
POLYGON OVERLAY IN PROLOG

by
Peter Y.F. Wu

A Thesis Submitted to the Graduate
Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the
Requirements for the Degree of

DOCTOR OF PHILOSOPHY
Major Subject: Computer System Engineering

Approved by the
Examining Committee:

, Thesis Advisor

Frank DiCesare, Member

Mukkai S. Krishnamoorthy, Member

Robert B. Kelley, Memb

Rensselaer Polytechnic Institute
Troy, New York

May, 1987
(For Graduation August 1987)

© Copyright 1987

by

Peter Y.F. Wu
All Rights Reserved

CONTENTS

Page

Contents..Hi
List of Figures.. vi
Foreword.......................... viii
Abstract..x

1. INTRODUCTION... 1

1.1 History of The Polygon Overlay Problem.. 2
1.2 Review of Literature..5

1.2.1 Computational Geometry.. 6
1.2.2 Polyline Intersection.. 8
1.2.3 Slivers and Nearly Coincidental Data...10
1.2.4 Coordinates and Arithmetic..12
1.2.5 Polygon Overlay Packages and Systems.................................... 13
1.2.6 Prolog and Geometry Projects... 15

1.3 The Scope of Research Effort...17
1.3.1 Use of Prolog..17
1.3.2 Polygon Overlay.. 18
1.3.3 Research Contributions...19

1.4 An Overview of The Thesis...20

2. A POLYGON OVERLAY SYSTEM IN PROLOG.................................23

2.1 Definitions...23
2.2 Input/Output and File Structures.. 24
2.3 Description of the System..28

2.3.1 Chain Intersection... 29
2.3.2 Polygon Boundary Formation..32
2.3.3 Overlay Polygon Identification... 36
2.3.4 Boundary Containment Resolution..39

2.4 Process Decomposition... 41

3. THE ADAPTIVE GRID.. 43

3.1 Polyline Intersection..43

in

3.2 The Adaptive Grid...
3.3 Performance Assessment... ...
3.4 Grid Cell Size... 50
3.5 Local Processing.. ...

4. RATIONAL ARITHMETIC... ...

4.1 An Operational Problem in Polygon Overlay......................................54
4.2 Rational Arithmetic for Geometric Intersection................................ 56
4.3 Rational Arithmetic in Prolog.. ...

4.3.1 BIG - Multiple Precision Integers.. 58
4.3.2 XQ - Exact Rational Numbers... 63
4.3.3 Modularity In An Experimental System................................... 66
4.3.4 A Test for BIG and XQ: Computing tt......................................66

4.4 Input/Output Conversion Problems... 67
4.5 On The Cost of Rational Arithmetic..69

5. SPECIAL CASES AND STABILITY.. 72

5.1 Special Cases in Polygon Overlay... 73
5.1.1 Conincidental Nodes and Vertices... 73
5.1.2 Partially and Totally Overlapping Chains.................................. 74
5.1.3 Cases Between Two Edge Segments..74

5.2 A Complete Algorithm for Edge Segment Intersection.................... 76
5.3 Stability and What It Costs... 80

6. USING PROLOG FOR GEOMETRY.. 82

6.1 A Logic Programming Example...82
6.2 Data Structuring...
6.3 Set-Based Operations... ...
6.4 Pattern Matching Geometric/Topological Properties.........................87
6.5 Unification and Connectivity..
6.6 Quick Prototype vs Production System... 92

7. IMPLEMENTATION AND RESULTS... 94

7.1 Implementation... ...
7.1.1 XSECT: Chain Intersection... ...
7.1.2 LINK: Polygon Boundary Formation...98

w

7.1.3 OVER: Overlay Identification.. 100
7.1.4 CONTR: Containment Resolution... 101

7.2 Test Runs On Stability...102
7.3 Performance Results..103

8. CONCLUSION...115

8.1 Summary... 115
8.2 Further Considerations..118

8.2.1 Sliver Removal... 118
8.2.2 Map Data Verification... 119
8.2.3 Map Generalization.. 121

Bibliography.. 124

Appendix 1: Rational Arithmetic Package... 133
Appendix 2: OVER4 Source Listing.. 142

V

LIST OF FIGURES

Page

Figure 1.1 Manual polygon overlay using transparencies............................4
Figure 1.2 “How many polygons can overlay produce?”

Maximal case of output polygons.......................11
Figure 2.1 Definitions: nodes, chains, and polygons in a map............... 25
Figure 2.2 Polygon Overlay and the overlay relationship......................... 26
Figure 2.3 The adaptive grid isolates potentially intersecting

edge segments...31
Figure 2.4 Linking chains to form polygon boundaries........................... 35
Figure 2.5 All neighbors are inside the same containment polygon.......37
Figure 2.6 Intersection of two polygons producing two polygons

with two holes...40
Figure 3.1 Optimal grid cell size S*:

minimum of T=Tt+T2 occurs at T1—T2.......51
Figure 4.1 An Operational Problem:

topological inconsistency due to numerical inaccuracy.......... 55
Figure 4.2 Examples of BIG integers (M=100)....................................... 59
Figure 4.3 Long division of BIG integers... 62
Figure 4.4 Examples of XQ - multiple precision rational numbers........64
Figure 5.1 Cases of Edge Segment Intersection..75
Figure 6.1 D ata structure for the unit square...85
Figure 6.2 Matching fragments of a polygon..89
Figure 6.3 Graph connectivity / Polygon adjacency.................................. 91
Figure 7.1 The US map of state boundaries... 105
Figure 7.2 The US map with >2 times complexity.................................106
Figure 7.3 The US map overlay on itself with >2 times complexity .. 107
Figure 7.4 The US map rotated 1 ° about St. Louis.................................108
Figure 7.5 The US map overlay on itself rotated by 1 °.......................... 109
Figure 7.6 Stability Tests: timing and measurements.............................. 110
Figure 7.7 The US map with January isotherms......................................Ill
Figure 7.8 Overlay Performance: US map with January isotherms...... 112
Figure 7.9 The US map with July isotherms.. 113
Figure 7.10 Overlay Performance: US map with July isotherms............ 114

Figure 8.1 Three kinds of sliver polygons.. 120
Figure 8.2 Polygon id mismatch due to incorrect orientation of

a boundary chain... 122
Figure 8.3 A map generalization example... 123

VM

FOREWORD

--- &&

It has been a long process of growth for me as a graduate student in
RPI. Apart from skills and knowledge, it has been a process of learning self­
discipline, to take initiatives on my own, a process from dependence to
independence. This thesis reports my work during the last two of those
years. However, I do think that the training in me is much more important
than the results in the thesis. Yet most certainly, its completion has brought
much relief, and much to be thankful for.

I thank God for the opportunity and the ability to learn and grow.

I thank my advisor, Prof. Wm. Randolph Franklin, for his guidance,
support and patience in the long course of my graduate work. He has
brought me into the intriguing world of geometry and equipped me with
modern computing tools. I thank also my committee members, Prof. F.
DiCesare, Prof. R.B. Kelley and Prof. M.S. Krishnamoorthy, for reviewing
my work. I thank Prof. G. Nagy for his encouraging comments and remarks
in the past year, and I thank Prof. H. Freeman for my time as a system
programmer in the Image Processing Laboratory under his directorate. His
supervision has contributed to the awakening of my growth in those earlier
years.

The work reported herein has been supported by the National Science
Foundation under PYI grant ECS-83-51942, and the Data Systems Division
of IBM Corporation. Their support is gratefully acknowledged.

I thank my fellow brothers at the PARC for their forbearance, in
putting me up, and putting up with me. It has been a home away from
home. I thank many brothers and sisters in the ACCF for their concern,
their prayers and their emotional support.

I thank my parents for teaching me to be hard-working, by their own
examples, and for their sustaining encouragement. To my father who did not
stay to see this finished, this is dedicated to you.

PWu

VHÏ

To my beloved father
who taught me the virtue

of diligence and perseverance,
and is now rested in heaven.

ix

ABSTRACT

A polygon overlay system is developed in Prolog. The complex
process of polygon overlay is decomposed into a number of simple stages,
resulting in much simplified data structures. The system in Prolog adopts a
relational approach to data structuring. Geometric entities and their
relationships are represented as Prolog “facts,” and Prolog “rules”
encoding geometry algorithms perform data processing. An adaptive grid
sorts out potentially intersecting edge segments to within those that occupy
some common grid cells. Geometric intersections are calculated using
multiple precision rational arithmetic. Numerical accuracy is therefore
preserved, and topological consistency guaranteed. Special cases of
touching and partially overlapping chains are properly identified and
handled. Stability in the computation process of polygon overlay is
achieved.

Using Prolog is a venture motivated by the quest for better
programming tools in computational geometry. The practicability and
suitability of Prolog for geometry problems are investigated. Besides the
general high level programming environment, and the relational approach
to data structuring, specifically three paradigms of programming in Prolog
are formulated. These are set-based operation, pattern matching geometric
and topological properties, and using unification to form equivalence
classes.

1

Chapter 1 INTRODUCTION

Polygon overlay is a process of superimposing two or more maps
into one, so that the output map conveys the selected information of the

input maps together to illustrate the spatial correlation between them.

Automation of the polygon overlay process on the computer encompasses a
number of geometric and topological computation problems. The problem

originates from the field of computer cartography. We overlay two maps

with different attributes from the same area to perform categorization of

spatial information. A map, in this context, refers to a data structure
representation of spatial relationships, and polygon overlay applies to maps

using vector representations of spatial data.

This thesis presents a system developed in Prolog to perform
polygon overlay. We decompose the process of polygon overlay into a

number of stages, each of which performs certain local operations. The

strategy simplifies data structuring and system design. Furthermore, our

system achieves stability using multiple precision rational arithmetic to
calculate geometric intersections. The calculation preserves numerical

accuracy and thus guarantees topological consistency. Special cases of
geometric intersection such as tangent and coincidence are properly
handled.

One fundamental problem in dealing with geometry on the computer

is the primitive nature of conventional programming languages.
Conceptually simple ideas often turn out to be unexpectedly difficult to

implement. The descriptive nature of Prolog provides a much more

intuitive programming environment, and hence fosters more readable

2

programs. More specifically, the system demonstrates several advantages

offered by Prolog. These include data structuring, set-based operations,
pattern matching geometric and topological properties, and using unification
to transmit an equivalence relationship.

In what follows in chapter 1, section 1.1 presents a brief history of

the polygon overlay problem arising in the field of cartography. In section

1.2, we review the literature disseminating the issues involved in the
relevant areas of study. These areas include computational geometry, the

special issues related to polygon and polyline intersection, the operational

problems with nearly coincidental data and slivers, and with coordinates
and computer arithmetic. We will also review some significant polygon

overlay packages and systems. The use of Prolog introduces a new

approach towards programming and implementation of geometry
algorithms. Section 1.2.6 briefly describes the history and development of
Prolog, leading to the applications in geometry topology problems. Section
1.3 identifies the scope of the research effort in the work of this thesis and

summarizes the research contributions. Section 1.4, the last section in
chapter 1, presents an overview of the rest of the thesis.

1.1 History of the Polygon Overlay Problem

Overlay is the process of superimposing two or more maps, so that
the output map contains the information of the selected data items from

different input maps. Before the early 60’s, overlay was a process done
manually. The approach was to make transparencies of the original maps,

3

and to trace out the new map. from the transparencies on a light table.

Features of interest were traced out manually, polygon by polygon. Figure
1.1 illustrates the idea of polygon overlay with transparencies. As it is

obvious, the process is very expensive and time consuming for complex

situations (Sinton 72).

Computerized data processing did not come to aid this manual
process until the 70’s. The concept of polygon overlay may be intuitive,
but automation of the process seems to be unexpectedly difficult.

Fundamental to the difficulties involved are the problems of data

structuring and algorithmic design. Studies of these problems were scanty
in the field of geography and cartography in the early 70’s. As geographic
information systems began to develop in the late 7O’s, it became clear that

the polygon overlay problem...

“...(is) the most complex problem of geographic data
structuring...” (Chrisman 76, p.6)

“...contains a number of challenging computational and
statistical problems...” (Goodchild 77, p.1)

“...has been one of the most interesting and challenging

problems in computer cartography...” (White 77, p.8)

Polygon overlay encompasses a host of many subproblems, mostly

geometric and topological. The implementation on a computer also
involves a number of operational problems. The following identifies certain
categories of these subproblems:

4

output map

light table

Figure 1.1 The manaul process of polygon overlay using transparencies.

5

- Boolean Combination of Sets
- Geometric Intersections
- Set Membership Classification
- Cartographic Line Generalization
- Geometry Data Structuring
- Slivers and Error Estimates
- Arithmetic and Representation of Coordinates

Research work which has directly and indirectly studied the polygon overlay
problem by analyzing certain subproblems extends to areas such as
computer graphics (hidden line/surface removal: Potmesil 80), geometric
modelling (set membership classification: Tilove 80), computational

geometry (algorithm design and analysis: Shamos 79), graph theory
(mathematics of maps: White 79), computer arithmetic and algebra
(discretization errors in computer cartography: Franklin 84). In the
following section, we will review the literature in various areas contributing
to problems involved with polygon overlay.

1.2 Review of the Literature

Fundamental to the development of a solution for polygon overlay is
the research effort in computational geometry. Studies on polyline

intersection were particularly important to the polygon overlay problem.
Somewhat hidden but not less significant are certain operational problems

in performing polygon overlay on the computer. We will discuss the

problem of coincidental input data and that of numerical inaccuracy. In this
section, we will review the literature in these areas. More, we will also

6

report on packages and systems for polygon overlay. In closing, we will

bring up the issue of using Prolog, which presents a radically different

approach toward programming, for geometric/topological problems.

1.2.1 Computational Geometry

Algorithms to solve the basic problems of polygon intersection and
the point in polygon inclusion were respectively reported in (Eastman 72;

Franklin 72) and (Ferguson 73). During the 70’s, many more algorithms

for geometric intersection problems were developed for graphics rendering.
Sutherland, Sproull, and Schumacker presented a study characterizing ten

different hidden surface algorithms (Sutherland 74). Formal treatment in

the analysis of geometry algorithms developed in the mid 70’s. Shamos
and Hoey reported algorithms to detect geometric intersections, with
complexity analysis showing the problem to be asymptotically as difficult as

sorting by comparison, and that the algorithms reported were optimal
(Shamos 75,76). Bentley and Ottman extended the algorithms to count

and report such intersections (Bentley 79). In the 80’s, much work

continued to flourish along the line of algorithmic design and analysis,

setting the theme of theoretical computational geometry. These results

were later gathered in a survey paper by Lee and Preparata (Lee 84), and

much more comprehensively in the book Computational Geometry by
Preparata and Shamos (Preparata 85). In his thesis, Guevara presented a

formal treatment of the polygon overlay problem based on complexity
analysis (Guevara 83). More recently, Guibas and Seidel presented their

theoretical work on an algorithm and its analysis for a restricted version of

7

polygon overlay - convex planar subdivisions using reciprocal search
(Guibas 86).

Much of the work in computational geometry is concerned with the
design and analysis of algorithms. The approach to efficient algorithms is
often borrowed from the general techniques in the discipline, such as

divide-and-conquer, recursion, and balancing (Aho 74). A different

technique, uniquely and naturally suited to geometry problems, is the plane
sweep (Nievergelt 82). The plane sweep approach, based on the total order

defined in real numbers, often reduces the asymptotic complexity of an

algorithm to that of sorting by comparison. While these results indeed
reveal much about the nature of solving geometry problems on the
computer, they often fall short of being directly applicable from an

engineering standpoint. We note that the complexity analysis of an
algorithm is almost always done for the worst case only. There is a need

for more analysis of the average cases (Forrest 86). On the lack of average

case analysis, Preparata and Shamos offered the two-fold reason:

“first, substantial mathematical difficulties arise even when

the underlying distribution is conveniently selected; second,
there is frequently scarce consensus on a claim that the

selected distribution is a realistic model of the situation being
studied.” (Preparata 85, p.9)

This is indeed the case for polygon overlay. Very few results on average

case analysis of the polygon overlay problem were available. McAlpine and
Cook used maps of regular hexagons in random orientation, displacement,

8

and size to approximate the relationship between the number of output
polygons and the number of input polygons. They derived the following
formula (McAlpine 71):

TV = (UVW)"
k

where N is the expected number of output polygons and Mk is the number

of input polygons in the k-th map. Lam applied the formula and reported
that the estimates tended to be 5% to 25% higher (Lam 77). Goodchild
studied the statistical aspects and claimed that the number of output

polygons created in an overlay process depends not on the number of input

polygons, but on the complexity of each, defined by the vertices
(Goodchild 77). Based on fractal mathematics (Mandelbrot 77), there were

studies on characterizing monotonic divisions of a polyline (Dutton 81;

Shelberg 82). Clearly, conclusive analysis on the average case behavior of
the polygon overlay problem is difficult.

1.2.2 Polyline Intersection

Asymptotic complexity analysis has ascertained that the determining
factor in the cost of polygon overlay is in polyline intersection (Guevara 83,

p.111). In this section, we will focus on the development of algorithms and
data structures for polyline intersection.

Obviously, the complexity of a polyline depends on the number of
edge segments it contains. To avoid searching into the polylines to simply
determine that they do not intersect, a common technique is to use an

9

enclosing rectangle for each polyline, so that if the enclosing rectangles do
not intersect, we can conclude that the polylines do not intersect.

Enclosing rectangles with sides parallel to the X and Y axes are easy to

form and easy to check for intersection. But of course there is the problem

that when the enclosing rectangles overlap, the two polylines do not
necessarily intersect. Freeman and Shapira developed a method to form

the minimal area enclosing rectangle (Freeman 75), which would have less

cases of overlapping rectangles and non-intersecting polylines. Little and
Peucker introduced the enclosing band which allowed for recursive

subdivision alternately on two intersecting polylines to determine the

intersection points (Little 79). Burton, on the other hand, covered the

polyline with a tree hierarchy of rectangles in a fixed orientation (Burton

77). Ballard incorporated both of these ideas into the “strip tree" — a

binary tree in which each node represents a subdivision of the polyline
enclosed in a strip (or band in Little and Peucker’s terminology). The tree

hierarchy facilitates binary search into the polyline structure and therefore
divide-and-conquer techniques can apply (Ballard 81). Guevara proposed
to decompose polylines into components monotonic in angle, forming

sections between adjacent points of inflection (Guevara 83). The work
however was not further disseminated.

Perhaps in view of the large data volume involved in map data

processing, Denis White introduced the concept of local processing (White
77). The concept originated from the field of digital picture processing

(Rosenfeld 69), making explicit the possible benefit of parallel processing.

But in White’s approach, a single processor instead scans through the input
stream already arranged in pre-sorted order, operating only on a “local"

10

section to ensure low temporary storage at any time. However, the

significance of local processing in terms of computational geometry is the
plane sweep approach in use. In fact, local processing in geographic

information systems has predated complexity studies of plane sweep in

computational geometry (Nievergelt 82). More recent theoretical work
based on plane sweep is reported in (Mairson 87) on overlay of two sets of

arcs of single-valued curves - a restricted version of polyline intersection.

Targeted toward a better average case performance, Franklin

introduced the adaptive grid method for geometric operations (Franklin

83b). We used the grid to sort out potentially intersecting edge segments
to within those which occupy some common grid cell. In chapter 3, we will
discuss the adaptive grid method.

1.2.3 Slivers and Nearly Coincidental Data

How many output polygons can an overlay process produce? An

overlay of two polygons, consisting of N1 and N2 edges respectively, can

produce up to 2+W1^V2 output polygons. The maximal case occurs when

every edge in one polygon crosses every other edge of the other polygon.
Refer to figure 1.2 for an example. Input maps showing statistical
independence will produce a much more moderate number of output

polygons in the overlay process. Serious problems arise, however, when
data in the input maps has a tendency to coincide. This happens often

since prominent lines features such as rivers or major roads in one input

map also appear in another input map as property lines or census tract

11

How many polygons can overlay produce?

Figure 1.2 Maximal case of Polygon Intersection

12

boundaries. But the two versions of the same line feature do not coincide

exactly, and the overlay process will produce many spurious polygons,

slivers, along such line features. Goodchild established a measure of the
expected number of slivers, E(S)t given by

2 N^2
E(S) Nx+N2 - 3

where Nx and N2 are respectively the number of edge segments of the two
chains for the same line feature (Goodchild 77).

Slivers should be removed as a human cartographer would put two

nearly coincidental chains into one single chain in the overlay. Often

slivers can be recognized by their small area. Two nearly coincidental
chains may be recognized in the intersection process by the overlap of their

narrow enclosing bands, using the polyline intersection algorithm due to
Little and Peucker (Little 79). There was not much study reported on
slivers in the past six years. The system presented in this thesis does not

remove slivers. However, we will describe an outline of a strategy for
sliver removal in section 8.2 for further considerations.

1.2.4 Coordinates and Arithmetic

Traditionally cartographers do not pay much attention to the

accuracy of coordinates. They do not have to since coordinates are not
represented in numerical values but graphically on the map. In an

automated system, coordinates play an essential role in representing the

13

geometry. However, calculated from measurements, coordinates are

inherently subject to error, despite the precision level of the computer word

used for storage. Marvin White called for attention to the proper use of
coordinates and the identifiers of point features (White 83). Polygon

overlay imposes another problem on the use of coordinates. Calculation of
geometric intersections is subject to accuracy problems in floating point

arithmetic on the computer, and overlay systems are therefore prone to

unstability when dealing with tangent conditions. Studies on the
peculiarities of floating point arithmetic were reported in (Malcolm 72;

Gentleman 74). Franklin examined alternative models for arithmetic,
including finite and multiple precision rational numbers (Franklin 84).

Rational arithmetic has been in use in many symbolic mathematics

computation systems, most notably MACSYMA (Macsyma 83), which is in
Lisp. Several Lisp versions, such as Franz Lisp (Foderaro 83) and
Common Lisp (Steele 84), are built in with multiple precision integer

(known as big number) arithmetic. The Unix system also provides a

library of big integer arithmetic in C (Sun 86a) and tools are available for

calculations using rational arithmetic (Sun 86b). We developed two
packages in Prolog for big integers and rational numbers (Wu 86), which

we used in our polygon overlay system for calculating geometric

intersections. Chapter 4 will describe further details.

1.2.5 Polygon Overlay Packages and Systems

The Fortran subroutine package ANOTB (Franklin 72) is an early

14

stride to polygon overlay. ANOTB takes two polygons and returns their

Boolean combinations. OVER (Goodchild 74) is a stand-alone Fortran
program which represents a more complex approach to polygon overlay.

OVER first determines all the intersection points between the chains of the

two input maps, and then constructs the output polygons of the overlay

map. One of the oldest and once most advanced integrated system is the

Canadian Geographic Information System - CGIS (Tomlinson 76). CGIS

incorporates a combined grid/raster approach to polygon overlay,
circumventing some of the geometric range searching and intersection
problems. The Polygon Information.Overlay System - PIOS (DeBerry 79)

takes two sets of polygon records, and operates on two polygons at one

time. One polygon is divided up into sixteen strips and PIOS uses a point­

in-polygon test to determine the intersecting edges. The Map Overlay and

Statistics System - MOSS (Reed 82) is similar to PIOS in that it operates on
pairwise comparison of polygons. MOSS also performs pairwise comparison

of edge segments to determine the intersection points. Then MOSS traces

out the chains split by intersections to form the output polygons.

WHIRLPOOL (White 77), one of the programs in the ODYSSEY

system (Dutton 77), represents by far a much more advanced approach to

perform polygon overlay. One major contribution of ODYSSEY is the

concept of local processing. Based on this approach WHIRLPOOL in effect

exploits spatial coherence in performing a plane sweep in the problem space

to report chain intersections. Guevara analyzed the performance of

WHIRLPOOL and obtained the following worst case time complexity,
which is optimal:

O((Vi + Wo) + (1 +k) log{ W, Wg))

15

Nl and N2 are respectively the number of edge segments in each input

map, and k is the number of intersections (Guevara 83, p.110).

1.2.6 Prolog and Geometry Projects

Since its inception in the 70’s, Prolog has been used in a variety of
applications. Among the best known are those for natural language

processing, symbolic mathematical computation, compiler construction, and
Prolog is becoming widely accepted as a major programming language for

artificial intelligence applications. In the following, we will briefly review

the history of Prolog, from inception to its proliferation. We will also

review the work on using Prolog for geometry applications. An elaborate

introduction to Prolog is in (Warren 79). A very concise .descriptive note is
in (Colmerauer 85). We refer the readers to (Clocksin 81) and (Sterling

86) as two comprehensive text books on Prolog programming.

During the 60’s many were interested in programming computers to
make logical deductions and prove theorems automatically. A significant

mark of progress was Robinson’s discovery of the resolution principle
(Robinson 65). The resolution principle is an inference rule particularly

suited to computing whereby one logical proposition can be shown to follow

from others. The saga went on to the early 70’s when Colmerauer
attempted to apply logical deduction on the computer to do automatic
translation between French and English. Colmerauer developed a

prototype “programming language” (Colmerauer 73) to solve simple
problems of logical deduction in children’s stories. The prototype

16

illustrated the important feature of treating functions as logical relations in
a program.

The theoretical foundation of Prolog is based on the subset of

predicate logic proposed by Kowalski. In a paper titled Predicate Logic as a

Programming Language presented in the 1974 IFIP conference, Kowalski
reported his studies on clausal forms of logic, showing that any problem

can be expressed in logic as well as a particular subset of clausal forms
(Kowalski 74). These were the Horn clauses (so named after the logician

Alfred Horn). A set of Horn clauses can be shown to be logically

consistent using the resolution principle. This theory which was

implemented in the form first by Colmerauer constitutes the basis of
Prolog.

The original version of Prolog was developed on a micro-computer.

It was powerful but very slow (Roussel 75). David Warren implemented

Prolog on the DEC System-10 (Warren 79), and this version, later known
as the Edinburgh version, became instrumental in the spreading of Prolog.

Prolog started its trip in Europe, and when the Japanese Fifth Generation

Computer Project adopted Prolog as the major computer language for
knowledge engineering in the intelligent computers of the future (Fuchi
81), Prolog began to proliferate.

Using Prolog for geometry problems is a venture in an attempt to
answer the quest for more suitable tools to implement geometry and

graphics systems (Forrest 86). Swinson reported studies in using Prolog for
architectural design (Swinson 82,83). Gonzalez compared Prolog to Pascal

17

and concluded in favor of Prolog for CAD applications (Gonzalez 84).

Nichols investigated using Prolog for interactive computer graphics; a
subset of Graphical Kernel System (GKS) was implemented in Prolog

(Nichols 85). Using Prolog in two different approaches for geometric

modelling was also reported: construction of objects defined by constraints
(Bruderlin 85), and solid modelling in octree (Guerrieri 86). A more

recent paper (Franklin 86) included a study of using Prolog in a range of

geometry projects including 2D convex hull, polygon intersection, graph
traversal, and photo reconnaissance inference. The paper also described an

earlier version of the work involved in this thesis, on cartographic map
overlay.

1.3 The Scope of Research Effort

In this section we will identify the scope of research effort in the work of
this thesis. This includes using Prolog for geometry problems, and aspects

of the polygon overlay problem - specifically the problem of topological
inconsistency due to numerical inaccuracy, and the polygon containment

problem. This section concludes with a summary of the research
contributions.

1.3.1 Use of Prolog

Prolog represents a radically different approach toward programming.
The approach has been commonly known as “logic programming.” Unlike

18

conventional programming languages, a Prolog program does not present a

prescribed set of instructions to the computer to solve a particular problem,

but it describes the objects and their relationships involved in the problem

to be solved. Prolog therefore provides a higher level, more intuitive

programming environment, even though in practice one often has to be
somewhat imperative. A fundamental difficulty in dealing with geometry

on the computer is the primitive nature of conventional programming

languages, and conceptually simple ideas often turn out to be unexpectedly
difficult to implement. How much will Prolog help in filling this gap

between concept and implementation? More specifically, we considered the

issues of relational data structuring and paradigms of logic programming,
both being features offered in Prolog. In our approach, we model as Prolog

facts the geometric entities and their relationships, for the input/output
maps and many interim data structures. The Prolog rules formulate
geometric data processing. Through the experience, we identified features

of Prolog which we deemed advantageous, and extracted the programming
paradigms.

1.3.2 Polygon Overlay

Polygon overlay is an intricate problem and it encompasses a host of

many subproblems. In this thesis, we focus in particular on the problem of
numerical inaccuracy in calculating geometric intersections. The problem is

important since it leads to topological inconsistency in the polygon overlay

process. Rational arithmetic offers total numerical accuracy for geometric

intersections. We exploited the flexibility in Prolog to implement rational

19

arithmetic, to illustrate its practicability. Since accuracy is preserved, basic

intersection algorithms can be extended to properly identify and handle all
special cases.

The polygon overlay algorithm implemented is due to Franklin. The
algorithm decomposes the complex process of polygon overlay into a

number of simple stages, resulting in simplified data structures (Franklin

83a). To the knowledge of the author, the algorithm has not been
implemented in any system disseminated in the public literature. I
implemented the algorithm. Further, resolving the polygon containment
problem, I extended the algorithm to handle also polygons with holes and
maps with separate components.

1.3.3 Research Contributions

Based on the preceding outline of the scope of research effort in this
thesis, we summarize the contributions in the following:

(1) Using polygon overlay as a vehicle, we investigated the practicability
and suitability of Prolog for geometry applications. Other than the

general high level nature and the relational approach to data structuring

in Prolog, we identified these features, namely, set-based operations,
pattern matching geometric and topological properties, and unification

to form equivalence classes, as useful paradigms of programming in

Prolog, being advantages as a programming tool for geometry
problems.

20

(2) The system presented in this thesis illustrated the use of rational

arithmetic for geometric intersection problems. Rational arithmetic
preserves total accuracy, and topological consistency is therefore
guaranteed.

(3) With numerical accuracy preserved, we were able to extend the line

segment intersection algorithm to cover all special cases, properly
identifying and handling coincidental and tangent conditions. This
combined with (2) above provided for stability in the polygon overlay
process.

(4) We resolved the polygon containment cases and thus extended the

polygon overlay algorithm due to Franklin to handle input maps with

separate components (and polygons with holes).

1.4 An Overview of The Thesis

In chapter 1, we have reviewed the related literature and
summarized the research contributions.

Chapter 2 will describe the polygon overlay system developed in

Prolog. The system decomposes the process of polygon overlay into a
number of stages. We begin with definitions and data structures, and

present an overview of the system. Each stage of the system is then
further subdivided for more detailed description.

21

Chapter 3, 4 and 5 discuss three major features in the system: the
adaptive grid, rational arithmetic, and special cases handling. The adaptive
grid is a strategy to speed up computing chain intersections. In chapter 3,

we describe the strategy as an approach toward distribution sort to avoid

pairwise comparison between individual edge segments. An analysis of its
performance based on random edge segments is presented. Chapter 4 is on

rational arithmetic: we discuss the problem of numerical inaccuracy in

geometric intersection and the mathematics of rational arithmetic as a
solution to the problem. We describe the implementation in Prolog, and

discuss the cost in terms of CPU resources in using rational arithmetic. In
chapter 5, we will develop an algorithm for edge segment intersections,
complete with special cases handling. Exact numerical results due to

rational arithmetic enable us to properly identify these special cases. With

complete special cases handling, stability in the polygon overlay process is
achieved.

Chapter 6 is concerned with the use of Prolog: motivated by the
quest for better programming tools, we venture into the experiment of

using Prolog for our polygon overlay system. In chapter 6, we describe our

experience with Prolog and illustrate some of its features with examples
from the polygon overlay system. Specifically we have formulated several

paradigms of programming which appear to be useful in general.

Chapter 7 documents the implementation; the Prolog source listing
of the entire polygon overlay system is appended to the thesis. We

describe the various steps in the programs. In chapter 7, we also
demonstrate the results from two sets of test runs on our system. One set

22

is on testing the stability; the other is on general performance.

Chapter 8 closes with a summary of the thesis, and in conclusion,
reiterates the research contributions. More, further considerations are

discussed. These include sliver removal, map data verification, and map
generalization.

23

Chapter 2 A POLYGON OVERLAY SYSTEM IN PROLOG

Chapter 2 presents our polygon overlay system developed in Prolog.
In chapter 1, we have briefly described the polygon overlay problem. In

chapter 2, we will begin with the fundamental geometric entities first and

then give a definition for the polygon overlay problem in section 2.1.
Section 2.2 will explain the input and output file structures. To introduce

the system, section 2.3 presents with an overview first, and the rest of the

chapter will describe further details in each of the stages in turn. Chapter
3, 4 and 5 will follow up to discuss the major features of the system.

2.1 Definitions '

A map refers to a 2D spatial data structure, consisting of three
generic classes of geometric entities, namely, node, chain, and polygon. A

node is a point in the 2D plane which is a topological junction. A chain is a

directed polyline structure - a sequence of contiguous and non-intersecting

line segments in the plane beginning at a node and ending at a node. The

two nodes may or may not be the same node. A chain does not intersect

with any other chains in the same map, nor with itself. Two chains may
touch each other only at a node where they begin or end. Hence, the

network of nodes and chains in a map partitions the 2D plane into regions,

called polygons. Each polygon is a connected subset of the 2D plane. A
polygon is bounded by one or more sequences of alternating nodes and

chains; each sequence forms a complete cycle, that is a simple closed curve.

The cyclic order determines whether the interior of the polygon is to the
inside or outside of the boundary. Figure 2.1 shows a map illustrating the

24

ideas aforementioned.

Given two maps A and B, the polygon overlay process produces an
output map C by superimposing A and B. Since chains of map A may

intersect those of map B, new nodes are formed at the intersection points.
The output map C contains all the nodes of A and B, and the new nodes

generated. Map C contains all the chains of A and B; those involved in

intersection are split up at the new nodes, that is, the intersection points.
The network of chains and nodes in map C partitions the plane into
polygons, each of which is a resultant polygon from the intersection

between a polygon in A and another one in B. An overlay relationship

associates each polygon in C with these two polygons in A and B. The

polygon overlay process constructs output map C, and establishes the

overlay relationship. Figure 2.2 illustrates two input maps, the overlay
output map, and the overlay relationship.

In the context of our definition, we have assumed consistency in the
input map data, and that the maps are properly registered in scale and
orientation for the overlay process. -

2.2 Input/Output and File Structures

A map as defined above consists of nodes, chains, and polygons. It

however suffices to represent a map with the set of chains complete with
the following set of attributes:

25

EM

N

KM * 9

nodes:

chains: a A,B]
b B,c,D] polygons: #1 A<(a),Â<(e),iA(f)]
c D,E,F,G,H] #2
d #2 fA(h)]
e [I, J,A] #3 A^h%
f [I,B] #4 Ai(g),A^(c)]
g [H,K,D] #5 #A(a),iA(b),^(c),fA(d),<A(e)]
h [L,M,N,L]

Figure 2.1 Nodes, Chains, and Polygons in a Map

26

Map

A3

Al

OVERLAY

A2

Bl

Map B
B3

B2

C3

C2 C5

C6

C7

Overlay Relationship: ov6r(Cl
over(C2,Al,Bl).
over(C3,A2,B3).
over(C4,A2,Bl).
over(C5,A3,Bl).
over(C6,A3>B2).
over(C7A3,B3).

Figure 2.2 Polygon Overlay and the overlay relationship.

27

- MAP-, map id;

- C#: chain id;

- NvN2: beginning and ending node id’s;

- []= polyline in a list of (%,%) coordinates from to N2;

- polygon id’s to the left and right of the chain.

The nodes and the polygons can be derived from the chains as defined

above. An input map is therefore set up as a collection of variable length
records, represented as chain facts in Prolog:

chain(MAP,C#, , 7V2, [[x,y]

The output map from polygon overlay consists of a similar set of chains,

with a new map id. Although redundant, the process also produces for
output a set of node facts and a set of polygon facts:

node(A#,[%,y],[A,/2,-"])-

N# is the node id; [x,y] the coordinates of the node N#. \IX,I2,...\ is the

list of chain incidences in positive cyclic order about the node. Each chain
incidence I- can be for head (ie, starting node), or <(for tail (ie,

ending node).

polygon(P#,[PI,S2,-])•

P# is the id of a polygon. Each polygon fact identifies a polygon boundary:

P# is therefore not unique for each fact, but identifies a boundary of the

polygon. \Bx,B2v..\ is the list of boundary chains in proper cyclic order

around, identifying a polygon boundary: positive cyclic order indicates that

the polygon P# is to the inside, and negative, to the outside. Each chain

28

boundary B; can be th^C^ or h^C^, for tail-to-head and head-to-tail

respectively, indicating the direction of the chain in the polygon boundary.

The polygon overlay process also resolves the overlay relationship

between the polygons of the output map and those of the input maps. The
set of over facts establishes the association:

over(P#,PltP2).

P# is the unique identifier for each output polygon; P^ and P2 are the id’s

of the source polygons in each of the input maps. P# is generated in the
overlay process by the intersection of Pl and P2.

To sum this up, the polygon overlay system requires an input file of
chains for each input map. For the output map, four files are generated:
chains, nodes, polygons, and the overlay relationship with the input

polygons. During the process of polygon overlay, the system also generates
different interim data files for use in various subsequent steps. We will

explain these interim data files as we proceed on to describe the steps
involved in the process.

2.3 Description of The System

Our system divides the polygon overlay process into four major

stages. Each is further subdivided into a number of steps. The following
presents an overview and a brief description of the four different stages in

the process:

29

Stage 1. Chain Intersection.

Determine intersecting chains and split them at the
intersection points, generating new nodes.

Stage 2. Polygon Boundary Formation.

Form the polygon boundaries by linking up the network
chains.

Stage 3. Polygon Overlay Identification.

Identify for each polygon boundary the source polygons of

the input maps and establish the overlay relationship.

Stage 4. Boundary Containment Resolution.

Resolve the containment relationships between polygon
boundaries to identify the polygons with multiple boundaries.

We are going to describe each stage in further details in this chapter. There
are a few major components and features, which we will describe in the
chapters to follow.

2.3.1 Chain Intersection

Given two sets of chains, each forming a map, we want to determine
the intersecting chains and split them at the intersection points. In search

of intersections, we observe that when two chains intersect, the intersection
occurs between two edge segments which occupy the same locality. Our

approach breaks down each chain into its edge segments and casts a grid

30

over the edge segments. The intention is to isolate cases of potential

intersections to within those edge segments that occupy the same grid cell.

Figure 2.3 illustrates the idea. We can then determine the intersecting edge

segments by pairwise comparison. The strategy is called the adaptive grid

method (Franklin 83b) since the appropriate grid cell size is determined by
statistical measures from the two input maps. The process involves the

following steps:

Step 1.1 Determine the appropriate grid cell size for the adaptive grid.

Step 1.2 Cast the grid over the edge segments; determine for each

edge segment the grid cells it occupies and collect the edge
segments into sets for each grid cell they occupy.

Step 1.3 Determine intersections in each set of edge segments by
pairwise comparison; split the edge segments and generate a

new node for each intersection.

Step 1.4 Connect the edge segments back to chains, already split at

the intersection points.

In step 1.1, we examine the input chains and break them up into the

constituent edge segments, each identified by the edge id E#. This forms
the edge file:

In step 1.2, we distribute these edges to the grid cells each edge occupies.
This step generates the grid file consisting of one entry for each grid cell,

31

When two chains intersect,
they do so between two edge segments

which occupy the same locality.

Figure 2.3 The adaptive grid isolates potentially intersecting edge segments.

32

identified by G#, and the set of edge segments for each entry:

gri<XC#,[^2,...]).

In step 1.3, we go through the grid file sequentially, and determine
intersections by pairwise comparison between the edge segments in each

grid cell, making references to the edge file. Intersecting edges are split at
the intersection points. In step 1.4, we connect the edge segments back to
chains. These are the network chains for the output map:

chain(C#,NvN2,\ [x,y],...J).

They are called network chains because we do not yet have the information
for the adjacent polygons.

Chapter 3 will discuss further our strategy in using the adaptive grid
for chain intersection. Calculation of geometric intersection is done using
multiple precision rational arithmetic, which we have implemented in

Prolog. Chapter 4 will describe the rational arithmetic package. We have
limited the handling of special cases of chain intersection to only the low

level operations, which in our case is in intersecting edge segments.

Chapter 5 will develop an algorithm for edge segment intersection complete
with special cases handling.

2.3.2 Polygon Boundary Formation

The chains and nodes partition the 2D plane into polygons. We link
up the network chains from the previous stage around the polygon corners

33

at each node. Each completed cycle of chain linkages forms the boundary
of a polygon. This stage involves the following steps:

Step 2.1 Identify for each chain the nodes where it begins and
terminates, and calculate the incident angles.

Step 2.2 Sort the chains by the incident angles around each node into

proper cyclic order. Each adjacent pair of chains identify a

corner of an output polygon at the node. Form linkage of
the adjacent chains in the specified direction.

Step 2.3 Match the linkages and connect them until each list of

directed chains begins and ends with the same entry; each
list identifies the boundary chains of a polygon in its proper
cyclic order.

Step 2.1 generates the chain-to-node incidence file. Each incidence entry
has the following format:

i(Node#, Incidence, ANGLE).

Node# is the node identifier. Incidence can be h(C#) or t(C#), to indicate

the head or tail of chain C#. ANGLE is the incident angle the adjacent

vector of the chain makes with the positive X-axis at the node. Step 2.2
then collects the incidence entries at each node and sorts them out by the

ANGLE. Then we have the nodes of the output map:

node(Node#,[x,y],[list of chain incidences...]).

Around each node, adjacent chain incidences identify a polygon corner.

34

We generate a linkage file, with one entry for each polygon corner:

linkage^,B2,[BvB2,

We call it linkage since we intend to link them up to form the polygon

boundaries. Bx and B2 are chains marked with a specified direction:

C#) or C#) to indicate the chain C# from tail to head or from head

to tail. The list [BX,B2] will be linked with other lists. Bx and B2 identify
the first and last elements of the list.

In step 2.3, we connect two linkages if they match together. Two
linkages match if the last entry in one list is the same as the first entry in

the other list. The concatenated list becomes a new, and longer, linkage.

For example, linkage(B1,B2,[B1,B2]) and linkage(B2,B3,[B2,B3]) are
connected to form linkage(BpB3,[BpB2,B3]). When no more linkages

match, we should have each linkage beginning and ending with the same

chain entry. Then each of the list [S1,B2,B3,... ,B^ identifies a polygon

boundary. We generate new polygon names for each boundary list for the
polygon file:

polygon(B#,[BpB2,B3,...]).

We should note that dangling chains and bridges do not present any
difficulty to the process. They end up to be in the same boundary list in
both directions. Figure 2.4 demonstrates the process of linking up directed

chains to form polygon boundaries.

Once we have the polygons, we can also re-format the network

chains (from the previous stage) into complete chains with the information

35

c

#3

d

;#4 #2
h

ga

_ Map A------------------
chain #1: [a, d]
chain #2: [a, e, d]
chain #3: [a, b, c, d]

Overlay Example

r Map B
chain #4: [f, g, h, i, f]

Sort Chains at each node
by incident angles

*24

•21

#19

'7^*18

Edges split by intersection

c %
#18

#15
#10#24

45
#21

#23b f#ll
lg

j
h Ne

#19
\k

m XT
f #22 a

#15
#24

6

#21
#9

a
#25

3X^10

1N#19
b\
g>—w-
T #18 Match hnkages to form polygon boundaries

polygonfl, (ht(18), ht(19)j)
polygon(2, (ht(6), th(14), th(15)J)
polygon(3, [th(6), th(l2), ht(W))
polygon(4, [th(5), ht(9), ht(12)J)
polygon(5, (ht(1l), th(9)])

polygonfS, (hl(24), lh(19). ht(14), th(io), moiX m(25)|)

Figure 2.4 Linking chains to form polygon boundaries

36

for the adjacent polygons. These are then the complete chains for the
output map.

2.3.3 Polygon Overlay Identification

Each output polygon is the intersection of two input polygons, one in

each input map. However, the polygon boundaries may or may not be
involved in intersection. If the list of boundary chains is involved in any

intersection, it consists of chains from the two different input polygons.

We can therefore determine the input polygons by examining the chains in
the boundary list. If no chains in the boundary list is involved in any

intersection, all the chains comes from one polygon in one of the input

maps, the polygon being completely contained in another polygon of the
other input map. We can only determine one input polygon from the

chains in the boundary list; the unknown one is the containment polygon.
Observe, however, that all of its neighbors must also be inside the same
containment polygon of the other input map. Figure 2.5 illustrates this.

We can then recursively search its neighbors for the containment polygon.

The recursive search fails only when the entire connected group of
polygon boundaries are not involved in any intersection with the other

input map. In this case, we identify the possible containment polygons
from the other input map, and determine the containment polygon by

testing each one with the point-in-polygon test.

The following outlines the steps to determine the overlay

37

Figure 2.5 All neighbors are inside the same containment polygon.

38

relationships between the input and output polygons:

Step 3.1 For each output polygon boundary P#, if involved with

intersection, determine the input polygons Px and P2; if not

involved with any intersection, recursively search the
neighbors to determine the containment polygon.

Step 3.2 If the search fails, identify the connected group of

neighboring polygons together.

Step 3.3 For each group, identify the polygon boundary which refers

to the outside polygon in the input map. One of the

polygons in the other input map which intersect with the
outside polygon is the containment polygon we are looking

for. Take a point from the group for point-in-polygon test to
determine the containment polygon.

Step 3.1 generates the file for overlay relationship entries. For each output
polygon P#, an entry has the format:

over(P#,P1,P2).

P1 and P2 are the two input polygons from the two input maps, such that

F# is from PA P^ If any search for the containment polygon fails

within the group of connected neighbors, the over file cannot be completed
in step 3.1, and will have to be appended later on. Step 3.2 generates two
files, one for each input map:

over!(Group^yP^P^. and over2(Group#,P#,P2).

39

Each entry identifies an output polygon P# known to be in one input map

(as ?! or P2)» but its containment polygon in the other input map is still

unknown. Each Group# identifies a group of connected neighbors together.

Step 3.3 resolves the unknown containment polygon by point-in-polygon

test for each connected group. The results are then appended to the over

file for overlay relationships.

2.3.4 Boundary Containment Resolution

Two polygons may intersect to form more than one polygon.
Further, we have defined a polygon to be a connected subset of the 2D

plane, each polygon may have more than one boundary (some boundaries

being holes). Figure 2.6 illustrate one case of two polygons intersecting to
form two polygons each with one hole. While we have determined the
input polygons for each output polygon boundary, we must also determine

which of the boundaries refer to the same connected piece of output
polygon.

We examine the polygon boundaries which are formed from the
same pair of input polygons. We then divide them into two groups by their
cyclic order: positive polygon boundaries, and the holes which are the

negative ones. Each positive boundary identifies one connected polygon.
The negative ones are each a hole contained in one of the positive

polygons. The exception is the outside polygon which is the overlay of the
outside polygons in the two input maps; it contains only holes and no

positive polygons. The following describes the steps to resolve the

40

Figure 2.6 Intersection of two polygons producing two polygons with two holes.

41

containment relationships and identify the holes for each polygon:

Step 4.1 Gather the polygon boundaries which are formed from the
overlay of the same pair of input polygons.

Step 4.2 Divide into two groups according to the boundary cyclic
order: positive ones are polygons and negative ones are
holes.

Step 4.3 Determine the containment polygon for each hole P# using
the point-in-polygon test. Update the polygon id for P# to
that of its containment polygon.

After these steps, we can update the output files of chains, polygons, and

overlay relationships. If a polygon is found to be a hole in another
polygon, it should take the polygon id of its containment polygon. All its
boundary chains will have to be updated and the entry in the overlay

relationships can be deleted, since the entry for the containment polygon is
already there.

2.4 Process Decomposition

A theme in our design philosophy we would like to note here is

process decomposition. Process decomposition simply means the dividing
up of a complex process into less complicated steps. But it is a powerful

concept in both software and hardware architecture. In our system, we

have divided up the polygon overlay process into quite a number of steps,

42

organized into four major stages as we have presented here in this chapter.

The benefit that is obvious here is in data structuring. Each step
performs a certain operation to its input files and generates its output files.

There is no complicated nesting of process or searching of data structures.
This makes our system unique among the other systems we surveyed in

chapter 1. For example, we will not have to keep a set of open chains as in

WHIRLPOOL (White 77) but can still maintain local processing. Nor do
we have to deal with strips of a polygon as in PIOS (DeBerry 79).

Another benefit of process decomposition is modularity. While we
have a number of different modules, each performing an operation for one

step in the process, these modules can be organized in other ways for other
purposes. There is possibility of re-use for every module. The polygon
overlay system can be modified to perform map data verification. A

module for sliver elimination can be added immediately after we form all

the output polygons and before examining their overlay relationships.
Chapter 8 will discuss these in further considerations.

Process decomposition also makes suitable candidates for pipe-lining
in a multi-processor environment. Although we have not taken advantage

of this in our project, we refer to it here since it is also one of the benefits
of the same design philosophy.

43

Chapter 3 THE ADAPTIVE GRID

Given two sets of chains, each forming a map, we want to determine
the intersecting chains and split them at the intersection points. This is the

polygon overlay version of the polyline intersection problem. This problem
is also the most costly step in the entire process of polygon overlay. We
implemented the adaptive grid approach to tackle the problem. In this

chapter, we will classify the polyline intersection algorithms mentioned in
the literature survey, and present the adaptive grid method as a different
approach to the polyline intersection problem. We will also present an

average case timing analysis for random edge segments. The question

concerning the performance of the adaptive grid for polygon overlay
remains open. We do not have an answer in this thesis, but will discuss the

validity of the assumptions made in the analysis. We have quite a range of

freedom in choosing an appropriate grid cell size, and we will discuss that.
The benefit along with the local processing concept in the adaptive grid
method is also presented.

3.1 Polyline Intersection

We surveyed a number of different algorithms for polyline

intersection in section 1.2.2. In the course of the development, we see that

the polyline intersection problem, although much more complicated, in

many ways resembles a sorting problem. Intuitively, the problem involves
both pairwise comparisons between polylines as well as those between the

constituent edge segments. Algorithms can be classified into two groups:
the first group deals with intersection between two polylines. Methods

44

testing the enclosing rectangles eliminates some of the cases of the need to

examine the edge segments in the polylines. The recursive algorithm using
an enclosing band (Little 79) exploits the contiguous nature of the

constituent edge segments to minimize pairwise examination, resulting in a

linear worst case time complexity. The Binary-Search-Polyline-
Representation (Burton 77) forms a hierarchical structure to perform binary

search into the polyline to locate an intersecting edge segment, achieving

the log^Ny+Nz) worst case time complexity. The strip-tree (Ballard 81)

integrates the two ideas together, and simplifies the data structure. These
algorithms work with two polylines at a time and do not tackle of problem

of pairwise comparisons between polylines. The second group of
algorithms deal with the entire set of polylines and attempt to exploit spatial

coherence in the total ordering of the real space: an approach commonly

called the “plane-sweep” (Nievergelt 82) in computational geometry. This
is the local processing concept in (White 77) which pre-sorts the input

polylines and then scans over the polylines in the pre-sorted order,

operating in a “local” section of the object space at one time. It is then
necessary only to examine those polylines in the same local section at the

same time for potential intersections. This approach achieves the optimal
worst case time complexity.

3.2 The Adaptive Grid

In the adaptive grid approach (Franklin 83b), we deal with the entire
set of polylines all at one time. But we also deal with individual constituent
edge segments disregard of the number of polylines. Instead of treating the

45

polyline intersection problem like sorting by comparison, the adaptive grid
method sets up a way to perform sorting by distribution.

The adaptive grid is a regular, rectangular grid imposed onto the
object space. It is adaptive because the grid cell size is determined by
statistical measurements from the input data set. Once the grid is set up,

each grid cell serves as a bucket in sorting by distribution. Since the grid is

regular, it is a constant time operation to locate the grid containing any
point in the object space. For an edge segment, we can determine and

report the grid cells it occupies in time linear to the number of grid cells

occupied (Foley 82). The total time required to distribute all the input

edge segments to the buckets for the grid cells occupied is therefore linear

to the total number of (grid-cell, edge-segment) pairs. We have to be

more careful with the data structure for the adaptive grid so that empty grid
cells will not take up any storage space. In Prolog, each non-empty grid cell

is represented as a fact with a unique functor name for each cell. For
example, grid cell #344 is the Prolog fact

ÿ344([51,52,...]).

where [EvE2,—\ is the set of edge segments in the bucket. Each bucket is

treated as a set and access to the buckets is handled by linear hashing.

When we have finished the pre-processing step of distributing the
edge segments to the grid cells, we need to examine only the ones which

share at least one common grid cell for potential intersection. We do so by
pairwise comparison between the edge segments in each non-empty grid

cell. In the set-based data structure in Prolog, empty grid cells do not take

46

up any storage, nor do they need any CPU time to check that they are
empty.

The adaptive grid has avoided pairwise polyline comparison in

considering the constituent edge segments individually. Furthermore, it

minimizes comparing edge segments one to another by classifying the
object space into grid cells. Our motivation is the observation that when

two polylines intersect, they do so between two edge segments in the same
locality. Hence the adaptive grid method attempts to focus the attention

directly on the intersection points by sorting out potentially intersecting

edge segments to within those that occupy at least one common grid cell.

3.3 Performance Assessment

In this section, we attempt to analyze the performance of the

adaptive grid method. However, due to the same difficulties which we also
mentioned in section 1.2.1 - the lack of common consensus on a realistic

model for map data, and the substantial mathematical complications of the
possible data models - the analysis presented here is based on random edge
segments, identically and independently distributed over the object space.

Other assumptions will be stated as we proceed.

We consider the problem of computing all intersections between two
sets S and T of edge segments. Let N3 and Nt be the number of edge

segments in S and T, respectively. We cast the adaptive grid over the
scene to sort out groups of potentially intersecting edge segments which

47

share at least one commonly occupied grid cell. The grid is a regular grid

so that we can determine the cells occupied by each edge segment, in time
linear to the number of (cell, edge) pairs. Let Us and Ut be the expected

number of grid cells each edge of S and T occupies, and W8 and Wt the

expected number of edges of S and T in each grid cell. For each of the
sets S and T, we count the total number of (cell, edge) pairs. We have

G X W3 = N, X Ua

G X Wi = Nt xUt

and jointly,

G X(W3 + Wt^ = (N, XUs)+(Nt X Ut)

Then, consider the expected time T for the adaptive grid method to
determine all intersections.

T = Tx + T2

where Tx is the time for casting the grid over all edge segments, and T2 the

time to compute all intersections given the (cell, edge) association. We

adopt the following convention, first popularized by Knuth (Knuth 76) to
characterize the asymptotic behavior of the timing functions:

t = e(fW)

denotes that there exist positive constants Cx and C2 such that

Ct /W < T < C,fW

for all N > No, that is, in our case, Ns and Nt sufficiently large. Tx is the

48

time required to form all the (cell, edge) pairs. Hence,

r, = e(n, u, +Ntu,)

while 7*2 is the time required to compare all pairs of edges in S X T for

each cell. Here we assume that the edge segments of each set are
independently and identically distributed. We have

N. Ua Nt Utr2 = e(g w,wt) = e(' ' ' 1) Lr

If we assume that edge segment lengths are relatively uniform, then U3 and

Ut can be treated as constants. Tx is linear to the sum of number of edge

segments in S and T:

T, = e(N. +Nt)

and

If G remains constant independent of the growth of Na and Nt, then

7*2 =O(N3 Nt). We have 7^ given as above because when N3 and Nt

grow with G remaining constant, the number of intersections grows linearly

to the product N3 XNt: in any algorithm to determine intersections, we

must visit each intersection point at least once. But if there is a reasonable

limit to the density of edge segments in an input map, as N (N3 or Nt)

increases, W (Wa or WJ, the expected number of edges in each grid cell,

will be bounded above asymptotically. The asymptotic growth of G will

then be linear to Ns, and to Nt. We have the total timing measure given

by:

49

r =e(W,)+ e(^D

The expected time performance is linear to the sum of the size of input

data set and that of the output data set. Empirical data in (Franklin 83b)
testing up to 50,000 random edge segments verified this result.

This assessment, however, is based on random edge segments
identically and independently distributed over the object space. We have
also assumed that the edge segments are of relatively uniform lengths, and

that there is an upper bound to the density of edge segments. Contrary to

the identical and independent distribution assumption, real map data
consists of edge segments linked up at their respective end-points into

polylines which do not intersect one another in the same map. Our

measure for T2 to be 6(G Wa Wt} will no longer hold since the product of

the expected values is not the same as the average of the products in each
grid cell. Accounting for the correlation in map data calls for a more

sophisticated mathematical model than what we now have. The question

concerning the expected performance of the adaptive grid method for
polygon overlay remains open.

The assumption that edge segment lengths have a relatively small
standard deviation may be more reasonable for certain classes of polyline

data, such as contours, drainage patterns, soil and vegetation boundaries.

Artificial caricatures such as property lines, reference grids, or structures in
urban planning would show a much larger deviation from uniform length

edge segments. Polygon overlay cases often involve the two different
classes of these maps. An analysis for the performance may take that into

50

account. Furthermore, although maps can be extremely complex and

dense in information, it should be reasonable to assume that there exists a

limit to the density of such information in each processing step. An upper
bound to the density of edge segments in the map would be a useful
restriction in assessing the performance for polygon overlay.

3.4 Grid Cell Size

To set up the adaptive grid, we need to determine an appropriate
size for the grid cells. Since the grid is intended to isolate cases of

intersecting edge segments, it may seem desirable to use smaller grid cells

so that two edge segments would not occupy a common grid cell unless

they intersect each other. On the other hand, smaller grid cells result in a
grid with more cells, and will take more pre-processing time in distributing

the edge segments into the grid. In this section, we will address the issue
of determining an appropriate grid cell size.

Let T\ be the time needed in the pre-processing step, and T2 the

time to examine all pairwise combinations of edge segments in each of the

grid cells. Let S be the area of a grid cell, which is inversely proportional

to the number of cells in the grid for a given input data set. Then we have,

Ti = @(-L) and T2 = 6(S2)

Since T\ is monotonically decreasing with S, and T2 monotonically

increasing, the total time T = Tl + T2 attains minimum at 5* for which

T\ = T2. Figure 3.1 illustrates this.

51

Optimal grid cell size S * :

Minimal T

T = T

T2=e(s2)

s*

Figure 3.1 Minimum of T = T2 occurs at TX=T2.

52

Experimentally, we assume relatively uniform lengths for the edge

segments and a low upper bound for the density. We compute the grid cell
size separately along the X and Y directions using the projections onto the

axes. We choose our grid cell size to be slightly larger than the average
length. Let L be the extent of the coordinates along an axis, and e the
average length of the projections on the axis. The number of grid cells
along that direction is given by G, where

L_
e

and grid cell size

L

Based on empirical results in (Franklin 83b), the total performance is not
sensitive for grid cell sizes close to this chosen value, by as much as a

factor of 2. This can be explained intuitively by that the function

T — T(S) is relatively flat in the vicinity of the minimum point.

3.5 Local Processing

Local processing as introduced in (White 77) is the concept to deal
with large data volume in a computer with little direct access memory. The
computer processes a local section at a time so that we do not need to store
the entire map in the memory.

The adaptive grid method supports the local processing concept: each

53

grid cell is treated as a local unit in the process. Hence we do not keep the

entire grid in memory in this approach. Instead, in the pre-processing
stage, we generate a (cell, edge) pair for each grid cell occupied by an edge

segment. When finished with the pre-processing stage, we can perform an
external sort on the entire file of (cell, edge) pairs, sorting by the cell

number. Then we can go through the the file sequentially, examining each

non-empty grid cell for intersecting edges. In this approach also, empty

grid cells do not use any memory space, and no extra CPU time to check
that they are empty. However, the external sorting step does incur

additional cost. Here we should note that since we are sorting by the cell

numbers, we can do this by distribution sort (Knuth 72) which takes time
linear to the total number of (cell, edge) pairs.

The adaptive grid approach is not primarily aimed at saving storage.
We may refer to this as an additional advantage in the method.

54

Chapter 4 RATIONAL ARITHMETIC

Our polygon overlay system uses rational arithmetic to calculate
geometric intersections. We are motivated by the problem of numerical

inaccuracy in floating point arithmetic. However, here we are not primarily

concerned with accuracy but rather with the topological consistency which
can be affected by numerical inaccuracy. Section 4.1 will discuss this

problem. Rational arithmetic is exact and enables us to circumvent the
problem of numerical inaccuracy. Section 4.2 presents the mathematics of
rational arithmetic for geometric intersection in polygon overlay. Section

4.3 describes the implementation in our overlay system in Prolog. Section

4.4 addresses the plausible problems involved in conversion between

regular floating point numbers and exact rational numbers. Section 4.5

concludes with an assessment on the cost of CPU time in using rational
arithmetic.

4.1 An Operational Problem In Polygon Overlay

A problem in implementation of geometry algorithms is numerical
inaccuracy. It is, however, not so much a problem of accuracy but that of

topological consistency which can be affected by numerical inaccuracy.

Coordinates, derived from measurements, are inherently subject to error

despite the precision level used in the numerical representation. More
important is the problem of geometric computation in which results are
subject to discretization errors in floating point arithmetic. Inaccurate

results may lead to topological inconsistency; figure 4.1 illustrates the case
of an overlay example with a triangle and a square. The vertex P of the

55

Figure 4.1 An Operational Problem:
topological inconsistency due to numerical inaccuracy

56

triangle falls on the edge E of the square, but due to numerical inaccuracy,
only one of the two adjacent edges of the triangle intersects with E. The
problem then is that the output map is topologically inconsistent. Overlay

systems are therefore prone to unstability when dealing with situations such

as nearly coincidental points, almost touching chains, and other tangent
conditions.

Our system uses rational arithmetic which preserves total accuracy.
We are then able to circumvent the problems of inaccuracy arising from

discretization errors in calculating intersections, and we can guarantee
topological consistency in the overlay process.

4.2 Rational Arithmetic For Geometric Intersection

The arithmetic of calculating geometric intersections in polygon

overlay is based on that of calculating edge segment intersections. Given
the end-points of an edge segment, and the equation of the

extended straight line is given by Ax + By + C =0 where

A = - n
B = Xt - x^

C = y^ x% — xi y%

and all the coefficients are rational. Given two straight lines represented by

A} x + B^ y + C\ = 0

A 2 x + Bo y + C% = 0 .

57

The intersection point (x,y) is given by the solution to the above system of
two equations. Given the input coordinates in rational numbers, the
intersection point will always have rational coordinates since it is the

solution to a linear system with rational coefficients. Hence, we have

closure of numerical representation in using rational arithmetic for
geometric intersections.

4.3 Rational Arithmetic In Prolog

This section describes our implementation of rational arithmetic in
Prolog. The package consists of two parts, one being built on top of the

other. The first package, BIG, implements multiple precision integers, and
the second, XQ, which builds upon BIG, implements exact rational
numbers. Arithmetic using these rational numbers is exact since the

operations are based on integer arithmetic with virtually no overflow limit.

The two following sections describe the packages, BIG and XQ,
respectively, and present the complexity measures of the arithmetic

operations based on data precision. The third section remarks on the
importance on modular installation in an experimental system. In the
fourth section, we present a test run of the BIG and XQ packages,

calculating tt to an arbitrarily close approximation by a rational number
using an infinite series.

58

4.3.1 BIG - Multiple Precision Integers

A BIG number is an integer with no overflow limit. We represent a

BIG number with a list of integers in Prolog. The absolute value of each

term in the list is limited to less than a certain maximum term size, say M.

The BIG number represented by the list [alt a2, an\ is given by

d" #2 M 4" Og + ■ ■ ■ + an Mn *

Since Prolog does not impose a limit to the number of terms in a list, the
BIG number has virtually no overflow limit. A legitimate BIG number

should have leading zeroes trimmed. Zero is therefore represented as [],

the empty list. A negative BIG number has the most significant term
negative and all other terms in the list non-negative. Given this standard,

we have both uniqueness and completeness in our representation. Figure
4.2 shows some examples, for M =100.

The maximum term size, M, is chosen such that

M2 < L

where L is the regular integer overflow limit. This is to prevent integer
overflow in any one term when evaluating an arithmetic expression. In the

following we will describe the arithmetic operations implemented: addition,

subtraction, multiplication, division and remainder (modulo arithmetic).
Arithmetic comparison is included. Given that the BIG integer operands
N\ and W2 having and n2 terms each, respectively, we also present the

worst case time complexity measures. We will use Knuth’s notation:

59

0 represented as

1 represented as

100 represented as

12345 represented as

-10023 represented as

-1 represented as

[1]

[0,1]

[45,23,1]

[-23,0,-1]

[-1]

Figure 4.2 Examples of BIG integers (M = 100)

60

T = O(f(N))

denotes that there exist positive constants C and No such that T < Cf (N)
for N > No (Knuth 76).

Addition/Subtraction. This can be done by taking the corresponding terms
together for the operation, so that

ni . , ”2 , max(n1,ne)
E a.M ± E biM1 = E ckMk-x
i=l j=4. k=4

where ck = ak ± bk

and ak =0 for k>n^, bk =0 for k>n2-

The result is then a BIG integer with max(nvn2) terms to be validated to a

legitimate representation. Since each term is visited once, the time
complexity is O^ax^n^n^).

Multiplication, This is done by the common “shift-and-add.” Each term in

one operand is multiplied to every term of the other operand, shifting
according to the significance rank of each term and adding the results
together.

ni ns n, n8
(£ aiM-1) x(E bjM’"1) = E E

*—1 3=1 1=4 j=4
nl+«2- 1

- E c^1"1
k =1

k
where ck = E ar bk-r+1

r=4

Since we have to consider every pair of terms from the two operands, the

61

complexity measure is O(nr n2).

Division. Division gives both quotient and remainder. There are two stages

in our version of BIG integer division: long division and trial division. Let

n1 be the number of terms in the dividend and n2 the number of terms in

the divisor. First we apply long division: the more significant portion of n2

terms from the dividend is considered for trial division by the divisor. This

division yields a one term quotient. The next term from the dividend is
then prepended (least significant term is at the beginning of the list) to the
remainder for another trial division to get the next term of the quotient.
The process is repeated n2 times until all the remaining n1-n2 terms of

the dividend are considered. Figure 4.3 illustrates the long division
process. We apply one trial division each time to obtain each term in the

quotient, the most significant one first. In trial division, we recursively test

subtracting the divisor from the dividend, doubling the divisor in each step.
With the recursion expanded, we can express the quotient Q in the
following form,

[iogsW]
Q = E % 2"- '

i=i

where q{ =1 or 0, depending on whether or not the testing subtraction is

successful for the corresponding step in the recursion. M is the maximum
term size, and pog2(Af) j determines the maximum depth of recursion

necessary in the worst case. Trial division is therefore of complexity

O(n2), and coupled with the long division, the complexity measure of our
division algorithm is 0(n2(n1-n2)).

62

12, 34, 56] -H 78, 9] = [76, 5] ... [84]

[76, 5]

[78, 9] J [12, 34, 56]

[90, 48]

[12, 44, 7]

[28, 43, 7]

[84]

Figure 4.3 Long division of BIG integers

63

Arithmetic Comvarison. To compare two BIG numbers, we first compare the

sign, and then the number of terms in the representation. If both are
equal, we then compare each corresponding term in the list, starting with
the most significant term first. Worst case occurs when two operands are

equal, or they differ only at the least significant term; the complexity is
O(n1+n2).

4.3.2 XQ - Exact Rational Numbers

XQ numbers are built on BIG integers. An XQ number is a fraction
in which both the numerator and the denominator are BIG integers. We

represent an XQ number by a division expression with BIG integer

operands. For uniqueness of representation, a legitimate XQ number has
the numerator and the denominator reduced so that their greatest common

divisor, gcd =1. Negative XQ numbers have negative numerators, and the
denominators are always positive. To provide compatibility with BIG

integers, we omit the denominator when it is unity. In other words, a BIG

integer is a legal XQ number with denominator equal to [1] ; figure 4.4

illustrates some examples of XQ numbers. An XQ arithmetic expression

can then have BIG integers mixed together. Given the operands as and

we will describe the arithmetic operations, gcd computation, and

arithmetic comparisons in the following. We will also give the worst case

time complexity, given that the numerators Nx and N2 each has nx and n2

terms, respectively, and that the denominators Dx and D2, dx and d2

terms.

64

0 represented as

33 represented as
11/310 represented as

48/100 represented as

-321/170 represented as

-1 represented as

[33]

[11] / [10,3]

[12] / [25]

[-21,-3] / [70,1]

Figure 4.4 Examples of XQ - multiple precision rational numbers

65

Addition/Subtraction. We take the product of the denominators to form the
common denominator. Hence we have

Ni N2 = P2± N2Dx
Dt±D2~ »! D2 '

For the asymptotic complexity, we need to consider only the BIG integer
multiplications, and it is given by O(dld2+nld2+n2d1).

Multivlication/Division. Multiplication and division are simpler than addition
and subtraction for XQ numbers. They are given by

Nx N2 NxN2 Nx N2 NxD2

Division needs some extra work when N2 is negative. Considering the BIG

integer multiplications, the complexity measures are given by

O(n1n2+dId2) and O(n1<Z2+n2</1), for multiplication and division,
respectively.

ged Computation. To reduce the result from an arithmetic expression, we

need to divide both numerator and denominator by their ged. We compute
ged by repeated mutual division: given numerator N and denominator D,

we calculate Nx =N mod D. Nx is non-zero if D does not divide N.

Then, we calculate Dx =D mod Nx, and so on until we get 0 or 1. If we

get 0, the last divisor is the god. If we get 1, N and D are mutually prime.
The asymptotic complexity is dominated by that of the first integer division,

which is O(d(n- d}} if n>d, or O(n(d-n)} if d>n, where n and d are
the number of terms in the numerator and denominator, respectively.

66

Arithmetic Comparison. To compare two XQ numbers , N2— and —, we only
Ui u 2

need to compare the two BIG integers NTD2 and N2D1. Hence, the

complexity is given by O^n-^d^An^dJ.

4.3.3 Modularity In An Experimental System

Rational arithmetic as installed by BIG and XQ in Prolog
demonstrates high modularity. Modularity here means that we are able to

isolate in implementation the algorithm and the arithmetic domain. This is

important in an experimental system, such as our polygon overlay system.

We investigated the use of rational arithmetic for chain intersections. Our

system provides a vehicle for further experimentation. Since Prolog allows

operator overloading, the syntax for arithmetic expression remains
unchanged. This provides for the modular installation of other arithmetic

domains in both existing and new programs. On the other hand, the BIG

and XQ packages can also be installed into other systems for
experimentation. We note this here since this is an important design
feature of our system.

4.3.4 A Test for BIG and XQ: Computing tt

To test BIG and XQ, and in part also to demonstrate the modularity,

we present here a short program to calculate tt to an arbitrarily close

approximation by a rational number. We use the following infinite series.

67

This series converges very slowly, but fast convergence is not the point of

the test run. BIG and XQ are installed using “are” for evaluation of BIG

integers and “isx” for XQ, the exact rational numbers. The following is

the Prolog code to compute tt; each backtracking step computes one more
term in the series.

PÎ([M2]). % preset pi=2

step
pi(R,P),
RI are R+ [1],
R2 are Rl mod [2],
Pl isx P*((R1+R2)/(R1-R2+ [1J)),
retract(pi(R,P)),
assert(pi(Rl ,P1)), !.

go repeat, step, fail.

The result after 100 steps of iteration is

50216813883093446110686315385661331328818843555712276103168
16063834434771661191161473607166722989851247353354683757549 '

The source listings of BIG and XQ are appended to this thesis.

4.4 In put/Output Conversion Problems

Since rational arithmetic preserves total accuracy in numerical

values, we are able to guarantee topological consistency in the polygon

68

overlay process. This is based on having all the coordinates in rational

numbers. In practice, input maps with coordinates in floating point
numbers must first go through a conversion process. We convert the

coordinates into rational numbers before passing the maps on to the

overlay process. After the overlay process, we then convert the output

map back to one with floating point coordinates. It may seem plausible that

the conversion process can introduce inconsistency into the topology since

it also suffers from numerical inaccuracy. In this section we will address
the problems of converting coordinates from floating point to rational, and
vice versa.

In input conversion, since rational numbers can be arbitrarily close

to any numerical value, and floating point numbers have finite precision,
we can represent the given coordinates in rational numbers without loss in
accuracy. In practice, we often impose certain limits to the number of
significant digits in the numerical input values, and the conversion process

may then result in inconsistent topology. We however note that the

problem is then not due to the conversion imposed by the use of rational

arithmetic, but by the change in resolution beyond the minimum required
to maintain the map topology.

In output conversion, unfortunately, with floating point numbers we

cannot preserve totally the accuracy inherently in rational numbers.

However, it is possible to determine the minimal resolution in the

coordinates necessary to maintain the topology. This then determines the

precision level needed in the floating point numbers for output conversion.
We should note that the information density of the output map is the total

69

of those of the input maps. Precision level of the input data may not be

sufficient for the output data. In that case, the map topology is unstable
because of insufficient precision in the source data; our overlay system

maintains the topology and the problem is identified in output conversion.

In section 8.3.1 under Further Considerations, we discuss a strategy to
remove sliver polygons in the output map. In the process, we may

eliminate nearly coincidental features and help to alleviate the problem of

unstable topology in output conversion. Furthermore, we refer to (Saalfeld
87) on the recent report in the determination of minimal resolution in the

coordinates to maintain map topology. Work in that direction is not within
the scope of this thesis.

4.5 On The Cost Of Rational Arithmetic

Rational arithmetic provides total accuracy. But how much CPU

time does it cost to achieve the accuracy? The section here will try to
answer this question.

There are two aspects to the cost of CPU time in arithmetic:
precision level, and data volume. In section 4.3, we described our

implementation of rational arithmetic, and presented the complexity

measures for each operation based on the number of significant terms in
the operands. This is a measure of data precision level. For the polygon

overlay system, we will then have to trace out the route of arithmetic

operations to measure the cost. Given the end-points of two edge

segments: (zu,yu), (212,^12) for one edge segment and (z2i^2i)’

70

(^22^22) for the other. The equations of the two straight lines through the

edge segments are Axx + Bxy + Cx =0 and A2x + B2y + C2 =0,
respectively, where

{
^1 =912 - yii ^2 =3/22 - 3/21

12 GLlxd * — X21 3*22

Cx =yXXXX2 - 2*11^12 ^2 —3/21^22 ~ ^213/22

The intersection point (x,y) is then given by

BxC2 - B2Cx A2Cx - AxC2
x = ———-------—-— and y = --------------------AxB2 - A2Bx AxB2 — A2Bx

Assume that the input numerical values (i.e., xxx, yxx, xX2, yX2, ... and so

on) have L significant terms. Then Ax, Bx, A2, B2 will each have L terms

and Cx, C2 will have 2L terms, because of the multiplication in the

expression for Cx and C2. For the asymptotic complexity measure, the

multiplication dominates, giving O{L2). In the expression for the

intersection point [x,y], note that x and y each is a fraction of numerator

having 3L terms and denominator 2L terms, and the complexity measure
for the evaluation of the expressions involved is O(L2). Finally the gcd

computation for two BIG integers having 3L terms and 2L terms has
complexity O(L2). Consider now the whole process of calculating the

intersection point: the highest order in complexity measure is 0{L2). The

asymptotic growth of CPU cost with the requirement in precision level is
no faster than quadratic order.

Given the operands and their precision level fixed, evaluation of an
arithmetic expression is a constant time operation. Then in relation to data

71

volume, rational arithmetic does not affect the asymptotic behavior of the

algorithm. The CPU time required to process any data volume will only
change by a multiplicative factor, with the use of rational arithmetic.

Hence, rational arithmetic will not impose a need for CPU time more than
linear to the size of the data volume.

72

Chapter 5 SPECIAL CASES AND STABILITY

Rational arithmetic gives exact results in calculation. We can

therefore properly identify the special cases of intersection such as touching

and partially overlapping edge segments. We check absolute equality

instead of setting a tolerance to identify cases of an end-point lying exactly
on another point or another edge segment, as well as cases of intersection

between two collinear edge segments.

Algorithm designers for computational geometry often put aside

special cases because of the rarity of their occurrence. It is also argued on

the basis that the probability of occurrence for the special cases such as two

exactly coincidental points, or two collinear lines vanishes in statistics.

While the approach renders a simplified picture for easier understanding of

a problem, it also leaves the algorithm specification incomplete for
implementation. Moreover, special cases do occur partly due to the

inherent limited resolution in the computer to represent numerical values,
and also partly due to the reason that we are not dealing with random data.

For polygon overlay, data dealing with artificial caricatures such as in urban
planning and parcel boundaries, very often carries numerous cases of data

coincidence by design.

Section 5.1 will describe the special cases and how these cases are

reduced to cases of edge segment intersections. In section 5.2, we develop
an algorithm for edge segment intersection complete with special cases

handling. In section 5.3, we discuss the stability of the overlay system thus

achieved, and the cost we have to pay.

73

5.1 Special Cases In Polygon Overlay

Special cases are “special” because they call for special handling

when processing on the computer. Special cases occur not just because of

the data, but also because of the data structure. This means that certain

cases need special handling because of our view we impose on these cases

by the data structure. A map is a spatial data structure consisting of nodes,

chains, and polygons. In polygon overlay, we deal with polygon
intersections. However, we will show that we can limit our special cases
handling to only those cases of edge segment intersection. In other words,

when the special cases in edge segment intersection are properly handled,
cases of coincidental nodes or chains do not need special handling. In this

section, we shall classify all the cases of intersection between two edge
segments, and in the next section, develop an algorithm to properly identify
and resolve them.

5.1.1 Coincidental Nodes And Vertices

Since a node or a vertex must be an end-point of an edge segment,
coincidental nodes or vertices are simply cases of edge segments touching

at the end-points. There is therefore no need to sort out coincidental

nodes and vertices; they are identified when processing edge segment
intersections. Furthermore, the edge segment intersection procedure takes

advantage of the adaptive grid strategy. The end-point in common

becomes a new node in the output map since it is an intersection point
between two touching edge segments.

74

5.1.2 Partially And Totally Overlapping Chains

In the chain intersection stage of our polygon overlay system, we use

the adaptive grid method and we deal with the constituent edge segments

individually disregard of the chains. The approach is based on the
observation that when two chains intersect, they do so in between two

constituent edge segments in the same locality. The basis is the same in
dealing with partially or totally overlapping chains: overlapping chains must
comprise edge segments which overlap. The adaptive grid sorts them out
in the same way. When overlapping edge segments are properly handled,
overlapping chains do not impose a special case for special handling.

5.1.3 Cases Between Two Edge Segments

Figure 5.1 shows different cases of intersection between two edge

segments. Since each edge segment is associated with a specified direction

(along the chain), we distinguish as different cases when the intersecting
segments are in a different orientation. There are four groups of these

cases: when two intersecting segments cross over each other, we have the
well understood popular case of edge segment intersection; the rest are
special cases. When two edge segments are touching each other, the

intersection may involve an end-point and an interior point, or two
coincidental end-points. Partial overlap cases involve two intersection

points, between which the two intersecting edge segments overlap. Exact

overlap cases may involve two segments in the same or opposite direction,
but they are not treated as “intersecting” since the pair is to be replaced by

75

f— cross-over

touching

overlap

exact overlap

Figure 5.1 Cases of Edge Segment Intersection

76

a single edge segment.

5.2 A Complete Algorithm For Edge Segment Intersection

In this section, we will develop an algorithm for edge segment
intersection, complete with special cases handling. We will re-organize the

groups of intersection cases presented in the last section in order to

describe a more pragmatic approach to distinguish these cases. We will
begin with a discussion on the basis for the algorithm.

A straight line on the 2D plane is characterized by the equation

Ax + By + C =0. The straight line divides the plane into three sets,

given by

(x,y) | Ax + By + C =0

| (x,y) | Ax + By + C > 0 j; and ($,y) | Ax + By + C < 0

Given the coordinates (x0,y0) of a point on the plane, let

d =Axa + By0 + C.

The sign of d characterizes the topological relationship between the point

and the line, namely, that which side of the line the point lies on, or that it

lies on the line. This is going to play an important role in our algorithm.
Now we re-organize the different cases of edge segment intersection into

the following:

77

Case 1. Intersecting edge segments are collinear. If we disregard the
total overlap cases, two partially overlapping edge segments
have two intersection points: an intersection point is an end­

point of one segment lying on the other segment. Here we

also include the case when two collinear edge segments
touching each other at an end-point, which is the only

intersection point.

Case 2. One segment lies entirely on one side of the other segment.
This case can be further divided into two: the edge segments

meeting at the end-points, and the end-point of one touching

the interior of the other. In either case, there is exactly one
intersection point.

Case 3. Intersecting edge segments cross over each other.

Our algorithm approaches the intersection problem by sorting out

these cases. We check these cases out in reverse order so that most non­

intersecting cases and the cross-over intersection cases will be identified
first without checking into other special cases.

Let the two edge segments be Ex and E^, and their extended lines

be Lx and L2. The end-points of El are Pn and P12; those of E2 are P2i

and P22. The following outlines our algorithm, checking the special cases

in the order presented:

• If Pn and P12 lie entirely on one side of L 2, or if P21 and P22

lie entirely the same side of L p Ex and E2 do not intersect.

78

• If Pn and P12 lie on opposite sides of L 2, and P21 and P22

also lie on the opposite sides of Lp E1 and P2 intersect,

crossing over each other.

• If L1 and L 2 are not collinear, Ex and E2 intersect at an end­

point of one of the edge segments, and the point touches the
other edge segment.

• If L i and L 2 are collinear, Ex and E2 may or may not overlap.

If they do, we consider two intersection points: an end-point

of one edge segment lying on the other edge segment is an
intersection point. The portion between the two intersection

points is the overlap portion. The overlap portion shrinks to a

single point when E^ and E2 just touch each other at an end­
point.

Now we formulate further programming details to identify these cases.
Refer back to our characterization of the topology between a point

P =(x0,y0) and a line L : Ax+By+C =0. We have d =d(P,L) given by

d = Ax0 + By0 + C.

The sign of d indicates which side of L P lies on; P lies on L if d=0. For
the four end-points, we let

(=d(PH,L2) (d2x =d(P2i,£i)
I ^12 — d(Pi2,Z,2), i d22 =d{P2^L i).

And we let

79

djo, dTid do — 21 X ^22 ■

The sign of dj indicates whether and P12 are on the same or opposite

sides of L 2, and similarly d2 for P12 and P^. Our algorithm consists of the

following series of testing to identify all the cases; these are tabulated
below, in the prescribed order:

If (dx>0 or d2>0),
If (dj<0 and d2<0),
If (dn =0 and d2<0),
If (dI2 =0 and d2<0),
If (d1<0 and d21 =0),
If (d1<0 and d22 =0),
If (du 0 and d21 =0),
If (dn^0 and d22 =0),
If (d12^0 and d2i =0),
If (dj2^0 and d22 —0),

Ex and E2 do not intersect.
Ei and E2 cross over each other.
Pn touches E2.
Px2 touches E2.
P2i touches Ev
P22 touches Ev
P12 touches P2p
P12 touches P22.
Pn touches P21.
Pxx touches P22.

These account for all the cases when Ex and E2 are not collinear. If a case

passes through these tests, we can at this point ascertain that
dxx =d12 —d2i =d22 =0. In order words, Ex and E2 are collinear. Ex

and E2 may or may not overlap; we examine the end-points Pxx, P^i ^21’

and P22 to determine whether or not each lies on the other edge segment.

If none is reported, Ex and E2 do not overlap. If two are reported, Ex and

E2 overlap between these two points. These two points may coincide; in

that case Ex and E2 touch each other at their end-points. If all four points

are reported, Ex and E2 overlap exactly over each other. The pair should

be replaced by a single edge segment.

80

5.3 Stability And What It Costs

We guarantee stability in the polygon overlay process based on two

aspects achieved in our system in Prolog. On the one hand, rational

arithmetic provides for total accuracy in numerical computation. Unstable

map topology does not suffer from problems of discretization errors in the

process. Consistency is therefore preserved. On the other hand, we have

also taken advantage of exact numerical results to identify all special cases
of intersection for proper handling. Neither tangent conditions nor nearly

coincidental features can cause failure in the overlay process. Thus we
have achieved stability. But how much does it cost, in terms of our
resources, to achieve stability in these aspects? In retrospective, we will try

to answer this question here.

In section 4.5, we have considered the cost of rational arithmetic.

The CPU time for rational arithmetic does not grow asymptotically more

than linear to the size of the data volume. In this chapter, although the
edge segment intersection problem may appear to be simple, we have gone
at length to deal with all the special cases involved. In fact, a substantial

portion of the code is there for the handling of these special cases.
Fortunately, this does not mean that special cases handling will impose a

substantial cost in CPU time. Here we must note that the special cases do

occur, but they do not occur frequently. Worst case performance analysis

would be deceptive, and should not take into account handling for the
special cases. While it is difficult to assess the average case performance,

we offer the following argument: identifying special cases does not
necessarily cost extra CPU time, since it can be done in the process of

81

calculating output data. In the case of intersecting edge segments, testing

for intersection at the same time produces the information necessary to
identify touching and collinear cases. In the way we have prioritized

checking for “regular” cases first, special cases handling will not affect the
average case performance unless the “special” cases dominate in
processing.

82

Chapter 6 USING PROLOG FOR GEOMETRY

Prolog represents a radically different approach toward programming.
Using Prolog for our polygon overlay system is a venture motivated by the

quest for better programming tools to deal with geometry on the computer.

In this section, we will describe our experience in using Prolog, focused on
a few issues illustrated in the polygon overlay problem. We have

formulated certain paradigms of programming which appears to be useful in

general. Along with the discussion, we will also bring up certain pragmatic
issues involved with programming in Prolog.

6.1 A Logic Programming Example

Unlike conventional programming languages, Prolog is a declarative

language. This means, at least in theory, that a Prolog program is not a

prescribed set of instructions to solve a particular problem, but is instead a

description of the objects and their relationships involved in the problem
which provides sufficient information to solve the problem. Such an

approach has been commonly known as “logic programming." Consider
the Prolog program to append one list to another.

append([],L,L).
append([H |L1],L2,[H |L3]) append(Ll,L2,L3).

Let us call the arguments of append by name: we shall call the list to be
appended list# 1, and we append list#2 to list# 1, to form the result which

we shall call list#3. The first rule above says that if list#! is empty, what
we get for lis#3 is just the same as list#2. The second rule gives a

83

recursive definition of what it means to append to a list, if it is not empty:

• The first element of list#3 is the first element of list# 1.

• The tail of lis#3 consists of the tail of list#1, with list#2
appended to it.

Such is the description in Prolog to append a list, and it provides sufficient
information to perform a number of functions, appending to a list included.
We show the following examples:

append([a, b], [c, d, e], LIST).

This gives LIST = [a,b,c,d,e] for a solution, an example of appending to a

list. But we can also use append to generate successive partitions of a given

list.

append(L1, L 2, [a, b, c, d,e]).

Ll and L2 will give the following 6 possible solutions:

LI = [],
Ll = [a],
LI = [a,b],
Ll = [a,b,c],
Ll — [a,b,c,d],
Ll = [a,b,c,d,e],

L2 — [a,b,c,d,e]
L2 = [b,c,d,e].
L2 — [c,d,e].
L2 = [d,e].
L2 = [e].
L2 = [].

We can also obtain the first and last elements of a list, such as getting the
beginning and ending nodes in the polyline LIST of a chain,

append([N1 |_] ,[N2] .LIST).

And examine in succession the vertices of a polyline LIST,

84

append(_,[V |_],LIST).

In spite of the power of logic programming demonstrated by the predicate
append here, we must note that in practice we still have to be somewhat

imperative. An example is the definition of append. The two rules for

append must be maintained in that order so that linear search for resolution
would work properly in Prolog.

6.2 D ata Structuring

Logic programs can be considered an extension to the relational data
model. The basic operations of relational algebra can be easily expressed in

logic programming. Using a relational model, we are able to simplify much

the design of data structures necessary in our polygon overlay system. We
represent geometric entities and their relationships as Prolog facts, such as

in

% for a vertex
% for an edge segment
% for a chain, (or polyline)
% for a polygon,
% where B; = th(or ht(
% ...of directed chain

Figure 6.1 shows the data structure for a unit square. The same is also

demonstrated in interim data structures generated in the process of polygon
overlay, for example

Angle). % for edge-to-node incident angle

85

(0.1)1

<0,0)

100

<bO)

CW

200

#10 chain

vertices v(l,[O,lj).
«(2,[1,1]).
«(3, [1,0]).

node n(4,[0,0],[h(10),t(10)]).
chain c(10,4,4,200,100).
edges e(10,1,4,1).

e(10,2,l,2).
e(10,3,2,3).
e(10,4,3,4).

polygons p(100,[AZ(10)).
p(200,[fA(10)]).

Figure 6.1 Data Structures for the Unit Square

86

A pragmatic issue is involved with efficiency in retrieving information from

a large set of facts. This may be different in different implementations of

Prolog. But most Prolog systems use hash coding on the functor names to

access the set of facts under the same functor name and then search the set

in linear search. We exploit the hashing of functor names to evade

unnecessary linear search when the key index is fully instantiated. Our

scheme is to generate a functor name using the key. For example, to
retrieve vertex with identifier =23, we use the following functor name,

v23([x,y]). % vertex id =23

On the other hand, to facilitate for iterative search through all vertices, we

maintain the set of identifiers in a list for linear search.

v(id#). % list of vertex identifiers

Although many Prolog versions have different built-in facilities for database

applications, our scheme, based on relatively standardized specification,
would achieve better transportability in practice.

6.3 Set-Based Operations

Our polygon overlay system illustrates decomposing a complicated
process into simple steps; often each step applies a certain operation to an

entire set of geometric entities. For example, in the adaptive grid method,

each grid cell is a bucket to keep a set of edge segments. We consider the
entire set of edge segments and distribute them to each grid cell it occupies.

87

Clearly this is easy in Prolog. However, we must also be careful when

simultaneously iterating and updating the same database. More specifically,
assert and retract may affect an iterating sequence differently in different

Prolog implementations.

We opt to avoid this in many cases. In the case of polygon boundary
formation, we connect LINKAGE facts until the set is exhausted. The

operation involves retract and assert on the facts while iterating through.
We use a repeated_retract predicate to retrieve each fact until no more

facts exist:

repeated_retract(LINKAGE)
repeat,
(not(call(LINKAGE)),!,fail;

retract^ LINKAGE)).

Obviously, one can use the variable LINKAGE for any other set of facts.

6.4 Pattern Matching Geometric/Topological Properties

Another paradigm uses pattern matching to propagate properties.

For example, when linking chains to form the polygon boundaries, we first

form the corners of each polygon. The corners can be considered
fragments of the polygon boundaries. Whenever two fragments exist such

that they can be connected, we retract both fragments and assert the new
connected fragment. When no such fragments exist, we have all the

polygon boundaries.

88

Given the following corner fragments of a polygon, as illustrated in

figure 6.2, each fragment being a linkage fact.

linkage(a,b,[a,b]).
linkage(b,c,[b,c]).
linkage(c,d,[c,d]).
linkage(d,a,[d,a]).

% corner of a-P-b
% corner of b-Q-c
% corner of c-R-d
% comer of d-S-a

To form and “recognize” the polygon, we define connect for pattern
matching linkage properties, and we use repeatedjretract from section 6.3

to perform set-based operation on the set of fragments.

connect(A,A,[A |L])
!,assert(new_polygon(L)). % complete cycle is polygon.

connect(A,B,Ll)
retract(linkage(B,C,[B |L2])),
append(Ll,L2,L3),
assert(linkage(A,C,L3)). % fragments matched.

match-linkages
repeated__retract(linkage(A,B,L)),
connect(A,B,L),
fail. % match until linkages exhausted.

match_linkages.

The predicate match-linkages performs a set operation on the set of

linkage’s; connect matches fragments of polygon comers until no more
fragments can be found. Given the set of linkage facts as illustrated in

figure 6.2, we will have one polygon:

new_polygon([a, b, c, d]).

89

linkage ̂a, b, [a, b]).
ZmAa^e(b,c,[b,c]).
linkage^ c,d,[c,d]).
linkage ̂d, a, [d, a]).

Figure 6.2 Matching fragments of a polygon.

90

Note that the cyclic order in the polygon boundary has been omitted for

clarity, and ease of presentation. In linking chains for the overlay output
map, chains have their specified directions.

6.5 Unification and Graph Connectivity

Given a set of objects, if there exists an equivalence relation, we
may use unification of variables to classify objects under each equivalence

class. Graph connectivity is an equivalence relation between the nodes, and

so is polygon boundary adjacency between the polygons. When resolving
containment relationships between polygon boundaries to determine the

overlay containment polygon, we need to determine only for one polygon

in each group of adjacent polygons. While we are searching recursively
through the neighbors of each polygon, we assign free variable to each

neighbor for the containment polygon, and have them unified in each
group of adjacent polygons. Once the containment polygon is resolved, the

uninstantiated variables in the entire group are resolved.

As an example, consider the following list of nodes in the graph

illustrated in figure 6.3; polygon adjacency is shown in dotted lines as the

dual graph. We associate a free variable as an attribute to each node.

Process the set of edges and for each edge, unify the free variables

associated with the end-points. The list becomes:

91

7
/

/
/

/
/

\ \\\\
c \

Figure 6.3 Graph connectivity / Polygon adjacency

92

[[a,_l],[b,_l],[c,_l],[d,_2],[e,_2],[f,_3]]

Binding a name to each uninstantiated variable will then identify the
connected components of the graph, such as in the following.

[[a,one],[b,one],[c,one],[d,<wo],[e,two \,[f,three]]

We then have each class of connected nodes identified and properly named.

6.6 Quick Prototype versus Production System

A final remark on using Prolog is, on the one hand, demonstrated in

the development of a quick prototype system. The general high level
nature of Prolog fosters an intuitive programming environment for

experimentation. Our polygon overlay system in Prolog exemplifies such

an experimental development effort: we have illustrated the advantages
offered in Prolog in this section. On the other hand, however, the

performance of our system in Prolog is far from that expected of a

production system. Will Prolog be suitable for a production system? In
other words, it is asking what can one expect of the performance of a

system in Prolog. We do not have the answer in this thesis, but we will

discuss briefly some of the prospects in the following.

Much of the performance factor in a Prolog system is tied to the

linear search strategy in accessing the database. Partially instantiated keys

make it difficult to design general search strategies, but present very
challenging problems for search optimization. We refer to (Freeston 86;

Vielle 86) for some of the recent work on organizing database search

93

strategies in pre-processing for Prolog compilation.

Another possibility to improve Prolog performance depends on

parallel computation. Based on logic and automatic resolution, Prolog

appears to be inherently appropriate for parallel computation. In (Dwork
84), it is however proved that the general unification problem is log-space

complete, and it leads to the belief that unification, the primitive operation

in Prolog, is inherently sequential (Mizell 86). But in practice, many
applications in Prolog, such as in polygon overlay, do not depend on the

generalized unification, but rather commonly use the unification

mechanism in Prolog for term matching (or one-sided unification) when
searching a database with partially instantiated keys as we have mentioned

above. To our delight, searching multi-indexed database can parallelize
well to improve performance.

Furthermore, many are also considering architectures more suitable
for logic programming such as in Prolog. Hopefully, this will bring answers
to the demand for better performance in Prolog systems.

94

Chapter 7 IMPLEMENTATION AND RESULTS

The chapter describes the organization of the programs for the
polygon overlay system, and presents the results of the test runs we have

made. Section 7.1 dwells on the details of software organization: programs

and data files in the overlay process. Readers who are not interested in
these details may skip the section since the concepts are simply re-stated to

explain the organization and the strategies involved. The rest of the

chapter presents results of our overlay system on two types of test runs:
section 7.2 describes tests on its stability, and section 7.3 on its
performance.

7.1 Implementation

This section is written for those who are concerned with the details

of implementation. Also for them we append to this thesis the source

listing of our polygon overlay system and the rational arithmetic package.
Our system is in C-Prolog (Pereira 86) version 1.5, a Prolog interpreter

written in C. Our system runs on a Sun 2 micro-computer with Unix 4.2

bsd. We have altogether 12 programs organized into four groups, for the
four stages of the overlay system. We have revised the system four times

now in the course of this development, and we for now have named the
system 0VER4. OVER4 consists of these four groups of programs:

• XSECT: to calculate chain intersections.
• LINK: to form polygon boundaries.
• OVER: to determine overlay relationships.
• CONTR: to resolve boundary containment.

95

We will discuss each group in the following sections.

7.1.1 XSECT: Chain Intersection.

XSECT takes the input maps and calculates all the chain

intersections. Each intersection splits the intersecting chains at the

intersection point, where a new node is generated. XSECT produces three

output files: the new set of network chains, the new nodes, and the old
adjacent polygons for each chain. XSECT implements the adaptive grid

method for edge segment intersections: the whole process is divided into
five steps. We will discuss each step in the following:

dform, We decompose the chains from the input maps into three data sets:

boundaries, vertices, and edges. The input chains are complete chains of
the following format:

chain(C^MAP^^N^

C# is the chain id. MAP identifies the input map. and W2 are the

beginning and ending nodes. The list ([a:,y],...] comprises the coordinates
of the polyline from N1 to Pi and P2 are the polygons respectively on

the left and right of the chain, dform constructs the following data sets:

b
y(V#,TYPE,[x,y\).
e(£#,[V^.

The id names B#, V#, and E# are 7 digit integers, with the MAP id, (7#,

96

integrated into different fields of the integer. (Note: For this reason,

OVER4 may not work in some modified versions of C-Prolog which do not
support full 27 bit integers.) The data set v includes both vertices and
nodes; TYPE can be n or v to indicate the type: node or vertex.

asiat. gstat sets the parameters for the adaptive grid. In gstat, we take the

input map data from dform to calculate several statistical measures, and

with them we calculate the parameters for the adaptive grid. We examine
the coordinates to determine the full extent of the object space. We divide
the size of the object space by the average edge segment length to get the

number of grid cells in each dimension. The parameters for the adaptive
grid consist of:

left(JC- Origin). %X origin
bottom(Y-Origin). % Y origin

x grid! XN- grids).
y grid(YN-grids).

x_gsi ^X-Cell-Size).
y g3ize(Y-Cell-Size).

% Number of cells along X-axis
% Number of cells along Y-axis

% Grid cell X dimension
% Grid cell Y dimension

xprid. In xgrid, we cast the grid over the set of edge segments. We go

through sequentially the set of edges from dform, and maintain a set of

edge segments for each non-empty grid cell, ÿstaialso needs to refer to the

set of vertices from dform for the coordinates. Output from gstat is the set
of (grid, set-of-edges) entries:

&(G#,[EVE2,...]).

97

We remove the entries for those grid cells that contain only edges from one

map, since they do not need to be examined for edge segment intersection.

xsect. xsect performs pairwise comparison between the edges if the pair

occupies some common grid cell. We take the set of (grid, set-of-edges)
entries from xgrid and examine every entry. We calculate edge segment

intersections for each pair of edges which are from different input maps but

occupy the same grid cell. xsect updates the set of edges as well as the set
of vertices, both from dform. When two edge segments intersect, a new
node is generated and added to the set of vertices,

v(W#,n,[z,y]).

and the new node is marked on the intersecting edge segments as

e^,[VvN#,V2]).

xsect also keeps track of all the equations for the edge segments. An
equation is calculated once when the edge segment is first examined, and is

kept for subsequent use. When xsect examines a pair of edge segments, it

also keeps a record ok(£l1,S2) so that if the pair occupies more than one

common grid cell, they will not have to be examined again, xsect takes care

of all special cases of edge segment intersection. The output from xsect are
the two updated sets of vertices and edges.

xconn. xconn connects the edge segments from xsect back into chains,

having them split at the new nodes. We take the two sets of edges and

vertices from xsect, and make references to the set of boundaries from
dform. From xconn, we can get the set of network chains and the set of

98

nodes for the output map:

< C#,NvN2,[

7.1.2 LINK: Polygon Boundary Formation

The network of chains and nodes partitions the 2D plane into
polygons. LINK takes the network chains and the nodes of the output map
to form the polygon boundaries, generating new names for each polygon.
Once we have the polygons, we can update the network chains with
complete information of the adjacent polygons. LINK comprises four
programs:

calci. We calculate for each chain the incident angles at both the beginning

and ending nodes. Taking for input the network chains from xconn, calci
computes the angle each incident vector makes with the positive X-axis.

Each node is therefore associated with either the head or tail of each

incident chain (h (C#) or t (C#)) and the incident angle, calci generates
the incidence file:

i(N#, Chain-Incidence, ANGLE).

The ANGLE is represented by an ordered pair [Q,A] where Q = 1,2,3,4 to
identify the quadrant the angle falls in, and A is a rational number of the
ratio such that

99

sin(ANGLE)
cos^ANGLE) for Q= 1,3 and A = cos (ANGLE)

sin(ANGLE) for Q=2,4

This is done to preserve accuracy using rational arithmetic. The

representation conforms to the counter-clockwise positive cyclic order.

sorti. With the trig-rational representation for ANGLE’s, we can sort them
into proper cyclic order. Taking the incidence file from cold for input, sorti

sorts the incident chains around each node by the incident angles. The set
of nodes from xconn is then updated with the list of chain incidences at
each node. The output nodes have the format:

node(Æ#,[x,ÿ],[Z1,Z2,...]).

where I, is either t (C#) or h(C#) to indicate tail or head of the chain.

More, sorti generates linkage file with one entry for each polygon corner:

link (M^).

where B, is either th(C#) or ht (C*) to indicate the direction of the chain

(tail-to-head or head-to-tail). The last element in the list is duplicated for
easy access.

cpoly. cpoly takes the linkage file from sorti and matches up the records to

form the boundary chains of each polygon. Each completed list of

boundary chains identifies a polygon boundary; cpoly generates new polygon
names and the output polygon file:

[SpSo,...]).

100

bound. When we have the polygons, we can update the network chains

from xconn with the information of the adjacent polygons for each chain.

bound takes the polygon file from epoly and generates for each entry of the

list of boundary chains

left(<7#,P#).
right(C#,m

% for &(£#).
% for ht(C#Y

Then epoly updates each chain from xconn as

chain(C#,NVN2,[[x,y],...] ,P1,P2)-

7.1.3 OVER: Overlay Identification

OVER takes the topology of the new output map and determines for
each output polygon P# the input polygons Px and P2 in the two input

maps such that P# is from P2. The output from OVER is the file of

overlay relationships, of the following format:

overf^PpPg).

with one entry for each output polygon. OVER comprises two programs.

They are described below:

xover. xover takes the polygon file from LINK and the boundary file from

dform for input, xover goes through the list boundary chains for each

polygon to find the input polygons. If both Px and P2 can be found, xover

enters the information into the file for overlay relationships as

over^P#,Px,P2y If only one of the two can be found, xover keeps a record

101

of either overl(f^,Fj or over2(P#,P2)' The next step in xo-uer examines

each entry in overl and over2. xover searches the neighbors of P# to

resolve the overlay relationship. If resolved, an entry for P# is appended
to the overlay relationships. If not, the connected group of polygons is

identified as

overl(Group#, P^PJ. or over2(Group#,P#,P2).

pcont For each connected group of polygons, pcont performs the point-in-

polygon test to determine the containment polygon, pcont then resolves all
the overl and over2 entries and the file of overlay relationships is

appended.

7.1.4 CONTR: Containment Resolution

Our definition for a polygon is that it is a connected subset of the 2D

plane. Therefore, a polygon may have holes. In OVER, we have treated

each polygon boundary, holes included, as a separate polygon. CONTR
now determines which hole is inside which polygon and updates the

information in the output files of the new map. CONTR has only one

module:

iconn. In jconn, we join the connected pieces of polygons. We take the file

of o\er(P#,P X,P2) and search for P#'s with the same Px and P2. Each

then identifies a polygon or a hole, jconn determines the cyclic order in the
boundary list to separate the holes and the polygons. Then each hole is

tested by point-in-polygon against each of the polygons. If a hole is inside a

102

polygon, the two s refer to the same polygon. The information in the

set of chains and polygons will be updated, and one of the two entries of
over(P^,F1,P2) will be deleted.

The output map from OVER4 comprises four files:

node(N#,[x,y],[h (C#) or t(C#), ...]).
chain([x,y],...] ,PVP^.
polygon(P#, [th (C#) or ht (C#)
over(P#,P ltP2).

These files describe, respectively, the nodes, the chains, the polygons, and
the overlay relationships.

7.2 Test Runs On Stability

There are some commonly known tests for polygon overlay systems:
the overlay of a map on itself, and on a reduced version of the map itself.

We have done both of these here and an additional test of a map over itself

rotated by a small angle.

We use a United States map of the state boundaries. The map has
164 chains, 913 edges, 861 nodes and vertices, and 50 polygons. Figure 7.1
shows the map. We performed an overlay of the map on itself. The

overlay system generated a 113 X 73 adaptive grid, examined 5387 pairs of
edges and 873 actually intersected. The US map survived the test and

passed undistorted. The measurements concerning the adaptive grid and

total CPU time are tabulated together with the other tests in Figure 7.6.

103

The second test involved expanding the US map to higher

complexity. We took the US map and for each edge segment long enough,
we shifted the mid-point to one side in the direction perpendicular to the

edge by a distance of the edge length. An edge was long enough if the

perturbation would not result in any internal inconsistency. We repeated

the process two times to generate a US map with approximately four times

the number of edge segments. Figure 7.2 shows the US map with more

than 2 times the complexity: 164 chains, 1916 edges, 1864 nodes and
vertices. We put this map and the US map through the overlay system.
Figure 7.3 shows the output map, which now has 1738 chains, 3612 edges,

2948 nodes and vertices.

In the third test, we first rotated the US map by 10 about St. Louis

(approximately the center). Figure 7.4 shows the rotated map with
reference to the US map in dotted lines. Then we performed an overlay

with the two maps. Figure 7.5 shows the output map, which has 1288
chains, 2773 edges, 2619 nodes and vertices.

These results should verify the stability of our polygon overlay

system. While the measurements involved with the adaptive grid and CPU
time usage are interesting, we do not intend to make further inference

here, but we have included the data for future reference.

7.3 Performance Results

In this section we will demonstrate our polygon overlay system with

104

some “normal” test runs: for the categorization of spatial data. We will
still use the same US map which we also used in section 7.2. We will also

tabulate the distribution of resources, namely CPU time and storage space,
in the various steps of the process.

Figure 7.7 shows the US map with an overlay of January isotherms.

The overlay layer of January isotherms contains 24 chains, 633 edges, and

627 nodes and vertices. Figure 7.8 has the timing and storage space usage
for each step tabulated.

Figure 7.9 show the US map with an overlay of July isotherms. The
overlay layer of July isotherms contains 28 chains, 884 edges, and 880
nodes and vertices. Figure 7.10 has the timing and storage space usage for
each step tabulated.

Looking at the results, we can be sure that our experimental system

will not measure up to the speed necessary for a production system.
However, our results also show that it is due to the Prolog interpreter and

the use of rational arithmetic. We do note that this is not a necessary

trade-off for the stability we have achieved. The reasons are: (1) we do not
have to tie ourselves to Prolog, even though a conventional language would

make the programming task more cumbersome; (2) our implementation of

rational arithmetic is not aimed at fast execution. A good package for
rational arithmetic can perform much better. We have however made clear

that the asymptotic growth of CPU time for rational arithmetic is only
linear to the size of the data volume.

105

Figure 7.1 The US Map of state boundaries

106

Figure 7.2 The US map with >2 times complexity

107

Figure 7.3 The US map overlay on itself with >2 times complexity

108

Figure 7.4 The US map rotated 1 ° about St. Louis

109

Figure 7.5 The US map overlay on itself rotated by 1 °

110

of
edges

adaptive
grid

of pairs
examined

of inter­
sections

total CPU
(seconds)

USA 913 133 X 73 5387 873 54637

>2 times USA 1916 175 X113 6219 910 91668

rotated USA 913 113 X 74 4632 483 44716

Figure 7.6 Stability Tests: timing and measurements

Ill

50

10

(Temperature in ° F)

60

io

60

50

20

30

40

40 30

Figure 7.7 The US map with January isotherms

112

Overlay Performance: USA with January isotherms

CPU (seconds) STORAGE (K-words)

total XQ gcd atom heap
global
stack

local
stack

dform 63 - - 20 282 30 13
g stat 739 3 1 25 328 49 109
xgrid 6518 5693 25 170 690 23 6
xsect 4641 3822 224 24 375 16 3

xconn 566 - - 19 393 31 19

calci 1686 1620 731 23 292 7 3
sorti 87 - - 20 238 1 20

cpoly 193 - - 19 108 1 2
bound 139 - - 19 415 4 2

xover 20 - - 19 415 4 2
pcont 228 - - 24 188 78 27

jconn 160 - - 24 279 204 15

Figure 7.8 Overlay Performance: US map with January isotherms

113

60

70

80

60

70 80 00 00

Figure 7.9 The US map with July isotherms

114

Overlay Performance: USA with July isotherms

CPU (seconds) STORAGE (K-words)

total XQ gcd atom heap
global
stack

local
stack

dform 76 - - 20 312 59 26
gstat 941 3 1 25 371 58 129
xgrid 7448 6405 29 204 818 36 12
xsed 4873 3934 271 24 409 16 3

xconn 762 - - 19 434 58 35

cold 1740 1671 766 23 309 7 3
sorti 91 - - 20 243 1 2

epoly 182 - - 19 109 1 2
bound 149 - - 19 447 3 2

xover 23 - - 20 280 3 2
pcont 389 - - 24 204 143 52

jconn 246 - - 24 297 207 15

Figure 7.10 Overlay Performance: US map with July isotherms

115

Chapter 8 CONCLUSION

This chapter presents a summary of the thesis, and reiterates the
research contributions. Then we will discuss some further considerations,
most of which concern the more realistic issues involved in automated

cartography and map data processing, as well as further applications of
Prolog in these areas.

8.1 Summary

Polygon overlay is the process of superimposing two maps into one,
so that the output map conveys the selected information of the input maps

together to illustrate the spatial correlation between them. Before the early

60’s, the process was done manually. The cartographer made
transparencies of the original maps and traced out the new map on the light

table. Computerized data processing did not come to aid this manual and

tedious process until the 70’s. However, attempts to automate the process

revealed that polygon overlay encompasses a host of many subproblems.

These are mostly related to geometry and topology, but also include the

computer sciences such as algorithm design, complexity analysis, arithmetic
and numerical representations. We reviewed the research work in

computational geometry and specifically polyline intersection, which

contributed fundamentally to the development of algorithms for polygon

overlay. We also reviewed a few systems and software packages that

performed polygon overlay.

Prolog represents a radically new approach toward programming, an

116

approach known as logic programming. Instead of presenting a prescribed
set of instructions, a Prolog program describes the objects and their
relationships involved in the problem to be solved. Using Prolog for

geometry problems is a venture motivated by the quest for better

programming tools in computational geometry. The polygon overlay
problem becomes for us a vehicle to investigate the practicability and
suitability of using Prolog for geometry applications.

We developed a polygon overlay system in Prolog, implementing an

algorithm due to Franklin (Franklin 83a) and extending it to handle also

maps with separate components. The algorithm decomposes the complex
process of polygon overlay into simple stages, resulting in much simplified

data structures. Each stage is further subdivided into a number of steps.
The following are the four major stages:

Stage 1. Chain Intersection.

Determine intersecting chains and split them at the
intersection points.

Stage 2. Polygon Boundary Formation.

Link up the chains to form the polygon boundaries.

Stage 3. Polygon Overlay Identification.

For each polygon boundary, identify the two input polygons
to establish the overlay relationship.

Stage 4. Boundary Containment Resolution.

Resolve the containment relationships between boundaries
to compound polygons (with multiple boundaries).

117

The system adopts a relational approach to data structuring. Geometric
entities are defined as Prolog facts, and the Prolog rules encoding geometry
algorithms perform data processing.

An adaptive grid sorts out potentially intersecting edge segments to
within those that occupy some common grid cells. We determine the chain

intersections by pairwise comparisons of the edges in each grid cell.
Geometric intersections are calculated using rational arithmetic. This

preserves numerical accuracy and thus topological consistency. It also

allows proper handling of special cases of touching and overlapping chains.

Hence, we can guarantee stability in processing geometric intersections.

In using Prolog, we have demonstrated several advantages as a
programming tool for geometry applications. Besides the general high level

nature of logic programming and a built-in relational data base in Prolog,

we formulated a few paradigms of programming revealed to be useful in
our application.

In conclusion, we have achieved in the experimental polygon overlay
system the following two-fold purpose:

On the one hand, we presented rational arithmetic as a practicable
solution to the problems stemming from discretization errors, in polygon

overlay. We achieved stability in the process of computation on two
aspects: (1) rational arithmetic preserves numerical accuracy in calculating
geometric intersections, and (2) a line segment intersection algorithm

118

complete with all special cases can properly identify and handle tangential
situations.

On the other hand, we showed that Prolog is a viable programming

tool for geometric and topological problems. Prolog offers a general high
level environment and a relational approach toward data structuring.

Specifically, we formulated three paradigms of logic programming which

appear to be useful: set-based operation, pattern matching
geometric/topological properties, and using unification to form equivalence
classes.

8.2 Further Considerations

We have defined our polygon overlay problem to be strictly
geometric and topological. In this section, we will present some realistic

issues involved in automated cartography and map data processing. These
may be referred to as extensions to the polygon overlay system or further
application areas.

8.2.1 Sliver Removal

We have used rational arithmetic to guarantee stability in numerical
computation and circumvent possible problems of discretization errors

leading to topological inconsistency (Franklin 84). However, a realistic
problem with map data is nearly coincidental input data: two input maps

119

may have data values of the same prominent feature (such as road or river)
only approximately equal. As a result, the overlay process generates an

output map with sliver polygons around the feature. These slivers should

be removed as a human cartographer would remove them. We can outline

certain rules to automatically recognize these sliver polygons: a sliver can

often be characterized by its size and shape, and the small number of edge

segments around the boundary which involves two chains, one from each

map (Goodchild 77). Figure 8.1 illustrates three kinds of slivers, along the
trail of two nearly coincidental input chains: a rounded sliver, an elongated
strip, and a bent strip. We can respectively identify these slivers by small

area, small minimum diameter (diameter is defined as the distance between
two parallel lines enclosing the polygon), and small ratio of its area to that
of its convex hull. To remove a sliver, we can coalesce it with one of its

neighboring polygons which is not a sliver. This is to avoid coalescing
slivers into a non-sliver polygon. A polygon is coalesced to its neighbor by
removing the common boundary chain, and updating the new polygon with
combined attributes.

8.2.2 Map Data Verification

We have freely assumed data consistency in our input maps.

Unfortunately, real maps are often plagued with errors and inconsistencies.
An interesting idea is to exploit overlay processing on one map to perform

data consistency verification. If an overlay system can identify an error in

given map data, or even better the source of such an error, it may also
possibly edit the data intelligently in the process. Some of these data

120

an elongated atrip

a crooked strip

rounded sliver

Figure 8.1 Three kinds of sliver polygons

121

inconsistencies may be chains crossing over each other (which need to be

separated), or same chain duplicated, or polygon identifier mismatch

around its boundary chains. Figure 8.2 illustrates the case of polygon
identifier mismatch due to incorrect orientation of one chain.

8.2.3 Map Generalization

Probably the most challenging problem in automated cartography is

that of map generalization - the problem of generating a map of reduced
scale from a given map. A map communicates spatial relationships. Map

generalization involves simplifying features, deleting insignificant features,
and converting features from one type to another, to effectively

communicate the spatial relationships in the reduced scale. Figure 8.3
depicts an example. An automated map generalization system will deal
with not only geometric/topological computation, but also common sense

and expert reasoning of the cartographer. While numerous applications
have been done in Prolog to demonstrate automated reasoning, we have

shown that it is also a viable tool for geometric/topological computation.

We therefore suppose that Prolog would be effective for automated map
generalization.

122

Figure 8.2 Polygon id mismatch due to incorrect orientation
of a boundary chain

123

Figure 8.3 A map generalization example

124

BIBLIOGRAPHY

Aho, Alfred V., J.E. Hopcroft, and J.D. Ullman. (1974) The Design and
Analysis of Computer Algorithms, Addison-Wesley, Reading, Massachusetts.

Ballard, Dana. (1981) “Strip Trees,” Communications of ACM, Vol.24,
No.5, pp.310-321.

Bentley, Jon L. and T.A. Ottmann. (1979) “Algorithms for Reporting and
Counting Geometric Intersections,” IEEE Transactions on Computer, C-28,
9, pp.643-647.

Bruderlin, B. (1985) “Using Prolog for Constructing Geometric Objects
Defined by Constraints,” Proceedings, EUROCAL, Linz, Austria.

Burton, Warren. (1977) “Representation of Many-sided Polygons and
Polygonal Lines for Rapid Processing,” Communications of ACM, Vol.20,
No.3, pp.166-171.

Chrisman, Nicholas R. (1976) “Local versus Global: the Scope of Memory
Required For Geographic Information Processing,” Internal Report 76-14,
Laboratory for Computer Graphics and Spatial Analysis, Harvard
University, Cambridge, Massachusetts.

Clocksin, W.F. and C.S. Mellish. (1981) Programming in Prolog, Springer­
Verlag.

Colmerauer, A., H. Kanoui, R. Pasero and P. Roussel. (1973) Un Système
de Communication Homme-Machine en Français, Groupe d’Intelligence
Artificielle, Faculté des Sciences de Lumîny, Marseilles, France.

Colmerauer, Alain. (1985) “Prolog In 10 Figures,” Communications of
ACM, Vol.28, No.12, pp.1296-1310.

125

DeBerry, T. (1979) Polygon Information Overlay System User’s Manual,
Environmental Systems Research Institute, Redlands, California.

Dutton, Geoffrey. (1977) “Navigating ODYSSEY,” Proceedings, Advanced
Study Symposium on Topological Data Structures for Geographic
Information Systems, Vol.3, Laboratory for Computer Graphics and Spatial
Analysis, Harvard University, Cambridge, Massachusetts.

Dutton, Geoffrey. (1981) “Fractal Enhancement of Cartographic Line
Detail,” The American Cartographer, Vol.8, No.1, pp.23-40.

Eastman, C.M. and C.I. Yessio. (1972) “An Efficient Algorithm for
Finding the Union, Intersection, and Differences of Spatial Domains,”
Technical Report, Computer Science Department, Carnegie-Mellon
University, Pittsburgh, Pennsylvania.

Ferguson, H.R. (1973) “Point in Polygon Algorithms,” Technical Report,
Urban Data Center, University of Washington, Seattle, Washington.

Foderaro, John K., K.L. Sklower and K. Layer. (1983) The Franz Lisp
Manual, University of California, Berkeley, California.

Foley, John D. and A. vam Dam. (1982) Fundamentals of Interactive
Computer Graphics, Addison-Wesley, Reading, Massachusetts.

Forrest, A. Robin. (1986) “Computational Geometry and Software
Engineering,” invited talk, Second ACM Annunal Symposium on
Computational Geometry, Yorktown Heights, New York.

Franklin, W. Randolph (1972) “ANOTB: Routine to Overlay Two
Polygons,” Collected Algorithms, Douglas (eds), Laboratory for Computer
Graphics and Spatial Analysis, Harvard University, Cambridge,
Massachusetts.

126

Franklin, W. Randolph (1983a) “A Simplified Map Overlay Algorithm,"
Proceedings, Harvard Computer Graphics Conference, Vol.1, Cambridge,
Massachusetts.

Franklin, W. Randolph. (1983b) “Adaptive Grids for Geometric
Operations," Proceedings, Sixth International Symposium on Automated
Cartography, (AUTO-CARTO 6), Vol.II, pp.230-239, Ottawa, Ontario.

Franklin, W. Randolph (1984) “Cartographic Errors Symptomatic of
Underlying Algebra Problems," Proceedings, First International Symposium
on Spatial Data Handling, Vol.II, pp.190-208, Zurich, Switzerland.

Franklin, W. Randolph, Peter Y.F. Wu, S. Samaddar and M. Nichols.
(1986) “Prolog and Geometry Projects," IEEE Computer Graphics and
Applications, Vol.6, No.11, pp.46-55.

Freeman, Herbert and R. Shapira. (1975) “Determining the Minimum
Area Encasing Rectangle for An Arbitrary Closed Curve," Communications
of ACM, Vol.18, No.7, pp.409-413.

Freeston, M. (1986) “Data Structures for Knowledge Base: Multi­
dimensional File Organizations," Technical Report TR-KB-13, European
Computer-Industry Research Center, Munich, West Germany.

Fuchi, K. (1981) “Aiming for Knowledge Information Processing System,"
International Conference on Fifth Generation Computer Systems, Tokyo,
Japan.

Gentleman, W.M. and S.B. Marovich. (1974) “More on Algorithms That
Reveal Properties of Floating Point Arithmetic Units," Communications of
ACM, Vol.17, No.5, pp.276-277.

127

Gonzalez, J.C., M.H. Williams and LE. Aitchison. (1984) “Evaluation of
the Effectiveness of PROLOG for a CAD Application,” IEEE Computer
Graphics and Applications, Vol.4, No.3, pp.67-75.

Goodchild, Michael F. (1974) PLUS: Technical Users’ Guide, Department of
Geography, University of Western Ontario, London, Ontario.

Goodchild, Michael F. (1977) “Statistical Aspects of the Polygon Overlay
Problem,” Proceedings, Advanced Study Symposium on Topological Data
Structures for Geographic Information Systems, Vo.1, Laboratory for
Computer Graphics and Spatial Analysis, Harvard University, Cambridge,
Massachusetts.

Guerrieri, Ernesto and Vinod Grover. (1986) “Octree Solid Modeling with
Prolog,” Reprint, First International Conference on Applications of
Artificial Intelligence to Engineering Problems, Southampton, United
Kingdoms.

Guevara, J. A man do (1983) “A Framework for the Analysis of Geographic
Information System Procedures: The Polygon Overlay Problem,
Computational Complexity and Polyline Intersection,” Ph.D. Thesis, State
University of New York, Buffalo, New York.

Guibas, Leonidas J. and Raimund Seidel. (1986) “Computing Convolutions
by Reciprocal Search,” Proceedings, Second ACM Annunal Symposium on
Computational Geometry, Yorktown Heights, New York.

Dwork, Cynthia, P.C. Kanellakis, and J.C. Mitchell. (1984) “On The
Sequential Nature Of Unification,” Journal of Logic Programming, No.1,
pp.35-50.

Knuth, Daniel E. (1972) “Sorting and Searching,” The Art of Computer
Programming, Vol.3, Addison-Wesley, pp.170-180.

128

Knuth, Daniel E. (1976) “Big Omicron and Big Omega and Big Theta,’’
SIGACTNews, 8, 2, pp.18-24.

Kowalski, Robert A. (1974) “Predicate Logic as a Programming
Language,” Proceedings, International Federation of Information Processing
Conference, Stockholm, Sweden.

Lam, Nina S. (1977) “Polygon Overlay: An Examination Of An Algorithm
and Related Problems,” Master Thesis, Department of Geography,
University of Western Ontario, London, Ontario.

Lee, D.T. and F.P. Preparata. (1984) “Computational Geometry - A
Survey,” IEEE Transactions on Computers, C-33, 12, pp.1072-1101.

Little, J.J. and T.K. Peucker. (1979) “A Recursive Procedure for Finding
the Intersection of Two Digital Curves,” Computer Graphics and Image
Processing, Vol.10, No.2, pp.159-171.

Macsyma Group. (1983) MACSYMA Reference Manual, Version 10, Vol.II,
MIT Press, Cambridge, Massachusetts.

Mairson, Harry G. and J. Stolfi. (1987) “Reporting and Counting
Intersections Between Two Sets of Line Segments,” unpublished manuscript,
personal communication.

Malcolm, M.A. (1972) “Algorithms to Reveal Properties of Floating Point
Arithmetic,” Communications of ACM, Vol.15, No.11, pp.949-951.

Mandelbrot, B.B. (1977) Fractals - Form, Chance And Dimension, W.
Freeman, San Francisco.

McAlpine, J.R. and B.G. Cook. (1971) “Data Reliability from Map
Overlay,” Division of Land Research, Canberra, Australia.

129

Mizell, David. (1986) “Prolog and Parallelism: The Inherently Sequential
Nature Of Unification,’’ Naval Research Review, No.l, 1986, pp.22-24.

Nichols, Magaret. (1985) “A Prolog Implementation Of The Graphics
Kernel System,” Master Thesis, Department of Electrical, Computer, and
System Engineering, Rensselaer Polytechnic Institute, Troy, New York.

Nievergelt, J. and F.P. Preparata. (1982) “Plane-Sweep Algorithms for
Intersecting Geometric Figures,” Communications of ACM, Vol.25, No.10,
pp.739-747.

Pereira, Fernando, ed., et al. (1986) C-Prolog User’s Manual, Version 1.5,
Department of Architecture, University of Edinburgh, Edinburgh, United
Kingdoms.

Potmesil, Michael and H. Freeman. (1980) “Implementation of Two
Hidden Line Algorithms,” Computer and Graphics, Vol.5, No.l, pp.31-40.

Preparata, Franco P. and Michael I. Shamos. (1986) Computational
Geometry: an introduction, Springer-Verlag.

Reed, C.W. (1982) Map Overlay and Statistical System User’s Manual,
Western Energy and Land Use Team, U.S. Fish and Wildlife Services, Fort
Collins, Colorado.

Robinson, J.A. (1965) “A Machine Oriented Logic Based On The
Resolution Principle,” Journal of ACM, Vol.12, No.l, pp.23-41.

Rosenfeld, A. (1969) Picture Processing by Computer, Academic Press, New
York.

Roussel, P. (1975) “Prolog, Manual de reference et d’Utilisation, ”
Groupe d’intelligence Artificielle, Faculté des Sciences de Luminy,
Marseilles, France.

130

Saalfeld, Alan. (1987) “Stability of Map Topology and Robustness of Map
Geometry," Proceedings, Eighth International Symposium on Computer-
Assisted Cartography, (AUTO-CARTO 8), pp.78-86, Baltimore, Maryland.

Shamos, Michael I. and D. Hoey. (1975) “Closest-Point Problems,"
Proceedings, 16th IEEE Symposium on Foundations of Computer Science,
pp.151-162.

Shamos, Michael I. and D. Hoey. (1976) “Geometric Intersection
Problems," Proceedings, 17th IEEE Symposium on Foundations of
Computer Science, pp.208-215. Shamos, Michael I. (1979) “Computational
Geometry," Ph.D. Thesis, Yale University, New Haven, Connecticut.

Shelberg, M., H. Moellering and N.S. Lam. (1982) “Measuring The Fractal
Dimensions of Empirical Cartographic Curves," Proceedings, Fifth
International Symposium on Automated Cartography, (AUTO-CARTO 5),
pp.481-490.

Sinton, David, et al. (1972) “Spatial Data Analysis Techniques,"
Geographical Data Handling, Tomlinson (ed), Vol.2, IGU Commission on
Geographical Data Sensing and Processing, Ottawa, Ontario.

Steele, Guy L. Jr. (1984) Common Lisp, Digital Press, Burlington,
Massachusetts.

Sterling, Leon and Ehud Shapiro. (1986) The Art of Prolog: Advanced
Programming Techniques, MIT Press, Cambridge, Massachusetts.

Sun Microsystems. (1986a) Commands Reference Manual, Revision G of 17,
Part No: 800-1295-02, pp.18-19 and 82-83, Sun Microsystems, Inc.,
Mountain View, California.

131

Sun Microsystems. (1986b) UNIX Interface Reference Manual, Revision A
of 17, Part No: 800-1341-02, pp.270-271, Sun Microsystems, Inc.,
Mountain View, California.

Sutherland, LE., R.F. Sproull and R.A. Schum acker. (1974) “A
Characterization of Ten Hidden-Surface Algortihms,” ACM Computing
Surveys, Vol.6, No.l, pp.1-55.

Swinson, Peter S.G. (1982) “Logic Programming: A Computing Tool for
the Architect Of The Future,” Computer Aided Design, Vol.14, No.2,
pp.97-104.

Swinson, Peter S.G. (1983) “Prolog: A Prelude to a New Generation of
CAAD,” Computer Aided Design, Vol.15, No.6, pp.335-343.

Tilove, Robert B. (1980) “Set Membership Classification: A Unified
Approach to Geometric Intersection Problems,” Transactions on Computers,
C-29, 10, pp.874-883.

Tomlinson, R.F., H.W. Calkins and D.F. Marble. (1976) Computer Handling
of Geographical Data, The Unesco Press.

Vielle, Laurent. (1986) “Recursion in Deductive Databases: DedGin, a
Recursive Query Evaluator,” Technical Report TR-KB-14, European
Computer-Industry Research Center, Munich, West Germany.

Warren, David. (1979) “Prolog on the DECSystem-10,” Expert Systems In
The Micro Electronics Age, Michie (ed), Edinburgh University Press,
Edinburgh, United Kingdoms.

White, Denis. (1977) “A New Method Of Polygon Overlay,” Proceedings,
Advanced Study Symposium on Topological Data Structures for Geographic
Information Systems, Vol.1, Harvard University, Cambridge,
Massachusetts.

132

White, Marvin. (1979) “A Survey of The Mathematics of Maps,”
Proceedings, Fourth International Symposium on Automated Cartography,
(AUTO-CARTO 4), Vol.1, pp.82-96, Reston, Virginia.

White, Marvin. (1983) “Tribulations of Automated Cartography and How
Mathematics Helps,” Proceedings, Sixth International Symposium on
Automated Cartography, (AUTO-CARTO 6), Vol.I, pp.408-418, Ottawa,
Ontario.

Wu, Peter Y.F. (1986) “Two Arithmetic Packages In Prolog: Infinite
Precision Fixed Point and Exact Rational Numbers,” Technical Report TR-
082, Image Processing Laboratory, Rensselaer Polytechnic Institute, Troy,
New York.

133

Appendix 1: Rational Arithmetic Package

I append to the thesis here the Prolog source code which installs
rational arithmetic. The reader is referred to (Wu 86) which is a technical

report of the work on the package. Chapter 4, section 4.3 also explains

many of the underlying ideas. The version here is the latest version as of

the writing of this thesis. The software package should be very
transportable, and is free for sharing and further distribution.

The appendix includes the BIG package - multiple precision integers,

the XQ package - exact rational numbers, and the test program to compute
7T .

134

3

8-8* 8-8"

1 1
3 3

0
9

il

a
à
S

s a
3 8

!■

3
i

" s

|i«
et®

I
il;

. s s w m &
là

5

a 8-8-8-8-

g

1
3 .1

U
%

s

tu H

2 e
S2 va

I O

8
8.
5

N ï

O

8
% l3

-
•5

j .
3g

Iss ÜHO
8^

I
i

'E •
a 5

f&Fff u8

i«K il

135

L
O

0
s

N
à
»c

îe

3

fl

3
-N

êà

O 9

a
0

s-l

> 2 Ü s
P

u„

fil
H
1

u Q .a
5221

Jg
% y

w

8.! as
e

3

fi ’
â«.fi

fi
5

3
fi?

<3^

. CT»

S

a
a
I

.8 .
S* S* »
X « X

.à
S&x%
^”iIII

136

4

i

à O

I

F. F,
•• 03

—0* ».

I

1
O

U
Bi

y
H

1X
si

.11

a

ss

?

I
1

il S'S* y.

î

3
?
X
II
06

&
!

1
X
II

06I

-Si.

$5H H

SS?L Ô428S
Eàâ^ » » » I -H

g

n
WW

&& ?F d

»» XX

137

.5

&

US

8

I

8
s

♦ coSi

8. a
8:
r0

c
J

J

8

W @ ' w
MHMH

C
;
0 1

I
i <

X
> » co »

cn® pi Î3

3 > S
IA sis A P u
in &3?;

a
i

8
°.ST"o3

IÉ

«

a SÈÏL J? mi

aa

9-

H
à
O'

u
co

i I

5

i:।i

o

• 0*06*

O' 0 oi

X
K

JI
C O

,s

^.0 0 pl
5 o'®

CO *06
< M* N

a
II
0 o

II as *

138

x
U
a
8
a

U
5
U
S

1
SS •
5T*
ç 8 u

85
4K
HH

g

□ JW
8 3 û u

il
» • O

= <Sx
o-a_______

mamuk
IM

"a._____

139

S I
O

8
: 1

IÜ

&

È

g
U

8

K ?
^3

?
I

r

if
s g
MM

it
MM

5
ï

53
4b

5

I
N .
S s

5
S

2k
92

J

â
H

I

i

5

*

G •

!i;■

8
S
H

I O.

a
2
J

Hil
•'• MMM

O O
IS

p=3r
iàs^0

th
1 1 >

k

U O •
4i &

a q
h

H ® î
« 8^5 :

140

1 3 3 3

A

H

II

&

2*03

w

I

h
W A

s

i
5

a 2

3 3

a

3
3

c

§ J 3 à
F?
ad
zz

i i

à
â

a

I

c

g
5
U a

3
3
?

il

I «suÀ? 5

?
S

er i

! 1
. 1 । & S' -S33^ < u y ty« h

mi
. =rî IS E?

>à
H

141

O U

&

&
5

9
ï

It

£

1

c

3

&
l

t
5
b

» w

88
hk
MM

S °
&

.:*u iKï
&aasz:aâ
ta

lit
III «sa
îh »i

1

142

Appendix 2: OVER4 Source Listing

In this appendix, we include the Prolog source code of all 12
programs of 0VER4, the polygon overlay system in Prolog. I have

documented the function of these programs in Chapter 7, section 7.1.

These programs are quite readable, and I have put in sufficient comment in
the listing. I hope this can be an example of a higher level approach in
programming toward geometry problems.

OVER4 consists of 12 programs in 4 groups: XSECT, LINK, OVER

and CONTR. XSECT consists of dform, gstat, xgrid, xsect, xconn; LINK

consists of calci, sorti, cpoly, bound', OVER consists of xover and pcont, and
CONTR consists of only jconn.

143

«
>1^3 3

fi

Pt!

eu
S
t
1

M
g

5
3 a

5

I 3
I i

eu .

à op
aca*

il

1
s

- 4- I = 5j ,g g- °!-2
$ Il s Si 8

s

5

3
S

I

S

t

g

P •

S .
iâ

• O?s

"S
S 3

m
MMM

S * i

U 8-- 35 k 5Jaâ. SS5 s
S2h - '

8

144

4

3

I

»
f
J

8
JO

0
s

Ï

3

?

i

c
i

8
i

y

S3

«3:
838
y* i

- *
H).-:

■ eu

K
-ü

foi
i

S

fl
l

O

g
1
1

H

3«3

SS

%

g
ï

I

O

ÎSbÊ
S

H?
31
MM

k

SS*

-8,3
k

2

8. SS k

«

I

I
8-

l
1 fl

«

i il
ii
3 3

x k

lit
o l e
S
® gii!

3^4

O
3 83 &

145

5

arit r
>

s

a
I

I

%.

§

%

1 3 JS I

&

»
I

t

a u

«N
.6b
s

4L

3
à

Jll
o'^bj «
6=% =

I
I
I

ll
««

I
’A

n
MH

9
! sg ;

y .

I III
HM

146

I

i u
i

I

3

bi

o
I

H

33a

8

I
M

sg
I
Ü gi
M k

I

k:
>4

3

1

»

j

I
8
3 is

33

i I
H

147

*

8-

«

S3

S

bi bi's h.
31

III

•§>

2

t
S

S
5

«
fl

S O
s.l

I

• Ai

;S5

5

I

8

!ï
1

i

b
9

5

i
I

S3|

æ

I
ni
11! «sa
«

»

i g =

Il î

148

e

8
I
o
5

S?
&&

r
l
I
1 a

î!

! .Hf
I:5 ca™ g-
ï MH

&

8

S"5 ..
&

"(M
i'urxralppB/x

■ (X

I "X
I'a) A

J4U
O

-6O

,
T*X

I
=T

TX
T

(X
X

I'X
I'X

I'a)PTJfiX
x

149

5
S'S &

1
2
tn

2
»

s
w

I

I
5

38Im I

%
?" 61 II

f
s

2

I
a
e

fl

I ®
o

§
2

3
IN

8>&& n H M M

. 11|
I !J.a

2E3§ HMNM

©

3

§

!

s

à
3

I
888
HMM

p.
7$

I

I
ai

iff

Ü
MM 1

S
H Is
MM

1 "
s

I

150

8

5 ïl

11

H
Ji

I
!s § s3

3

O
J

3
5

1
I

I!

t
h iâ

oH

É

K

g
«
?

i

th

5 „

=æ

J
S3

0

1
i

5

g

1
i
5

H
i

a
à «

& g
11

%s @3 ;.& .
5Ê5

3«$
a

#1
lüh

ix 8 J 8

as

151

04
di
&

I
a
a
1

04 M S3
àà
»

iM

5

I

i
II
IÏ

• o
II

1
H1

Î
M

5

ii
H

-f*

&

I
8
I
f
I
i
I

S3
45
a.»
Ü

1
Sr

9
9
a . .
w

jèa 8,^
IH

sis g
Ü. t

Ji W
M 9 V V

152

*5S

&

S

> 5
si

JI
h
H 8
M

a­
I

liMM

1
; â.

il
si
MM

til
J

M

*É^ü

M

•g

8,
H

I

& Mg

U, B

S
c

g
V 8

B

I
I 3

b a'3 31 84
U U

** 8

J

I M 4

I I 8

153

.K

a a a a

K J
il
11MM

I
M
*

• O
la
H

N
& P J
r

k i -g %
2

eu
à
13

a
3

O
3

R
3 1

I

1

ï

è
®

8 8.
!

I
£5 ^8 8 5
fl Sî

-J8BK

SSÆJ8Ü

IS
_______ MM

154

S & »
«

8-8
&

16

55

&

S «

St

8
I

8.

3

U

2
U

2

Q
a

Û

I »

8.8.
8 8liMM

q

P

c c

5

I
11

1
!

9-

g S

58

iO

5

y
il

®
5
5
m

^5

5. = 1
i si

s
?s

i
I?
H

yi '
.38?

>=3â

?flh

MMM MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

g
£

1
ï k

?
5
8- C
8
S
I

S
* O
Êï

J ;

$

155

818*8 8

I

!
i
a
g

6
b *0
w

y
MM

156

3

&

I
i
I

&

5
&

a

fl
o

8-

I
i
i
&
I

a.

5s

:
1

m w g
ifs
ni
SS
■81

I
J
1

jâ
n
MM

i.
I

8^88
Mfi

Kas

9
I H

ni
8

U
Ho

aL
—-a w & c

157

S
I

eu
à.-

w

Z
g

ü

s
d
:

8

ïa »
l

1
O
%

9-
î

8

SII
i

%
U

5
U
à
8

2 w"
d°i

£5
h

s

?

3?

^8-'

S

i

»
s

I
ilH R

. hP?
Mi

J

5 R

4 ÿ
=# ib
tihSï
î

%
 re

pl
ac

e_
ov

er
la

p_
ch

al
ns

 (C
l. C

2,
 N

ew
_Q

ia
ln

_l
d)

.
* "

em
ov

e o
ve

rl
ap

 ch
ai

ns
 Cl

 and
 C2

, rep
la

ce
 wi

th
 Ne

w
 Ch

ai
n.

re
p 1

 ac
e.o

ve
r 1

 ap
_c

ha
ln

s(
C

l,C
2,N

C
)

re
tr

ac
t(c

(C
l.N

il.
N

12
.L

l))
.

re
tr

ac
t(c

(C
2.

N
21

,N
22

,L
2)

),

1 1 I

158

9

8

82
1

X
y.

eu
eu
ü

£

eu
o"

I

l

I

U

Ù.

8.
I

1

I
I

&

h
I

5
f
4
8 B

9-3

18

I

eu
eu
ü

P

& :

.h35 » s'^

H H!
_____HMH

U IQ î à J
H

I
B! IP y 8= xx- « a ."î & ïH &=

§35
HHM

3

aa.

8.

1
8.

4

I

ii

Sa

ï

a
u
5
4

I
X

§
O y

& * «s
B

ï§

g
Jf J

ii^{
H !» It

. a.
à S

159

&
eu
C5

eu
eu
d

eu
eu
d

S

eu
à

0

eu
à

I
s
M

r
!

SI5^

O &

g g-ss
II:

J
& & O O S

l îïrf

9-

èè
d

e «

8
1

j&arj
eu 1 leu
àààà
J3 J3 A

e
3 §

<4

eu eu

&

eu
d
X

A
8 o

dddd
ü&i
§888

eu eu eu eu

&&&%

î!13Its

4 eu
1
i

îî

O
I 3

.il

.•o e

ou

II
& &
S è
à à
;

'.igai
«

160

s
eu

2^

»
.2

!

g.

I

!

^5

N
8
8.1

à

I
I

ïÜ

s

fl

là
B

i

H

a
4

Sï
j

^811^!
Oi SI

h
ô i

»

ü&

%
a

i
1
5
i

&
■8

|

g.O

Z
ï
i

& & ii
W

8433
NXMN

1
ï k

e

H

i-

xg
i%h

O *1 W U
3îS

?
g

5

?
I
?
M

Hfit
$
ni

g
Min

4
Hh

Bii

I

8§h

I %.
Eco DIBL:hh

Ils
1

161

»

a

1
a
Î

I
I• o

II*04

04 04

SI

w »
0
o'Â

, a
y

y %

5

B £s
il

a ., à £
II
* M

B O
11
B
IÜ
0 %

y i

■sa

&8.

■'2 £ï

1
1

b
5
■5
i

î5

1
g

sa
H

WM
&

I

sS

5 é

8-3^ !i
3

é
■^r & j!
Â MS

162

S
s • •
-SS

a.
J

3

fl
K
g

? Il
à

&

À

É É g
£

a
S
à iÿ

ti3-" * Q.»
-A&

-,?a »

a

163

S'6-

I

8
1I

5 I

H
1
II

a
f

5 â
st

I
a

i
2jif
Ji

h jM;

I
-

i M! Ê! " " W W W NMMH y_|

I

0

< & M
" «0“ £

a_JI,
ü । n « S- s9

I

3
1

&
II
X

I £
a I

f
O'
3

s
s 9

?
q

I
M

I2 « :: t

1,1

H
t

; 3
Ui

1“
8 k ii

i0:

«® Uîfèî

164

tn

S53S $ s
a

l
Sïa a 4'

CNN

N %

nSh
— Q *

a-S3a

Q &W

H

&

&

S'
&

8
b

il H-ras.. q g —Î5

5
J
2

1
—«X
L

£
3
4

il
MM

8.8.

2-&_______

§ g
11

ij:
8

0 '

0.0,8-J
8

• O
5i . _ „ ..I m «
* — * M a

ts |
MM g

165

S'
9
3

a &
daZ

-r8 :.aa

fl.
Î

33
èà
u

3
I

s
^ss
%&

52
u,u,

;.aa

