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ABSTRACT

We present a metric based on the potential energy of water flow to determine the

error introduced by terrain simplification algorithms. Typically, terrain compres-

sion algorithms seek to minimize RMS (root mean square) and maximum error.

These metrics fail to capture whether a reconstructed terrain preserves the drainage

network. A quantitative measurement of how accurately a drainage network cap-

tures the hydrology is very important for determining the effectiveness of a terrain

simplification technique. Having a measurement for testing and comparing differ-

ent models has the potential to be widely used in numerous applications (floods,

erosion, pollutants, etc). In this paper, we first define a metric that maps the re-

constructed drainage network onto the original terrain and computes the amount

of energy needed for the water to flow. Two novel terrain simplification algorithms

are presented that use a targeted compression to preserve the important hydrology

features. These methods and other simplification schemes are then evaluated using

the potential energy error metric to determine how much hydrology information is

lost using the different compression techniques.

viii



1. Introduction

1.1 Trends in Terrain Data and Hydrology

Terrain data is being sampled at ever increasing resolutions over larger ge-

ographic areas requiring special compression techniques to manipulate the data.

Typically the effectiveness of a terrain compression technique is how well it min-

imizes the root mean square or the maximum error between the original terrain

and the reconstructed geometry [7]. This metric is not always the best choice for

preserving hydrological information, since channels and ridges, essential for the cal-

culation of drainage networks [16], might be lost. For example, a scheme which

naively interpolates the terrain between two points on opposite sides of a river can

flatten the terrain and block flow.

Often measuring the amount of water flow occurs by taking ground truth mea-

surements, where hydrology statistics are determined by direct measurement. This

can be expensive, time consuming and requires accessing remote locations. Rapid

technological advances are making it possible to have accurate, high resolution el-

evation data. This provides for a more accurate simulation of hydrology, in ways

that were once impractical. In order for this to happen, it is essential that the scien-

tific community has the tools available that can store and manipulate large terrain

datasets [1]. Accurate hydrological simulations could allow better understanding of

regions at greatest risk of flooding, help minimize the threat of natural disasters and

to track and predict the flow of pollutants. This work could also be applied to other

flow based models. For instance, instead of water, it could be used to understand

threat areas due to volcanic activity. Also, it could be applied to high resolution

data for segmentation based on the watersheds.

1.2 Prior Art

Past work has been done for defining a metric for comparing how well a com-

puted drainage compares to the real world drainage [17]. The D8 model can assign

flow in one of the eight possible directions. In the SFD (single flow direction) version

1
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of the D8 model the entire amount of flow from each cell is entirely distributed to

the lowest adjacent neighbor. This is not the case in the MFD (multi-flow direction)

version the flow is fractionally distributed to all the lower adjacent neighbors.

A slightly more sophisticated MFD model is the D∞ model. As the name

indicates, flow can travel in an infinite number of directions and is not limited to

eight directions. The amount of water leaving each cell is distributed to one or more

adjacent cells based on the steepest downward gradient [13].

Another implementation for finding drainage networks are digital elevation

model networks or the DEMON model [4]. Instead of modeling flow as a point source

that flows to an adjacent neighbor, DEMON captures the flow by contributing and

dispersal areas. The motivation for using a method such as DEMON is that the

representation allows for flow width to vary over nonplanar topography. However,

this can introduce loops and inconsistencies in the hydrology.

Based on the fact that elevation data is only an approximation for the actual

terrain, some methods allow for water to flow uphill until spilling over an edge.

These flooding methods determine spill points out of every basin. In the Terraflow

approach [5, 15], the path of least energy is used to flow uphill until reaching the

spill point. The flow runs uphill in situations when there is not an adjacent lower

elevation. These methods often keep expanding the drainage networks until they

flow off the edge of the terrain. This is because it is assumed that the initial input

DEM is prone to collection and sampling errors that cause unrealistic depressions.

The main benefits of Terraflow are the ability to avoid dataset issues, obtain long

continuous river flow and scalability on massive datasets. The main disadvantages

are that this approach may miss realistic drainage basins and poorer performance

on non-massive datasets.

Typically for any of the method listed above, the inputs are a DEM (Digital

Elevation Model) and a flow accumulation threshold. The outputs are a flow direc-

tion grid and a flow accumulation grid. The flow direction grid specifies the direction

of flow. The flow accumulation grid is an integer corresponding to the amount of

flow and a cell is considered part of the drainage network if its flow accumulation

threshold is larger then the threshold value given as an input.
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1.3 Overview

The contributions to this research are as follows:

1. A new metric for measuring the amount of hydrology error introduced by a

terrain simplification algorithm. The drainage network is computed on the re-

constructed terrain and then is mapped onto the original terrain. The amount

of potential energy error is computed. Flow traveling uphill will increase the

error, while flow traveling downhill will lower the amount of error.

2. Efficient drainage network computation based on a system of linear equations.

The resulting drainage often contains longer and more realistic drainage net-

works then ArcGIS [11] which is typically regarded as the industry standard.

3. Simple, fast and effective computation of the ridge network. Inverting the

terrain and running the drainage network provides an approximation of the

ridge network. Often compression techniques smooth out ridges. Having an

accurate representation of the ridge network can assist compression algorithms

and also has applications in siting, path planning and hydrology.

4. Introduction of a new compression method that specifically minimizes hydrol-

ogy error by using over-determined LaPlacian PDEs.

5. Triangulation algorithms for simplifying terrain are widely used in practice.

A variant of a Triangulated Irregular Network called HydroTIN is described

that is focused on minimizing the amount of potential energy error.

6. A method for removing insignificant ridges that unrealistically block water

flow. These small ridges arise due to dataset and collection errors and are trou-

blesome when executing a drainage network program. By eliminating these

regions, longer, more naturally representative rivers result from the drainage

network simulation.



2. Measuring Hydrology Error

2.1 Drainage Network Error Metric

Standard metrics for evaluating the effectiveness of terrain simplification algo-

rithms use root mean squared (RMS) and maximum error. These measurements are

ineffective when evaluating the loss of drainage network structure. Therefore one of

the most important aspects of this paper is to introduce a metric geared towards

measuring this error.

It is important to remember that the goal of our hydrology metric is not to

compare the reconstructed hydrology against an absolute truth. Hydrology com-

puted on a digital representation may have significant errors due to sampling and

data collection inaccuracies. Therefore, our hydrology metric does not compare the

reconstructed drainage network versus the original drainage network directly, as

with ground-truth methods. Instead, the hydrology metric takes the flow direction

grid and the flow accumulation grid from the reconstructed drainage and maps it

onto the original DEM (Figure 2.1).

Figure 2.1: To compute the potential energy error, the drainage is
computed on the reconstructed terrain. This drainage network is then
mapped onto the original terrain. The amount of water flowing uphill
and downhill influences the metric.

To compute the accuracy of the drainage network, the gradient, amount of

flow contributing cells and whether the flow is traveling uphill or downhill are taken

into account. The total downward energy and upward energy is computed as a

4
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summation of the gradient |(Ei−Er)|, where Ei is the original elevation matrix and

Er is the receiving elevation matrix where each cell contains the elevation of the

adjacent cell in Ei that is receiving the water flow. The gradient is weighted by the

amount of flow (variable W ). The final Error is determined as the ratio of the total

upward energy divided by the total downward energy.

EnergyDown =
∑

(Ei − Er) ∗Wi

EnergyUP =
∑

(Er − Ei) ∗Wi

Error =
EnergyUP

EnergyDown

In order to compute the energy error metric the flow is computed on the

reconstructed DEM. The error is determined by comparing the flow direction matrix

computed on the reconstructed geometry with the elevation matrix from the original

DEM. A perfect match would have an energy matrix equal to zero. This would occur

if the flow never went uphill, which is the case when using the flow direction grid

from the original terrain. Therefore, the closer the metric is to zero, the more

accurate the reconstructed drainage network.

2.2 Ridge-River Drainage Calculation

In this work, the drainage network is computed using a standard D8 model

[13] based on steepest descent flow. In this implementation each cell flows to the

lowest adjacent neighbor and flow is forbidden from traveling uphill. The method is

executed on both the original and inverted terrain, and this can be done in parallel.

The inverted terrain is derived from the original elevation matrix using the equation

below:

Ie = Max(E)− E + Min(E) (2.1)

where E is the original elevation matrix and Ie is the inverted elevation matrix.

The drainage network is computed using E to determine the drainage network and

Ie to determine the ridge network. The two networks are combined together and

throughout this paper they will be referred to as the ridge-river network, as seen
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in Figure 2.2. The process for computing each network is identical except the pre-

Figure 2.2: The ridge-river network, with rivers in black and ridges in
white.

viously defined elevation inversion described above. Figure 2.3 shows our drainage

network computation compared to ArcGIS developed by ESRI. Our implementation

results in less fragmented and more realistic river networks.

Figure 2.3: (a) Our method for computing the drainage networks com-
pared to (b) ArcGIS. Notice how our method is less fragmented then
ArcGIS.

The output of the initial drainage computation is a flow accumulation grid,

where each cell contains an integer corresponding to how many other cells contribute

flow to that point. Cells above a predefined threshold are considered significant

and are added to the drainage and ridge network, which we call the ridge-river

network[10]. It is not necessary to store all these cells since they are clustered to-

gether and therefore add little value to a point selection compression technique. The
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Douglas-Peucker [6] algorithm is used to reduce the number of points required to

represent each river segment. The refined points can be stored and further com-

pressed. To reconstruct the terrain we use an implementation of Over-determined

Laplacian Partial Differential Equations (ODETLAP) [7] where each point is con-

sidered to be the average of its four neighbors, with a subset of the ridge-river points

being known.

Different from other methods that use flooding [1], our method computes flow

using a system of linear equations Ax = b where x is an unknown N2 length vector

equal to the amount of water accumulation at each cell and b is the initial flow

or “rain” at each cell, usually equal to 1. Matrix A is a N2 × N2 sparse matrix,

where each non-zero element corresponds to cells that contribute flow to each cell.

For instance, if cell X1 receives flow from cell X2 and X5, row 1 in matrix A will

contain non-zero elements in columns 1, 2 and 5. Therefore the number of non-zero

entries in matrix A is bounded by 2N2, where N is the size of the N × N DEM.

The upper bound of 2N2 is determined since there will be N2 non-zero entries to

load the identity matrix. All other non-zero entries represent flow from one cell to

one other cell. There can be at most N2 additional non-zero elements, since each

cell can flow in only one direction. Taking advantage of the sparse nature of matrix

A the linear system can be solved efficiently. In Figure 2.4 we show the compute

time to initialize and solve the linear system corresponding to the matrix size.

An example of solving the flow accumulation is as follows. Assume we have a

trivial 3 by 3 elevation matrix, we the value at each index equals the height of the

cell.


1 2 4

3 9 5

6 7 1


Step 1 - Initialize the equations in the form Ax = b. Load the identity in

matrix A and assume each cell receives 1 unit of rainfall. X1−9 equals the amount

of flow at each cell.
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

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1





1

1

1

1

1

1

1

1

1



=



X1

X2

X3

X4

X5

X6

X7

X8

X9


Step 2 - Determine the direction of flow. Each cell flows to the lowest adja-

cent neighbor, for simplicity in this example only the 4 orthographic neighbors are

considered. 

1 ← 2 ← 4

↑ ↑
3 9 5

↑ ↓
6 7 → 1


Step 3 - Add flow information into the equations. For example cell #4, flows

all its water into cell #1. So we add 1 in row 1 column 4 in matrix A. Each flow

direction (arrow) above creates an additional non-zero entry into matrix A. When

accounting for all the flow directions, the linear system will be the following.



1 1 0 1 0 0 0 0 0

0 1 1 0 1 0 0 0 0

0 0 1 0 0 1 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 1 0 1 1





1

1

1

1

1

1

1

1

1



=



X1

X2

X3

X4

X5

X6

X7

X8

X9


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Figure 2.4: Time to initialize and solve the sparse matrix (Matrix A) for
small and large datasets.

Step 4 - Solve the equations. This will provide a matrix that contains how

much water enters each node called the flow direction grid.


X1 X2 X3

X4 X5 X6

X7 X8 X9

 =


6 3 1

2 1 1

1 1 3


The major benefits of this approach is simplicity, scalability and it is consistent

(there is never a flow loop). However a significant disadvantage is that this method

does not account for flow sampling and dataset inaccuracies that often unrealistically

block flow. A method for processing terrain to better handle these terrain errors is

described in chapter 5 entitled Hydrology Conditioned Datasets.

2.2.1 Assigning Flow Directions to Plateaus using Connected Compo-

nents

One additional computation step needs to be performed to deal with an im-

portant problem, which is the occurrence of plateaus. These are defined as regions

where the flow direction can not be determined based on steepest decent flow.
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To deal with these cases, the plateaus are first identified using a very fast

variant of the Union-Find algorithm developed by Franklin and Landis [8]. The input

is a 3N − 2 by 3N − 2 binary matrix and the output contains a list of components,

with each component representing one plateau.

Figure 2.5 shows the plateaus and initial drainage network. Once identifying

the flat areas, the cell directions are set using a similar strategy to Terraflow [15],

where a breadth-first search assigns directions towards the root or spill point. Spill

points are identified as cells in a flat component that contain a nonzero direction.

In other words, a cell in the component must have at least one adjacent cell with a

smaller elevation. Flat areas that have no spill points are determined to be sinks.

The directions of every cell in a sink are assigned to flow to a single point.

After assigning directions to every plateau and sink, the final flow stage can

be computed. The linear system of equations is modified to include the directions

assigned to the plateaus and sinks. The flow is recomputed and the final flow

accumulation grid and flow direction matrix is determined. Figure 2.5 shows our

final flow computation with the drainage network and watersheds.

Figure 2.5: (a) Drainage network(white) before handling flat regions.
(b) Drainage network (black) and watershed boundary (white) after ac-
counting for flat regions.

Virtually the exact same approach for finding plateaus can be used to deter-

mining watersheds. The only difference is that the flow direction matrix is used

to initialize the connected components input, instead of the elevation matrix. For

each flow direction, we set the connecting binary number from a 1 to 0, exactly the

same as we would do for two adjacent elevations of the same height when finding
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the plateaus above. In figure 2.6 is a visualization of an isolated watershed found

using the connected components program.

Figure 2.6: The connected components approach can also be used to
determine watersheds. This image shows an isolated watershed with the
boundary shown in black.

To better illustrate how connected components is useful in determining water-

sheds and plateaus, a simple example will be shown below. Using the same initial

DEM used to solve for the flow accumulation matrix, we will now solve for the

watersheds.

First we initial a 2N − 1 by 2N − 1, where N is the size of the N ×N DEM.

Also note that for simplicity flow directions are limited to 4 possible orthographic

directions. In practice the D8 model is used and flow can travel in diagonal directions

and this will also force our connected component matrix to be larger.



0 1 0 1 0

1 1 1 1 1

0 1 0 1 0

1 1 1 1 1

0 1 0 1 0


Notice that there are nine 0 entries in the matrix above. Each of those zero

values directly maps to the elevations in the DEM. Below we see the DEM along

with the flow directions.
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

1 ← 2 ← 4

↑ ↑
3 9 5

↑ ↓
6 7 → 1


For each flow direction above, we set one cell from one to zero.



0 0 0 0 0

0 1 0 1 1

0 1 0 1 0

0 1 1 1 0

0 1 0 0 0


Using this as input into the connected components program, the number and

location of watersheds is determined. For this simple example there are only 2 water-

sheds. Hence, the connected components implementation will output 2 components

and there locations.

Watersheds can be used to verifying the effectiveness of a terrain simplification

algorithm and also for segmentation and environmental analysis.



3. Hydrology-Aware Terrain Simplification

3.1 Terrain Simplification to Preserve the Hydrology

Figure 3.1: Flow chart of the ridge-river technique. Inputs are in boxes
and programs in circles.

In Figure 3.1, we show a flow chart describing the ridge-river terrain simpli-

fication technique for compressing and uncompressing the hydrology structure of a

terrain. Inputs are shown in boxes and programs are shown in circles. The method

is based on ODETLAP which reconstructs an approximation of a terrain using a set

of points. The recovered terrain achieves a more accurate representation as more

points are included.

The basic idea the ODETLAP point selection is to include the most important

points that lie on the river and ridge networks. The Drainage Network Program

implements the drainage network computation described before and outputs a set

of points composing of ridges and rivers. Since these points are clustered together

they add little value to a point selection compression technique, thus the Douglas-

Peucker algorithm is used to reduce the number of points required to represent each

river/ridge segment. This line simplification uses a error tolerance that defines the

maximum a simplified line can deviate from the original. These refined pointes are

used to represent the terrain.

13
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3.1.1 Approximating Terrain using Over-determined Laplacian PDEs

To reconstruct the terrain from a subset of the original elevation data, we use

Over-determined Laplacian Differential Equations (ODETLAP). The input to this

method is a compressed subset of points and the output is the reconstructed surface

geometry. The Laplacian PDE is extended by adding a new equation to form an

over-determined system so that we can control the relative importance of smoothness

versus accuracy in the reconstruction. Benefits of the method include the ability to

process isolated, scattered elevation points and the fact that reconstructed surface

could generate local maxima, which is not possible in the original Laplacian PDE

by the maximum principle.

ODETLAP can process not only continuous contour lines but isolated points

as well. The surface produced tends to be smooth while preserving high accuracy

to the known points. Local maxima are also well preserved. Alternative methods

generally sub-sample contours due to limited processing capacity, or ignore isolated

points.

Since we are working on single value terrestrial elevation matrix, we have the

Laplacian equation for every unknown non-border point.

4zij = zi−1,j + zi+1,j + zi,j−1 + zi,j+1 (3.1)

In terrain modeling this equation has the following limitations:

• The solution of Laplace’s equation never has a relative maximum or minimum

in the interior of the solution domain, this is called the maximum principle,

so local maxima are never generated.

• The generated surface may droop if a set of nested contours is interpolated

To avoid these limitations, an over-determined version of the Laplacian equa-

tion is defined as follows: apply the equation (2) to every non-border point, both

known and unknown, and a new equation is added for a set S of known points:

zij = hij (3.2)
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Where hij stands for the known elevations of points in S and zij is the computed

elevation for every point, like in equation (2). The system of linear equations is

over-determined, i.e., the number of equations exceeds the number of unknown

variables, so instead of solving it for an exact solution (which is now impossible),

an approximated solution is obtained by setting up a smoothness parameter R that

determines the relative importance of accuracy versus smoothness.

3.1.2 ODETLAP Point Selection

In prior work [18], determining which points to input into ODETLAP was

based on certain geometric algorithm including Triangulate Irregular Network, Vis-

ibility test, Level Set Component that discovers important points which reflect the

terrain structure and use our extended Laplacian PDE to approximate the terrain

from these points. In this paper the goal is not only to preserve overall terrain

structure, but also to ensure that hydrology important features are preserved as

well. Our experiments have shown that points on the ridge network and drainage

network are the most effective in capturing the hydrology. The ridge-river technique

computes both the rivers and ridges, and then simplifies the line network to capture

the most significant points.

The drainage and ridge networks are simplified using the Douglas-Peucker[6]

line refinement algorithm. This algorithm selects the most significant points need

to reconstruct a line within a given error tolerance. This tolerance specifies the

maximum distance the line can deviate from the original. Therefore the higher the

tolerance, the few points required and the greater the difference between the original

network and the reconstructed network. The output from the Douglas-Peucker

algorithm is an ordered list of the most significant points needed to reconstruct the

line. These points represent our compressed version of the hydrology. As Figure 3.2

illustrates, when the tolerance is set appropriately there is a significant reduction in

number of points with the difference in the reconstructed lines being negligible.

To uncompress, we first connect the ordered set of Douglas-Peucker elevation

points by using the Bresenham[2] line rasterization algorithm. These points are used

as input into ODETLAP which is used to “fill in” the missing data points and is
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Figure 3.2: Simplifying the original drainage network using Douglas-
Peucker. The refined line network is reduced by a factor of 3 with little
visible difference.

based on the equations 3.1 and 3.2 specified above.

Our compressed version of the hydrology exists as a subset of elevations from

the original DEM, plus the points along the reconstructed line using the Bresenham

line rasterization algorithm. All the points are selected along drainage significant

features. The reasoning is that we want to capture the most significant points that

preserve the hydrology. Therefore, the known points are incorporated into equations

3.3 and 3.4 depending on whether the point came from the river or ridge network

respectively. Figure 3.3 shows the ridge-river network.

3.1.3 Recovering Terrain Using a ODETLAP Hydrology Customization

To more accurately capture the structure of the hydrology, the ODETLAP

equations are modified for points selected on the ridge-river network. This drasti-

cally reduces the amount of error introduced, as shown in Figure 3.3. The modi-

fication assume that points on the drainage network are slightly smaller than the

average of their 4 neighbors so for river points we can modify equation 3.1 as follows:

4zij = zi−1,j + zi+1,j + zi,j−1 + zi,j+1 −DR (3.3)

where Dr stands for decrement for the rivers, this variable is an integer corresponding

the number of meters the rivers lie below the average of the 4 neighbors. Similarly,
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ridge network points are higher then the average of their four neighbors, thus for

selected ridge network points, the equation becomes:

4zij = zi−1,j + zi+1,j + zi,j−1 + zi,j+1 + IR (3.4)

where IR is an integer corresponding to the increment for the ridges. Experimen-

tation has shown that setting DR = IR = 2 has been effective. In future work we

plan to study how varying this parameter affects the results and investigate ways to

automatically select an optimal value.

Figure 3.3: Modifying the ODETLAP equations to better represent
ridges and rivers has a drastic decrease in the amount of hydrology error.
Both plotted lines above use the same set of points.

3.2 Effectiveness of Ridge-Ridge ODETLAP Simplification

The primary focus of this paper has been to describe a metric that accurately

captures the amount of error introduced into a reconstructed drainage network.

Using this metric, we have been developing an algorithm for achieving high com-

pression ratios without significantly altering the hydrology. The current effectiveness

of this approach is shown in the table below. A very common terrain compression

is JPEG2000 [3]. This method obtains a low percentage of cells that flow uphill.
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This correlates to a fairly low hydrology error. The ridge-river technique described

in this paper is effective in achieving high compression ratios with a fairly low error;

however, it currently does not consistently beat JPEG2000. We strongly believe

that small modifications to the current ridge-river method will allow us to achieve

a significantly better hydrology error. We are investigating further modifications to

the ODETLAP equations, and to automatically select optimal parameters.

Ridge-River JPEG2000 TIN
DATA Ratio % Uphill ERROR % Uphill ERROR % Uphill ERROR

hill1 13 2.05% 0.0023 0.12% 0.0020 0.79% 0.0432
32 3.16% 0.1149 0.18% 0.0030 1.11% 0.0502
54 2.46% 0.2316 0.24% 0.0082 1.33% 0.0600

hill2 14 0.85% 0.0005 0.21% 0.0010 1.25% 0.0333
37 1.21% 0.0063 0.31% 0.0017 1.80% 0.0304
60 1.39% 0.0129 0.46% 0.0047 2.43% 0.0421

hill3 11 2.65% 0.0026 0.10% 0.0059 0.76% 0.0311
27 4.33% 0.0075 0.11% 0.0051 0.77% 0.0434
47 2.70% 0.0100 0.13% 0.0161 0.85% 0.0405

mtn1 16 3.75% 0.0267 0.41% 0.0026 3.96% 0.0563
39 4.96% 0.0530 0.80% 0.0036 5.11% 0.0583
60 5.91% 0.0611 1.33% 0.0067 6.28% 0.0667

mtn2 16 3.93% 0.0769 0.40% 0.0033 4.42% 0.0748
38 5.15% 0.1169 0.75% 0.0033 5.72% 0.0874
59 6.21% 0.1377 1.32% 0.0067 7.09% 0.0904

mtn3 15 3.10% 0.0254 0.40% 0.0015 4.16% 0.0592
39 4.33% 0.0493 0.78% 0.0027 5.63% 0.0624
61 5.13% 0.0639 1.40% 0.0050 6.63% 0.0650

Table 3.1: The amount of potential energy error for six 400 by 400 datasets
sampled at 30m resolution. The percentage of flow traveling uphill is also
shown, along with the compression ratio of each dataset.

Visual inspection of the reconstructed drainage networks correspond to the

measurement determined by the potential energy metric. This is observed in Fig-

ure 3.4, where the higher error correlates to fragmented and uphill drainage net-

works. The modular design of our terrain simplification approach allows substitut-

ing different algorithms in place of the ones focused on in this paper. For instance,

Terraflow or ArcGIS could be used to compute the ridge-river network. Also, a dif-

ferent line simplification technique could be used instead of Douglas-Peucker. This
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Figure 3.4: The images show the a 400×400 hill2 dataset sampled at 30m
resolution and compressed using the ridge-river technique. The color
regions represent the elevations with blue being low and red correspond-
ing to high elevation. The black region shows the significant drainage
network above the threshold of 100. The higher potential energy error
metric correlates with a visible difference in the drainage network. Notice
how the high error corresponds to short fragmented drainage networks.

allows modification to fit the specific objectives of the user and application.

Points on the ridges of the terrain, as well as the rivers are important for

preserving the hydrology. Rather then use an existing algorithm, we discovered that

inverting the terrain and running the drainage network provides a quick, effective

method for approximating the ridge network. Once again, this approach can be

done with any drainage network program. The ridges are important in terrain

compression for extracting and exploiting terrain structure, but also have other GIS

applications such as visibility siting, hydrology and edge detection.



4. Hydrology-Aware Triangulation of Terrain

We present a new data structure called HydroTIN for simplifying terrain that cap-

tures hydrology significant features using a hydrology-aware Delaunay triangulation.

This triangulation preserves the hydrology by using irregular-sized, non-overlapping

planes to model regions that flow in a uniform direction. Edges are associated with

drainage and ridge networks that incorporate physically-based structure into the

model without significant overhead. This allows better compression ratios the stan-

dard Triangulated Irregular Networks with higher hydrology accuracy. Standard

error metrics such as root mean squared (RMS) and maximum error fail to capture

whether a reconstructed terrain accurately captures the hydrology. A hydrology

error metric is used to verify our results based on the potential energy required for

the reconstructed drainage to flow on the original terrain.

Figure 4.1: HydroTIN is a targeted simplification technique that incor-
porates the structure of the ridge and rivers and optimized for hydrology
preservation.

4.1 Prior GIS Triangulations

Triangulated Irregular Networks or (TIN) [12] is a very popular algorithm for

storing a surface for GIS applications. With TIN the surface is stored as a network

20
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of non-overlapping, irregular sized and oriented triangles. This is different then

a Digital Elevation Model (DEM) which is a dense raster elevation matrix with

the x and y index containing the elevation of z. TIN selects a subset of the n

most significant DEM points, these points are then used to construct a Delaunay

Triangulation. The Delaunay triangulation is a common computational geometry

algorithm that maximizes the minimum angle of all the triangles in the mesh. In

our implementation we use the divide and conquer Delaunay triangulation [9] which

runs in O(nlogn) time.

Selecting the appropriate points to use for the Delaunay Triangulation is cru-

cial in constructing an accurate representation of the surface geometry without

significantly distorting terrain important features. The selection process begins by

defining the boundary region of the terrain. This is constructed by dividing terrain

into two large triangles that encompasses the entire terrain region. To minimize

the maximum error, a point is added one at a time. The point that is the farthest

distance from the terrain reconstruction is inserted into the TIN. The terrain is then

reconstructed and the average and maximum error is recomputed. This process of

inserting more points occurs one at a time until some error threshold is achieved. In

this paper, the notion of ‘distance’ is redefined. Instead of distance being equal to

the absolute value of elevation between the TIN and the original DEM, distance is

defined using a hydrology error metric. Therefore, instead of minimizing maximum

or RMS (root mean squared) error, our HydroTIN algorithm minimizes the amount

of drainage network error based on a potential energy error metric. Before selecting

points based on their “hydrology distance”, the triangle mesh is initial seeded using

significant points on the drainage network and ridge network of the terrain.

Numerous methods have been developed for estimating a drainage network

from a specified segment of terrain. Based on the fact that elevation data is only an

approximation for the actual terrain, some methods allow for water to flow uphill

until spilling over an edge. These flooding methods determine spill points out of

every basin. In the Terraflow approach [5, 15], the path of least energy is used to

flow uphill until reaching the spill point. The flow runs uphill in situations when

there is not an adjacent lower elevation. These methods often keep expanding the
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drainage networks until they flow off the edge of the terrain. This is because it is

assumed that the initial input DEM is prone to collection and sampling errors that

cause unrealistic depressions.

Past work has been done for defining a metric for comparing how well a com-

puted drainage compares to the real world drainage [17]. The D8 model can assign

flow in one of the eight possible directions. In the SFD (single flow direction) version

of the D8 model the entire amount of flow from each cell is entirely distributed to

the lowest adjacent neighbor. This is not the case in the MFD (multi-flow direction)

version the flow is fractionally distributed to all the lower adjacent neighbors.

A slightly more sophisticated MFD model is the D∞ model. As the name

indicates, flow can travel in an infinite number of directions and is not limited to

eight directions. The amount of water leaving each cell is distributed to one or more

adjacent cells based on the steepest downward gradient [14, 13].

To simplify each curve in the ridge-river network, Douglas-Peucker [6] is used

where the reconstructed curve can not deviate more then a predefined tolerance from

the original. The output from Douglas-Peucker is a subset of the original points with

the first and last point on the curve always existing in the refinement. The number

of points used to reconstruct the curve is inversely related to the error tolerance.

4.2 HydroTIN Algorithm

A Delaunay triangulation requires a set of points that will become the vertices

of the triangle mesh. Therefore the algorithm for computing HydroTIN selects

points considered optimal for preserving the hydrology information. Past work has

shown that points on the River and River network are important for hydrology

preservation. This Ridge-River network is simplified using the Douglas-Peucker line

refinement algorithm to select the most significant points along each ridge-river

segment. Figure 3.2 shows this simplification can significantly reduce the number of

points required with the difference between the reconstructed line and the refined

line being negligible. The refined Ridge-River points are the initial vertex seeding

of the triangulation.

Once the initial triangulation is determined, a special case needs to be ad-
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Figure 4.2:

dressed. Ideally, there will be no triangles that are formed that have all three

vertices lie on the river network. These triangles cause problems since they flatten

out valleys crucial in preserving drainage information. Depending on the input pa-

rameters and the terrain dataset, in practice roughly 1
5

of the triangles will have all

3 vertices on the river network. To correct this problem, the point with the highest

elevation within each of these triangles is inserted into the triangulation. Triangles

can still form such that they do not contain at least one ridge points or one of the

newly insert high elevation points. However, the vast majority are corrected once

the Delaunay triangulation is recomputed. Figure 4.2 shows the triangulation after

the initial drainage stucture has been encorporated.

At this stage the flow is computed on the reconstructed terrain in order to

identify locations at risk for high error. Once identified, the k most points with the

highest error are added to the triangulation. The flow is then computed and the

process iterates until the amount of error falls below a certain predefined threshold.
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Figure 4.3: Left: Shows ridge-river points refined using Douglas-Peucker.
This is the initial ”seeding” of the triangulation. Right: Triangulation
derived from the nodes on the left. Notice how the edges align with the
ridge and river networks.

The optimal value of k is 1, however since the triangulation only effects a local area

of the terrain simplification, adding more points a certain distance away from the

other points will not effect the reconstruction. Adding more then one point, one

can encounter a problem if the points are too close together since the refined points

are sometimes clustered. This is because real terrains are mostly continuous so if

one point is far away, adjacent points are also likely to be erroneous, and will be

selected as well. Because of this, refined points selected by any of our strategies may

be redundant in some regions, which is a waste of storage.

Figure 4.4: Forbidden zone
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We perform a check process when adding new refined points: the local neighbor

of the new point is checked to see if there is any existing refined points which were

added in the same iteration. If yes, this new refined point is discarded and point

with the next biggest error is tested until we find desired number of refined points.

So as shown in figure 4.4, all potential refined points that are close to an existing

refined point(green points) are useless(marked red), and only points that are beyond

some distance from green points are selected(marked yellow). By using this method

we can add more points per iteration, drastically reducing compute time.

4.3 Results

Figure 4.5: Amount of potential energy error determined when mapping
the flow direction matrix from the reconstructed terrain onto the original
elevation matrix. Error is weighted by the gradient and the amount of
flow.

To verify the effectiveness of HydroTIN, our results are compared against

terrain computed using a Triangulated Irregular Network (TIN). The specific TIN

implementation used in our comparison selects a point that is the farthest away

from the reconstructed triangle mesh. Only one point is selected at each iteration.

Figure 4.5 shows an error plot of HydroTIN versus TIN computed using a
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400×400 DEM sampled at 30×30 meter resolution of the Hawaiian island of Oahu.

For HydroTIN, the initial seeding using the refined ridge-river points contains a

relatively high potential energy error. This first stage is important in approximating

the core drainage structure, however the error is high due to localized areas of the

triangle mesh that have inaccurate slope and contains regions where the flow is

traveling uphill when compared to the original. After the first iteration when the

100 points with the highest error are incorporated into the triangulation, the error

drops dramatically.

Figure 4.6: Percentage of cells that are flowing uphill when mapping the
flow direction matrix obtained from the terrain reconstruction onto the
original elevation matrix.

After a couple of iterations HydroTIN will consistently achieve a lower error

then TIN, roughly by a factor or 10. Both approaches tend to converge around

a certain error value. For TIN, this convergence is nearly immediate since adding

new points based on maximum error tends to result in short, fragmented drainage

networks that are not representative of naturally occurring flow. These fragmented

rivers tend to have a relatively small number of cells contributing in the watershed.

Not surprisingly, there is a high correlation between the error and the number

of points that are flowing uphill. In figure 4.6 the relationship between the number
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of points and the percentage of points flowing uphill is shown. As more points are

included the numbers of cells flowing uphill are reduced for both implementations.

However, only a very small decrease is observed for TIN. In contrast, HydroTIN

consistently drops the number of upward flowing points. In the last iteration, the

number of cells flowing up hill for HydroTIN is a mere 319 out of 160, 000, or 0.2%.

For TIN, 2, 864 cells flow uphill or 1.79%.

A user defined input determines the tradeoff between compression size and the

amount of potential energy error. The program will continue to iterate until the error

is below a user defined threshold. Figure 4.1 is a visualization of HydroTIN which

is stored by compressing less then 3500 points and achieves an error of 0.01. The

edges of the triangles tend to follow the ridge and river networks preserves drainage

structure and preventing significant blocking of water flow. After two iterations of

minimizing the amount of potential energy error drops by a factor of 10 by adding

just 200 points.



5. Hydrolgy-Conditioned Datasets

5.1 Introduction

Figure 5.1: Low coupled, two stage process for computing drainage net-
works to avoid sampling and data collection issues.

Drainage network algorithms often provide fragmented river segments because

of small sinks in the approximated terrain. Depressions of a tiny size such as only

one cell can be fixed using a simple median filter. However, the challenge of fixing

much larger depressions is a difficult problem to overcome. Approaches such as Ter-

raflow [15] will find the path of lowest energy uphill out of these depressions. This

yields long continuous river segments. However, this does not accurately model the

physical properties of water flow. This section describes a method for modifying the

initial Digital Elevation Model (DEM) such that the resulting drainage network will

have small insignificant ridges removed from the DEM (Figure 5.2). This allows wa-

ter to flow passed these areas using a standard physically-based drainage algorithm

such as steepest-decent flow.

5.2 Results

Our reconstructed terrain captures the important aspects of the drainage net-

work while still achieving a high compression rate. The reconstruction also has a

more natural and realistic representation of the original hydrology because small

insignificant ridges have been removed in the point selection process. This results in

larger, fewer watersheds. The recomputed drainage network is also captured accu-

rately, besides the small tributaries which aren’t considered of high importance. We

28
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Figure 5.2: LEFT: Original Terrain with watersheds (white) and drainage
network (black). The flow here is blocked by a small ridge that occurs
due to sampling and data collection errors. RIGHT: Flow passes through
small insignificant barriers. Allowing larger and more realistic watersheds
and drainage networks

can also store the compressed version using far fewer points then the original DEM.

The user can define the level of detail and hence the number of points by adjusting

the tolerance level for the Douglas-Peucker algorithm.

Figure 5.3 shows the drainage network computed on four instances of a 400x400

elevation matrix representing a segment of the Hawaiian island of Oahu. In (a) the

hydrology was computed on the original elevation matrix. (b) and (c) correspond

to hydrology computed on the reconstructed terrain using ODETLAP, where in (b)

the points were selected using our ridge-river technique described above, and in (c)

using the original ODETLAP method (in each iteration the k “farthest points” were

included). In (d) the hydrology is computed on a terrain is recovered from a lossy

JPEG2000 compression. All the reconstructions have a similar RMS error of about

8.5.

The first results showed that the hydrology consistency is better preserved on

terrain recovered based on the ridge-river point selection method than using original

ODETLAP point selection and JPEG2000. Another interesting investigation would

be to use the drainage network as a model of natural terrain formation. This could

be used to extract structure from the terrain for segmentation and division, allowing

for better compression.
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Figure 5.3: The watersheds(white) and drainage networks(black) on the
original and recovered terrains.



CONCULSION

The potential energy metric introduced in this paper provides a quantitative mea-

surement of the amount of error introduced by a terrain simplification technique.

This value is reflective of the visible examination of the drainage networks, with

higher error corresponding to fragmented and unrealistic flow directions (flow trav-

eling uphill).

The original DEM is an approximation of the real world terrain surface and

not the complete truth, due to dataset and sampling errors. Therefore it would be

inaccurate to compare one drainage network computed on the original DEM versus

the drainage network computed on the reconstructed surface. Instead, the drainage

network is computed on the reconstructed surface and compared against the original

terrain. Flow can travel in different directions then the original drainage network,

yet contain a low error metric if the flow directions are reasonable. Standard error

metrics such as standard metrics such as root mean squared error and maximum

error are ineffective in evaluating the amount of error introduced, as they do not

take into account important hydrology features.

As more terrain is being sampled at ever increasing resolutions, it becomes

more important to be able store and manipulate large elevation datasets and eval-

uate the amount of error introduced by lossy compression. However, current tech-

niques for compressing these datasets lose important information that is essential

for running operations on the reconstructed geometry with reliable results. Under-

standing how compression affects important terrain structure, such as hydrology,

allows the GIS community to understand how a compression technique affects the

drainage accuracy of the reconstructed terrain. Our targeted compression technique

has the goal of minimizing the amount of potential energy error, thus allowing for

high compression ratios with minimal loss of hydrology information, while at the

expense of other terrain structure. The net result of this work is a compression

scheme and error evaluation metric with applications including flooding, erosion,

sanitation, and environmental protection.
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