorer had sufficient physical memory to
contain the entire benchmark. The VAXstation LISP was configured with a 1.5
megabyte user area, and hence could also run an entire benchmark without paging.
The Cray was being shared by several hundred other users, so it cannot be deter-
mined to what extent the Cray swapped in and out due to other user’s needs for
memory (nor is it likely that a Cray will be available to run in single-user mode).

The TI Explorer and Symbolics 3670 are single-user machines and hence did
not have any significant competing processes. As no disk I/O was observed (via
the run-bars) during the benchmarks, it is unlikely that any network server process
interrupts nor virtual memory page faults were encountered during the benchmark
runs.

The AI VAXstation was also run in single-user mode. The per-process account-
ing and realtime monitors showed that the Common LISP system did not page
during the benchmarks.

The DIS machine, even in the restricted configuration described above, had
sufficient memory to run the benchmarks without paging.

10.2.3. Runtime Data Type-Checking Disabled

Type-checking of data was disabled on all machines, if possible. The TI Ex-
plorer and Symbolics systems support type-checking in the hardware and microcode.
The VAX LISP, Cray PSL, and DIS compilers were both set to generate non-type-
checking (safety 0) code.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10.2.4. Enabling of Compiler Optimizations

The TI Explorer, Symbolics, and DIS systems always operate at full optimiza-
tion, so no changes were made. VAX LISP was set for maximum optimization by
speed:3, safety:0, PSL by *R2I, *NOLINKE and *ORD switch settings. This enabled
conversion of tail-recursion to iterative branching on both the VAX and the Cray.

In summary:
Page-faulting was suppressed to the greatest extent possible.

Remaining page-fault time is included
Run-time data type-checking was turned off (if possible)
Maximum compiler optimization was turned on

Garbage collection time is subtracted out

10.3. The Benchmark Suite

The benchmark suite is composed of six different recursive LISP functions. Four
are taken from the Gabriel report, and two are functions I added to explore deeper
recursion and consings other than in the normal style.

The four Gabriel benchmarks are TAK, STAK, TAKL, and RDIV. TAK, STAK,
and TAKL are based on the Takeuchi function, modified by John McCarthy.

Here are the definitions of the Gabriel-Takeuchi benchmarks. This is the actual
text used, including line-feeds at the appropriate places. The only modifications
done were for the Cray PSL system; subtract one is not supported directly. Instead,
the form (plus x -1) is used.

; TAK - from Gabriel report
: TAK - invoke with (tak 18 12 6)
(defun tak (x y z)

(cond

((not (< y x)) 2)

(t

(tak

(tak (1- x) y 2z)
(tak (1- y) z x)
(tak (1- z) x y¥))))

; TAKL - from Gabriel report
. For TAKL, x=list of 18, y=list of 12, z=list of 6
(defun takl (x y z)
(cond
((not (shorterp y x))
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z)
(t
(takl
(takl (cdr x) y z)
(takl (cdr y) z x)
(takl (cdr z) x Y))))

STAK - from Gabriel Report
(stak 18 12 6)
defun stak ()
(cond
((not (< y x))2)
(t
(let ((x (let ((x (1- x))
yy)
(z z))
(stak)))
(y (Qet ((x (1- ¥))
(y 2)
(z x))
(stak)))
(z (Qet ((x (1- z))
(y x)
(z )
(stak))))
(stak)))))

P~ e ws v we

3

All three of these Takeuchi functions recurse 63,609 times when invoked with the
given arguments. Of that, 47,706 invocations of 1- or cdr will be done, meaning that
in 15,902 cases, the “long” path is taken. The “short” path is taken 47,707 times.
From this and the length of the compiled code paths it is possible to calculate how
long the DIS architecture would take on the TAK family of functions.

The other Gabriel benchmark is the recursive division of a list into two lists.
This is essentially a test of consing in the “forward” order (again, this is the exact
text used):

; RDIV2 (page 135 gabriel)
; invoke on a list of 200 elements.
(defun rdiv2 (x)
(cond
((oull x) nil)
(¢t (cons (car 1) (zdiv2 (cdr (cdr x)))))))
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This benchmark tests the ability of a system to cons in the normal way, with
little stack manipulation required.

Because the Gabriel benchmarks lacked tests of deep recursion (with the at-
tendant chances for cache flushing), and also lacked routines which would require
a large amount of stack manipulation, I added two benchmarks of my own. These
benchmarks are the factorial function, and a modification of rdiv2 to make it cons
in an “un-normal” way. This new function, nrev, forms a list by producing inverted
cons cells. This un-normal consing requires the LISP system to manipulate the stack
in nonstandard (but legitimate) ways.

The two new benchmarks are defined as follows (Cray PSL used (plus n -1)
instead of (- n 1), otherwise this is the exact text used):

.
’

: Factorial
(defun fact (n)
(cond
((eqn 1) 1)
(t

(* n (fact (- n 1))))))
H NREV
H invoke on a list of 200 elements.
(defun nrev (x)
(cond
((null (cdr x))
(x))
(¢
(cons
(nrev (cdr x))
(car x)))))

10.4. Benchmark Results

The statistics reported below are average times needed to execute one pass
through the function, when running the problem as stated above. For example, we
know tak is executed 63,609 times, with 47,707 of the repetitions through the “fast”
path. The numbers reported below are the weighted averages of the path lengths
for DIS evaluation, and the measured CPU time divided by number of invocations
for the other machines.

My original intention was to use the measured values published by Gabriel as
a starting point. However, I was unable to duplicate many of his results. My
errors varied from a factor of ten (Cray-1 running tak) to very good correspondence
(3600 + IFU machine family running tak, takl, and stak, Cray-1 running rdiv(.6
sec vs .74 sec)). In order to provide consistent timings, I have used my measured
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values exclusively. If they have errors, at least the errors will be consistent with
the calculated values for the DIS machine and the ratios of the performance values
should remain fairly constant.

10.4.1. Method of Obtaining Timings

Each machine was “trusted” to the extent of believing the internal system clock.
This has the advantage that the reflex speed of the observer is not a factor in
obtaining timings. The disadvantage is that on some machines, the system clock
“charges” the user for time spent in the operating system on the user’s behalf (paging,
swapping, etc.). The Cray-1 possibly charged swap time to the LISP process, but if
so, the swapping costs were very consistent.

In general, I ran each benchmark three times, and observed the results. If the
timings came within 5 % of each other (after subtracting GC time), I accepted the
results as valid. The repeatability of the timings was on the order of 2 % or better.
In only one case did this not occur- it was due to a typographical error in my input.
When I reran that set of benchmarks, the timings came out within the 2 % boundary.
The timings of the TI Explorer and Symbolics were extremely repeatable, the jitter
being a few milliseconds (or 1/60 second counts) in a 21-second run.

10.4.2. Measured Results

The DIS architecture showed strongly superior performance compared to all of
the other machines tested, including the Cray-1. We will assume the cycle time of
the DIS memories is 100 nanoseconds. Overall speed of the DIS design were on the
order of twice to three times the Cray-1, running compiled LISP. The other machines
(3670, Explorer, VAX) were usually orders of magnitude slower than the DIS and
the Cray.

Each bar graph below indicates relative performance; so a longer bar indicates
a faster system. The number of microseconds at the end of each bar indicates how
long (in microseconds) it took that particular system to execute one pass of that
particular benchmark.

FACTORIAL
Relative Performance

DIS (2.0 pS/pass)
wemmmees  Cray-1 (15 pS/pass)

mmem=  Symbolics 3670 (21 uS/pass)

== T Explorer (38 uS/pass)

= VAXstation (140 pS/pass)

For the factorial function, as long as the LISP bignum math packages were not
invoked, the speed leader was the DIS machine, at 2.0 uS. The Cray-1 turned in
various times (depending on depth of recursion causing cache flushes) of 15 S all
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the way up to 41 uS. The Symbolics 3670 was better than half the speed of the best
Cray speed at 21 uS. The TI Explorer did 38 1S, and the AT VAXstation brought up
the rear at 140 uS. This benchmark shows the best timings of DIS versus Cray, with
DIS being over twenty times faster for deep recursion and lots of arithmetic pipeline
flushes. Even in the worst case for fact, the DIS architecture did better than seven
times better than the Cray.

RDIV
Relative Performance

DIS (3.8 uS/pass)

Cray-1 (6.3 uS/pass)
me=  TI Explorer (68 uS/pass)

== Symbolics 3670 (83 1S/pass)

== VAXstation (87 uS/pass)

Rdiv (normal consing) showed timings of 3.8 uS for the DIS, 6.3 xS for the
Cray, the Explorer at 68 uS, the 3670 at 83 uS, and the VAXstation at 87 uS. This
benchmark is the best showing of the Cray against DIS, with the DIS machine only
1.65 times faster.

NREV
Relative Performance

DIS (3.3 uS/pass)

Cray-1 (9.6 uS/pass)
==  Symbolics 3670 (83 uS/pass)

== TI Explorer (87 uS/pass)

= VAXstation (175 uS/pass)

Nrev (which does “un-normal” consing) turned in times of 3.3 uS. for the DIS,
9.6 uS for the Cray, 83 uS for the 3670, 87 uS for the Explorer, and 175 xS for the
VAXstation. It seems that the un-normal consing perturbed Cray PSL and VAX
Common LISP far more than the stack-based DIS, 3600, and explorer.

TAK
Relative Performance

DIS (2.4 uS/pass)
em—— Symbolics 3670 (10.2 uS/pass)

wemmmmsesmmmes  Cray-1 (13 pS/pass)

wemmw T Explorer (27 pS/pass)

== VAXstation (74 uS/pass)

Tak, which does fixnum math, showed 2.4 S for the DIS, 10.2 4S for the 3670, 13
¢S for the Cray, 27 uS for the Explorer, and 74 uS for the VAXstation. I expect this
poor showing for the Cray was due to repeated flushing of the arithmetic pipeline.
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TAKL
Relative Performance

DIS (8.2 uS/pass)
——— Cray-1 (23 uS /pa.ss)

wem= T Explorer (93 uS/pass)

wme=  Symbolics 3670 (117 uS/pass)

= VAXstation (630 uS/pass)

Takl, which uses cdr instead of arithmetic to subtract, did not parallel tak for
timings. The actual values found were 8.2 uS for the DIS machine, 23 uS for the
Cray, 93 1S for the Explorer, 117 S for the 3670, and 630 uS for the VAXstation.
This poor showing for the 3670 is most likely due to a combination of cache flushes
(due to the repeated calls to shorterp and length),and the loss of “short-constant”
usage in going from fixnums to lists.

STAK
Relative Performance

DIS (3.4 pS/pass)
=== Symbolics 3670 (43 uS/pass)

== TI Explorer (82 uS/pass)

= VAXstation (157 uS/pass)

Stak, which uses dynamically scoped global variables instead of Common LISP
style lexical and lambda-bound variables, Timings found were 3.4 uS for the DIS
architecture, 43 xS for the 3670, 82 uS for the Explorer, and 157 S for the VAXs-
tation. The Cray could not run this benchmark due to a system software problem
with dynamically scoped variables in Cray PSL.
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Chapter 11
Conclusions and Further Research

This thesis shows that it is possible to execute LISP in a multiple functional
unit, horizontal microcode environment, at very high speeds. To achieve these high
speeds, the applicative nature of LISP is used to automatically find parallelism and
map that parallelism onto a machine model with multiple functional units.

The high speeds are achieveable for a wide class of functions, both numeric
functions, such as recursive functions, and non-numeric functions, such as artificial
intelligence problems. This flexibility is due to the use of LISP as a base language.
Within 2 function, several LISP operations can be performed in parallel (such as
binding lookup, preparation to call, return from call). In certain cases, such as MAP
functions, we can also perform large numbers of function invocations in parallel,
provided enough physical processors are available.

This work also confirms the findings of Warren, Ellis, and Fisher concerning the
effectiveness of multiple stack processors [Warren 1983] and wide instruction words
[Ellis 1986, [Fisher 1981], [Fisher 1984], [Fisher 1987].

11.1. Specific Goals Achieved

A uniprocessor simulation at the module level has been developed. This module
Jevel simulator is capable of executing the full single-processor instruction set (within
the memory limits of the simulation host hardware). This simulator is written in
LISP.

System support software, such as a LISP compiler, assembly-language optimizer,
assembler, and loader have been developed and tested. This software is also written
in LISP and supports a useful subset of Common LISP.

The results of the benchmark suite indicate that the performance of single pro-
cessor DIS machine, constructed of commercially available components, to be on the
order of ten to fifteen times that of other architectures designed for LISP, and on the
order of twice or more the speed of a Cray-1 running LISP. A great portion of this
speed increase is due to the multiple internal paths which can be used to execute
various parts of a function in parallel. The compiler and optimizer take advantage
of these parallel paths.
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11.1.1. What Features of DIS Cause the Speedup?

The single most important factor the DIS machine’s performance is the high
internal bandwidth of the DIS architecture. This bandwidth is used at several levels,
both by the model the compiler uses for the system, and by the optimizer. Without
the high bandwidth and flexibility of the crossbar, there would be little the compiler
or the optimizer could do to make LISP run more quickly.

To cite examples, one obvious usage of the high bandwidth is the use of multiple
memories. For example, MO always contains instructions, but because nothing but
instructions is stored in MO, we never have to wait for an instruction because data
motion needs the memory. This avoids the so-called “von Neumann bottleneck”
(having only a single data path from CPU to memory).

Another example of the use of the flexible high bandwidth crossbar is the way
that function call and return are overlapped with argument stacking/result calcula-
tion. By prestoring a call frame on the pending stack, we can overlap the creation
of function arguments with the actual calling. Likewise, by having the return frame
information directly available on the return stack, we can overlap calculation of the
function’s result with the actual return.

Splitting the symbol table memory (M1) from consing memory (M2) gives a
similar speedup, because we can overlap the fetches of global data value pointers.
We can also overlap the accessing of named entry points (functions named in the
symbol table) with pointer-following in the consing memory area. We also can
pipeline usage of the binding stack, by the same means (first pass an address both
to M1 and the binding stack, pushing the address alone, then subsequent pushes onto
the binding stack push both saved values and the next dynamically bound address)

All of this flexibility would be useless without a compiler that can under-
stand and use the flexibility of the interconnection system. Although the standard
recursive-descent compiler technology is adequate for initial code generation, it is
necessary to use the artificial intelligence techniques of forward and backward chain-
ing to obtain a reasonably optimal machine program.

I would therefore conclude that the combination of the high-bandwidth multiple
functional units, the flexibility of the crossbar interconnect, and the intelligence in
the compiler to utilize the bandwidth and the flexibility are all essential elements for
obtaining the speedups noted. I do not believe that any two of the three elements
would have been effective without the third.

11.2. Hardware Implementation Issues
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11.2.1. Crossbar

As detailed in section 7.2, several options exist concerning actual construction
of the DIS machine. In a uniprocessor prototype, it seems most reasonable to go
with the simplest and cheapest (and most restrictive) configuration; the restricted
(32-bit) crossbar. This will provide an operational machine for testing more surely
and inexpensively than the other options listed.

11.2.2. Memory Arrays

The prototype restricted-crossbar DIS machine could have ten 32-bit memory
arrays (for M1, M2, and two per Stack Unit), and one 256-bit array (for MO). As
it may be most convenient to build (or buy) only 32-bit arrays, a total of 18 32-bit
arrays are needed. If we use currently (1987) available parts, such as 64K by 4 bit
wide (256K bits/chip) 45 nSec RAMs, we will have a minimum system configuration
with about 2.3 megabytes of memory. This is smaller than we might want, so an
ability to expand memory arrays is warranted. Going to 2 256Kx1 RAM chip in the
arrays would put 9.2 megabytes into the smallest configuration.

Because some units need more memory than others (it is reasonable to assume
that there will be more conses than symbol table entries), it may be worthwhile to
design the memory array cards to accept either a 64Kx4 part or a 256Kx1 part. In
this way, extra memory can be added to M2 (cons cell memory) without adding it
to M1 (symbol table memory)

11.2.3. Memory Indexing

Many of the adders in the memory units are used to add an offset of zero through
seven. Because the compiler can be forced to generate only aligned references to these
addresses, it may be possible to replace these adders with OR gates affecting only
the low order bits of the address. This would be less expensive, than a full adder,
as well as speeding up the memory cycle time.

It should be noted that we do need to keep a true addition capability in the
adders for the Stack Units, because in general accesses on the Stack Units are not
aligned to even address boundaries.

11.2.4. Cache

It would probably be unwise to build any cache units on the first prototype.
Until reasonably large problems can actually be run (not simulated), it is difficult
to determine the best cache sizes and cache use strategies.

If the design of the memory arrays is properly done, it should be possible to
allow a cache unit to be interposed between any of the memory or stack controller
cards and the actual memory arrays, once testing shows that cache would be a useful
addition.
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11.3. Possible Defects in This Research

11.3.1. Benchmark set too small

This size of the benchmark set was forced by the need for a bit-level simulator,
and the consequent slowness of that simulation. If the simulator were written at
a higher level, it would have run more quickly, but the accuracy of the simulation
itself would have been called into doubt.

The author finds it preferable to present a small set of results, with a very high
confidence in the results, than a large set of results with a low confidence.

11.3.2. Compiler “Caters” to the Benchmarks

Because the compiler is a recursive-descent system, it does not do any recognition
of the particulars of an expression beyond the special forms and the inline forms
(arithmetic, car, cdr and eq). All other forms are handled by the same algorithm
(build call frame, call function via symbol table address).

It is therefore unlikely that the compiler in any way caters to produce good code
on the particular benchmarks given.

11.3.3. DIS Does Not Do Interrupts

The DIS machine was not designed to operate standalone. Instead, a host
processor was intended to control the DIS machine via the boot/debug processor
or network interface. This host processor (interconnected to the DIS machine via a
parallel interface) would be responsible for fielding interrupts, performing 1/0, and
other user-interfacing tasks.

The use we envision for a DIS machine is as a “back-end” processor, executing a
large LISP program, while the host processor periodically scans out result areas and
interacts with the user. User input is buffered until the DIS LISP program requests
further input from the host processor. In this context as a back-end machine, lack
of real-time interrupt capability is not disabling.
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11.4. Hindsight Comments

If the DIS project were to be run again, there would be relatively few changes I
would make, given the personnel and financial constraints of the project.

If finances allowed, it would have been worthwhile to construct a 1/10 speed
prototype. This 1/10 speed prototype could use 2 single multiplexed bus, rather
than the crossbar. This prototype would have allowed us to run a much larger set
of benchmarks, and experiment more with various optimization rules in the rule-
based optimizer. By itself, this 1/10 speed prototype would have been as fast as any
commercially available LISP machine.

If possible, I would have avoided the use of diskless workstations. The DIS
team worked for about six months on several diskless workstations and the team
consensus was that a LISP on a small-memory diskless workstation is about as
useful as a screen door on a submarine. I believe the final success of the DIS team
was as much a result of the loan of a fully-equipped Al VAXstation (courtesy Digital
Equipment Corporation) as any other single factor.

11.5. Directions for Further Research

The DIS architecture represents a significant advance in the architecture of com-
puter systems. The existence proof of the inherent parallelism in LISP generated
by the DIS hardware and software opens several questions in the field of computer
design and artificial intelligence.

11.5.1. How Well Does DIS Utilize Multiple CPU’s?

This question is currently under exploration by Randall Shane. We expect that
the answer is “ quite well”, and our hand analysis shows that it ought to work.
However, the real proof will be the demonstration of a multiprocessor-utilizing DIS
compiler, and until that happens, the question must be treated as open.

11.5.2. Does DIS Work Well with other Languages?

The DIS compiler compiles only Common LISP directly from LISP expressions.
The effectiveness of DIS on languages such as FORTRAN or C has not been
demonstrated. The implication of the VLIW work is that the wide instruction
word aspects of DIS would be useful [Ellis 1986], but the replacement of the VLIW
register banks with DIS stack units makes this an open question.

Because the DIS data path is a superset of the Warren Abstract PROLOG
Architecture, it is likely that a DIS machine could run PROLOG very well. We
haven’t written 2 PROLOG compiler for the DIS machine, so we don’t know this
for sure [Despain 1985, [Dobry 1985], [Warren 1983].

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11.5.3. Will a Wider DIS Machine go faster?

Currently the point of greatest contention in the DIS machine is the Value
Stack. A DIS machine with multiple Value Stacks might be faster, if the compiler
and optimizer can find a way to utilize the extra value stacks effectively.

Multiflow Computer, Inc. indicates that their VLIW machine can be field-
expanded to a wider instruction word and more functional units, and their FOR-
TRAN compiler is capable of utilizing the increased number of functional units.

11.5.4. Can DIS run non-procedural languages?

Clearly DIS can run LISP interpreters of the common non-procedural languages
such as PROLOG and OPS5. Because the DIS datapath and user-visible storage
is a superset of the Warren PROLOG machine datapath, it is likely that DIS could
run PROLOG well. The question of OPS5 is an open question. Although the
original OPS5 systems were LISP-based, several native-mode OPS5 compilers are
now running, and these compilers do not follow the LISP interpretation model
[Barabash 1986].
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FFFFFFFFFF 3333333333333333333333333333333333333333333333333333 FFFFF
FFFFF
FFFFFFFFFF Digital Equipment Corporation - VAX/VMS Version V4.4 FFFFFFFFFF
FFFFFFEFFF 3333333333333333333333333333333333333333333333333333 FFFEFFFEFF

Y Y EEEEE RRRR AAA 22222 U U N N III §8SS
Y Y E R A A 2 U U N N I s
Yy E R R A A 2 u U NN N I S
b 4 EEEE RRRR A A 2 U U NNN I SS8S
Y E R R AAAAA 2z u U N NN I s
Y E R R A A 2 U U N N I S
Y EEEEE R R A A 2222Z UUUUU N N III SSSS
DDDD I1I SSSS BBBB AAA §SSS EEEEE
D D I S B B A A S E
D D I S B B A A S E
D D I SSS BBBB A A SSS EEEE
D D I S B B AAAAA S E
D D I S B B A A S E
DDDD 111 S§SSS BBBB A A SSSS EEEEE
L §SSS PPPP HY 222
L P P ] 2 2
L S P P 2
L SSS PPPP HH 2
L s P I} 2
.o L S P ; 2
.o LLLLL SSSS P ; 22222

File _CTHULUSDUAO:[DIS]DISBASE.LSP;Z (761,46683,0), last revised on 1-DEC-1986
21:037 is a 2 block sequential file owned by UIC [YERAZUNIS]. The records are
variable length with implied (CR) carriage control. The longest record is 72
bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAQ: on 4-MAY-1987 10:56 from queue SYSSPRINT.

FFFFFFFFFF 3333333333333333333333333333333333333333333333333333 FFFFFFFFFF

FFEFFFFFFF Digital Equipment Corporation — VAX/VMS Version v4.4 FFFFFEFFFFF
FFFFFFFFFF 3333333333333333333333333333333333333333333333333333 FFFFFSFFFF
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Base simulator functions
(this file should be compiled

~ we

(defun power (x n)
(cond
((equal x 2)
(powertable x n))
( t (powerhard x n))))

(defun powerhard (x n)
{cond
({equal n 0) 1)
{ £t (* x (power x (- n 1)}})))

(setq powtabl (make-array 512))

{defun powertable (x n)
(cond
((null (aref powtabl n))
(setf (aref powtabl n) (powerhard x n)))
{ t (aref powtabl n))))

(power 2 50)
(power 2 100)
(power 2 150)
(power 2 200)

;
: Extract - value is the bits in,
: rangelist is ’(bits-wide starting-at-bit)
: we count bits with the rightmost being bit zero.
(defun extract (value rangelist)
(-

(ash value (- (cadr rangelist))) ;get rid of low order waste bits
{ash
(ash value (- (+ (car rangelist) (cadr rangelist))))

(car rangelist))))
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GGGGGGGGGG 3333333333333333333333333333333333333333333333333333 GGGGG
GGGGG
GGGGGGGGGG pigital Equipment Corporation - VAX/VMS version V4.4 GGGGGGGGGG
GGGGGGGGGG 3333333333333333333333333333333333333333333333333333 GGGGGGGGGG

Y Y EEEEE RRRR AAA 22222 U U N N III SS8SS
Y Y E R R A A Z U U N N I S
Yy E R R A A 2 U U NN N I S
Y EEEE RRRR A A Z u U NNN I SSS
Y E R R AAAAA 2 U U N NN I S
Y E R R A A 2 U U N N I S
Y EEEEE R R A A 2222Z UUUUU N N III SSSS
DDDD III $Sss DDDD EEEEE FFFFF
D D I S D D E F
D D I S D D E F
D D I SSS D D EEEE FEFFF
D D I s D D E F
D D I S D D E F
pDDD III SSSS DDDD EEEEE F
L SSSS PPPP HH 1 000 1
L s P P H 11 0 0 11
L s P P 1 0 00 1
L SSS PPPP :: 1 0080 1
L s P i 1 00 0 1
.o L s P H 1 1] 0 1
.o LLLLL SSSS P H 111 000 111

File _CTHULUSDUAO:[DIS]DISDEF.LSP;IOI (1267,59,0), last revised on 27-APR-1987
12:047 is a 46 block sequential file owned by UIC [YERAZUNIS]. The records are
variable length with implied (CR) carriage control. The longest record is 78
bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 4-MAY-1987 10:56 from queue SYSSPRINT.

GGGGGGGGGG 3333333333333333333333333333333333333333333333333333 GGGGGSGGGG

GGGGGGGGGG pigital Equipment Corporation =— VAX/VMS version V4.4 GGGGGGGGGG
GGGGGGGGGG 3333333333333333333333333333333333333333333333333333 GGGGGGGGGG
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DIS Uniprocessor Definitions WSY @ RPI-CS

-~

Now have symmetrical memories and stacks - WSY 10-Oct-86

This file is the "vintage" DIS definition for uniprocessors.

~o w0 e e we

Load this file into Franz lisp to define a D1S machine.

terpri)

defmacro startloczero ()
(setg startloc 0))

{setq bd-field nil)

(setg bd-field-in nil)
(setq bd-field-un nil)

P TIR YR TIE VIR TAR YO T}

pefine the microcode control fields:;
rinc " Defining microcode control fields ...") (terpri)
etq print-commentary t)
£

e N~ mas we S e
N s~

jrst, a macro to make it easy

deffield does several things !

1: it defines a field starting at some place, of some width
The field is named f-fieldname. The format of a
field is (#_of_bits starting bit)

2: it defines a creator function (fieldname opcode) which
returns an opcode properly shifted into the field.
Instruction construction can be done with this function.

3: it defines a selector function (s-fieldname instruction)
which takes apart an instruction and returns just the
opcode field, shifted to start at 0.

R R TR TR T T
O R I T T Y}

—

d

—~0

fmacro deffield (fieldname width)
c

ond
{{not (null print-commentary))

(prinl fieldname) (princ " starts at ") (prinl startloc)

{princ " and is ") (prinl (eval width)) (princ " bits wide.") (terpri)
))

’

build a list of field names here
{setq bd-field (cons fieldname bd-field))
(set (implode (append (explode 'bd-)({explode fieldname))) nil)

.~ v

.~

: create the f- field variable
(set
(implode (append
(explode ’£-)
(explode fieldname}))
(cons
(eval width)
(cons
startloc
nil)}))

; define the instruction fragment constructor function
(putd
fieldname
(list ’lambda ’(bits)
(list ’* 'bits
(list ’'power 2 startloc))))
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~

(putd

define the s- selector function

(implode (append (explode 's-) (explode £ieldnanme)))

(list ‘lambda

(list ’extract ‘driven-instruction

{(list 'quote
(list (eval width)

.
v

(setq startloc (+ startloc (eval w

terpri)

L e L g

o v N % v

(deffield mlc

~e we v e

(deffield mlv0 4)
(deffield mlvl 4)
(deffield mlv2 3)

startloczero)

and now the fields
MO - usually used
(deffield mOvO 4)

(deffield mOvl 4)
(deffield mOv2 3)

2)

(eval startloc))))))

account for the bits taken up-

idth)})

are defined:

for instruction fetch

;M0 address mux input

;M0 Data mux input

;M0 offset (0-7 words added to address)
;M0 control - idle/read/write/fetchandadd

Ml - usually used for conses

;M1 address mux input
;M1 Data mux input
;M1 offset (0-7 words added to address)

(deffield mlc 2) ;M1 control - idle/read/write/fetchandadd

M2 - usually used for other things
deffield m2v0 4) M2 address input (usually a seq ¥)
deffield m2vl 4) M2 data input (usually a value)

deffield m2c

P e e

; value stack

(deffield vv0
(deffield vvl
(deffield vcl
(deffield vecl
(deffield vc2
(deffield vec3

~ v

(deffield pv0
(deffield pvl
(deffield pcO
(deffield pcl
(deffield pc2
(deffield pc3

~ ~e

(deffield rv0
(deffield vl
(deffield rcO
(deffield rcl
(deffield rc2

deffield m2v2 3)

2)
4)

4)
2)
4)
2)
1)

Pending stack

4)
4)
2)
8)
2)
1)

Return stack

4)

4)
2)
8)
2)

M2
M2

~e w0 v

;Value stack
;vValue stack
;Value stack
;Value stack

;Value s

tack

;Value stack

;pending
;pending
;pending
;pending
;pending
;pending

;Return
;Return
sReturn
;Return
;Return

stac
stac

offset {0-7 words added to addr)
control - idle/read/write

first mux input

second mux input

subhead read (use vvl for stackpointer)
stackpointer motion control (- 8)

write actional (after pointer motion)
write resultant into VSP

k f£irst mux input
k second mux input

stack subhead read (use pvl for stackpointer)
stack stackpointer motion control (- 8)

stac

k write actional (after pointer motion)

stack write resultant into PSP

stack first mux input
stack second mux input
stack subhead read (use rvl for stackpointer)

stack

stackpointer motion control (- 8)

stack write actional (after pointer motion)
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{deffield rec3 1) ;Return stack write resultant into RSP

~ e

Binding stack

(deffield bv0 4) ;Binding stack first mux input

(deffield bvl 4) ;Binding stack second mux input

(deffield becld 2) :Binding stack subhead read (use bvl for stackpointer)
(deffield bel 4) :Binding stack stackpointer motion control (- 8)
(deffield bec2 2) ;Binding stack write actional (after peinter motion)
(deffield be3 1) :Binding stack write resultant into BSP

H ALU
(deffield av0 4) ;ALU first mux input
(deffield avl 4) ;ALU second mux input
(deffield acl 4) ;ALU boolean operation
(deffield acl 2) :ALU data selector (0, 1, -1, avo )
(deffield ac2 1) ;ALU format operation selector (£ix/Eloat/comp)
(deffield ac3 2) ;:ALU operation ( add, -, *. /)
(deffield acd 8) ;ALU shift count
: Network Interface
(deffield nv0 4) :Network Interface mux input (usually data director)
(deffield ncl 2) ;network operation (offer/accept/idle)

H Seguencer
(deffield sv0

(deffield svl
(deffield sv2
(deffield sc0
(deffield scl
(deffield sc2

) ;Sequencer next instruction in

) ;Sequencer ‘normal’ next instr. address

) ;Sequencer ‘branch’ next instr. address

) ;Sequencer add 0, 1, 2, 3 to "normal” next addr
) ;Sequencer add 0, 1, 2, 3 to "branch” next addr
} ;Sequencer condition code mask

[V ST SR

; (kanbanzero, kanbannegative, kanbannil
; taskin, taskout)

(deffield sc3 3) Sequencer conditional wait mask- ignore module ready?

;' CMI - actually, part of the segquencer, but it’s a mux...
(deffield ccO 3) Selection of CMI (imm. data, or sp’s of
whatever.

CMI (immediate data) . It has two names,
CMI and cv0. Watch out.

"pointer-count"” field of CMI
nelement-count” field of CMI

Remember, pointers > elements is
meaningless, so p=l,e=0 is defined as NIL

(deffield cv0 32)

(deffield cvl 16)
(deffield cv2 16)

’

~s we e ve we we we Ns

YR

(princ "bits used :")
(prinl (+ startloc 1))
(terpri)

(setg bd-field-un bd-£field)

’

macro to help define busnames
defmacro defbus (busname)
(cond ({not (null print-commentary))
{prinl busname) {princ " is bus number ")
(prinl (eval buscount)) (terpri)))
(set busname (eval buscount})
(setq buscount (+ buscount 1))

—~

)
(defmacro buscountzero ()
(setq buscount 0))

({terpri)

(buscountzero)

’
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H define the busses themselves

(defbus b-md0) MO data out

(defbus b-mdl) M1 data out

(defbus b-md2) M2 data out

(defbus b-vd0) top of value stack

(defbus b-vdl) one below top of value stack

(defbus b-vsp) value stack pointer

(defbus b-pd0) pending call top location (usually code)

(defbus b-pdl) pending call top-l (usually argument pointer)
{defbus b-rd0) return stack top (usually return location)

(defbus b-rdl) return stack top-l (usually argument return pointer)
(defbus b-bd0) binding stack top (usually old value)

(defbus b-bdl) binding stack top-1 (usually seq # and/or address)
(defbus b-ad0) ALU output O (low order bits)

{defbus b-sd0) sequencer next address (usually goes to m0 zead)
(defbus b-nd0) network output bus

(defbus b-cmi) CoMmand Immediate bus (also may have sptrs)

a8 %o Ne NE e We Se We We NE W W Se W4 NN

~

Now we create the memory of the system- because the back
door bus exists, we can consider all of memory to be one long
array (for the uniprocessor, at least).

True to form, we define a macro to help
princ "Creating the memory spaces ... ") (terpri)
defmacro defspace (spacename length)
(cond ((not (null print-commentary))
(prinl spacename) (princ " starts at ") (prinl startloc)
(princ " and is of length ") (prinl (eval length)) (terpri)))
(set spacename (cons startloc (eval length))) .
(setq startloc (+ startloc (eval length)))
)
(terpri)
(startloczero)

o~ sa %o w3 N ve we

~ we

and the memory spaces...
(setq memory-module-size 1000)

(defspace m0 memory-module-size)
(defspace ml memory-module-size)
(defspace m2 memory-module~-size)
(defspace v0 memory-module-size)
(defspace vl memory-module-size)
(defspace p0 memory-module-size)
(defspace pl memory-module-size)
(defspace r0 memory-module-size)
(defspace rl memory-module-size)
{defspace b0 memory-module-size)
(defspace bl memory-module-size)

; now allocate an array;
{setq memory (make-array startloc))
(princ "Memory in simulator: ")(prinl startloc) (princ " words.")(terpri)

define opcodes for various operations - note the commonality!
also note that we check to see that there are enough bits for each opcode
someday, we could make this even smarter- we look at the opcode fragments
and allocate fields when done with definition of opcodes

~o we Ne we w0 N

(princ " Defining op codes ") (terpri)
(defmacro defop (fieldname opname)
(cond
((> (+ 1 startop) (power 2 (car (eval fieldname}))})
(princ "ERROR! There aren’t enough bits in ")
(prinl fieldname)
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(princ " to hold that many opcedes ! ") (terpri))

(cond ((not (null print-commentary))
(prinl opname) (princ " ijs defined as decimal ")
(prinl startop) (terpri)))

(set opname (eval startop))

and here to create opcode reversability

~. v v

(setq bd-field-un (remove (implode (cddr (explode
fieldname))) bd-field-un))

(if (not (find (implode (cddr (explode

fieldname))) bd-field-in))

(setq bd-field-in (cons (implode (cddr (explode
fieldname))) bd-field-in)))
(setg bd-x (implode (append (explode ‘bd-)
(cddr (explode fieldname)))))

(set bd-x (reverse (eval bd-x)))
(set bd-x (cons opname (eval bd-x)))
(set bd-x (reverse (eval bd-x)))

~

(setq startop (+ startop 1N
)
)

(defmacro endops()
({setq startop 0)

)
(terpri)

(endops)

Beware the following Cludge! You *must* have an (endops) after every group
of opcodes; else they will be consecutive and you will run out of bits!
I1f you have an (endops) in the middle of a group of exclusive choices, they
will cease being exclusive ! (this can be fixed if macros could take
a variable # of arguments )

w6 ws ve we Ne we S

WATCH OUT!

H m0 - idle/read/write/fadd
(defop f£-m0Oc midle) ; do nothing

(defop £-mOc mread) ; read out of memory
(defop f-m0c mwrite) ; write

(defop £-m0c mfadd) ; fetch and add
{endops);

ml - one £ield, four choices.
now uses same choices as M0
m2 - one field, three choices.

now uses same choices as MO

All 4 Stacks ~ Three control fields
we define for VS but all 4 stacks take the same operands

[ T N R LR TR TR TR U )

field 1 - Subhead read flag

(defop £-vc0 suidle) ; entire stack unit is to idle.
(defop £-vc0 snormal) ;treat SP normally

(defop f-vcO subhead) ;Use vvl instead of stackpointer
({endops)

field 2 - stackpointer motion control. Sometimes we
generate these values, sometimes we use the mnemonics.

EYIRNARNY
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H watch out.
(defop f-vcl spop7)
(defop f-vcl spop6)
(defop £-vcl spop5)
(defop f-vcl spop4)
(defop f-vcl spop3)
(defop f~vecl spop2)
(defop f-vcl spopl)
(defop f-vcl sidle)
(defop f-vcl spushl)
(defop f-vel spush2)
(defop f£-vel spush3)
(defop f£-vecl spushd)
(defop £-vcl spush5)
(defop f-vecl spushé)
(defop f-vcl spush?)
{defop £-vcl spush8)
(endops)

; field 3 - write actionals
(defop f-vc2 swidle) : note vWidle - Write idle !

(defop f£-vc2 swtop) : overwrite top element with vvo0
(defop f-ve2 swt-1) ; overwrite t-1 with VWl

(defop f-vc2 swboth) ; overwrite both

(endops)

£ield 4 - Do we write the current SP back into the VSP?
defop f-ve3 spidle) ; Don’t write it back
defop £-vc3 spwrite) ; Write f£inal stptr value
endops)

(after arithmetic) into VSP

Pending Call Stack - uses same opcodes as value stack
Return call stack - same opcodes as value stack

Binding stack hardware - same opcodes as value stack

N5 NS S8 NG WE Ve s NE eSS SNe N

ALU - LOTS of fields

first field- booleans
xw« DANGER DANGER DANGER *** COMMON LISP DOES NOT DEFINE THE BOOLE
FUNCTION CODES IN THE STANDARD WAY. MODIFY THE BELOW AT GREAT PERSONAL
DANGER (AND WITH A DEEP UNDERSTANDING OF COMMON LISP *NOT* REFLECTING THE

~

as w8 S e N

WAY A VAX DOES LOGICAL OPERATIONS)

(defop f-acQ boolzero) ; zero out always ; boole-clr
(defop f-ac0 boolone) ; constant ones always ; boole-set
(defop f-ac0 boola) ; a ; boole-1
(defop £-acO boolb) : b ; boole-2
{defop f£-acQ boolnota) ; Ta ; boole-cl
{defop f-ac0 boolnotb) ; "b ; boole-c2
(defop f-acO booland) ; aand b ; boole-and
{defop f-ac0 boolor) ; aorb ; boole-ior
(defop f-ac0 boolxor) ; xor ; boole-xor
{defop £-acl boolxand) : ab and "a"b = "( a xor b) ; boole-eqv
(defop f-ac0 boolnotand) ; ~ (a b) ; boole-nand
{defop f-acoO boolnotanotb) ; not a not b ; boole-nor
(defop f-acl boolnotab) ; "a b ; boole-andcl
(defop f-ac0 boolanotb) ; a b ; boole-andc2
(defop f£-acl boolaimpb) ; a implies b ; boole-orcl
(defop f-acO boolbimpa) b implies a ; boole-orc2
(endops)

; ALU data selector
(defop f-acl selzero) ; zeroes
(

defop £-acl sell) ; a one in the LSB
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a minus one
use the value from the "a" (av0) mux.

(defop £-acl sel-l)
(defop f-acl selav0)
{endops)

ALU format selector
defop f-ac2 fmtfix) ;use binary arith
defop £-ac2 fmtfloat) ;use floating arith
(defop f£-ac2 fmtcomp) ;do comparisons, not arithmetic, fixed pt
(defop f-ac2 fmtfcomp) do float comparisons

(endops)

——~ v

~ e

LYY

ALU combinational net
(defop f-ac3 combadd)
(defop f-ac3 combsubtract)
(defop f-ac3 combmultiply)
(defop f-ac3 combdivide)
(endops)
(defop f-ac3 combzero) : test- a equal to zero?
(defop f£-ac3 combagtb) ; a greater than b
we could have two more comparisons if desired?
endops)

o we e

ALU shifter...rather than describe all 255 different shifts...
(defop f-ac4 shiftl)

(defop f-acd shiftl)

(defop £-ac4 shift2)

(endops)

~e w0 we

Network Interface - one field {control)
(defop f£-ncl nidle) ;no net task transfer activity
(defop f-nc0 naccept) ; accept 2 job on the net
(defop f£-ncl noffer) : tells net to take current func. invocation
; from processor
; and suggested direction from nv0 address
(endops)

~

CMI selection - one field
(defop f£-cc0 scmi)
(defop f-cc0 spsp)
(defop f-cc0 srsp)
(defop £-cc0 sbsp)
(endops)

~

Sequencer - four fields

£ield one- how to determine next instruction arithmetic
(defop £-sc0 segsame)

(defop f-sc0 seqnext)

(defop f-sc0 seqskip)

(defop f£-sc0 seqskip2)

(endops)

~

field two - next instruction arithmetic for alternate branch path
(same field values as f£-sc0)

field three - kanban condition mask (so far, just a 0/1 test is
implemented in the simulator - and that’s maybe all we need)

(princ "Defining sequencer masks ") (terpri)
(setq segmaskzero 1) ; kanban boole value was zero
(setq seqmaskless 2) : kanban boole value was <0 (high order bit set)
(setq segmasknil 4) ; kanban boole value matched bitpattern for nil
(setq seqmasknetbusy 8); network can’t accept another funca - do it yourself
(setq segmasknetavail 16); network has a job for you to accept

’

P R R R R
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£ield four - conditional waits- including the conditional

wait being nonzero causes the sequencer to IGNORE an unready signal
from the device in guestion. Devices are DEFINED to not change
their outputs if commanded to IDLE.

(setq seqgcwml 1)

(setg segcwalu 2)

({setq seqcwbind 4)

~s we v we

~ =

....and NOW! A kludge to make opcode reversability and other
things possible. but, like, hey, we’ll know better next time

o~ wa e ve we e

-JCT
defun dis-believe ()
(endops)
(defop f-mlc midle) ; do nothing.
(defop £-mlc mread) : read out of memory
(defop f-mlc mwrite) ; write
(defop £-mlc mfadd) ; fetch and add
(endops);
(defop £-m2c midle) ; do nothing
(defop f-m2c mread) ; read out of memory
(defop £-m2c mwrite) ; write
(defop f-m2c mfadd) ; fetch and add
(endops);
(defop £-pcl suidle) ; entire stack unit is to idle.
(defop £-pcl snormal) ;treat SP normally
(defop £-pcO subhead} ;Use pvl instead of stackpointer
(endops)

(defop £-pcl spop7)
(defop £-pcl spop6)
(defop £-pcl spopS)
(defop £-pcl spopd)
(defop £-pcl spop3)
(defop £-pcl spop2)
(defop £-pcl spopl)
(defop f-pcl sidle)
(defop f-pcl spushl)
(defop f-pcl spush2)
(defop £-pcl spush3)
(defop f£-pcl spushd)
(defop £-pcl spushS)
(defop £-pcl spushé)
(defop £-pcl spush7)
(defop £-pcl spush8)
{endops)

(defop £-pc2 swidle)
(defop £-pc2 swtop)
(defop £-pc2 swt-1)
(defop f-pc2 swboth)
{endops)

(defop f-pc3 spidle)
{defop f-pc3 spwrite)
{endops)

(defop f-rc0 suidle) ; entire stack unit is to idle.
(defop £-rc0 snormal) ;treat SP normally

{defop f-rc0 subhead) ;Use rvl instead of stackpointer
{endops)

(defop f-rcl spop7)

(defop f-rcl spopé)

(defop £-rcl spop5)

(defop f-rcl spopd)

(defop £-rcl spop3)

(defop f-rcl spop2)

note pWidle - Write idle !
overwrite top element with PVO
overwrite t-1 with PV1
overwrite both

~ w wr we

Don’t write it back
Write final stptr value (after arithmetic) into PSP

as w
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(defop £-rcl spopl)
(defop f-rcl sidle)
(defop £-rel spushl)
(defop £-rcl spush2)
(defop f-rcl spush3)
(defop f-rcl spushd)
(defop f-rcl spushS)
(defop f-rcl spush6)
{defop f-rcl spush?)
(defop £-rcl spush8)
(endops)

(defop f-rc2 swidle)
(defop f£-rc2 swtop)
(defop £-rc2 swt-1)
(defop £-rc2 swboth)
(endops)

(defop f£-rc3 spidle) ; Don‘t write it back

(defop f£-rc3 spwrite) ; Write final stptr value (after arithmetic) into RSP
(endops)

(defop £-bcl suidle) ; entire stack unit is to idle.

(defop £-bc0 snormal) ;treat SP normally

Edegop f-bco subhead) ;Use bvl instead of stackpointer

endops

(defop £-bcl spop7)
{defop f-bcl spopb)
(defop £-bcl spopS)
(defop £-bel spopéd)
(defop f£-becl spop3)
(defop f-becl spop2)
(defop f£-bel spopl)
(defop f-bel sidle)
(defop £-bcl spushl)
(defop £-bcl spush2)
(defop £-bcl spush3)
(defop f£-bcl spushd)
(defop f-bcl spush5)
(defop f-bcl spushé)
(defop £-bcl spush7)
(defop £-bcl spush8)
(endops)

(defop £-bc2 swidle)
(defop f-bc2 swtop)
(defop £-bc2 swt-1)
(defop f£-bc2 swboth)
(endops) ’
(defop f£-bc3 spidle)
{defop £-bc3 spwrite)
(endops)

(defop f-scl segsame)
(defop £-scl segnext)
(defop £-scl seqskip)
(defop f-scl segskip2)
(endops))
(dis-believe)

note vWidle - Write idle !
overwrite top element with RVO
overwrite t-1 with RVl
overwrite both

P

note bwidle - Write idle !
overwrite top element with BVO
overwrite t-1 with BV1
overwrite both

e we w

Don’t write it back
Write final stptr value (after arithmetic) into BSP

~ .

pefinitions for functional boxes to be used
in the simulator

memory unit...

; Effaddr - how many bits are actually "seen” by a
(defun addr-part (addr)
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(extract addr ’(32 0)))

pefining a memory box in terms of functionality

~ee 1 ve v

defmacro memory-box (mame output addr data control duse-mod)
‘(prog (effaddr)
(pbbbp ’,name)
(setq effaddr (addr-part ,addr))
(setq ,duse-mod (1+ ,duse-mod))
(cond
({equal ,control midle)
(setq ,duse-mod (1- ,duse-mod) )
(pbbb " idles"))
{(equal ,control mread)
(setq ,output (aref memory effaddr))
(pbbb " reads"))
({equal ,control mwrite)
(setf (aref memory effaddr) ,data)
(setf ,output ,data)
(pbbb " writes"))
((equal ,control mfadd)
(setq ,output (aref memory effaddr))
(setf (aref memory effaddr)
(+ ,output
,data))
(pbbb " fetch-and-adds")
)
)
)

pefining a stack box in terms of functionality

o~ we ws W we

defmacro stack-box
(name top utop spout tdata udata spsel motion write spreload duse-mod)
‘{prog ()
; first- select what to use as stackpointer
(pbbbp ’,name)
{pbbbp " using”)
(setg ,duse-mod (1l+ ,duse~-mod))
{cond
((equal ,spsel suidle) ; Stackunit Idle
(pbbb " ... an idle cycle”)
(setq ,duse-mod (1- ,duse-nod))
(go STACK-IDLE)) : we’'re idling- so nothing changes.
( (equal ,spsel snormal)
(setq csp (addr-part ,spout))
(pbbbp " old SP, "))
((equal ,spsel subhead)
(setq csp (addr-part ,udata))
(pbbbp " 2nd data as sp, "))

~ ~—

Second- effective SP motion control
(pbbbp "SPdelta = ")

(pbbbp (+ ,motion (- 0 sidle)))

(setg csp (+ csp ,motion (- 0 sidle)))
(pbtbp ", is now=")

{pbbbp csp)

(pbbbp ",")

Third - write actionals

~ws e

cond
((equal ,write swidle) (pbbbp " write none, "))
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{(equal ,write swtop)
(setf (aref memory csp) ,tdata)
{pbbbp " write top,”))

((equal ,write swt-1)
(setf (aref memory (- csp 1)) ,udata)
(pbbbp " write top-1,"))

((equal ,write swboth)
(setf (aref memory csp) ,tdata)
(setf (aref memory (- csp 1)) ,udata)
{pbbbp "write both,"))

fourth- maybe reload the VSP?

~a

cond
((equal ,spreload spwrite)
(setg .spout csp)
(pbbbp " new SP saved."))
{ t (pbbbp " keep old SP.")))
pbbb " ")

o v~

last- output our data busses

(setq ,top (aref memory csp))

(setq ,utop (aref memory (- CSP 1))

STACK-IDLE

; 1f idle, output DOES NOT change!
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File ,CTHULUSDUAO:[DIS]DISSIH.LS?;BO (1131,35,0), last cevised on 1-APR-1987 02
:28, Is a 30 block sequential file owned by UIC [TRIBBLE]. The records are vari
able length with implied (CR) carriage control. The longest record is 79 bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 3-MAY-1987 10:57 from queue SYSYPRINT.
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DISSIM.L WSY@RPI-CS

~e o v

added - split binding into binding stack function and M2 memory function.
;added - fast branches via Shane/S-1 method of muxing next addr.

:added - kanban condition codes
; added ~ segmasknil condition code using GC fields.

And now, what we all have been waiting for- The DIS Simulator:
<<< what an enormous cludge >>>

setq final-status t)
setg dis-graphics nil)

7o make tracing easy, we define pbbb, which is
a function to print the blow-by-blow account of the run.
pbbb looks at the global blowbyblow to determine if

it should print or not

P T T R X I TR TR D 1)

(setg blowbyblow t)
(defun pbbb (text)
{cond
(blowbyblow
(princ text)
(terpri)

)

)
H pbbbp prints text, no terpri, and returns the value of text.
(defun pbbbp (text)
{cond
(blowbyblow
(princ text)
text

)
(t text)
)

)
; cycles is how many cycles to simulate.
(defun disrun (cycles)
(stat-zero)
(catch ’'branch-to-zero-halt
(prog (count)
(setg count cycles)
CYCLE
(setqg count (- count 1))
(setg counter (- cycles count})
(one=-cycle)
(cond ((> count 0) (go CYCLE)))

}
) (complete-status))

this is where the stats are zeroed out for each simulation
(defun stat-zero ()

(setg d-time 0)

(setq dt-m0 0) (setg duse-n0 0.0)

(setg dt-ml 0) (setg duse-ml 0.0)

(setq dt-m2 0) (setg duse-m2 0.0)

..

(setqg dt-vstk O0) (setq duse-vstk 0.0)
(setq dt-pstk 0) (setq duse-pstk 0.0)
(setg dt~-rstk 0) (setq duse-rstk 0.0)
(setqg dt-bstk 0) (setq duse-~bstk 0.0)

(setq dt-seq 0) (setq duse-seq 0.0)
(setq dt-alu 0) (setq duse-alu 0.0)
(setq dt-net 0) (setq duse-net 0.0))
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(defun one-cycle()
{latch-the-CMI) ; CMI of current inst. is seen NOW, not next.
(latch-bus-values)
(cycle-m0)
(cycle=-ml)
(cycle-m2)
(cycle-vstk)
(cycle-pstk)
(cycle-rstk)
(cycle-bstk)
(cycle-alu)
(cycle-net) : NET MUST follow ALU- (because of status bits).
(cycle-seq) ; ALU before sequencer or net- for status
; codes are "kanban"- available during...
(cond ; timing cludge- count a cycle only if
((equal md0 0) ; we weren’t in the loop-to-zerO...
(print-2-cr "Branching to zero - halting run."” " ")
(throw ‘branch-to-zero-halt nil))
( t (setg cycle-counter (+ cycle-counter 1))))
(display-status)

Busmux is the procedural equivalent of
one column worth of crossbar switch. When executed, it
selects one of the 16 distribution busses.

PRI IR TR PRI

defun busmux (bcode)
(cond

( (equal bcode b-md0) md0) MO output
{ (equal bcode b-nmdl) mdl) M1 output
( (equal bcode b-md2) md2) M2 output
( (equal bcode b-vd0) vd0) Top of VS

( (egqual bcode b-vdl) vdl)
( (equal bcode b-vsp) vsp)

undertop of VS
VS pointer

{ (equal bcode b-pd0) pd0) Top of PS

{ (equal bcode b-pdl) pdl) Undertop of PS
( (equal bcode b-rdl) £d0) Top of RS

( (equal bcode b-rdl) rdl) Undertop of RS
((equal bcode b-bd0) bdo) Top of BS
((equal bcode b-bdl) bdl) Undertop of BS
((equal beode b-ad0) ado) ALU output
((equal bcode b-sd0) sd0) SEQ next addr
{ (equal bcode b-nd0) nd0) NET output

O T R R R R DI U DI U D

((equal becode b-cmi) cmi) CMI multiplexor

Kludge to allow negative CMI's, and mux the positive
stackpointer onto the CMI dist’n bus. This is a hard

bug to deal with in software bignums, so be careful.

PR R TR R T

defun latch-the-CMI ()
(setq cmi-control (s-cc0))
(setg cv0 (s-cv0})
(setqg cmi
{cond
((equal cmi-control scmi)
(+
(cond
({ zerop (extract driven-instruction
(list 1 (+ (car f-cv0) (cadr £-cv0)))))
cvQ)
(t
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(- 0 cvO)))
(evl (s=-cvl))
(cv2 (s-cv2))
)

pointer-count field
element-count field

~ we

)
{ (egual cmi-control spsp) Psp)
({equal cmi~-control sbsp) bsp)
((equal cmi-control srsp) rsp))l))

We latch bus values by assigning data values to module inputs
We have to latch them because not all
operations occur at the same time in this simulator.
O0f course, this is a problem ONLY here in the simulator. Real
hardware would have no such problem.
defmacro latch-an-input (inputname)

o~ e Ns ws we

‘(let
( (busmuxvalue
( busmux
(extract ;we can generate the fieldname by looking at the input
driven-instruction
,{implode ; because the deffield macro creates

; the field as f-<foo>
(append
(explode 'f-)
(explode ', inputname)}))))))
(pbbbp ¢, inputname)(pbbbp " gets ") (pbbb busmuxvalue)
(set ’,inputname busmuxvalue)

D]
(defun latch-bus-values ()
(progn ()

(latch-an-input m0vO0)
(latch-an-input mOvl)
(latch-an-input mlv0)
(latch-an-input mlvl)
{latch-an-input m2v0)
(latch-an-input m2vl)
{latch-an-input vv0)
(latch-an-input vvl)
(latch-an-input pv0)
(latch-an-input pvl)
(latch-an-input rv0)
(latch-an-input rvl)
(latch-an-input bv0)
(latch-an-input bvl)
{latch-an-input av0)
(latch-an-input avl)
(latch-an-input nv0)
(latch-an-input sv0)

here- a cludge. The instruction

which is being driven just now already (supposedly)
has been mux-conditioned on svl/sve,

so only one n-bit wide mux is needed

This puts five gate delays in the sequencer,

but it speeds up branching tremendously.

ONLY HERE should SV2 ever be assigned to. In reality

sV2 is muxed with SV1 in the crossbar, on the basis of the
kanban condition codes. Heck, the sequencer has to wait for
M0 to respond anyway, so it may as well use the crossbar for
something useful.

N5 WE NS WO WE WS Ve e wE Ne s Ws S N6 S

(latch-an-input svl)
({latch-an-input sv2)
)
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)
6e£initions of the blocks start here!

~ .

; m0
(defun cycle-m0 ()
(setq mOop (s-m0c))
(setq mOoffset (s-m0v2))
(setq mO0effaddr (+ mOv0 m0offset))
(mego:y-box
M

MDO
m0effaddr
mOvl
mO0op
duse-m0

)

)
H ml
(defun cycle-ml ()
{setq mlop (s-mlc))
(setq mloffset (s-mlv2))
(setq mleffaddr (+ mlv0 mloffset))
(memory-box
M1

MD1
mleffaddr
mlvl
mlop
duse-ml
)
)

~ w

m2
(defun cycle-m2 ()

(setq m2op (s-m2c))
(setqg m2offset (s-m2v2))
(setq m2effaddr (+ m2v0 m2offset))
(memory-box

M2

MD2

m2effaddr

m2vl

m20p

duse-m2
)

)
H value stack
(defun cycle-vstk ()
(setq spselect (s=vec0))
(setq motion (s=-vel))
(setq write (s=vc2))
(setq spreload (s-vec3))
(stack-box
vs
vDO0
VDl
vsP
vvo
vl
spselect
motion
write
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spreload
duse-vstk
)

pending call stack (looks like pending, dont it?)
defun cycle-pstk ()

(setq spselect (s-pc0))
(setq motion (s-pcl))
{setqg write (s-pc2))
{setq spreload {s-pc3))
{stack=-box

PS

PDO

PD1

PSP

PVO

PVl

spselect

motion

write

spreload

duse-pstk

)
(

)

H

H Return call stack
(defun cycle-rstk ()
(setq spselect (s-rc0))
(setq motion (s-rcl))
(setg write (s-rc2))
(setg spreload (s-rc3))
(stack-box
RS
RDO
RD1
RSP
RVO
RV1
spselect
motion
write
spreload
duse-rstk
)

)
H Binding stack (looks like the above, too. Maybe I should...)
(defun cycle-bstk ()
{setq spsélect (s-bc0))
(setq motion (s-bcl))
(setq write (s-be2))
(setqg spreload (s-bc3))
{stack-box
BS
BDO
BDl
BsP
BVO
BV1
spselect
motion
write
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spreload
duse-bstk
)

The ALU!
defun cycle-alu()
(setq alu-boole (s-ac0))
(setqg alu-select (s-acl))
(setq alu-format (s-ac2))
(setq alu-comb (s-ac3))
(setqg alu-shift (s-acd))

)
{

DANGER DANGER DANGER

We clear the sequencer status bits HERE!
Therefore, the network setting of a status bit
MUST happen after the ALU does it’s work!

setq segstatus 0)

setq alboole (boole alu-boole av0 avl))

{
; first, do the "boole" calculation
(
’
H Now we set the kanban condition codes on this result.
H Since a boole-box has at most three gate delays, this
: is OK to do (in terms of the hardware).
(setg kanban
(+
(cond
((equal alboole 0) segmaskzero)
{ £ 0))
(cond
( (equal
(extract alboole (1 127))
1) segmaskless)
(t 0))
{cond
{(and
(equal
(extract alboole f-cvl) 1l); CV1 is pointer-coun:(ptr-length)
(equal
(extract alboole f-cv2) 0)); cv2 is total-count (struct-length)
seqgmasknil)
(t 0))))

(+
(cond ((equal alboole 0) 1)
(t 0))
(cond ((extract alboole '{64 1)) 2)
(t 0}

~s we we s Ne

: now do the data selector
(setq alsel
(cond
((equal alu-select selzero) 0)
{(equal alu-select sell) 1)
((equal alu-select sel-1) -1}
((equal alu-select selav0) av0)))

; now the combinational hardware ! LISP does the actual
; bit twiddling for us. We can be mellow.
(setg alcomb

{cond
({equal alu-comb combadd)
(+ alboole alsel))
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((equal alu-comb combsubtract)
(- alboole alsel))

{({equal alu-comb combmultiply)
(= alboole alsel))

((equal alu-comb combdivide)
(truncate (/ alboole alsel)))))

now we do the barrel shifter- for now, this is inefficient, but
it is what we need.
Maybe someday this will be fixed.

P TR TR TR TR )

setqg ado
(ash alcomb alu-shift))

(+
(» (power 2 alu-shift) alcomb)
{quotient (* (power 2 alu-shift) alcomb) (power 2 256)1)))

~e ne ss

)

; network interface (not done yet)
(defun cycle-net() t)
(

Seguencer !
defun cycle-seq()
(setq seg-skip (s-sc0))
(setq seg-altskip (s-scl))
(setq seg-condcode (s-s5c2))
(setq seq-waitmask (s-sc3))

Now we do the next instruction calculation
This part will get changed, no doubt. Among other
things, we may want to skip 0,1,2, or 3.

TR PR R IR T

cond
({not (zerop (logand kanban seq-condcode)))
(setqg sd0 (+ sv2 seg-altskip))
{pbbb "Sequencer using secondary address"))
(t
(setq sd0 (+ svl seg~-skip))
(pbbb "Sequencer using primary address"))

)
H Now, we send out the new instruction, and we’re done.
;

(setq driven-instruction sv0)

)

(defun display-status ()
(if dis-graphics (gr-update)})
{cond
((equal final-status ’short)
(princ "Nextaddr (sd0) ") (print sd0) (terpri))
( £inal-status
(princ "Bus values at en of this cycle ") (terpri)
{princ "MO out (md0) ") (princ md0) (terpri)
(princ "Ml out (mdl) ") (princ mdl) (terpri)
(princ "M2 out (md2) ") (princ md2) (terpri)
(princ "V-top (vd0) ") (princ vd0) (terpri)
(princ "v-top-1 (vdl) ") (princ vdl) (terpri)
(princ "V-stkptr {vsp) ") (princ vsp) (terpri)
(princ "P-addr (pd0) ") (princ pd0) (terpri)
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(princ "P-argptr (pdl) ") {princ pdl) (terpri)
{princ "R-addr (rd0) ") (princ rd0) (terpri)
(princ "R-argptr (rdl) ") {princ rdl) (terpri)
{princ "B-addr (bd0) ") (princ bd0) (terpri)
(princ "B-data (bdl) ") (princ bdl) (terpri)
(princ "ALU out (ad0) ") (princ ad0) (terpri)
(princ "Net data (nd0) ") (princ nd0) (terpri)
(princ "ImmData (emi) ") (princ cmi) (terpri)
(princ "Nextaddr (sd0) ") (princ sd0) (terpri)
(princ "BSP: ") (princ bsp)

(princ " PSP: ") (princ psp)

(princ " RSP: ") (princ rsp) (terpri)

)

defun complete-status ()}

Here's where we cold-boot the DIS machine-
ALL initialization code goes here!

)
(
{

defun cold-boot (boot-location srest callargs)

jnitialize stack pointers - these are busses too, but thats ok
(setqg vsp (car v0))
(setg psp (car p0))
(setq rsp (car £0))
(setg bsp (car b0))

Ancilliaries- like driven-instruction
(setg driven-instruction (aref memory boot-location))
(setq md0 (aref memory {+ boot-location 1)))

(setq sd0 (+ boot-location 2))

(setqg segstatus 0)

(setq modulestatus 0)

(latch-the-cmi) ; Very important that CMI is prepped.
;

’ (setqg cycle-counter 0) ; how many cycles have we run?

a "catcher" - where we loop on 2 branch to zero.
(setf (aref memory 0) 0) ; an infinitely looping location
(setf (aref memory 1) 0) ; an infinitely looping location
(setf (aref memory 2) 0) : an infinitely looping location

Build a call frame and arguments for our function to Ifun...

(princ "Building fake call frame with argument list: ")
(princ callargs)
(prog ()

(setf (aref memory rsp) vsp) ; fake value stack frame start...

(setq rsp (+ 1 rsp))

{setf (aref memory rsp) 0) ; fake return location - infiloop

(setf (aref memory vsp) ‘one-below)

MORE-ARGS

{cond

((null callargs)
{go NO-MORE-ARGS)))

(setq arg (car callargs))

(setq callargs (edr callargs))

(setg vsp (+ vsp 1))

(setf (aref memory vsp) arg)

{go MORE-ARGS)

NO-MORE-ARGS

(setf (aref memory (+ VSP 1)) ‘one-above}
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; jnitialize data busses - they all should be "right” now.

(setg mdl 0)

(setq md2 0)

(setg vd0 (aref memory vsp))

(setqg vdl (aref memory (- vSp 1)
(setq pd0 (aref memory psp))

(setq pdl (aref memory (- psp 1)))
(setq rd0 (aref memory rsp))

(setg rdl (aref memory (- rsSp 1))
(setq bd0 (aref memory bsp))

(setq bdl (aref memory (- bsp 1))}
(setq ad0 0)

{setg nd0 0)
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File _CTEULUSDUAO:[DIS]FRANZZCOHHON.LSP:S (1106,13217,0), last revised on
13-NOV-1986 17:39, is a 1l block sequential file owned by UIC [YERAZUNIS]. The
records are variable length with implied (CR) carriage control. The longest
record is 53 bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 4-MAY-1987 10:58 from queue SYSSPRINT.
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IIIIIIIIII Digital Equipment Corporation - VAX/VMS Version V4.4 IIITIIIIIII
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functions to make Common Lisp look like Franz Lisp
defun plus (x y) (+ x ¥))

o o~

(defun implode (str}
{intern (coerce str *string)))

—~

defun explode (str)
(coerce (string str) ’'list))

idefun putd (name func)
(setf (symbol-function name) func))

Zdefun getd (name)
{symbol-function name))
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File _CTHULUSDUAO:[DIS!HCASH?UNCS.LSP;S (1374,39,0), last revised on
18-FEB-1987 10:47, is a 2 block sequential file owned by UIC [YERAZUNIS]). The
records are variable length with implied (CR) carriage control. The longest
record is 60 bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS), under account at priority 100, started on printer
_CTHULUSCSAQ: on 4-MAY-1987 10:58 from queue SYSSPRINT.
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mecasmfuncs.lsp - WSY 3-Feb-86
Functions needed to successfully assemble output of
MC and MCA. (most of these functions just return 0).

A comment does nothing to the assembled instruction
defmacro comment (&rest £oo)
0)

P T TR TR Y

~e e wo

Locations *must be* handled before final assembly...
(defmacro location (name &rest £oo)

0)
; Address-of is a transparent function for now. This
; may change someday, if the linker gets more complicated.
(defun address-of (name &arest foo)
name)

Crushmax’s are meaningless at this point...
defmacro crushmax (count &rest foo)
0)

~we v N

Reservations are useless now....
defmacro reserve (&rest foo)
)

o~ we w

0

CMI - the CMI field is called CVO in the simulator

o~ v ne

defun cmi (x)
{ev0 x))
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File _CTHULOSDUAO:[DIS]HCCOHPILE.LSP;IB (1212,39869,0), last revised on
20-APR-1987 10:56, is a 14 block sequential file owned by UIC (TRIBBLE]. The
records are variable length with implied (CR) carriage control. The longest
record is 73 bytes.

Job DISBASE (810) gueued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 4-MAY-1987 10:58 from queue SYSSPRINT.
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DIS Micro Compiler - WSY - Nov 3, 1986

H 3-Nov-86: First version - build symbol table, generate calls to

; translink subr for all call references, generate

H call to lookup subr for symbol value references.

: 18-Nov-86: Second version - builds symbol table, still translink
H to calls, but creates symbol entries at compile time and
H hardcodes to symbol locations. Local (lexical) variables
: handled correctly for first 8 variables. DEFUN special form.
H Model: Instructions go in MO, symbol table in M1, everything
; else in M2. We only support conses and fixnums.

: 1-Dec-86: 2.5 version -~ Now Kanban detects NIL in hardware (using
H GC code information) so testing for NIL is much faster.

H (cond...) uses this new feature.

; 4-Dec-86: Symbol table finalized to contain the following-

; seq % -=-> +0 symbol-value-ptr

; +1 symbol-function-ptr

H +2 symbol~-name-ptr

; +3 symbol-plist-ptr

H +4 symbol-package-ptr

H +5-7 reserved for future expansion.

’

H 6-Jan-86: Added code for SETQ special form.

’

; jnitialize microcompiler to a completely clean slate.
{defun mc-hard-init ()

(setq locals nil)
(setq next-seq-num 992)
(setq symbol-table
+(t 1000 nil nil
dis-nil 1008 nil nil
~free-list* 1016 nil nil))
{setq next-instr-addr 100)
(app-res-initialize-machine-code)

}
H list of special forms - not all implemented
H just yet, but soon.
(setq *special-forms* '

defun ; working

catch

let : working

declare

cond ; working

go

progn

progv

setq ; working

throw

unwind-protect
D]

list of "inline forms" - these are
programs which are normal functions but
the compiler implements inline for speed.

PR TR YR

setg *inline-forms* !
+
®
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1~
1+
car
cdr

rplaca
rplacd

)
;
; app-res - Append to Result
; Bit of a kludge, used to append instructions
H to the special variable "result”
(defmacro appres (inst)

‘(setqg result

(append result (list ,inst))))

The top of the compiler— the part you usually talk to
We compile the "implied prog" here- which is to
say, we set up the call, do the call, and if
that was not the last form in what we were handed,
we throw the result away (pop the stack) and
proceed with the next call)

PR TIR T VIR I I VAR Y

defun mc (form)

(progv

*(result)

*(nil)

(compile-form form) ; it’s code, compile it.
result) ; return the resulting assembly

Symbol table entries - just are a name, followed by
sequence-number symbol-value-ptr symbol-function-ptr.
(for now, at least) A null pointer means that the
pointer is unknown yet. (for the system builder to
use when loading)

P T A N L T

defun make-symbol-table-entry (entryname)
(prigt-z-c: "Making a symbol table entry for " entryname)
(con
( (member entryname symbol-table) t)
(t
(setq symbol-table .
(append symbol-table
(list entryname
(gee-next-sequence-number)
nil
nil
IRRRRD

Sequence numbers in this implementation are
equivalent to the runtime address of the
lambda-order control block (length 8)
defun get-next-sequence-number ()
(setq next-seqg-num (+ next-seg-num 8)))

TR TRYR YR

compile-implied-progn - this is how bodies of many
functions are compiled. The net result is
if there is one thing, returm it. 1f more
than one thing, return the last. (go) not permitted
forms is a LIST of one or more forms -

[P TR PR TR T
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NOT a form. If it’s a form, this dies!

o~ v

defun compile-implied-progn (forms)
(print=2-cr "Compiling implied progn " forms)
(comgile-fo:m (car forms)) ; compile the first form
(con
((null (cdr forms))
(princ "implied progn done")

(terpri))
(t
(princ "Not the last form, discarding return value”)
(terpri)
(app-:es-pop-vs-one) ; not the last form- throw away the value

(compile-implied-progn (cdr forms)))

compile a single form of any type- special, nonspecial, etc.
defun compile-form (form)
(cond
((listp form)
(cond
( (member (car form) : deal with special forms
*special-forms* )
(compile-a-special-form form))

s s v

( (member (car form) ; deal with known forms (inline)
*inline-forms* )
(compile-an-inline-form form))
(t ; deal with non-special forms

(compile-a-non-special-form form)

)
)
(t ; deal with lonely symbols
(compile-value-reference form) ; note- not likely there will be
; local symbols- but it doesn’t
; matter if we use compile-value-ref

print-2-cr - print 2 things, then Terpri
defun print-2-cr (2 b)
(princ a)
(princ b)
(terpri)

e e e

How to compile a non-special form....

PR I T TR

defun compile-a-non-special-form (form)
(print-2-cr "Preparing to call " (car form))
(app-res-p:epare-to-call-synbol (car form))
(compile-push-args-on-vs form)
(app-res-execute-prepazed-call)

A general way to push all the args to a function...

P TS TIE YRR YRR

defun compile-push-args-on-vs {form)
(prog (remaining)
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(setq remaining form)
LOOP-FOR-ALL-ARGUMENTS
(setqg remaining (cdr remaining)) ; get rid of CAR
(cond
({equal remaining nil) j;are we done yet?
(go ARGS-NOW-ON-STACK))
(t
(compile-push-an-arg (car remaining)))

)
(go LOOP-FOR-ALL-ARGUMENTS)
ARGS-NOW-ON-STACK
(print-2-cr "All args on stack, emitting call” " ")

Push just one general argument...
defun compile-push-an-arg (arg)
(cond
({listp arg) ;Do we have a function within?
{compile-form arg))

o~ s v N Se

t ; Neither- just a value.
(compile-value-reference arg))
)

Compile-value-reference - get a value from somewhere
defun compile-value-reference (symbol)
(print-2-cr "Getting the value of " symbol)
(cond
( (member symbol locals)

)
(

Is it a local (lexical) variable, on the
stack, perhaps (eventually check for more
than 8 lexicals- but not yet).
(app-res-vpush—f:om-local-valnes symbol))
{ (numberp symbol) ; Numbers evaluate to themselves...
(app-res-vpush-from-cmi symbol))
; Not a lexical variable, the value is
; pointed to by the symbol table.
(app—res-symbol—value-lookup
symbol) ;value is put on VS
)

How to print out some code -
defun printout (code)
(setq ofile {(open 'machine-code :direction :output
:if-exists :supersede))

~ N W

(setq *print-right-margin* 55)
{pprint code ofile)
(close ofile)

)
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File _CTHULUSDUAO:[DIS]HCCRUSH.LSP:ZS (1082,46493,0), last revised on
24-MAR-1987 19:50, is a 29 block segquential file owned by UIC [YERAZUNIS]). The
records are variable length with implied (CR) carriage control. The longest
record is 77 bytes.

Job DISBASE (810) gqueued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 4-MAY-1987 10:59 from queue SYSSPRINT.
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MCCRUSH.lsp - WSY 8-JAN-1987

Crush MC output into something that can
be expected to be runnable.

8-JAN-87 - V0.0 - must combine (location xxx) with
following instrs, put in sequencer instructions
IF NOT PRESENT.

3-Feb-87 - V1.0 - do some elementary crushing as well

16-Mar-87 -V1.5 - Crusher is getting sophisticated now.

AN Ne NE P NE NE S S8 Ne N NS Se Se v

defun mca (code)
({prog

(result)
(setq result code)
(print-2-cr "Crushing instruction stream" " ")
(setq result (crush-instruction-stream result))
(print-2-cr "Inserting default opcodes” " ")
(setq result (put-in-default-stuff result))
(return result)

Combine-labels is NOT used currently...we keep it around for
ol’ time sake. Crush-instruction-stream does more and better.

e e NS W NR NS Ve S

defun combine-labels (code)
(prog
(input result current-in current-out)
(setq input code)
{setq result nil)
(setg current-out nil)
(setg current-in nil)
TOP-OF~LOOP
(setq current-in (car input))
(setqg input (cdr input))
(cond
{(equal input nil)
(go END-OF-LOOP))}
{(equal (caar current-in) rlocation)
(setg current-out (append current-out current-in)))
(t
(setq current-out (append current-out current-in))
(setg result (append result (list current-out)))
(setg current-out nil))
)
{go TOP-OF-LOOP)
END-OF-LOOP
(cond
({not (null current-in))
(setg result (append result (list current-in)))))
(cond
((not (null current-out))
(setq result (append result (list current-out)))))
(return result)

P
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put-in-seg-stuff - insert opcodes to tell the
sequencer to go on to the next instruction if
opcodes concerning the sequencer aren’t already
there (i.e. not a branch there already). We expect
as input a LIST of instructions.

o~ vi ve e Se e ve we e

defun put-in-default-stuff (code)
(mapcar
'append-de£au1t—ops-to-inst:uction
code)

)

; append-default—ops—to-instrnction - given a SINGLE

; instruction, examine it. Append only those directives
; which are (1) defaults and (2) not present otherwise.
H
(

defun append-default-ops-to-instruction {instruction)
(progv
*(current)
*(nil)
(setq current (copy-list instruction))
(mapcar
‘maybe-append-this-op-to-current
standard-default-instruction)
current
)

)
(defun maybe-append-this-op-to-current (possible-opcode)
(cond
((not
(assoc
(car possible-opcode)
current))
(setqg current (append current ({list possible-opcode)})))
)

)
;
: - .
(setq standard-default-instruction

!
go on to next instruction

(sc0 segnext)
...either way...

({scl seqgnext)

’
(sc2 0) ; no mask bit used
(sv0 b-md0) ; next instruction from MDO
(svl b-sd0) ;: next address from SEQ
{sv2 b-sd0) : ...either way...
(m0v0 b-sd0) ; memory MO, get us next instruction
(mOc mread) ; get it by reading...
(ecmi 0) : cmi doesn’t have any idle,
(cvl 0) ; CMI zero pointer count idleless,
(ev2 0) ; CMI zero element count idleless.

~

crush-instructions - try and combine instructions that
don't conflict. Conflict is determined by

1) they don’t use the same functional unit...

2) the second instruction does not reference any

PR N TR YIRS T VIR
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outputs of functional units referenced in the
first instruction.

As Josh Fisher puts it- Resource clash and
Sequence clash. However, we do NOT do ‘trace
scheduling’ a la Ellis/Fisher/Multicomputer Inc.
Due to our user-visible pipelining, we also add
a third class of clash- the Data Flow Clash.

To avoid having to insert correction code, we do NOT EVER
optimize code by moving an instruction up past 2 branch or
a location. Likewise, we never move a branch-instruction
up past the end of a segment (i.e. the last instruction

of a segment is ALWAYS a BRANCHOUT or a RETURN.) This

is sometimes called a "basic block"

Some fields are always combinable, such as COMMENT fields.
Such fields are in the list *always-combinable.

Fields which are not 'always-combinable
are considered not combinable, and are NOT enumerated.

instr-clash-p --> returns results as follows-
1f clashes irreconcilably, ——=>T
1f nothing clashes at all, -==> NIL
if combinable with some hair, =---> (the combined instr)

@ ne %o %e %5 N6 N S8 Ve S NO Ve ST V6 Ve We S Ve I6 e S0 S0 Ve N e Se v ve W

defun instr-clash-p (instl inst2)
(prog
(unitsl units2 bussesl busses2 reserves2
resource-conflict-list
sequence-conflict-list
dataflow-conflict-list
reservation-conflict-list)

~e v

We first calculate some useful constants.
(setq unitsl ; what FuncUnits instl uses
(zemove-duplicates
(control-fields~-to-modules
(remove-always-combinables
instl)}))
(setq units2 ; what FuncUnits inst2 uses
(remove-duplicates
(control-fields-to-modules
(remove~always-combinables
inst2))))
(setq bussesl ; What data instl uses (dataflow constraint)
{remove-duplicates
(busses~-read-to-modules
(remove-always—combinables
instl))))
(setq busses2 ; What data inst2 uses (dataflow constraint)
( remove-duplicates
(busses-read-to-modules
(remove-always—-combinables
inst2))))
(setq reserves2 : What does inst2 want to reserve?
(find ‘reserve inst2
:test ’‘equal :key ‘car))

~e e

Now, we calculate the interesting intersections...
(setqg resource-conflict-list ; A unit usually can’t do two things at once
(intersection unitsl units2))
(setq sequence-conflict-list ; Must wait for outputs getting to crossbar
(intersection unitsl busses2))
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~

(setq dataflow-conflict-list ; Mustn’t clobber a unit before it’s used...
(intersection bussesl units2))

(setq reservation-conflict-list ; What must be reserved...
(intersection unitsl reserves2))

(cond ; diagnostics-
(nil
(print-2-cr "Inst 1:" instl)
(print-2-cr "Units 1:" unitsl)

(print-2-cr
(print-2-cr
(print-2-cr
(print-2-crt
(print-2-cr
(print-2-cr
(print-2-cr
(print-2-crc
(print-2-cr

"Busses l:" bussesl)

"Inst 2:" inst2)

"Units 2:" units2)

"Busses 2:" busses2)

"Reserves 2:" reserves2)

n"Resource Conflict:" resource-conflict-list)
"Sequence Conflict:" sequence-conflict-list)
"pataflow Conflict:" dataflow-conflict-list)
wReservation Conflict:" reservation-conflict-list)

1f we have "crushmax 0" constraints, we CANNOT merge,
we must append. So be it.

oo v v ve

{cond
( (member ’(crushmax 0) inst2 :test ‘equal) ; not allowed to crush...
(print-2-cr “"Latency constraint- control flow- " " no slack.")
(return t)))

1f sequence-conflict-list is non-null, we know we can’t
combine anything...data flow prohibits it. So we just return T.
Maybe someday we can look at the actual failure and with some
hair, short-circuit some stack pushes (pushing onto the
value stack and then using the value immediately is the most
common form of sequence conflict.)

R TR TR TR

(cond
(sequence-conflict-list
(print-2-cr "Sequence clash on " sequence-conflict-list)
(return t)))

If resource-conflict is non-null, we know we can’t just
combine with ease. We have to loock and see if it’'s a resource
that can be combined (like a pair of push-one’s combining into
a push-two)

EYR TR TR

(cond
(resource-conflict-list
{print-2-cr wResource-clash on " resource-conflict-list)
(print-2-cr "Attempting resource-peephole fixup...” " °
(return (print (resource-peephole-fixup instl inst2)))))

I1f reservation-conflict is non-null, a following instruction
has a timing requirement that prohibits moving THIS instruction
up at all. Hence, we combine it now and return it.

~ ne ve we

(cond
{reservation-conflict-list
(print-2-cr "Reservation clash on " reservation-conflict-list)
(return (append instl inst2))))

1f dataflow-conflict is non-null, we cannot {(must not!)
move inst2 past instl. Hence, we combine it now and return it.

~ w0

{cond :
(dataflow-conflict-list
(print-2-cr "Dataflow clash on " dataflow-conflict-list)
(return (append instl inst2)}))

~e w

If we have "crushmax 1" constraints, we can append.
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(cond
({ (member ' (crushmax 1) inst2 :test ‘equal) ; this is as far...
(print-2-cr "lLatency constraint- control flow- " " 1 unit slack.")
{return (append instl inst2))))

I1f we got to here, apparently the two instructions have
almost nothing to do with each other and we can just
jet them slide past one another. This should be rare but
we may as well do it if we can.
{print~2-cr "No conflicts found." " Instructions free to move")
(return nil}

L R TR )

)

—~e v

setq always-combinable
"

. comment
location
reserve

)

)
(defun always-combinable-p (elem)
(member (car elem) always-combinable))

PR Y

defun remove-always-combinables (list)
(remove-if
ralways-combinable-p
list)

Intersect— f£ind the intersection of two lists.

—~ne e v

defun intersect (listl list2)
(progv
’(targ)
(list list2)
(print "DARN! still have a caller to INTERSECT")
(remove nil
(mapcar
/(lambda (iteml) (car (member iteml targ)))
listl)
)
)
)

Given a control field, what module does it affect?
DANGER DANGER DANGER - we only look at the ZEROth control field!

e v we e

defun control-fields-to-modules {inst)
(remove nil
(mapcar »from-xc0-yield-module inst)))

(defun from-xc0-yield-module (subop)
(setq field (car subop))
(cond

((equal field ’‘mOc) 'm0)
((equal field ’'mlc) 'ml)
((equal field ’m2c) ‘m2)
{ (equal field ’‘pc0) 'ps)
({equal f£ield ‘vc0) 'vs)
((equal field ’‘tc0) ’cs)
{{equal field ’bc0) 'bs)
({equal field ’sc0) 'seq)
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(equal field ’‘crushmax) 'seq); crushmaxes are like seq instructions
(equal field ‘ac0) 'alu)
{equal field 'nc0) ‘net)
(equal field ‘cmi) ‘cmi)
t

(
(
(
(
( nil)

; Find out where our instruction gets it’s data from.
: We need this for the data-flow analysis that happens during crushing.
(

defun busses-read-to-modules {(inst)
(remove nil
(mapcar ‘from-busses-yield-module inst)))

defun from-busses-yield-module (subop)
(setq buscode (cadr subop))
(cond

((equal buscode ’b-md0) ‘m0)

{ (equal buscode ‘b-mdl) ‘ml)
((equal buscode ’b-md2) ‘m2)
((equal buscode ‘b-vd0) ‘vs)
((equal buscode ’'b-vdl) ’'vs)
((equal buscode ’'b-vsp) 'vs)
((equal buscode ’‘b-pd0) ’ps)
((equal buscode ’b-pdl) ‘ps)

( (equal buscode 'b-rd0) ’rs)

{ (equal buscode ’b-rdl) ’rs)
((equal buscode ‘b-bd0) 'bs)
({equal buscode ’b-bdl) ’'bs)
((equal buscode ’‘b-ad0) 'alu)
(({equal buscode 'b-sd0) ‘seq)
((equal buscode ’'b-nd0) ‘net)
((equal buscode ’‘b-cmi) ’cmi)

(t nil) ; op not recognized, forget it.

o~

For simplicity, we break the incoming stream into segments before
applying the other rules. This is like basic-block manipulation.

P AR N R L

defun crush-instruction-stream (code)
(reduce
*append
({mapcar
*crush-a~-segment
(make-code-segments code))))

EKnowing we’re in a basic block, we can crush like crazy,
not having to worry about branch-ins and branch-outs.
defun crush-a-segment (segment)
{ zeduce
rerush-instruction
segment
sinitial-value '(()}))

defun crush-instruction (segment inst)
(print-2-cr "Segment-so-far"” segment)
(print-2-cr "Next-instruction"” inst)
(prog
(iclp)

~e we o~ we we we
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({setq iclp (instr-clash-p ; look at the last old instr and the new one.
{car (last segment))
inst))
{cond
({equal iclp T)
(print-2-cr "Appending” "...")
(return (append segment (list inst))))
((equal iclp ’nil)
(print-2-cr "No conflict” ".e.™)
{cond
((< (length segment) 2)
(print-2-cr "short segment," "merging”)
(return (merge-with-last-inst segment inst)))

(t : not short- but no conflict at all
(print-2-cr "moving up one, trying again” " ")
(cond
({equal t ; Is it worth trying again?

(instr-clash-p (car(last (butlast segment))) inst))
(print-2-cr "Irresolveable clash one up," "merging")
(return (merge-with-last-inst segment inst)))

(t
(print-2-cr "Move-up looks good, doing that" * ")
(return (append
(crush-instruction (butlast segment)
{ crushmax-peano-hack inst))
(last segment)})))}))))

t
(print-2-cr "Best we can do is a merge " "here.")
(return
(append (butlast segment) (list iclp))

Merge an instruction onto the end of a segment.
defun merge-with-last-inst (segment inst)
(append
(butlast segment)
(list
(append
{(car (last segment))
inst))))

How we keep track of how far we’'ve crushed this...
defun crushmax-peano-hack (inst)
{substitute
' {crushmax 2)
' (crushmax 3)
(substitute
*(crushmax 1)
' (crushmax 2)
(substitute
*(crushmax 0)
*{crushmax 1)
inst :test ‘equal)
:test ‘equal)
:test ’‘equall)

Make-code~segments - break a stream of instructions
down into a list of "segments". A segment starts
wherever, and ends at the end of stream or at 2
LOCATION, (including anonymous locations)
defun make-code-segments (code)
(reduce

’code~segment-build

{cdr code)

.initial-value (list (list (car code)))

~ e we we So w0
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)
(

defun code-segment-build (built-part next-inst)
{cond
((segment-terminator-p next-inst)
(append built-part (list (list next-inst))))
(t
(append
(butlast built-part)
(list
(append
(car {last built-part))
(list next-inst)))))
)

)
(defun segment-terminator-p (inst)
(or
(£ind

*location

inst

:test ‘equal

:key ‘car)
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File _CTHULUSDUAO:[DIS]HCINLINE.LSP:13 (719,41,0), last revised on 12-MAR-1987
16:247 is a 7 block sequential file owned by UIC [YERAZUNIS]. The records are
variable length with implied (CR) carriage control. The longest record is 67
bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAQ: on 4-MAY-1987 11:00 from queue SYSSPRINT.
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Inline forms for DIS MC compiler

compile-an-inline-form - compiles inline code for
those functions which can be done so. Fixnum math and
booleans are done sO.

e we N e N Se we e

defun compile-an-inline-form (form)
(cond
((equal (car form) (quote +))
(compile-%+ form))
({equal (car form) (guote -
(compile-%- form))
((equal (car form) {quote *))
(compile-%* form))
{(equal (car form) (quote /))
{compile-%/ form))
{(equal (car form) (quote car))
(compile~tcar form))
{{equal (car form) (quote cdr))
(compile-%cdr form))
(({equal (car form) (quote 1+))
{compile-$1+ form))
((equal (car form) (quote i-)
(compile-%1- form))
{(equal (car form) (quote dlet))
{compile-tdlet form))
((equal (car form) (quote eq)})
(compile-$eq form))
{(equal (car form) {(quote rplaca))
(compile-%rplaca form))
({egual (car form) {quote rplacd))
(compile-$rplacd form))
(t
(print-2-cr {car form)
"is supposed to be inline coded, but I don’t know how to do it")
{print-2-cr "Therefore, 1’1l generate a call to the function”
(car form))
(compile-a-non-special-form form)

PR R

defun compile-%+ (form)
(prog
(remaining)
(setq remaining (cdr form))
(cond ; special-purpose code~ case of 2 variables.
({equal 2 (length remaining))
(compile-form (car remaining))
(compile-form (cadr remaining))
{app-res-add-vs-pair)
(go END-LOOP)))
(app-:es-vpush-from—cmi 0) ; We start with a zero
TOP-OF-LOOP
{cond
((null remaining)
{go END-LOOP)))
(compile-form (car remaining))
{app-res-add-vs-pair)
(setq remaining (cdr remaining)})
(go TOP-OF-LOOP)
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END-LOOP
}

)

(defun compile-%- (form)
(compile-form (cadr form))
(compile-form (caddr form))
(app-res-subtract-vs-pair)

PR

defun compile-%* (form)
(compile-form (cadr form))
(compile-form (caddr form))
(app-res-multiply-vs-pair)

)
¢

defun compile-%/ (form)
(compile-form (cadr form))
(compile-form (caddr £orm))
(app~res-divide-vs-pair)

)
(

defun compile-3eq (form)
(compile-form (cadr form))
(compile-form (caddr form))
(app-res-VS-eq)

defun compile-%car (form)
(compile-form (cadr form))
(app-res-VS-car)

defun compile-%cdr (form)
{compile-form (cadr form))
(app-res-VS-cdr)

defun compile-%l+ (form)
(compile~form (cadr form))
(app-res-subtract-vs-one})

— v

defun compile-~3l- (form)
(compile-form (cadr form))
(app-:es-sub:tact—vs-one)

~ve ar

defun compile-$dlet (form)
(compile-form (cadr (caadr form)})
(app-res-bind-special-value (car (caadr form}})}

~ee

defun compile-$rplaca (form)
{compile-form (cadr form))
(compile-form (caddr form))
(app-res-VS-rplaca)
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- v

defun compile-$rplacd (form)
(compile-form (cadr form))
(compile-form (caddr form))
(app-res-VS-rplacd)
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NNNNNNNNNN 3333333333333333333333333333333333333333333333333333 NNNNN
NNNNN
NNNNNNNNNN Digital Equipment Corporation - VAX/VMS Version v4.4 NNNNNNNNNN
NNNNNNNNNN 3333333333333333333333333333333333333333333333333333 NNNNNNNNNN

b 4 Y EEEEE RRRR AAA 22222 U U N N III SS§SS
Y Y E R R A A 2 v U N N I S
YY E R R A A Z U U NN N I S
Y EEEE RRRR A A 2 4 U NNN I SSs
Y E R R AAAAA 2 ) U N NN I S
Y E R R A A 2 U U N N I S
Y EEEEE R R A A 22272 UUULULU N N III SS8SS
MM MM cccecece  LL IIITII NN NN KK KK
MM MM cceeececce  LL IIIIII NN NN KK KK
MMMM MMMM CC LL II NN NN KK KK
MMMM MMMM CC LL II NN NN KK KK
MM MM MM CC LL Il NNNN NN KK KK
MM MM MM CC LL II NNNN NN KK KK
MM MM CC LL II NN NN NN KRKKKEK
MM MM CC LL II NN NN NN KKKKKK
MM MM CC LL II NN NNNN KK KK
MM MM CC LL II NN NNNN KK KK
MM MM CC LL II NN NN KK KK
MM MM CC LL 11 NN NN KK KK
MM MM CCCCCCCC  LLLLLLLLLL ITIIIII NN NN KK KK
MM MM CCCCCCCC  LLLLLLLLLL IIIIII NN NN KK KK
LL SSSSSSSS PPPPPPPP AR 5555555555
LL SSSSSSSS PPPPPPPP siid 5555555555
LL ss PP PP iii 55
LL ss PP PP 1333 55
LL Ss PP PP 555555
L Ss PP PP 555555
LL SSSSSS PPPPPPPP 133 S5
LL SSSSSS PPPPPPPP ] 55
LL S§S PP HE R 55
LL SS PP R 55
oo LL §S PP i: 55 55
cees LL sS PP HA 55 55
‘ ceee LLLLLLLLLL SSSSSSSS PP HH 555555
sees LLLLLLLLLL SSSSSSSS PP HEH 555555

File _CTHULUSDUAO:[DIS]HCLINK.LSP;S (14,65,0), last revised on 2-MAR-1987 09:51
, is 2 5 block sequential file owned by UIC [YERAZUNIS]. The records are variab
le length with implied (CR) carriage control. The longest record is 83 bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 4-MAY-1987 11:01 from queue SYSSPRINT.

NNNNNNNNNN 33333333333333333333333333;3333333333333333333333333 NNNNNNNNNN

NNNNNNNNNN Dpigital Equipment Corporation - VAX/VMS Version V4.4 NNNNNNNNNN
NNNNNNNNNN 3333333333333333333333333333333333333333333333333333 NNNNNNNNNN
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Linker for DIS MC output WSY 2-17-87

Input is a precrushed, default-inserted stream of
instructions.

Output is written directly into the DIS simulator
memory. A second structure, an association
list of locations, is also created and maintained.

mclink - given an instruction stream, assemble them,
taking note of LOCATIONs, and put them into memory.
We supply a start address, mclink returns the next
vacant address.

R I T LR DI T TIE TR AL T T

defun mclink (stream startaddr)
(prog (current-address instrs inst name value)
(setg current-address startaddr)
(setqg instrs stream)
SET-LOCATIONS ; first, go through and £ind all LOCATIONS
(setq inst (car instrs))
(setq instrs (cdr instrs))
(check-for-location-info inst current-address)
(setq current-address (+ current-address i)
(cond
(instrs (go SET-LOCATIONS)))
Done with address resolution, now for
actual instruction calculation and
placement.
(setq current-address startaddr)
{setq instrs stream)
PLACE-AN~INSTRUCTION
(setq inst (car instrs))
(setq instrs (cdr instrs))
(setg value ; what the actual bignum instruction is
( reduce
LES
(mapcar
reval
inst)))
(setf (aref memory current-address) value); put the instr in memory.
(setq current-address (+ 1 current-address))
(cond
(instrs (go PLACE-AN-INSTRUCTION)))
(return current-address)

~o w0 e

check-for-location-info - SETQ location-names to
address values. If it’s a name in the symbol table,
poke the DISSIM symbol table to be right, too.

s N ve we N N e

defun check-for-location-info (inst current-address)
(cond
((setqg name

(£ind ; is this a LOCATION?
rlocation
inst
:test ‘equal
skey 'car))

(set (cadr name) current-address)

(update-dissim-symbol-table-fot-function (cadr name) current-address)

)
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poke the DISSIM symbol table (kept in M0) to be right.
defun update-dissim-symbol-table-for-function {symbol address)
{cond

( (member symbol symbol-table)
(setf (aref memory (+ (symbol-seg-lookup symbol) 1)) address)}))
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0000000000 3333333333333333333333333333333333333333333333333333 00000
00000
0000000000 pigital Equipment Corporation - VAX/VMS Version V4.4 0000000000
0000000000 3333333333333333333333333333333333333333333333333333 0000000000

Y Y EEEEE RRRR AAA 22222 U U N N IIX §SSS
Y Y E R R A A 2 U U N N I s
Yy E R R A A 2 U U NN N I S
b 4 EEEE RRRR A A 2 U U NNN I SS8S
Y E R R AAAAA 2 U U N NN I S
Y E R R A A 2 u U N N I S
Y EEEEE R R A A 2222Z UUUUU N N III SSSS
M M CCCC PPPP EEEEE EEEEE PPPP H H 000 L EEEEE
MM MM C P P E E P P H H O o L E
MMM C P ? E P P H H O o L E
M M C PPPP EEEE EEEE PPPP HHHHH O o L EEEE
M M C P E E P H H O o L E
M M C P E E P B H O o L E
M M ccee P EEEEE EEEEE P H H 000 LLLLL EEEEE
L SSSS PPPP FH 333 999
L S P P ] 3 3 9 9
L S P P 3 9 9
L SSsS PPPP HH 3 9999
L s P HH 3 9
.o L s P H 3 3 9
. LLLLL SSSS P ; 333 999

File _CTHULUSDUAO:[DIS]HCPEEPHOLE.LSP:BQ (39,39,0), last revised on 6-APR-1987
13:467 is a 12 block sequential file owned by UIC [YERAZUNIS). The records are
variable length with implied (CR) carriage control. The longest record is 70
bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAQ: on 4-MAY-1987 11:01 from queue SYSSPRINT.

0000000000 3333333333333333333333333333333333333333333333333333 0000000000

0000000000 pigital Equipment Corporation - VAX/VMS Version v4é.4 0000000000
0000000000 3333333333333333333333333333333333333333333333333333 0000000000
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peephole Optimizer for DIS MC Compiler WSY 23-Mar-87

Peephole optimization of instruction pairs.

we do this only during the crush phase. 1f we did it
before, then we would close many sequence-clash-free
instruction possibilities.

This version of peephole is table-driven. A list of
valid transforms is given, and each is applied in
sequence. This isn’t the fastest but it certainly is
the most flexible way (any function on 2 finite set can
be defined by enumeration).

For speedsake, we run only those optimizations that

are necessary- for instance, resource-conflicts.

We do recurse on instr-clash-p to make sure the
instructions don’t have some other "funny" that
prohibits recombination.

Like instr-clash-p, we allow coded returns-

list ---> the combined (optimized) instruction.
A peephole-options list looks like:

((instr-fragment-A)

(instr-fragment-B)

(instr-£fragment-new)

(lambda (A B NEW) (peephole-specific-code))
)

)

H
H
H T -—-> No optimization found- you lose
H when we find an instruction pair that contains ALL of
; instr-fragment-A and instr-fragment-B, we remove the
; fragments, and pass all three parts to the peephole-specific code
; for other peephole-specific manipulation. If we can manipulate
: successfully (and test via jnstr—clash-p recursively) we return the
; new instr. Otherwise, we return T (just like instr-clash-p).
(defun resource-peephole-fixup (inst-a inst-b)
(prog (instr-pair)
(cond ((neot enable-resource-peepholes) (return t)))
(print-2-cr n"Resource-peephole A:" inst-a)
{print-2-cr "Resource-peephole B:" inst-b)
{setq instr-pair
( reduce
*peephole-once
*resource-peephole-options* ; Mostly have to do with stacks...
.initial-value (list inst-a inst-b)))
(teturn
(cond
( (equal instr-pair (list inst-a inst-b})
(print-2-cr "Resource peephole optimizer..." "fails to save.")
t)
(t
(print-2-cr "Resource peephole optimizer..." "succeeds.")
{cond
({equal t (instr-clash-p (car instr-pair) (cadr instr-pair)))
(print-2-cr "but failed to do enough... conflict.” " ")
t)

.

nonony

t
(print-2-cr "Resource peephole merge complete.
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(print-2-cr "Good new instruction is
{append (car instr-pair) {cadr instr-pair)))
(append (car instr-pair) (cadr instr-pair)))})

~o

)
1))

Possible returns of peephole-once:

{list) ---> new instructions which will work if they
«can* be combined. Thus, you still have
to run instr-clash-p on these new instructions.
Oonly an instruction set that passes instr-clash-p
is gauranteed to work.

To avoid infinite recursion, don’t have any optimizations
that can be repeated indefinitely.

N3 S8 e NS NE N S0 Ne we e we N

(defun peephole-once (inst-pair option)
(prog
{inst~A inst-B frag-A frag-B frag-new)
(setq inst-A (car inst-pair))
(setqg inst-B (cadr inst-pair))
(setg frag-A (car option))
(setq frag-b (cadr option))
(return (cond
((and
(subsetp frag-A inst-A :test ’equal)
{subsetp frag-B inst-B :test requal))
(eval (append
{cdddr option) ; the peephole-specific code
(list (list ’'quote
(reverse (set-exclusive-or inst-a frag-a :test ‘equal))})
(list (list ’'quote
(reverse (set-exclusive-or inst-b frag-b :test requal))))
(list (list ’quote
(caddr option))) ; the new-inst-frag
3]

(t ; We failed.... oh well.
inst-pair)
1)

—

DANGER DANGER DANGER

NEVER, EVER PUT IN A PEEPHOLE OPTION CONCERNING

TWO FIELDS THAT CAN SLIDE FREELY, UNLESS YOUR

INTENT IS THAT THEY SHALL NOT SLIDE PAST EACH

OTHER! THE PEEPHOLE CODE *MIGHT* MODIFY BOTH
INSTRUCTIONS BEFORE ANY OTHER OPTIMIZATIONS ARE DONE!

NEVER, EVER PUT IN A PEEPHOLE OPTION THAT MIGHT
INFINITELY LOOP. IF YOU DO THIS, YOU LOSE.

of course, if this is your intent, 9o ahead. 1It’s
your nickel...

setqg enable-resource-peepholes T)
setqg »resource-peephole-options*
'

(

o we s NI NS SE NS Ne NE %6 W N N6 N W N0 VS

testing, testing, 1...2...3... testing.
£irst instr. has?

2nd instr. has?

user data.

item-specific code to run

{pah 1) (poo))
(zo0 3))
(forge))

lambda (A B C)
(list

~r %o o wb we

(
(
(
(
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((vecl
(vecl
(ve2
(ve3

{(vecOd
(vel
{ve2
(ve3

(append A C) ; new first instruction.
(append B "fo0)}) ; new second instruction.

; Optimize two VPUSH1's into a VPUSH2
snormal) ; a vpush-1

spushl)

swtop)

spwrite))

snormal) : another vpush-l

spushl)

swtop)

spwrite))

( (comment "Combining two vpush-1's into a vpush-2")

{vecO
(vel
(ve2
{ve3

snormal) ; combine to a vpush-2
spush2)

swboth)

spwrite))

(lambda (A B C)
{list
(append
(subst 'vvl ‘vv0 A :test ’‘equal)

c)
B
)
)

((bd0
{bcO
{becl
{bc2
(be3

((bd0
(bcO
(bcl
(be2
(be3

; Optimize 2 BPUSHl'S into a BPUSH2
b-mdl) ; lst instr- pushing an old global value.
snormal)
spushl)
swtop)
spwrite))
b-cmi) : 2nd instr - pushing next global address
snormal)
spushl)
swtop)
spwrite))

{ (comment "Combining two pushes of BStack into one")

(bd0
(bdl
(bcl
(bcl
(be2
(bec3

b-cmi)
b-mdl)
snormal)
spush2)
swboth)
spwrite))

{lambda (A B C)

(list

(append A C)

B)
)

({vcO
(vel
(vec2
(ve3

((vel
(vel
(ve2
(ve3

; Optimize VPOP1-VPUSH1 into VOVERWRITE
snormal) ; lst- the VPOP1

spopl)

swidle)

spwrite))

snormal) ; 2nd- the VPUSH1

spushl)

swtop)

spwrite))

( (comment "Combining vPOP1l and VPUSH1 into VOVERWRITE")

(vel
(vel
(ve2
(ve3

snormal)
spidle)
swtop)
spidle))

(lambda (A B C)

(list
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t i i t kee
[of ; We do it this way because we mus p
tappend B C)) vD0 selection info valid!

M)
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PPPPPPPPPP 3333333333333333333333333333333333333333333333333333 PPPPP
PPPPP
PPPPPPPPPP Digital Equipment Corporation - VAX/VMS Version V4.4 PPPPPPPPPP
PPPPPPPPPP 3333333333333333333333333333333333333333333333333333 PPPPPPPPPP

Y Y EEEEE RRRR AAA 22222 U U N N III SSSS
Y Y E R R A A 2 U U N N I S
Yy E R R A A 2 U U NN N I S
Y EEEE RRRR A A 2 U U NNN I SSS
Y E R R AAAAA Z 1Y) U N NN I )
Y E R R A A 2 u U N N I S
Y EEEEE R R A A 22222 UUUUU N N III SSSS
M M cccce SSSS PPPP EEEEE cccce III AAA L SSSS
MM MM C S P P E o I A A L S
MMM C S P P E c I A A L S
M M C SSS PPPP EEEE (o I A A L SSsS
M M C S P E [« I AAAAA L S
M M C s P E c I A A L S
M M CCCC SSSss P EEEEE ccee III A A LLLLL SSSS
L SSSS PPPP HH 1 999
L S P P HA 11 9 9
L S P P 1 9 9
L S§S PPPP P 1 9999
L s P ] 1 9
.e L s P ; 1 9
. LLLLL SSSS P ; 111 999

File _CTHULUSDUAO:[DIS]HCSPBCIALS.LSP:IS (1119,13331,0), last revised on
13-MAR~1987 16:35, is a 19 block sequential file owned by UIC { YERAZUNIS]). The
records are variable length with implied (CR) carriage control. The longest
record is 80 bytes.

Job DISBASE (810) queued to SYSSPRINT on 4-MAY-1987 10:54 by user YERAZUNIS,
UIC [YERAZUNIS], under account at priority 100, started on printer
_CTHULUSCSAO: on 4-MAY-1987 11:02 from queue SYSSPRINT.

PPPPPPPPPP 3333333333333333333333333333333333333333333333333333 PPPPPPPPPP

PPPPPPPPPP pigital Equipment Corporation - VAX/VMS version V4.4 PPPPPPPPPP
PPPPPPPPPP 3333333333333333333333333333333333333333333333333333 PPPPPPPPPP
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~va v v e

[ N LR R DR UR T T g

Special Forms - how to compile them in the MC compiler

How to compile a special form

defun compile-a-special-form (form)
(cond

((equal (car form) (quote defun)) ; Handle DEFUNS
(compile-a~-defun form))

((equal (car form) (quote cond)) ; Handle CONDs
(compile-a-cond form))

((equal (car form) (quote setq)) ; Handle SETQs
(compile-a-setq form))

((equal (car form) (quote let)) ; Handle LETs
(compile-a-let form))

(t

(print-2-cr (car form)
" is a special form but I don't know how to deal with it "))

dow to deal with a DEFUN

defun compile-a-defun (form)

Defuns are handled wierd
because they don’t directly emit code, rather
they set up tables. Then, we recursively descend
to emit the code correctly. Hence, we can load
files which contain immediate operations mixed
: with DEFUNs and it might be OK.

(print-2-cr "Compiling a DEFUN for " (cadr form))
(progv

’(locals funcname)

*(nil nil nil)

~s v Wy e we

locals contains names of all vars
scoped locally- we get them via stack refs
rather than symbol table extracts. Mucho
faster.

set local names up.

(setq locals (caddr form))
set local function name up.

(setq funcname (cadr form))

PRI T PR I Y

(print-2-cr "Local variables in this defun - " locals)
(make-symbol-table-entry (cadr form)) ; put funcname in symbol table
(app-res-symbol—function-location (cadr form) form); Insert marker for
; assembler to find start
; of code area
(compile-implied-progn (cdddr form)); and compile the body as an implied
; progn
)

(app-res-return-to-caller) now, we return to the caller

; of this function.

How to compile a COND

COND's are gooey because you have to jump somewhere if you get 2
test clause that is non-nil, but you don’t do it right away, rather, you
have to wait for the consequent to be executed, then you jump to the end.
The simple way to handle it is to add an extra rez-up-execute-return to
the end of the last consequent evaluation. Then you fake the return
stack so that when that extra execute-return is executed, control appears
to return to the instructions following the COND close. .
fFaking this return stack is easy- we give COND it’s own function frame
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so that it just returns. Then COND has control of what remains on
the value stack, and no delicacy is necessary to deal with the faking
of the return stack addresses.

Note- eventually we can speed up returns by doing the delicate stuff.

o~ s %o w0 we v

defun compile-a-cond (form)
(print-2-cr "Compiling a COND which looks like " form)
{progv
’ (cond-exit) ; where the cond finally exits to,
'{nil) ; location yet unknown.
(import (setq cond-exit (gensym "COND-EXIT-")))
We have to insert a (location cond-exit)
at the end of the cond. Since cond-exit
is dynamically bound, nested conds will
work out fine.

We now create a fake return frame - which
when returned-from, will put execution at
the end of the COND, but not alter RSP-1
being the argument pointer. Remember,
the PSP/RSP point to the top of VSP BEFORE
; the argumentlist began to get built.
(print-2-cr "Creating fake return frame for COND termination” " ")
; Fake return frames look like real frames
; except they only update the SEQ
. information, not the VSP information.
(app-res-create-fake-:eturn-f:ame cond-exit)
(prog (clauses this-clause cond-next)
(setg clauses (cdr form))
COMPILE-A-CLAUSE
{cond
((null clauses)
{go NO-MORE-CLAUSES) )
((equal (caar clauses) t) ; 2 t-clause- which always executes...
(setq this-clause (car clauses))
(print-2-cr "Compiling t-clause: " this-clause)
(cond
((null (cdr this-clause})
(app-res-vpush-from-cmi t-value)); it might return t
(t i

; or it might return something else
(compile-implied-progn (cdr this-clause))))
(app—:es—:etu:n-via-fake-frame); and this puts the right thing on the
; VS, thanks to the fake return frame.

a6 S5 ws Ne Sh Se e w3 v W

what to do if no clauses left:

(go NO-MORE-CLAUSES))
t ; We have clauses left to evaluate-
(setq this-clause (car clauses))
(print-2-cr “Compiling clause: " this-clause)
(compile-form (car this-clause)); execute the first clause
(import (setq cond-next (gensym "COND-NEXT-")))
(app-res-branch-if-null cond-next)
{cond
((null (cdr this-clause)) ; If no consequents, just branch to the
; cond-exit location (which takes care
; of what to return...)
(app-res-return—to—caller)); fake retucrn frame, remember.
t We *do* have consequent clauses, which we
can execute as an implied progn. Then we
go to the cond-exit location and that
takes care of putting the return value in
the right place.
(app-res-pop-vs-one) Throw away the non-null predicate result
(compile~-implied-progn (cdr this-clause))
(app-:es-return—via-fake-frame))
)
) ) ; We’re done with that clause...what’s next?
(app—res-symbol-function-location cond-next "Start of the next clause here")

~e we S8 e ve we
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in case the clause wasn’t satisfied, go
here and try next clause...
Throw away the annoying NIL from the

(app-res-pop-vs-one)
previous clause (that didn’t succeed)

PR TR Y]

(setq clauses (cdr clauses))
{go COMPILE-A-CLAUSE)
NO-MORE-CLAUSES
1f we fell thru to here, no clause was
true. So, we have to return a NiIL.
(print-2-cr "End of clauses - pushing the backing NIL" " ")
(app-res-vpush-from-cmi ( symbol-seg-lookup rdis-nil)); push a NIL so that if
no clause was satisfied, we have 2 NIL to
return to the caller.
we no longer need the fake frame.
Return-via-fake gets rid of it, so we only
do this popping when we don‘t do a

; return-via-fake.
(app-:es-symbol-function-location cond-exit "Where the cond exits"))
}

~e we

(app-res-pop-rs-two)

«s ve N v v

Compile-a-setg - compile SETQ’s into actual changes
in the data memory. We have to watch out for local variables
(stack variables) though. Bound variables are OK, because even
a bound variable has a symbol table entry...

PR R I T IR DI DI T

defun compile-a-setq (form)
(print-2-cr "Compiling a SETQ which loocks like " form)
(prog (target value stuff)
(setq stuff (cdr form})
SETQ-LOOP
(setqg target (car stuff))
(setq value (cadr stuff))
(setq stuff (cddr stuff))

symbolname of where we put value
text of how we get value
deal with multiple setgs per call

First, we get the value onto the stack.
We do this by calling the compiler
function COMPILE-FORM

.. .value is now on the stack, either as
a pointer to something, or as an immediate
value. Either case is OK.

(compile-form value)

Now we have to decide - where does this
value go? It might be local/lexical or it
might be special.

~e we N3 we WS N1 WG W e N Ve e Ne Ve

{cond
( (member target locals) ; ...are we lexical?
(app-res-sec-local-variable target)) ; note that we leave the value on
. the stack - the syntax of SETQ says we
return the last value computed.
...we aren’'t lexical - symbol table change.
target)))
Check - are we done with all the stuff?
1f not, throw away top VS value and go
around again. Else, we are done.

(t
(app-res—set—symbol-valu

[ IR

(cond
({not (null stuff))
(app-:es—pop~vs—one)
{go SETQ-LOOP)))

get rid of the value we don’t want.
and go around again.

. we

~ %~

180

R . o .
eproduced with permission of the copyright owner. Further reproduction prohibited without permission



LET's - handle variables of dynamic extent...
This requires doing five things:
1) saving an old value,
2) calculating and setting the new value,
2a) if more new values, recurse,
3) running the internal form,
4) restoring the old value,
5) returning the internal form.

We don’t supply "full"” common lisp LETting- in particular,
there must be at least one letted variable, and it MUST be
Jetted to a value (nil, if necessary). There are ways around
this that complicate the compiler but not the compiled code.

o~ we s Wa e NI N4 Ve W6 e Ve WS Ve Ne Ve N8

defun compile-a-let (form &aux target value)

(setqg target (caaadr form))

(setq value (cadr (caadr form)))

(cond

( (member target locals)

{print "I don’t know how to do that yet"))

(t ; special variable being bound...

(app-:es-bs-push-global-symbol target))); save them onto value stack

; recurse if necessarcy...
(cond
{(cdadr form)
(compile-form
(append ’(let) (list (cdadr form)) (cddr form)})))

.-~

put the new value in...
(compile-form
(append ’(setq) (list target) (list value)))

1f we’re the innermost recursion,
we can now run the forms-to-run...

~o we w6

(cond
((null (cdadr form))
(compile-form (cddr form))))

’
: Now, we unwind our saved values...
(cond
( (member target locals)
(print "I don’t know how to do that yet"))
(t ; special variable being unbound...
(app-tes-global-unwind-bs-and-pop-cwo))))

~
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Y EEEEE R R A A 22227 UUUULU N N III SSSS
M M ccee $SSS TTTTT U U BBBB SSSS
MM MM C S T ) U B B S
MMM C S T 4] U B B S
M M C S§SS T U U BBBB SSS
M M C S T u Uu B B S
M M C S T 4] U B B s
M M CCCC SSSS T yuuuu BBBB SSSS
L SSSS PPPP HH 1 222 666
L S P P HA 11 2 2 6
L S P P 1 2 6
L SSS PPPP HH 1 2 6666
L s P i3 1 2 6 6
.. L s P ; 1 2 6 6
.. LLLLL SSsS P H 111 22222 666

File

18:017 is a 58 block seg
variable length with imp

bytes.

Job DISBASE (810) gqueued to SYSSP
YIC {YERAZUNIS], under account
_CTHULUSCSAO: on 4-MAY-1987 11:3

Q0QQQQQQQQ
QQQQQQQQQQ
QQQQ0RQQQQ

CTHULUSDUAO: [ DIS]MCSTUBS.LSP;126 (33,50,0),
uential file owned by UIC [YERAZUNIS].
lied (CR) carriage control.

last revised

The longe

on 17-APR-1987
The records are
st record is 77

RINT on 4-MAY-1987 10:54 by user YERAZUNIS,
at priority 100, started on printer
2 from queue SYSSPRINT.

3333333333333333333333333333333333333333333333333333 QQQQQQQQQQ
pigital Equipment Corporation - VAX/VMS Version V4.4 QQQQQQQQQQ
3333333333333333333333333333333333333333333333333333 QQQQQQQQQQ
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Mcstubs.lsp - stubs to test MC with - WSY 3-11-86
various functions to make the MC microcompiler work...
a default-but-explicit (sc0 segnext) field is used
to tell the crusher NOT to optimize this instruction
over another possible branch/call/return.

In general, xCO fields are used to indicate the x module
itself is busy this cycle.

= Ne s Se S Ne NE e Ve %o Ne Ne Ne

defun symbol-seq-lookup (symbol)
(p:igt-z-cr "Looking up sequence number for " symbol)
{con
( (member symbol symbol-table)
(cadr (member symbol symbol-table)))

t
(make-symbol-table-entry symbol)
{symbol-seg-lookup symbol))}

IR R TR

(defun app—:es-initialize-machine-code ()

(print-2-cr "Initialize-machine hege" " .")
)
(defun app-res-vpush-from-cmi (emi)

(print-2-cr "app-resing a push to VS from cmi with value..." cmi)

(appres

(append text-vpush-from-cmi ; VPUSH1 returns the nonchanging part..
(list (append ’(cmi) (list cmi)))))

)
(setq text-vpush-from-cmi
"

(comment "Pushing a CMI value onto VS")

(vv0 b-cmi) stack gets input from CMI
(ve0 snormal) use normal VSP

(vel spushl} push 1

(ve2 swtop) write top

(ve3 spwrite))) save new stackpointer

PO TRV TR Y

s we ws we we

defun app-res-prepare-to—cal1-vs-addr ()
(princ "app-resing 2 prepare-to-call with VS having address.")
(terpri)
(appres text-prepare-to-call-vs-addr-1)
(appres text-prepare-to-call-vs-addr-2})
)
(setg text-prepare-to-call-vs-addr-l
L4

(comment "Preparing to call, addr is now on vs")
Store the new address.....
stacktop is addr to call
undertop is VSP at call
use normal PSP

push 2

write both

save new PSP

(pv0 b-vd0)
(pvl b-vsp)
{pc0 snormal)
{pcl spush2)
(pc2 swboth)
(pc3 spwrite)

PYRYRTIR VR VR TR T}
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~

{ve0 snormal)

(vel spopl)

(ve2 swidle)

(ve3 spwrite)
))

.o we o w2 o

Meanwhile, pop the value stack(blow off addr)
use normal VSP
op 1
don’t write anything
save new VSP

(setq text-prepare-to-call-vs—addr-z
’
(

(comment "now fix saved

{pvl b-vsp)
(pcOd snormal)
(pcl sidle)
(pc2 swt-1)
)(pc3 spidle)

~as we W NE Se

(appres
(append
(list
(list
'comment

~e e ve we s

VSP to point to below first argument”)

VvSP after the pop, from previous instr,
use normal PSP

no stackpointer motion

overwrite saved VSP with correct value

no change, no write.

defun app—:es-p:epate-to-call—symbol {symbol)

"Preparing to call the function named "

symbol

))
({list (list ‘cmi { symbol-seq-lookup symbol)))
text-p:epa:e—to-call-symbol—l

))
(appres

text-prepare-to-call-synbol-z)

)
(setg text-p:epare—to-call-symbol—l
‘o

(comment "Cycle Ml from
(miv0 b-cmi)

(miv2 1)

(mlc mread)

CMI addr +1 offset and get absolute addr”)

address on CMI
offset +1
tell me what’s there

|}
(setg text—prepare-to-call-synbol-z

'

(comment "Take the pointer M1 gave us, put it on PS with VSP")

(pv0 b-mdl)
{pvl b-vsp)
(pcO snormal)
(pel spush2)
(pc2 swboth)
(pe3 spwrite)

)
(

~e %e we we NS

call address from M1,

retval location is the current VSP,
use normal PSP,

push two values,

write both values,

keep new stackpointer.

Given PS has been set up and the arguments put on VS,
we actually *call* with this code here.

defun app—:es—execute-prepated-call 0

(princ "app-resing the execute part for a prepared call”)

(terpri)

(appres text~execute-prepared-call-1l)
(appres text-execute-prepared-call-2)

{app~-res-anonymous)
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)
(setqg text-execute-prepared-call-l
'

(comment "Execute a prepared call”)

(comment "No branch permitted - call latency 2")

(crushmax 2) We can move up at most 2 instructions,
(reserve seq) and we need the sequencer available for
the next instruction

Addr we would have xgtd 2 instruc hence...
pointer to VSP at call entry- we write
here to return a single value,

use normal RSP,

push 2,

write both,

save the new stackpointer.

We have to pop the pending stack,

use normal PSP,

pop two elements,

no other changes,

save new stackpointer.

MO starts reading new instruction stream
instr’s start here,

read it, MO.

Sequencer is given a new next addr.
instructions come from MO still,

(rv0 b-sd0)
(rvl b-pdl)

(re0 snormal)
{rcl spush2)
(rc2 swboth)
{re3 spwrite)

{pc0 snormal)
(pcl spop2)

(pc2 swidle)
(pc3 spwrite)

(m0v0 b-pd0)
(m0c mread)

(sv0 b-md0)

N ws N8 Se Ns Ne NI N6 NE Se We Na NH N Ve SE 6 N6 N SN N N Ne Ve e

(svl b-pd0) but next addr comes from pending stack,
(sv2 b-pd0) (branches not permitted),

(scO 1) add 1 for next address(normal),

(sel 1) add 1 for next addr. (alternate),

(sc2 0) no conditions for branch tested,

(se3 0) don’t ignore any module-not-ready signals

)
)
(setqg text-execute-prepared-call-2
’
(
(comment "No branch permitted - call latency 1)
{crushmax 1) ; We can move this up at most one instr.
(sc0 segnext) ; a sequencer op to prevent crushing

defun app-:es—symbol—function-location (name defuntext)
(print-2-cr "Inserting marker for location " name)
(appres
(list
(append ‘(location) (list name))
(append ’(comment) (list "Source code:")(list defuntext))
)

(defun app-res-anonymous ()
(print-2-cr "Anonymous label to prevent statement migration
(appres
(list
{append ‘(location) ' (anonymous})
{append ’(comment) ’("labels prevent statement migration.")))))

won ny

~e we e we

(defun app-res-pop-vs-one ()
{appres text-pop-vs-one))
(setg text-pop-vs-one
i
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(comment "Popping VS once")

{vc0 snormal) ; use normal VSP

(vel spopl) pop one

(ve2 swidle) don’t write anything
(ve3 spwrite) save VSP back

e e e s

pop-rs-two - throw away the most recent return frame.
THIS IS BAD TO DO IF IT WASN'T A FAKE FRAME WE ARE THROWING AWAY!

e R R R

defun app-res-pop-rs—two ()
) (appres text-pop-crs—two)
(setg text-pop-rs-two

'

(comment "Popping a fake return frame off of RS")
(zcO snormal) use normal RSP

(rcl spop2) pop two

(rc2 swidle) write nothing

(re3 spwrite) save RSP back

e ne v .

)
H
’

: To return to our caller, we just pop the return location off of the

; return stack. Because our functions are defined to "eat" the data

; off of the call only for locally wired functions, and some functions

; don’t remove the data, we (to insure that the right result gets returned)

; have to move the current VS top to the location pointed to in the

; return stack (thereby smashing the top of the argument list but who

: cares any more, we’re returning and that local context is vapor now anyway.
’
(

defun app-res-return-to-caller ()
(appres text-return-to-caller~1)
(appres text-return-to-caller-2)
(app-res-anonymous)

(setq text-return-to-caller-1
r
(
(comment "Return to caller using RS data™)
{comment "No branch permitted - return latency 2")
(crushmax 2) . We can move this up at most two instrs.
(reserve seq vs IS) and we must reserve the seq, vs, and rs.
{m0v0 b-rd0) MO start fetching new instr. stream,
(m0c mread) M0 fetches instr,
Sequencer gets a new next-address.
instructions come from M0 still,

{sv0 b-md0)
but active addr comes from return stack,

{svl b-rd0)

TR TR R L R LR D TR

(sv2 b-rd0) (branches not permitted),

{sc0 1) add 1 for next address(normal),

{scl 1) add 1 for next addr. (alternate),

(sc2 0) no conditions for branch tested,

{sc3 0) don’t ignore any module-not-ready signals

)
)
(setqg text-return-to-caller-2
'
(comment "No branch permitted - return latency 17)
{crushmax 1)
({sc0 segnext) : a sequencer op- to prevent crushing
. Put the func. result where it'’s expected.
(vv0 b-vd0) ; value stack- take your current top;
{vvl b-rdl) ; and using return stack top,
(vc0 subhead) ; for the stackpointer,
(vel spushl) ; point it to the first local frame loc.
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{ve2 swtop)
(ve3 spwrite)

write the top,

and save the new VSP.

Get rid of the return frame on RS
use standard stackpointer,

pop 2 elements,

no writing now,

but save the new RSP.

(rc0 snormal)
(rcl spop2)
(rc2 swidle)
(rc3 spwrite)

R R TR

Return-via-fake-frame is a lot like returning to a caller,
don’t bother fixing up the VSP. Just really branch to the
location pointed to by the RS.

PR A R U I

defun app-res-return-via-fake-frame ()
(appres text-return-via-fake-frame-1)
(appres text-return~via-fake-frame-2)
(app-res-anonymous)

)
(setq text-return-via-fake-frame-1
’
(
(comment "Return to faked caller using RS data")
(comment "No branch permitted - return latency 2")
(crushmax 2) ; We can move this up at most two instrs.
(reserve seq rs) and we must reserve the seq and rs.
(mOv0 b-rdl) M0 start fetching new instr. stream,
(mOc mread) M0 fetches instr,
Sequencer gets a new next-address.

(sv0 b-md0) instructions come from MO still,

No N e %6 We N6 S W e v e

(svl b-rd0) but active addr comes from return stack,
(sv2 b-rd0) (branches not permitted),

(sc0 1) add 1 for next address(normal),

(scl 1) add 1 for.next addr. (alternate),

(sc2 0) no conditions for branch tested,

(sc3 0) don’t ignore any module-not-ready signals

)
)
(setg text-return-via-fake-£frame-2
’
(
(comment "No branch permitted - return latency i)
(crushmax 1)
(sc0 segnext) a sequencer op- to prevent crushing
Put the func. result where it's expected.
use standard stackpointer,
pop 2 elements,
no writing now,
but save the new RSP.

(rc0 snormal)
(rel spop2)
(rc2 swidle)
(rc3 spwrite)

No e N8 a8 Ne s

vpush-from-local-values - gets a value that’s local
(i.e. was passed as a parameter) and pushes it onto the
value stack. This works only for the first 7 arguments.
The argument number is compiled into the stack motion.

PR T T U TR TR g

defun app-res-vpush—f:om-local-values (symbol)
{print-2-cr "Getting 2 local variable from the value stack " symbol)
(prog (displacement)
{setqg displacement (position symbol locals))
(appres
(append
(list
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' (comment "Getting a local value stacked on VS onto B-vDO")
* (comment "Address we want is RDl + vv0 - sidle + 17)
(append ’'(vel) (list (+ sidle displacement 1))))
text-vpush-from-locals-1))
(appres
text-vpush-from-locals-2)))
(setqg text-vpush-from-locals-1l
(vvl b-rdl) arg return pointer- which just happens to
point to start of call frame-1. Lucky? Ha!
I designed it that way on *purpose* =)
Use alternate stack pointer (vvl),
No writing this cycle,
don’t save the VSP, retain old one.

(ve0 subhead)
(ve2 swidle)
(ve3 spidle)

PRI T

)
(setq text-vpush-from-locals-2
"

(comment "Now we push B-VD0 back for local copy on VS")
(vv0 b-vdO0) what we read out last cycle,
(vc0 snormal) use the real VSP,
(vel spushl) push 1 entry,”
{vec2 swtop) write the top of stack,
(ve3 spwrite) keep the new stack pointer.

oo we S8 ve W

set-local-variable - sets (in the stack) the value of
a LOCAL (LEXICAL) variable. The symbol is changed to
have the same content as the top of the value stack.
detun app-res-set-local-variable (symbol)
(print-2-cr "SETQing a local variable on the value stack " symbol)
(prog (displacement)
(setq displacement (position symbol locals))
(appres
(append
(list
*{comment "SETQing a local value stacked on VS from B-VDO")
*({comment "Address we want is RD1l + vv0 - sidle +1")
(append ’(vcl) {(list (+ sidle displacement 1))))
text-set-a-local-1l))
(appres
text-set-a-local-2)

P T N R R T

))
(setq text-set-a-local-l
o

the *current® *real* top of stack (latched)
arg return pointer- which just happens to
point to start of call frame. Lucky? Ha!
I designed it that way on *purpose* t=)
Use alternate stack pointer

note NO vcl instruction (it’s above)

Ne writing this cycle,

don‘t save the VSP, retain cld one.

wWe need a place-holding

instruction, because VD0 is what we just
moved - but VDl is whatever the previous
argument was. So we need to idle on the
stack to make sure following inline code
can’t get broken.

(vv0 b=-vd0)
(vvl b-rdl)
(ve0 subhead)

(ve2 swtop)
(ve3 spidle)

[ T T L L IR I YL LR U T

)}

(setq text-set-a-local-2
’
(

(comment "Wait a bit- VDO is OK, but VDl is the previous call arg")
{(ve0 snormal) ; MUST have this- get stack back to top.
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{vel sidle)
(vec2 swidle)
{(ve3 spidle)

no movement!
no writes
don’'t need to write it back.

~e ne we

set-symbol-value - alter the value contained in the
value cell of the symbol table to contain whatever
is on top of VS. Under the current model, the value cell
is at displacement 0 relative to the start of a
symbol entry in the symbol table.
defun app-res-set-symbol-value {symbol)
(appres
(append
(list
(list
’comment "SETQing a dynamically scoped variable”
symbol
))
(list
(list 'cmi (symbol-seq-lookup symbol)))
text~set-symbol-value-1))

o~ e % s Se N we S0 e Ve o

)
Esetq text-set-symbol-value-l
’
(miv0 b-cmi) address to write is on CMI

(mlvl b-vd0) ; data is on top of VS
{mlc mwrite) ; write the data

symbol-value-lookup - Given a symbol table entry,
what is the global value now bound to that symbol.
For this, we look in the runtime symbol table, where
location contains a peinter to the value.

P N R R TR O

defun app-:es-symbol-value—lookup (symbol)
(appres
(append
(list
(list
‘comment
“Getting global value of symbol”
symbol

N
(list (list ’cmi (symbol-seg-lookup symbol})})
text-symbol-value-lookup-1
)
(appres
text-symbol-value~-lookup-2)

)
(setg text-symbol-value-lookup-1l
’
(

(comment "Cycle Ml from CMI addr and get absolute addr™)
{miv0 b-cmi) ; address on CMI
(mlc mread) ; tell me what’s there

1)
(setq text-symbol—value-lookup-z
'
(comment "Take the pointer Ml gave us, put it on VS")
(vv0 b-mdl) ; take your data from M1,
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use standard stackpeointer,

add 1 to it,

write a word on top of stack,
and keep the new stack pointer.

{vc0 snormal)
(vel spushl)
(ve2 swtop)
(vec3 spwrite)

PR

symbol-function-lookup - Given a symbol table entry,
what is the function pointer now bound to that symbol?
For this, we look in the runtime symbol table, where
location+l contains a pointer to the function. We
leave the pointer to the function on top of VS

P R R R TR U T

defun app—:es-symbol-function-lookup (symbol)
(appres .
(append
(list
(list

’comment
"Getting entry-point of symbol”
symbol

))
(list (list ‘cmi ( symbol-seg-lookup symbol}))
)text-symbol—Eunction-lookup—l
)
(appres
text-symbol-function-lookup-z)

)
(setqg text—symbol—function-lookup-l
'

{comment "Cycle Ml from CMI addr +1 offset and get absolute addr")
{mlv0 b-cmi) ; address on CMI
{mlv2 1) ; offset +1
(mlc mread) ; tell me what’s there
)}
(setq Cth—symbol-function-lookup-z
'(

(comment "Take the pointer Ml gave us, put it on VS")
(vv0 b-mdl) ; take your data from M1,

(ve0 snormal) use standard stackpeinter,

(vel spushl) ‘add 1 to it,

(ve2 swtop) write a word on top of stack,
(ve3 spwrite) and keep the new stack pointer.

.o we we e s

Creating a fake return frame is fairly easy. We just
do as we did for a real execute-call but we take the
address we return to from the CMI rather than the seq.

defun app-res—create-fake-teturn—frame (location)
{princ "Creating a fake return frame")
(appres
(append
(list ‘(comment ncreating a fake return frame”})
(list (list ‘cmi location))
text-create-fake-return-frame)))

(setqg text-create-fake-return-frame
'
fake return address is on CMI,
we must keep the old argptr valid for locals
use the normal RSP,
push 2 values,
write ‘em both,

(zv0 b-cmi)
(rvl b-rdl)
(rc0 snormal)
(rel spush2)
(zc2 swboth)

~o we e we we
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(rec3 spwrite) ; keep the new RSP.
)

)
H app-resébs-push-global-symbol - push the
; value of and address of a global symbol
(defun app-tes—bs-push-global-symbol (target &aux segnum)
(setq segnum {symbol-seg-lookup target))
(appres
(append
(list (list ’Comment "Saving old value of" target))
(list (list ‘cmi segnum))
text-bs-push-global-1})
(appres
text-bs-push-global-2))
(setq text-bs-push-global-1
14
(

(mlv0 b-cmi)
(mlc mread)
(bd0 b-cmi)
{bc0 snormal)
(bcl spushl)
(bc2 swtop)
(bc3 spwrite)

get address from CMI,

fead what's there - that’s symbol’s value.
take the CMI address, push it on BS,

use standard binding stack pointer,

push one element,

write the top,

keep new stackpointer.

~o %o we e ws N4 we

)
(

-~ —

etq text-bs-push-global-2
(

{comment "Push the old global value onto binding stack")

(bd0 b-mdl) . here’s what that global had as a value,
(bc0 snormal) use the standard BSP,

{bel spusial) push the value from the symbol table,
{bc2 swtop) write the one element,

{(bc3 spwrite) save the new stackpointer.

TRV TIR TR}

-~

app-res-unwind-bs-and-pop-two - uses an address/value pair

to undo a binding on the BS.
This code *will* work on things which really exist on the
value stack, M2, or somewhere else... but in keeping with
the model for this compiler, we don’t make that kind of
back-door bus reference. Hence, there is a global-unwind,
a local-unwind, and maybe an array-unwind (only if we implement
full SETF compatibility for LETs.)

defun app—res-global-unwind-bs-and-pop-two ()
(appres text-global-unwind-bs-pop-two-l)

P T T T T T

(setqg text-global-unwind-bs-pop-:wo-l

(
(comment "Unbinding a special variable")
(mlv0 b-bdl) ; the address to smash,
(mivl b-bd0) what to smash it to,
{mlc mwrite) write that symbol table.
(bc0 snormal) use normal BSP,
(bcl spop2) pop down two,
{bc2 swidle) don't write anything,
(bc3 spwrite) save new stackpeinter.

P T TR TR}

)

defun app—:es-branch—co-locacion (target-location commentary)
(appres
(append
(list
' (comment "Unconditional branch"))
(list

)
(
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{list ‘comment commentary))
{list
(list ‘cmi target-location))
text-branch-to-location-1))
(appres
text-branch-to-location-2)
{app-res—anonymous)

(setqg text-branch-to-location-1
'

(comment "No branch permitted - branch latency 2")
({crushmax 2)
(reserve seq)
(scO0 segnext)

reserve the sequencer as well...

we are to add 1 to get next addr

MO should also get addr from CMI,
address from CMI,

read it.

(mOv0 b-cmi)
(m0c mread)

.t we v we e

1)
(setq text-branch-to-location-2
o
(comment "No branch permitted - branch latency 17)
(crushmax 1)
(sc0 segnext)

defun app-res-branch-if-null {target-location)
(appres
(append
{list
1(1ist ‘comment "Branch-if-null to " target-location))
(list
{list ‘cmi target-location))
text-branch-if-null-1)}
(appres
text-branch-if-null-2)
(appres
text-branch-if-null-3)
(app-res-anonymous)

(setq text-branch-if-null-l
'
(comment "No branch permitted - cond branch latency 3")
{crushmax 3)
(reserve seq)

(av0 b-vd0) look at the top of value stack,
(ac0 boola} just pass thru the "a” value,

so we get the Kanban set on it’'s nilness
{svl b-sd0) this i3 the "normal" address,

and this is the alternate,

next primary instruction addr n+l,

next alt instruction addr is this address,
take alternate if aluboole is nil.

(sv2 b-cmi)

(sc0 segnext)
{scl segsame)
(sc2 segmasknil)

we s ws we s we ve we

)

)

(setg text-branch-if-null-2
‘!

(comment "No branch permitted - cond branch latency 2")
(crushmax 2)
(comment "if branching, MO sees new address at start this cycle”)
(sc0 segnext) ; a sequencer op to prevent crushing
) )
(setq text-branch-if-null-3
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(comment "No branch permitted - cond branch latency 1")
(comment "if branching, M0 returned new instr. stream to seq")
{crushmax 1)

(sc0 segnext) ; a sequencer op to prevent crushing

Stubs for inline code go here... if they may be
universally applicable. Otherwise, they go in the inline
file.

Add two fixnums
defun app-res-add-vS-pair ()
(print-2-cr "Adding top two elements of VS" " ")
(appres text-add-vs-paicr-1)
(appres text-pop-VS-l-overwrite-ALU)

I R TR TR

)
(setq text-add-vs-pair-1
r
(
(comment "Adding top two elements of VS in ALU"™)
(av0 b-vd0) one arg is top of VS
(avl b-vdl) second arg is one from top of VS
(ac0 boolb) ...here’s avl
(acl selav0) ...here’'s avl
(ac2 fmtfix) £ixnum format
(ac3 combadd) add the numbers
(acd shift0) don’'t shift the result

R N TR TR

)

;

(setq text-pop-VS-l-overwrite-ALU
!

(comment "Now put result back on value stack")

(vv0 b-2d0) read data from the ALU
(ve0 snormal) use normal VSP
(vel spopl) go down one below top of stack

write over the top of stack
save the new VSP

(ve2 swtop)
{ve3 spwrite)

~e %o s we Se

)
; Subtract two fixnums
(defun app-res-subtract-vs-pair ()

(print-2-cr "Subtracting top two elements of vs" " ")

(appres text-subtract-vs-pair-1l)

(appres text-pop-VS-l-overwrite-ALU)}

setqg text-subtract-vs-pair-1
’

(comment "Subtract top two elements of VS in ALU")

(av0 b=-vd0) ; one arg is top of VS

(avl b-vdl) second arg is one from top of VS
(acQ boolb) ...here’s avl

(acl selav0) ...here’s av0

(ac2 fmtfix) fixnum format

(ac3 combsubtract) subtract the numbers

(ac4 shift0) don’t shift the result

~e e me we Ne e S

-

PSP ———
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i Multiply two fixnums

{defun app-res-multiply-VS-pair ()
(print-2-cr "Multiplying top two elements of VS" " ")
(appres text-multiply-vs-pair-1)
(appres text—pop-vs-l-ovetw:ite-alu)

)
(setq text-multiply-vs-pair-l
"
(comment “"Multiplying top two elements of VS in ALU")
(av0 b-vd0) one arg is top of VS
(avl b-vdl) second arg is one from top of Vs
(ac0 boolb) ...here’s avl
(acl selav0) ...here’s av0
(ac2 fmtfix) fixnum format
(ac3 combmultiply) multiply the numbers
(acd shift0) don’t shift the result

~o we e

ETIE TR T

pivide two fixnums
defun app~res-divide-VS-pair ()
(print-2-cr "Dividing top two elements of vs" " ")
(appres text-divide-vs-pair-1)
(appres text-pop-VS-l-overwrite-ALU)

)
(

)
(setq text-divide-vs-pair-1
'
(comment "Dividing top two elements of VS in ALU")

(av0 b-vd0) one arg is top of VS
(avl b-vdl) second arg is one from top of VS
(ac0 boolb) ...here’'s avl

...here’s av0

fixnum format

add the numbers

don’t shift the result

(acl selav0)
(ac2 fmtfix)
{ac3 combdivide)
(acd shift0)

No S0 %o Se Se e S

)
; Add one to a fixnum
(defun app-res-add-vS-one ()

(print-2-cr "Adding one to top of vs" " ")

(appres text-add-vs-one-1)

(appres text-vs-overwrite-ALU)

)
(setqg text-add-vs-one-1
’
(
(comment "Adding one to top of VS with ALU")
(avl b-vd0) one arg is top of VS
AVO is not connected to anything
...here’s AVl
...here’'s the +1
fixnum format
add the numbers
don’t shift the result

(ac0 boolb)
(acl sell)
(ac2 fmtfix)
(ac3 combadd)
(acd shift0)

P TR R T

)
)
zsetq text-vs-overwrite-alu
'
(comment "Now put result back on value stack”)
(vv0 b-ad0) read data from the ALU
(ve0 snormal) use normal VSP
{vel spidle) don’t move pointer, keep it

- %o v
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{ve2 swtcp) ; write over the top of stack
(ve3 spidle) : save the new VSP
)
)
: Subtract one from a fixnum
(defun app-res-subtract-vs-one ()

(print-2-cr "Subtracting one €rom VStop" " ")
(appres text-subtract-vs-one-1)
(appres text-vs-overwrite-alu)

setq text-subtract-vs-one-1
’
(
(comment "Subtract one from VStop in ALU")
(avl b-vd0) ; one arg is top of VS- in with AV1
AV0 is not used here
...Here’'s avl
...here’s a -1
fixnum format
add the numbers (which subtracts one)
don’'t shift the result

{ac0 becolb)
(acl sel-1)
(ac2 fmtfix)
(ac3 combadd)
(ac4d shift0)

D T R O

P RN T TR

defun app-res-VS-car ()
(print-2-cr "Taking CAR of top VS element inline” " ")
(appres text-vs-car-1l)
(appres text-vs-overwrite-M2)

)
Zsetq text-vs-car-1
i
{comment "Taking the car of whatever’s on VS top")
(m2v0 b-vd0) ; get what’s on VS top
{m2c mread) ; what do we have at the car
)

)
(setq text-vs-overwrite-M2
14
(

(comment "Shove M2 result back onto VS, by overwriting”)

(vv0 b-md2) MD2 has car,

{vc0 snormal) use standard VSP,

(vel sidle) no pointer motion,

{vec2 swtop) overwrite top- new data replaces old,

(vc3 spidle) no need to write back- it’s not changed.

I TIR TETTIEYY

)
(defun app-res-VS-cdr ()
{print-2-cr »Paking CDR of top VS element inline" " ")
(appres text-vs—cdr-1)
(appres text-vs-overwrite-M2)

)
fsetq text-vs-cdr-1
!

(comment "Taking the cdr of whatever’s on VS top”)

(m2v0 b-vdo0) ; get what’s on VS top

(m2v2 1) ; CDR’s are next word

(m2c mread) : what do we have at the cdr
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o~ we

(print-2-cr

defun app-res-Vs-eq ()

“Doing an EQ on the V§" " ")
(appres text-vs-eq-1l)
(appres text-vs-eg-2)
(appres text-vs-eq-3)
(appres text-vs-eq-4)
(app-res-anonymous)

)
(setg text-vs-eg-1l

"

(comment "Checking VS and vs-1 for EQness")

(comment

(reserve seq alu vs)
{crushmax 3)

(av0
(avl
(aco

(svl
{sv2
{scO
(scl

{sc2
)

b-vd0)
b-vdl)
boolxor)

b-sd0)
b-sd0)
segnext)
segskip)

segmaskzero)

)
(setq text-vs-eg-2
'

T N R R R T T )

"No branch permitted - skip latency 3")

we’ll need these

can’'t move up too far,

Route VS and VS-1 to ALU

Vs top

vSs top -1

XOR thenm

may as well ignore the rest of the ALU...
normal next addr- no skip

same normal next addr- but we’ll skip.

if not EQ, no skip, T will be overwritten
if EQ, skip an instruction, and no
overwriting of the T with NIL

skip if zero enabled.

(comment "We pop the VS, and overwrite a T onto it. ")
(comment "No branch permitted - skip latency 2")
{reserve seq alu vs)
(crushmax 2)

{vvO0
(veo
(vel
(ve2
(ve3
{cmi
(cvl
(cv2
)
)

b-cmi)
snormal)
spopl)
swtop)
spwrite)
1000)

1)

1)

(setq text-vs-eg-3
'

(comment
{comment

(reserve seg alu vs)
{crushmax 1)

}
)

(setqg text-vs-eq-4
!

(comment
(comment
(comment

(reserve seq alu vs)
(crusgmax 1)
)

(emi
(cvl
(ev2
(vv0
(ve0
(vel

1)

0)
b-cmi)
snormal)
sidle)

PR TR IR TR I TR Y

B
H

P R TR TN

needed later.
maximum movement

use the normal stackpointer,
go down one entry,

overwrite it with vvO.

save the new stackpointer
Symbol table 1’st entry is T
a pointer, one of them,
total length, one.

"Here we sit and wait. Nothing to do.")
"No branch permitted ~ skip latency ")

needed real soon now
maximum movement

wrhis instruction may or may not be executed. Depends.”)
"No branch permitted, skip latency 0222 ")
nit’s here we maybe push a NIL")

CcMI for nil

one pointer

but no data. That’s nil.
Proceed to push NIL,

use normal stackpointer,
don’t move it,
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overwrite top,
don’t bother to resave unchanged VSP.

(ve2 swtop)
(ve3 spidle)

~ e

e R R

defun app-res-vs-rplaca ()
(print-2-cr "Doing a RPLACA om VS" " ")
(appres text-vs-—rplaca-1l)

.o~

setqg text-vs-rplaca-l
(

{comment "RPLACAing Vunder with Vtop”)

(comment "Since you can *only* rplaca conses, use M2")
(m2v0 b-vd0) stacktop is value to poke,
{m2vl b-vdl) undertop is where to poke it,
(m2v2 0) offset zero is CAR,

(m2c mwrite) write it,
(ve0 snormal) We have to pop value stack too,
{vel spopl) pop one,

(ve2 swidle)
(ve3 spwrite)

no vrites,
save new stackpointer.

VR TR IR DRV

)

)

(defun app-res-vs-rplacd ()
(print=-2-cr "Doing a RPLACD on Vs" " ")
(appres text-vs-rplacd-1)

- ——

setqg text-vs-rplacd-1
(

{comment "RPLACDing Vunder with Vtop")

(comment "Since you can *only* rplacd conses, use M2")
(m2v0 b-vd0) ; stacktop is value %to poke,
(m2vl b-vdl) undertop is where to poke it,
{m2v2 1) offset zero is CDR,

(m2¢c mwrite) write it,
{ve0 snormal) We have to pop value stack too,
(vel spopl) pop one,

no writes,
save new stackpointer.

{(ve2 swidle)
(ve3 spwrite)

NIRRT T
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Appendix B

DIS Instruction Summary
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p7rs Instruction Summary

Dedicated Output
Busses Available

Name Mnemonic MC Usage

MO Output B-MDO Instructions
M1 Output B-MD1 Symbol Table
M2 Output B-MD2 Cons Cells

Value Stk Top B-VDO Top Argument.
Value Undertop B-VD1 Below Top
Value Stkpointer B-VSP Current SP
Pending Stk Top B-PDO Entry Ptr
Pending Undertop B-PD1 Arg Frame Ptr
Return Stk Top B-RDO Return lLoc
Return Undertop B-RD1 Result Ptr
Binding Stk Top B-BDO Rebound Value
Binding Undertop B-BD1 Rebound Addr
ALU output B-ADO ALU data

Seq Next Addr B-SDO Next Addr
Network Output B-NDO Networking
Literal Data B-CMI Immed Data

ALU Control

AVO ALU datum A (bue)

AV1i ALU datum B (bus)

ACO Boolean op
(0 to 15)

AC1 Data Selector
selzero
sell
sel-1
selAVO

AC2 Format select
fmtfix
fmtfloat

AC3 Combinational
combadd
combsubtract
combmultiply
combdivide

AC4 Shift Count
(0-255)
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ors Instruction Summary
Overall Instruction Format

A DIS assembly language program is a LISP-style list

of instructions. A single OIS instruction usually contains
multiple fields. The OrS linker will assemble the
instructions and resolve location references at lcad

time.
Example:
((instl)
(inst2) ;a DIS program,
(inst3)) :three instructions iong

Fields within Instructions

SEQ Net { ALU | Bind}{ Retn | Pend | Value| M2 | M1|] MO

bit Each unit in a OIS processor can cycle on bit

255 each instruction. Units always read bus o
data output on previous cycle except for immediate
data, which is from the current cycle. IDLE units
do NOT change their outputs.

Example of a single instruction (one cycle to execute):

((comment "Push an immediate integer onto Value Stk")
(location push-integer) (cmi 42)

(m0cO mread) (mOvO b-sd0) (svO b-mdl) (svl b-sd0)
(scO0 1) (vd0 b-cmi) (vcO snormal) (vecl pushl)

(vc2 swtop) (vec3 spwrite))

Assembler/Optimizer Pseudo-ops

(comment "Anything you want") :;a comment

(location Zocation-name) :a named location (global)
(crushmax m ;inhibits optimizer motion more than n forwarad
(reserve unit unit...) :reserves units for later use

(ecmi » ;places integer ~ on immediate data bus

(cvl ¥ :places x in pointer-count field of immediate data.
(cv2 ¥) ;places y in object-count field of immediate data.
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Ny

ors Instruction Summary

Memory Control

n =0 1, or 2
MnVvo Mem Addr In (bus)
MnV1 Mem Data In (bus)
MnCO Control
Midle
Mread
Mwrite
Mfadd
MnCli Addr Index (0-7)

Stack Control

& =V, P R B
sDO0 Top Input (bus)
sD1 Below Input (bus)

or Subhead SP
sCO0 First Control:
Sidle
Snormal
Subhead
sC1l Stkptr Motion:
(-8 to +7)
sC2 Write Action:
Swidle
Swtop
Swt-1
Swboth
sC3 Save new SP:
SPidle
SPwrite

Sequencer Control

SVO Next Instr (bus)
SV1 Primary Next Addr (bus)
SV2 Secondary Next Addr (bus)
SCO Primary increment (0 to 3)
SC1 Secondary increment (0 to 3)
SC2 Condition Code Mask
SEQMASKZERO
SEQMASKLESS
SEQMASKNIL
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