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ABSTRACT

A polygon overlay system is developed in Prolog. The complex
process of polygon overlay is decomposed into 2 number of simple stages,
resulting in much simplified data structures. The system in Prolog adopts a
relational approach to data structuring. Geometric entities and their
relationships are represented as Prolog ‘‘facts,’”” and Prolog ‘‘rules”
encoding geometry algorithms perform data processing. An adaptive grid
sorts out potentially intersecting edge segments to within those that occupy
some common grid cells. Geometric intersections are calculated using
multiple precision rational arithmetic., Numerical accuracy is therefore
preserved, and topological consistency guaranteed. Special cases of
touching and partially overlapping chains are properly identified and
handled. Stability in the computation process of polygon overlay is

achieved.

Using Prolog is a venture motivated by the quest for better
programming tools in computational geometry. The practicability and
suitability of Prolog for geometry problems are investigated. Besides the
general high level programming environment, and the relational approach
to data structuring, specifically three paradigms of programming in Prolog
are formulated. These are set-based operation, pattern matching geometric
and topological properties, and using unification to form equivalence

classes.




Chapter 1 INTRODUCTION

Polygon overlay is a process of superimposing two or more maps
into one, so that the output map conveys the selected information of the
input maps together to illustrate the spatial correlation between them.
Automation of the polygon overlay process on the computer encompasses a
number of geometric and topological computation problems. The problem
originates from the field of computer cartography. We overlay two maps
with different attributes from the same area to perform categorization of
spatial information. A map, in this context, referé to a data structure
representation of spatial relationships, and polygon overlay applies to maps

using vector representations of spatial data.

This thesis presents a system developed in Prolog to perform
polygon overlay. We decompose the process of polygon overlay into a
number of stages, each of which performs certain local operations. The
strategy simplifies data structuring and system design. Furthermore, our
system achieves stability using multiple precision rational arithmetic to
calculate geometric intersections. The calculation preserves numerical
accuracy and thus guarantees topological consistency. Special cases of

geometric intersection such as tangent and coincidence are properly

handled.

One fundamental problem in dealing with geometry on the computer
is the primitive nature of conventional programming languages.
Conceptually simple ideas often turn out to be unexpectedly difficult to
implement. The descriptive nature of Prolog provides a much more

intuitive programming environment, and hence fosters more readable




programs. More specifically, the system demonstrates several advantages
offered by Prolog. These include data structuring, set-based operations,
pattern matching geometric and topological properties, and using unification

to transmit an equivalence relationship.

In what follows in chapter 1, section 1.1 presents a brief history of
the polygon overlay problem arising in the field of cartography. In section
1.2, we review the literature disseminating the issues invoived in the
relevant areas of study. These areas include computational geometry, the
special issues related to polygon and polyline intersection, the operational
problems with nearly coincidental data and slivers, and with coordinates
and computer arithmetic. We will also review some significant polygon
overlay packages and systems. The use of Prolog introduces a new
approach towards programming and implementation of geometry
algorithms. Section 1.2.6 briefly describes the history and development of
Prolog, leading to the applications in geometry topology problems. Section
1.3 identifies the scope of the research effort in the work of this thesis and
summarizes the research contributions. Section 1.4, the last section in

chapter 1, presents an overview of the rest of the thesis.

1.1 History of the Polygon Overlay Problem

Overlay is the process of superimposing two or more maps, so that
the output map contains the information of the selected data items from
different input maps. Before the early 60’s, overlay was a process done

manually. The approach was to make transparencies of the original maps,




and to trace out the new map from the transparencies on a light table.
Features of interest were traced out manually, polygon by polygon. Figure
1.1 illustrates the idea of polygon overlay with transparencies. As it is
obvious, the process is very expensive and time consuming for complex

situations (Sinton 72).

Computerized data processing did not come to aid this manual
process until the 70's. The concept of polygon overlay may be intuitive,
but automation of the process seems to be unexpectedly difficult.
Fundamental to the difficulties involved are the problems of data
structuring and algorithmic design. Studies of these problems were scanty
in the field of geography and cartography in the early 70’s. As geographic
information systems began to develop in the late 70’s, it became clear that

the polygon overlay problem...

‘““..(is) the most complex problem of geographic data

structuring...”” (Chrisman 76, p.6)

‘‘..contains a number of -challenging computational and
statistical problems..."”” (Goodechild 77, p.1)

‘“...has been one of the most interesting and challenging

problems in computer cartography...”’ (White 77, p.8)

Polygon overlay encompasses a host of many subproblems, mostly
geometric and topological. The implementation on a computer also
involves a number of operational problems. The following identifies certain

categories of these subproblems:




output map

overlay
layers

light table

Figure 1.1 The manaul process of polygon overlay using transparencies.




- Boolean Combination of Sets

- Geometric Intersections

- Set Membership Classification

- Cartographic Line Generalization

- Geometry D ata Structuring

- Slivers and Error Estimates

- Arithmetic and Representation of Coordinates

Research work which has directly and indirectly studied the polygon overlay
problem by analyzing certain subproblems extends to areas such as
computer graphics (hidden line/surface removal: Potmesil 80}, geometric
modelling (set membership classification: Tilove 80), computational
geometry (algorithm design and analysis: Shamos 79), graph theory
(mathematics of maps: White 79), computer arithmetic and algebra
(discretization errors in computer cartography: Franklin 84). In the
following section, we will review the literature in various areas contributing

to problems involved with polygon overlay.

1.2 Review of the Literature

Fundamental to the development of a solution for polygon overlay is
the research effort in computational geometry. Studies on polyline
intersection were particularly important to the polygon overlay problem.
Somewhat hidden but not less significant are certain operational problems
in performing polygon overlay on the computer. We will discuss the
problem of coincidental input data and that of numerical inaccuracy. In this

section, we will review the literature in these areas. More, we will also




report on packages and systems for polygon overlay. In closing, we will
bring up the issue of using Prolog, which presents a radically different

approach toward programming, for geometric/topological problems.

1.2.1 Computational Geometry

Algorithms to solve the basic problems of polygon intersection and
the point in polygon inclusion were respectively reported in (Eastman 72;
Franklin 72) and (Ferguson 73). During the 70’s, many more algorithms
for geometric intersection problems were developed for graphics rendering.
Sutherland, Sproull, and Schumacker presented a study characterizing ten
different hidden surface algorithms (Sutherland 74). Formal treatment in
the analysis of geometry algorithms developed in the mid 70’s. Shamos
and Hoey reported algorithms to detect geometric intersections, with
complexity analysis showing the problem to be asymptotically as difficult as
sorting by comparison, and that the algorithms reported were optimal
(Shamos 75,76). Bentley and Ottman extended the algorithms to count
and report such intersections (Bentley 79). In the 80’s, much work
continued to flourish along the line of algorithmic design and analysis,
setting the theme of theoretical computational geometry. These results
were later gathered in a survey paper by Lee and Preparata (Lee 84), and
much more comprehensively in the book Computational Geomeiry by
Preparata and Shamos (Preparata 85). In his thesis, Guevara presented a
formal treatment of the polygon overlay problem based on complexity
analysis (Guevara 83). More recently, Guibas and Seidel presented their

theoretical work on an algorithm and its analysis for a restricted version of




polygon overlay - convex planar subdivisions using reciprocal search

(Guibas 86).

Much of the work in computational geometry is concerned with the
design and analysis of algorithms. The approach to efficient algorithms is
often borrowed from the general techniques in the discipline, such as
divide-and-conquer, recursion, and balancing (Aho 74). A different
technique, uniquely and naturally suited to geometry problems, is the plane
sweep (Nievergelt 82). The plane sweep approach, based on the total order
defined in real numbers, often reduces the asymptotic complexity of an
algorithm to that of sorting by comparison. While these results indeed
reveal much about the nature of solving geometry problems on the
computer, they often fall short of being directly applicable from an
engineering standpoint. We note that the complexity analysis of an
algorithm is almost always done for the worst case only. There is a need
for more analysis of the average cases (Forrest 86). On the lack of average

case analysis, Preparata and Shamos offered the two-fold reason:

‘‘first, substantial mathematical difficulties arise even when
the underlying distribution is conveniently selected; second,
there is frequently scarce consensus on a claim that the
selected distribution is a realistic model of the situation being

studied.’’ (Preparata 85, p.9)

This is indeed the case for polygon overlay. Very few results on average
case analysis of the polygon overlay problem were available. McAlpine and

Cook used maps of regular hexagons in random orientation, displacement,




and size to approximate the relationship between the number of output
polygons and the number of input polygons. They derived the following
formula (McAlpine 71):

N = (S V)

where IV is the expected number of output polygons and M, is the number
of input polygons in the k-th map. Lam applied the formula and reported
that the estimates tended to be 5% to 25% higher (Lam 77). Goodchild
studied the statistical aspects and claimed that the number of output
polygons created in an overlay process depends not on the number of input
polygons, but on the complexity of each, defined by the vertices
(Goodchild 77). Based on fractal mathematics (Mandelbrot 77), there were
studies on characterizing monotonic divisions of a polyline (Dutton 81;
Shelberg 82). Clearly, conclusive analysis on the average case behavior of

the polygon overlay problem is difficult.

1.2.2 Polyline Intersection

Asymptotic complexity analysis has ascertained that the determining
factor in the cost of polygon overlay is in polyline intersection (Guevara 83,
p.111). In this section, we will focus on the development of algorithms and

data structures for polyline intersection.

Obviously, the complexity of a polyline depends on the number of
edge segments it contains. To avoid searching into the polylines to simply

determine that they do not intersect, a common technique is to use an




enclosing rectangle for each polyline, so that if the enclosing rectangles do
not intersect, we can conclude that the polylines do not intersect.
Enclosing rectangles with sides parallel to the X and Y axes are easy to
form and easy to check for intersection. But of course there is the problem
that when the enclosing rectangles overlap, the two polylines do not
necessarily intersect. Freeman and Shapira developed a method to form
the minimal area enclosing rectangle (Freeman 75), which would have less
cases of overlapping rectangles and non-intersecting polylines. Little and
Peucker introduced the enclosing band which allowed for recursive
subdivision alternately on two intersecting polylines to determine the
intersection points (Little 79). Burton, on the other hand, covered the
polyline with a tree hierarchy of rectangles in a fixed orientation (Burton
77). Ballard incorporated both of these ideas into the ‘‘strip tree’”” — a
binary tree in which each node represents a subdivision of the polyline
enclosed in a strip (or band in Little and Peucker’s terminology). The tree
hierarchy facilitates binary search into the polyline structure and therefore
divide-and-conquer techniques can apply (Ballard 81). Guevara proposed
to decompose polylines into components monotonic in angle, forming
sections between adjacent points of inflection (Guevara 83). The work

however was not further disseminated.

Perhaps in view of the large data volume involved in map data
processing, Denis White introduced the concept of local processing (White
77). The concept originated from the field of digital picture processing
(Rosenfeld 69), making explicit the possible benefit of parallel processing.
But in White's approach, a single processor instead scans through the input

stream already arranged in pre-sorted order, operating only on a ‘‘local”




section to ensure low temporary storage at any time. However, the
significance of local processing in terms of computational geometry is the
plane sweep approach in use. In fact, local processing in geographic
information systems has predated complexity studies of plane sweep in
computational geometry (Nievergelt 82). More recent theoretical work
based on plane sweep is reported in (Mairson 87) on overlay of two sets of

arcs of single-valued curves - a restricted version of polyline intersection.

Targeted toward a better average case performance, Franklin
introduced the adaptive grid method for geometric operations (Franklin
83b). We used the grid to sort out potentially intersecting edge segments
to within those which occupy some common grid cell. In chapter 3, we will

discuss the adaptive grid method.

1.2.3 Slivers and Nearly Coincidental D ata

How many output polygons can an overlay process produce? An
overlay of two polygons, consisting of N; and IV, edges respectively, can
produce up to 24+N;N, output polygons. The maximal case occurs when
every edge in one polygon crosses every other edge of the other polygon.
Refer to figure 1.2 for an example. Input maps showing statistical
independence will produce a much more moderate number of output
polygons in the overlay process. Serious problems arise, however, when
data in the input maps has a tendency to coincide. This happens often
since prominent lines features such as rivers or major roads in one input

map also appear in another input map as property lines or census tract

10




“How many polygons can overlay produce?”’

77
\

Figure 1.2 Maximal case of Polygon Intersection
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boundaries. But the two versions of the same line feature do not coincide
exactly, and the overlay process will produce many spurious polygons,
slivers, along such line features. Goodchild established a measure of the

expected number of slivers, E(S), given by

2 N;N,

ES) = N3m, -

where N, and IV, are respectively the number of edge segments of the two

chains for the same line feature (Goodchild 77).

Slivers should be removed as a human cartographer would put two
nearly coincident.al chains into one single chain in the overlay. Often
slivers can be recognized by their small area. Two nearly coincidental
chains may be recognized in the intersection process by the overlap of their
narrow enclosing bands, using the polyline intersection algorithm due to
Little and Peucker (Little 79). There was not much study reported on
slivers in the past six years. The system presented in this thesis does not
remove slivers. However, we will describe an outline of a strategy for

sliver removal in section 8.2 for further considerations.

1.2.4 Coordinates and Arithmetic

Traditionally cartographers do not pay much attention to the
accuracy of coordinates. They do not have to since coordinates are not
represented in numerical values but graphically on the map. In an

automated system, coordinates play an essential role in representing the

12




geometry., However, calculated from measurements, coordinates are
inherently subject to error, despite the precision level of the computer word
used for storage. Marvin White called for attention to the proper use of
coordinates and the identifiers of point features (White 83). Polygon
overlay imposes another problem on the use of coordinates. Calculation of
geometric intersections is subject to accuracy problems in floating point
arithmetic on the computer, and overlay systems are therefore prone to
unstability when dealing with tangent conditions. Studies on the
peculiarities of floating point arithmetic were reported in (Malecolm 72;
Gentleman 74). Franklin examined alternative models for arithmetic,

including finite and multiple precision rational numbers (Franklin 84).

Rational arithmetic has been in use in many symbolic mathematics
computation systems, most notably MACSYMA (Macsyma 83), which is in
Lisp. Several Lisp versions, such as Franz Lisp (Foderaro 83) and
Common Lisp (Steele 84), are built in with multiple precision integer
(known as big number) arithmetic. The Unix system also provides a
library of big integer arithmetic in C (Sun 86a) and tools are available for
calculations using rational arithmetic (Sun 86b). We developed two
packages in Prolog for big integers and rational numbers (Wu 86), which
we used in our polygon overlay system for calculating geometric

intersections. Chapter 4 will describe further details.

1.2.5 Polygon Overlay Packages and Systems

The Fortran subroutine package ANOTB (Franklin 72) is an early
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stride to polygon overlay. ANOTB takes two polygons and returns their
Boolean combinations. OVER (Goodchild 74) is a stand-alone Fortran
program which represents a more complex approach to polygon overlay.
OVER first determines all the intersection points between the chains of the
two input maps, and then constructs the output polygons of the overlay
map. One of the oldest and once most advanced integrated system is the
Canadian Geographic Information System - CGIS (Tomlinson 76). CGIS
incorporates a combined grid/raster approach to polygon overlay,
circumventing some of the geometric range searching and intersection
problems. The Polygon Information Overlay System - PIOS (DeBerry 79)
takes two sets of polygon records, and operates on two polygons at one
time. One polygon is divided up into sixteen strips and PIOS uses a point-
in-polygon test to determine the intersecting edges. The Map Overlay and
Statistics System - MOSS (Reed 82) is similar to PIOS in that it operates on
pairwise comparison of polygons. MOSS also performs pairwise comparison
of edge segments to determine the intersection points. Then MOSS traces

out the chains split by intersections to form the output polygons.

WHIRLPOOL (White 77), one of the programs in the ODYSSEY
system (Dutton 77), represents by far a much more advanced approach to
perform polygon overlay. One major contribution of ODYSSEY is the
concept of local processing. Based on this approach WHIRLPOOL in effect
exploits spatial coherence in performing a plane sweep in the problem space
to report chain intersections. Guevara analyzed the performance of
WHIRLPOOL and obtained the following worst case time complexity,

which is optimal:

O( (Ny+ Ng) +(1 + k) log( Ny N, ))
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N,; and N, are respectively the number of edge segments in each input

map, and k is the number of intersections (Guevara 83, p.110).

1.2.6 Prolog and Geometry Projects

Since its inception in the 70’s, Prolog has been used in a variety of
applications. Among the best known are those for natural language
processing, symbolic mathematical computation, compiler construction, and
Prolog is becoming widely accepted as a major programming language for
artificial intelligence applications. In the following, we will briefly review
the history of Prolog, from inception to its proliferation. We will also
review the work on using Prolog for geometry applications. An elaborate
introduction to Prolog is in (Warren 79). A very concise descriptive note is
in (Colmerauer 85). We refer the readers to (Clocksin 81) and (Sterling

86) as two comprehensive text books on Prolog programming.

During the 60’s many were interested in programming computers to
make logical deductions and prove theorems automatically. A significant
mark of progress was Robinson’s discovery of the resolution principle
(Robinson 65). The resolution principle is an inference rule particularly
suited to computing whereby one logical proposition can be shown to follow
from others. The saga went on to the early 70's when Colmerauer
attempted to apply logical deduction on the computer to do automatic
translation between French and English. Colmeraner developed a
prototype ‘‘programming language’’ (Colmerauer 73) to solve simple

problems of logical deduction in children's stories. The prototype
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illustrated the important feature of treating functions as logical relations in

a program.

The theoretical foundation of Prolog is based on the subset of
predicate logic proposed by Kowalski. In a paper titled Predicate Logic as a
Programming Language presented in the 1974 IFIP conference, Kowalski
reported his studies on clausal forms of logic, showing that any problem
can be expressed in logic as well as a particular subset of clausal forms
(Kowalski 74). These were the Horn clauses (so named after the logician
Alfred Horn). A set of Horn clauses can be shown to be logically
consistent using the resolution principle. This theory which was
implemented in the form first by Colmerauer constitutes the basis of

Prolog.

The original version of Prolog was developed on a micro-computer.
It was powerful but very slow (Roussel 75). David Warren implemented
Prolog on the DEC System-10 (Warren 79), and this version, later known
as the Edinburgh version, became instrumental in the spreading of Prolog.
Prolog started its trip in Europe, and when the Japanese Fifth Generation
Computer Project adopted Prolog as the major computer language for
knowledge engineering in the intelligent computers of the future (Fuchi

81), Prolog began to proliferate.

Using Prolog for geometry problems is a venture in an attempt to
answer the quest for more suitable tools to implement geometry and
graphics systems (Forrest 86). Swinson reported studies in using Prolog for

architectural design (Swinson 82,83). Gonzalez compared Prolog to Pascal
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and concluded in favor of Prolog for CAD applications (Gonzalez 84).
Nichols investigated using Prolog for interactive computer graphics; 2
subset of Graphical Kernel System (GKS) was implemented in Prolog
(Nichols 85). Using Prolog in two different approaches for geometric
modelling was also reported: construction of objects defined by constraints
(Bruderlin 85), and solid modelling in octree (Guerrieri 86). A more
recent paper (Franklin 86) included a study of using Prolog in a range of
geometry projects including 2D convex hull, polygon intersection, graph
traversal, and photo reconnaissance inference. The paper also described an

earlier version of the work involved in this thesis, on cartographic map

overlay.

1.3 The Scope of Research Effort

In this section we will identify the scope of research effort in the work of
this thesis. This includes using Prolog for geometry problems, and aspects
of the polygon overlay problem - specifically the problem of topological
inconsistency due to numerical inaccuracy, and the polygon containment
problem. This section concludes with a summary of the research

contributions.

1.3.1 Use of Prolog

Prolog represents a radically different approach toward programming.

The approach has been commonly known as ‘‘logic programming.”” Unlike
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conventional programming languages, a Prolog program does not present a
prescribed set of instructions to the computer to solve a particular problem,
but it describes the objects and their relationships involved in the problem
to be solved. Prolog therefore provides a higher level, more intuitive
programming environment, even though in practice one often has to be
somewhat imperative. A fundamental difficulty in dealing with geometry
on the computer is the primitive nature of conventional programming
languages, and conceptually simple ideas often turn out to be unexpectedly
difficult to implement. How much will Prolog help in filling this gap
between concept and implementation? More specifically, we considered the
issues of relational data structuring and paradigms of logic programming,
both being features offered in Prolog. In our approach, we model as Prolog
facts the geometric entities and their relationships, for the input/output
maps and many interim data structures. The Prolog rules formulate
geometric data processing. Through the experience, we identified features

of Prolog which we deemed advantageous, and extracted the programming

paradigms.

1.3.2 Polygon Overlay

Polygon overlay is an intricate problem and it encompasses a host of
many subproblems. In this thesis, we focus in particular on the problem of
numerical inaccuracy in calculating geometric intersections. The problem is
important since it leads to topological inconsistency in the polygon overlay
process. Rational arithmetic offers total numerical accuracy for geometric

intersections. We exploited the flexibility in Prolog to implement rational
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arithmetic, to illustrate its practicability. Since accuracy is preserved, basic
intersection algorithms can be extended to properly identify and handle all

special cases.

The polygon overlay algorithm implemented is due to Franklin. The
algorithm decomposes the complex process of polygon overlay into a
number of simple stages, resulting in simplified data structures (Franklin
83a). To the knowledge of the author, the algorithm has not been
implemented in any system disseminated in the public literature. I
implemented the algorithm. Further, resolving the polygon containment
problem, I extended the algorithm to handle also polygons with holes and

maps with separate components.

1.3.3 Research Contributions

Based on the preceding outline of the scope of research effort in this

thesis, we summarize the contributions in the following:

(1) Using polygon overlay as a vehicle, we investigated the practicability
and suitability of Prolog for geometry applications. Other than the
general high level nature and the relational approach to data structuring
in Prolog, we identified these features, namely, set-based operations,
pattern matching geometric and topological properties, and unification
to form equivalence classes, as useful paradigms of programming in
Prolog, being advantages as a programming tool for geometry

problems.
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(2) The system presented in this thesis illustrated the use of rational
arithmetic for geometric intersection problems. Rational arithmetic
preserves total accuracy, and topological consistency is therefore

guaranteed.

(3) With numerical accuracy preserved, we were able to extend the line
segment intersection algorithm to cover all special cases, properly
identifying and handling coincidental and tangent conditions. This
combined with (2) above provided for stability in the polygon overlay

process.

(4) We resolved the polygon containment cases and thus extended the
polygon overlay algorithm due to Franklin to handle input maps with

separate components (and polygons with holes).

1.4 An Overview of The Thesis

In chapter 1, we have reviewed the related literature and

summarized the research contributions.

Chapter 2 will deseribe the polygon overlay system developed in
Prolog. The system decomposes the process of polygon overlay into a
number of stages. We begin with definitions and data structures, and
present an overview of the system. Each stage of the system is then

further subdivided for more detailed description.
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Chapter 3, 4 and 5 discuss three major features in the system: the
adaptive grid, rational arithmetic, and special cases handling. The adaptive
grid is a strategy to speed up computing chain intersections. In chapter 3,
we describe the strategy as an approach toward distribution sort to avoid
pairwise comparison between individual edge segments. An analysis of its
performance based on random edge segments is presented. Chapter 4 is on
rational arithmetic: we discuss the problem of numerical inaccuracy in
geometric intersection and the mathematics of rational arithmetic as a
solution to the problem. We describe the implementation in Prolog, and
discuss the cost in terms of CPU resources in using rational arithmetic. In
chapter 5, we will develop an algorithm for edge segment intersections,
complete with special cases handling. Exact numerical results due to
‘rational arithmetic enable us to properly identify these special cases. With
complete special cases handling, stability in the polygon overlay process is

achieved.

Chapter 6 is concerned with the use of Prolog: motivated by the
quest for better programming tools, we venture into the experiment of
using Prolog for our polygon overlay system. In chapter 6, we describe our
experience with Prolog and illustrate some of its features with examples
from the polygon overlay system. Specifically we have formulated several

paradigms of programming which appear to be useful in general.

Chapter 7 documents the implementation; the Prolog source listing
of the entire polygon overlay system is appended to the thesis. We
describe the various steps in the programs. In chapter 7, we also

demonstrate the results from two sets of test runs on our system. One set




22

is on testing the stability; the other is on general performance.

Chapter 8 closes with a summary of the thesis, and in conclusion,
reiterates the research contfibutions. More, further considerations are
discussed. These include sliver removal, map data verification, and map

generalization.




Chapter 2 A POLYGON OVERLAY SYSTEM IN PROLOG

Chapter 2 presents our polygon overlay system developed in Prolog.
| In chapter 1, we have briefly described the polygon overlay problem. In
chapter 2, we will begin with the fundamental geometric entities first and
then give a definition for the polygon overlay problem in section 2.1.
Section 2.2 will explain the input and output file structures. To introduce
the system, section 2.3 presents with an overview first, and the rest of the
chapter will describe further details in each of the stages in turn. Chapter
3, 4 and 5 will follow up to discuss the major features of the system.

2.1 Definitions

A map refers to a 2D spatial data structure, consisting of three
generic classes of geometric entities, namely, node, chain, and pélygon. A
node is a point in the 2D plane which is a topological junction. A chain is a
directed polyline structure - a sequence of contiguous and non-intersecting
line segments in the plane beginning at a node and ending at a node. The
two nodes may or may not be the same node. A chain does not intersect
with any other chains in the same map, nor with itself. Two chains may
touch each other only at a node where they begin or end. Hence, the
network of nodes and chains in a map partitions the 2D plane into regions,
called polygons. Each polygon is a connected subset of the 2D plane. A
polygon is bounded by one or more sequences of alternating nodes and
chains; each sequence forms a complete cyecle, that is a simple closed curve.
The cyclic order determines whether the interior of the polygon is to the

inside or outside of the boundary. Figure 2.1 shows a map illustrating the
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ideas aforementioned.

Given two maps A and B, the polygon overlay process produces an
output map C by superimposing A and B. Since chains of map A may
intersect those of map B, new nodes are formed at the intersection points.
The output map C contains all the nodes of A and B, and the new nodes
generated. Map C contains all the chains of A and B; those involved in
intersection are split up at the new nodes, that is, the intersection points.
The network of chains and nodes in map C partitions the plane into
polygons, each of which is a resultant polygon from the intersection
betweenh a polygon in A and another one in B. An overlay relationship
associates each polygon in C with these two polygons in A and B. The
polygon overlay process construets output map C, and establishes the
overlay relationship. Figure 2.2 illustrates two input maps, the overlay

output map, and the overlay relationship.

In the context of our definition, we have assumed consistency in the
input map data, and that the maps are properly registered in scale and

orientation for the overlay process.

2.2 Input/Output and File Structures

A map as defined above consists of nodes, chains, and polygons. It
however suffices to represent a map with the set of chains complete with

the following set of attributes:
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nodes: A,B,D,H,I,L.

chains: a [A,B]

b [B,C.D] polygons: #1[ht(a),ht(e), th(f)]
c [D,E,F,G,H] #2{ht(b),ht(f),ht(d),th(g)]

d [H,]] #2(th(h)]

e [IJ,A] #3[hi(h)]

f [IB] #4[hi(g),ht(c)]

g [H,K,D] #5(th(a),th(b),th(c),th(d), th(e)]

h [LM,N,L]

Figure 2.1 Nodes, Chains, and Polygons in a Map
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Map A

A2
Map B
B3
\ / B1 B2
OVERLAY "
C3
C1 C2 l C4 C5
Ceé

Cc7

Overlay Relationship:  over(Cl ,A1,B3).

over(C2,A1,B1).
over(C3,A2,B3).
over(C4,A2,B1).
over(C5,A3,B1).
over(C6,A3,B2).
over(C7,A3,B3).

Figure 2.2 Polygon Overlay and the overlay relationship.
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- MAP: map id;

- C#: chain id;

- IN1,N,: beginning and ending node id’s;

- [ [=,9]),..-}: polyline in a list of (z,y) coordinates from N; to Ny;
- Py,P,: polygon id’s to the left and right of the chain.

The nodes and the polygons can be derived from the chains as defined
above. An input map is therefore set up as a collection of variable length

records, represented as chain facts in Prolog:
chain(MAP, C#,N,,N,,[ [2,y],...],P1,Ps).

The output map from polygon overlay consists of a similar set of chains,
with a new map id. Although redundant, the process also produces for

output a set of node facts and a set of polygon facts:
node( N#,[z,y],[1;,15,...])-

N is the node id; [z,y] the coordinates of the node N#t. [Iy,Is,...] is the
list of chain incidences in positive cyelic order about the node. Each chain
incidence I; can be k(C;) for head (ie, starting node), or {C;) for tail (ie,

ending node).

polygon( P#,[B;,B,,...]).

P# is the id of a polygon. Each polygon fact identifies a polygon boundary:
P# is therefore not unique for each fact, but identifies a boundary of the
polygon. [B;,B,,...] is the list of boundary chains in proper cyclic order
around, identifying a polygon boundary: positive cyclic order indicates that

the polygon P# is to the inside, and negative, to the outside. Each chain
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boundary B; can be th(C;) or h{ C;), for tail-to-head and head-to-tail

respectively, indicating the direction of the chain in the polygon boundary.

The polygon overlay process also resolves the overlay relationship
between the polygons of the output map and those of the input maps. The

set of over facts establishes the association:
over( P#,P,,P,).

P# is the unique identifier for each output polygon; P; and P, are the id’s
of the source polygons in each of the input mﬁps. P# is generated in the

overlay process by the intersection of P; and P,.

To sum this up, the polygon overlay system requires an input file of
chains for each input map. For the output map, four files are generated:
chains, nodes, polygons, and the overlay relationship with the input
polygons. During the process of polygon overlay, the system also generates
different interim data files for use in various subsequent steps. We will

explain these interim data files as we proceed on to describe the steps

involved in the process.

2.3 Description of The System

Our system divides the polygon overlay process into four major
stages. Each is further subdivided into a number of steps. The following

presents an overview and a brief description of the four different stages in

the process:
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Stage 1. Chain Intersection.
Determine intersecting chains and split them at the

intersection points, generating new nodes.

Stage 2. Polygon Boundary Formation.
Form the polygon boundaries by linking up the network

chains.

Stage 3. Polygon Overlay Identification.
Identify for each polygon boundary the source polygons of

the input maps and establish the overlay relationship.

Stage 4. Boundary Containment Resolution.
Resolve the containment relationships between polygon

boundaries to identify the polygons with multiple boundaries.

We are going to describe each stage in further details in this chapter. There

are a few major components and features, which we will desecribe in the

chapters to follow.

2.3.1 Chain Intersection

Given two sets of chains, each forming a map, we want to determine
the intersecting chains and split them at the intersection points. In search
of intersections, we observe that when two chains intersect, the intersection
occurs between two edge segments which occupy the same locality. Our

approach breaks down each chain into its edge segments and casts a grid
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over the edge segments. The intention is to isolate cases of potential
intersections to within those edge segments that occupy the same grid cell.
Figure 2.3 illustrates the idea. We can then determine the intersecting edge
segments by pairwise comparison. The strategy is called the adaptive grid
method (Franklin 83b) since the appropriate grid cell size is determined by
statistical measures from the two input maps. The process involves the

following steps:

Step 1.1 Determine the appropriate grid cell size for the adaptive grid.

Step 1.2 Cast the grid over the edge segments; determine for each
edge segment the grid cells it occupies and collect the edge

segments into sets for each grid cell they occupy.

Step 1.3 Determine intersections in each set of edge segments by
pairwise comparison; split the edge segments and generate a

new node for each intersection.
Step 1.4 Connect the edge segments back to chains, already split at

the intersection points.

In step 1.1, we examine the input chains and break them up into the
constituent edge segments, each identified by the edge id E#. This forms
the edge file:

edge( B, [ V1, Vsl)-

In step 1.2, we distribute these edges to the grid cells each edge occupies.
This step generates the grid file consisting of one entry for each grid cell,




When two chains intersect,-
they do so between two edge segments
which occupy the same locality.

Figure 2.3 The adaptive grid isolates potentially intersecting edge segments.
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identified by G#, and the set of edge segments for each entry:

grid G#,[E,E,,...]).

In step 1.3, we go through the grid file sequentially, and determine
intersections by pairwise comparison between the edge segments in each
grid cell, making references to the edge file. Intersecting edges are split at
the intersection points. In step 1.4, we connect the edge segments back to

chains. These are the network chains for the output map:
chain( C#,N,Ny,|[ [z,y],...])-

They are called network chains because we do not yet have the information

for the adjacent polygons.

Chapter 3 will discuss further our strategy in using the adaptive grid
for chain intersection. Calculation of geometric intersection is done using
multiple precision rational arithmetic, which we have implemented in
Prolog. Chapter 4 will describe the rational arithmetic package. We have
limited the handling of special cases of chain intersection to only the low
level operations, which in our case is in intersecting edge segments.
Chapter 5 will develop an algorithm for edge segment intersection complete

with special cases handling.

2.3.2 Polygon Boundary Formation

The chains and nodes partition the 2D plane into polygons. We link

up the network chains from the previous stage around the polygon corners
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at each node. Each completed cycle of chain linkages forms the boundary

of a polygon. This stage involves the following steps:

Step 2.1 Identify for each chain the nodes where it begins and

terminates, and calculate the incident angles.

Step 2.2 Sort the chains by the incident angles around each node into
proper cyclic order. Each adjacent pair of chains identify a
corner of an output polygon at the node. Form linkage of

the adjacent chains in the specified direction.

Step 2.3 Match the linkages and connect them until each list of
directed chains begins and ends with the same entry; each
list identifies the boundary chains of a polygon in its proper

cyclic order.

Step 2.1 generates the chain-to-node incidence file. Each incidence entry

has the following format:
i( Node#, Incidence, ANGLE).

Node# is the node identifier. Incidence can be h{ C#) or { C#), to indicate
the head or tail of chain C#. ANGLE is the incident angle the adjacent
vector of the chain makes with the positive X-axis at the node. Step 2.2
then collects the incidence entries at each node and sorts them out by the

ANGLE. Then we have the nodes of the output map:
node( Node#,[x,y],[list of chain incidences... ]).

Around each node, adjacent chain incidences identify a polygon corner.




We generate a linkage file, with one entry for each polygon corner:
linkage(Bl,B2,[Bl,Bz, ...]).

We call it linkage since we intend to link them up to form the polygon
boundaries. B; and B, are chains marked with a specified direction:
th( C#) or ht{ C#) to indicate the chain C# from tail to head or from head
to tail. The list [B;,B,] will be linked with other lists. B, and B, identify
the first and last elements of the list.

In step 2.3, we connect two linkages if they match together. Two
linkages match if the last entry in one list is the same as the first entry in
the other list. The concatenated list becomes a new, and longer, linkage.
For example, linkage(B,,B,,[B,,B,]) and linkage(B,,B3,[Bs,B;]) are
connected to form linkage(B,,Bg,{B,,B9,B3]). When no more linkages
match, we should have each linkage beginning and ending with the same
chain entry. Then each of the list [B,,By,Bjg,... ,B;| identifies a polygon

boundary. We generate new polygon names for each boundary list for the

polygon file:
polygon(P#,[Bl,Bg,B3,... ]).

We should note that dangling chains and bridges do not present any
difficulty to the process. They end up to be in the same boundary list in
both directions. Figure 2.4 demonstrates the process of linking up directed

chains to form polygon boundaries.

Once we have the polygons, we can also re-format the network

chains (from the previous stage) into complete chains with the information
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Map A

chain #1: {a, d]
chain #2: [a, e, d]
chain #3: {a, b, ¢, d]

Overlay Example

Map B
[chain #4:(f, g, h,i f]

‘ Edges split by intersection

Sort Chains at each node
by incident angles

#19

polygon(1, [ht(18), ht(19)])
polygon(2, [ht(6), th(14), th(15)])
polygon(3, [th(s), th(12), ht(10)))
poiygon(4, [th(s), ht(9), ht(12)])
gg:ygon((g- E:f( 11), th(9)])
ygon(, [ht(5), ht(15), th(18),
polygon(7, [th(21), :1(1(23;) N (1) 2. hzs))
Polygon(8, [nt(24), th(19), ht(14), th(10), th(11), th(2s)])

Figure 2.4 Linking chains to form polygon boundaries




for the adjacent polygons. These are then the complete chains for the

output map.

2.3.3 Polygon Overlay Identification

Each output polygon is the intersection of two input polygons, one in
each input map. However, the polygon boundaries may or may not be
involved in intersection. If the list of boundary chains is involved in any
intersection, it consists of chains from the two different input polygons.
We can therefore determine the input polygons by examining the chains in
the boundary list. If no chains in the boundary list is involved in any
intersection, all the chains comes from one polygon in one of the input
maps, the polygon being completely contained in another polygon of the
other input map. We can only determine one input polygon from the
chains in the boundary list; the unknown one is the containment polygon.
Observe, however, that all of its neighbors must also be inside the same
containment polygon of the other input map. Figure 2.5 illustrates this.

We can then recursively search its neighbors for the containment polygon.

The recursive search fails only when the entire connected group of
polygon boundaries are not involved in any intersection with the other
input map. In this case, we identify the possible containment polygons
from the other input map, and determine the containment polygon by

testing each one with the point-in-polygon test.

The following outlines the steps to determine the overlay
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Figure 2.5 All neighbors are inside the same containment polygon.
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relationships between the input and output polygons:

Step 3.1

Step 3.2

Step 3.3

For each output polygon boundary P#, if involved with
intersection, determine the input polygons P; and P,; if not
involved with any intersection, recursively search the

neighbors to determine the containment polygon.

If the search fails, identify the connected group of
neighboring polygons together.

For each group, identify the polygon boundary which refers
to the outside polygon in the input map. One of the
polygons in the other input map which intersect with the
outside polygon is the containment polygon we are looking
for. Take a point from the group for point-in-polygon test to

determine the containment polygon.

Step 3.1 generates the file for overlay relationship entries. For each output

polygon P#, an entry has the format:

over( P#,P,,P,).

P, and P, are the two input polygons from the two input maps, such that

P# is from P, N P, If any search for the containment polygon fails

within the group of connected neighbors, the over file cannot be completed

in step 3.1, and will have to be appended later on. Step 3.2 generates two

files, one for each input map:

overl( Group#,P#,P,). and over2( Group#,P#,P,).




Each entry identifies an output polygon P# known to be in one input map
(as P, or P,), but its containment polygon in the other input map is still
unknown. Each Group# identifies a group of connected neighbors together.
Step 3.3 resolves the unknown containment polygon by point-in-polygon
test for each connected group. The results are then appended to the over

file for overlay relationships.

2.3.4 Boundary Containment Resolution

Two polygons may intersect to form more than omne polygon.
Further, we have defined a polygon to be a connected subset of the 2D
plane, each polygon may have more than one boundary (some boundaries
being holes). Figure 2.6 illustrate one case of two polygons intersecting to
form two polygons each with one hole. While we have determined the
input polygons for each output polygon boundary, we must also determine

which of the boundaries refer to the same connected piece of output

polygon.

We examine the polygon boundaries which are formed from the
same pair of input polygons. We then divide them into two groups by their
cyclic order: positive polygon boundaries, and the holes which are the
negative ones. Each positive boundary identifies one connected polygon.
The negative ones are each a hole contained in one of the positive
polygons. The exception is the outside polygon which is the overlay of the
outside polygons in the two input maps; it contains only holes and no

positive polygons. The following describes the steps to resolve the
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Figure 2.6 Intersection of two polygons producing two polygons with two holes.
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containment relationships and identify the holes for each polygon:

Step 4.1 Gather the polygon boundaries which are formed from the

overlay of the same pair of input polygons.

Step 4.2 Divide into two groups according to the boundary cyclic
order: positive ones are polygons and negative ones are

holes.

Step 4.3 Determine the containment polygon for each hole P# using
the point-in-polygon test. Update the polygon id for P# to

that of its containment polygon.

After these steps, we can update the output files of chains, polygons, and
overlay relationships. If a polygon is found to be a hole in another
polygon, it should take the polygon id of its containment polygon. All its
boundary chains will have to be updated and the entry in the overlay
relationships can be deleted, since the entry for the containment polygon is

already there.

2.4 Process Decom position

A theme in our design philosophy we would like to note here is
process decomposition. Process decomposition simply means the dividing
up of a complex process into less complicated steps. But it is a powerful
concept in both software and hardware architecture. In our system, we

have divided up the polygon overlay process into quite a number of steps,




organized into four major stages as we have presented here in this chapter.

The benefit that is obvious here is in data structuring. Each step
performs a certain operation to its input files and generates its output files.
There is no complicated nesting of process or searching of data structures.
This makes our system unique amohg the other systems we surveyed in
chapter 1. For example, we will not have to keep a set of open chains as in
WHIRLPOOL (White 77) but can still maintain local processing. Nor do
we have to deal with strips of a polygon as in PIOS (DeBerry 79).

Another benefit of process decomposition is modularity. While we
have a number of different modules, each performing an operation for one
step in the process, these modules can be organized in other ways for other
purposes. There is possibility of re-use for every module. The polygon
overlay system can be modified to perform map data verification. A
module for sliver elimination can be added immediately after we form all
the output polygons and before examining their overlay relationships.

Chapter 8 will discuss these in further considerations.

Process decomposition also makes suitable candidates for pipe-lining
in a multi-processor environment. Although we have not taken advantage
of this in our project, we refer to it here since it is also one of the benefits

of the same design philosophy.
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Chapter 3 THE ADAPTIVE GRID

Given two sets of chains, each forming a map, we want to determine
the intersecting chains and split them at the intersection points. This is the
polygon overlay version of the polyline intersection problem. This problem
is also the most costly step in the entire process of polygon- overlay. We
implemented the adaptive grid approach to tackle the problem. In this
chapter, we will classify the polyline intersection algorithms mentioned in
the literature survey, and present the adaptive grid method as a different
approach to the polyline intersection problem. We will also present an
average case timing analysis for random edge segments. The question
concerning the performance of the adaptive grid for polygon overlay
remains open. We do not have an answer in this thesis, but will discuss the
validity of the assumptions made in the analysis. We have quite a range of
freedom in choosing an appropriate grid cell size, and we will discuss that.
The benefit along with the local processing concept in the adaptive grid

method is also presented.

3.1 Polyline Intersection

We surveyed a number of different algorithms for polyline
intersection in section 1.2.2. In the course of the development, we see that
the polyline intersection problem, although much more complicated, in
many ways resembles a sorting problem. Intuitively, the problem involves
both pairwise comparisons between polylines as well as those between the
constituent edge segments. Algorithms can be classified into two groups:

the first group deals with intersection between two polylines. Methods
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testing the enclosing rectangles eliminates some of the cases of the need to
examine the edge segments in the polylines. The recursive algorithm using
an enclosing band (Little 79) exploits the contiguous nature of the
constituent edge segments to minimize pairwise examination, resulting in a
linear worst case time complexity. The Binary-Search-Polyline-
Representation (Burton 77) forms a hierarchical structure to perform binary
search into the polyline to locate an intersecting edge segment, achieving
the log(Ny+ N,) worst case time complexity. The strip-tree (Ballard 81)
integrates the two ideas together, and simplifies the data structure. These
algorithms work with two polylines at a time and do not tackle of problem
of pairwise comparisons between polylines. The second group of
algorithms deal with the entire set of polylines and attempt to exploit spatial
coherence in the total ordering of the real space: an approach commonly
called the ‘‘plane-sweep’’ (Nievergelt 82) in computational geometry. This
is the local processing concept in (White 77) which pre-sorts the input
polylines and then scans over the polylines in the pre-sorted order,
operating in a ‘‘local’’ section of the object space at one time. It is then
necessary only to examine those polylines in the same local section at the

same time for potential intersections. This approach achieves the optimal

worst case time complexity.

3.2 The Adaptive Grid

In the adaptive grid approach (Franklin 83b), we deal with the entire
set of polylines all at one time. But we also deal with individual constituent

edge segments disregard of the number of polylines. Instead of treating the
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polyline intersection problem like sorting by comparison, the adaptive grid

method sets up a way to perform sorting by distribution.

The adaptive grid is a regular, rectangular grid imposed onto the
object space. It is adaptive because the grid cell size is determined by
statistical measurements from the input data set. Once the grid is set up,
each grid cell serves as a bucket in sorting by distribution. Since the grid is
regular, it is a constant time operation to locate the grid containing any
point in the object space. For an edge segment, we can determine and
report the grid cells it occupies in time linear to the number of grid cells
occupied (Foley 82). The total time required to distribute all the input
edge segments to the buckets for the grid cells occupied is therefore linear
to the total number of (grid-cell, edge-segment) pairs. We have to be
more careful with the data structure for the adaptive grid so that empty grid
cells will not take up any storage space. In Prolog, each non-empty grid cell
is represented as a fact with a unique functor name for each cell. For

example, grid cell #344 is the Prolog fact
g344([E1,E2,...]).

where [E|,E,,...] is the set of edge segments in the bucket. Each bucket is
treated as a set and access to the buckets is handled by linear hashing.

When we have finished the pre-processing step of distributing the
edge segments to the grid cells, we need to examine only the ones which
share at least one common grid cell for potential intersection. We do so by
pairwise comparison between the edge segments in each non-empty grid

cell. In the set-based data structure in Prolog, empty grid cells do not take
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up any storage, nor do they need any CPU time to check that they are

empty.

The adaptive grid has avoided pairwise polyline comparison in
considering the constituent edge segments individually. Furthermore, it
minimizes comparing edge segments one to another by classifying the
object space into grid cells. Our motivation is the observation that when
two polylines intersect, they do so between two edge segments in the same
locality. Hence the adaptive grid method attempts to focus the attention
directly on the intersection points by sorting out potentially intersecting

edge segments to within those that occupy at least one common grid cell.

3.3 Performance Assessment

In this section, we attempt to analyze the performance of the
adaptive grid method. However, due to the same difficulties which we also
mentioned in section 1.2.1 - the lack of common consensus on a realistic
mode] for map data, and the substantial mathematical complications of the
possible data models - the analysis presented here is based on random edge
segments, identically and independently distributed over the object space.

Other assum ptions will be stated as we proceed.

We consider the problem of computing all intersections between two
sets S and T of edge segments. Let N, and /N, be the number of edge
segments in S and 7T, respectively. We cast the adaptive grid over the

scene to sort out groups of potentially intersecting edge segments which
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share at least one commonly occupied grid cell. The grid is a regular grid
so that we can determine the cells occupied by each edge segment, in time
linear to the number of (cell, edge) pairs. Let U, and U, be the expected
number of grid cells each edge of S and T occupies, and W, and W; the
expected number of edges of S and T in each grid cell. For each of the
sets § and T, we count the total number of (cell, edge) pairs. We have

G XW, =N, XU,
G XW, = N, XU,

and jointly,
G X(Ws + Wt) = (Ns XUs) +(Nt XUt)

Then, consider the expected time T for the adaptive grid method to

determine all intersections.
T =T+ 7T,

where T is the time for casting the grid over all edge segments, and T, the
time to compute all intersections given the (cell, edge) association. We
adopt the following convention, first popularized by Knuth (Knuth 76) to

characterize the asymptotic behavior of the timing functions:
T =8e(/(N))

denotes that there exist positive constants C; and C, such that
Cf(N) £ T £ Cy f(N)

for all N > Ny, that is, in our case, N, and N, sufficiently large. T, is the
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time required to form all the (cell, edge) pairs. Hence,
T, =0O(N, U, +NU,;)

while T, is the time required to compare all pairs of edges in S X T for
each cell. Here we assume that the edge segments of each set are
independently and identically distributed. We have

NaUs-NtUt)
G

T, =©(G W, W,) = 6

If we assume that edge segment lengths are relatively uniform, then U, and
U; can be treated as constants. T is linear to the sum of number of edge

segments in S and T:

T, =6(N,+N)
and
N, N;
G

T, = 6( )

If ¢ remains constant independent of the growth of N, and MV, then
Ty =O©( N, N, ). We have T, given as above because when N, and N,
grow with G remaining constant, the number of intersections grows linearly
to the product N; X N,: in any algorithm to determine intersections, we
must visit each intersection point at least once. But if there is a reasonable
limit to the density of edge segments in an input map, as N (N, or N;)
increases, W (W, or W;), the expected number of edges in each grid cell,
will be bounded above asymptotically. The asymptotic growth of G will
then be linear to N,, and to V;. We have the total timing measure given

by:
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N, N;

8

The expected time performance is linear to the sum of the size of input
data set and that of the output data set. Empirical data in (Franklin 83b)
testing up to 50,000 random edge segments verified this result.

This assessment, however, is based on random edge segments
identically and independently distributed over the object space. We have
also assumed that the edge segments are of relatively uniform lengths, and
that there is an upper bound to the density of edge segments. Contrary to
the identical and independent distribution assumption, real map data
consists of edge segments linked up at their respective end-points into
polylines which do not intersect one another in the same map. Our
measure for T, to be 6(G W, W;) will no longer hold since the product of
the expected values is not the same as the average of the products in each
grid cell. Accounting for the correlation in map data calls for a more
sophisticated mathematical model than what we now have. The question
concerning the expected performance of the adaptive grid method for

polygon overlay remains open.

The assumption that edge segment lengths have a relatively small
standard deviation may be more reasonable for certain classes of polyline
data, such as contours, drainage patterns, soil and vegetation boundaries.
Artificial caricatures such as property lines, reference grids, or structures in
urban planning would show a much larger deviation from uniform length
edge segments. Polygon overlay cases often involve the two different

classes of these maps. An analysis for the performance may take that into
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account. Furthermore, although maps can be extremely complex and
dense in information, it should be reasonable to assume that there exists a
limit to the density of such information in each processing step. An upper
bound to the density of edge segments in the map would be a useful

restriction in assessing the performance for polygon overlay.

3.4 Grid Cell Size

To set up the adaptive grid, we need to determine an appropriate
size for the grid cells. Since the grid is intended to isolate cases of
intersecting edge segments, it may seem desirable to use smaller grid cells
so that two edge segments would not occupy a common grid cell unless
they intersect each other. On the other hand, smaller grid cells result in a
grid with more cells, and will take more pre-processing time in distributing
the edge segments into the grid. In this section, we will address the issue

of determining an appropriate grid cell size.

Let T, be the time needed in the pre-processing step, and T, the
time to examine all pairwise combinations of edge segments in each of the
grid cells. Let S be the area of a grid cell, which is inversely proportional

to the number of cells in the grid for a given input data set. Then we have,
T, =e(%) and T, — ©( S?)

Since T, is monotonically decreasing with 5, and T, monotonically
increasing, the total time T =T, + T, attains minimum at S* for which

T, = T,. Figure 3.1 illustrates this.
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Optimal grid cell size S ”:

T2=6(S 2)

T,=6(3)

Minsmal T

Figure 3.1 Minimum of T =T |+ T, occurs at T ;=T ,.




Experimentally, we assume relatively uniform lengths for the edge
segments and a low upper bound for the density. We compute the grid cell
size separately along the X and Y directions using the projections onto the
axes. We choose our grid cell size to be slightly larger than the average
length. Let L be the extent of the coordinates along an axis, and e the
average length of the projections on the axis. The number of grid cells

along that direction is given by G, where

g

=L
9=

G =

and grid cell size

Based on empirical results in (Franklin 83b), the total performance is not
sensitive for grid cell sizes close to this chosen value, by as much as a
factor of 2. This can be explained intuitively by that the function

T =T(S) is relatively flat in the vicinity of the minimum point.

3.5 Local Processing

Local processing as introduced in (White 77) is the concept to deal
with large data volume in a computer with little direct access memory. The

computer processes a local section at a time so that we do not need to store

the entire map in the memory.

The adaptive grid method supports the local processing concept: each
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grid cell is treated as a local unit in the process. Hence we do not keep the
entire grid in memory in this approach. Instead, in the pre-processing
stage, we generate a (cell, edge) pair for each grid cell occupied by an edge
segment. When finished with the pre-processing stage, we can perform an
external sort on the entire file of (cell, edge) pairs, sorting by the cell
number. Then we can go through the the file sequentially, examining each
non-empty grid cell for intersecting edges. In this approach also, empty
grid cells do not use any memory space, and no extra CPU time to check
that they are empty. However, the external sorting step does incur
additional cost. Here we should note that since we are sorting by the cell
numbers, we can do this by distribution sort (Knuth 72) which takes time

linear to the total number of (cell, edge) pairs.

The adaptive grid approach is not primarily aimed at saving storage.

We may refer to this as an additional advantage in the method.




Chapter 4 RATIONAL ARITHMETIC

Our polygon overlay system uses rational arithmetic to ecaleulate
geometric intersections. We are motivated by the problem of numerical
inaccuracy in floating point arithmetic. However, here we are not primarily
concerned with accuracy but rather with the topological consistency which
can be affected by numerical inaccuracy. Section 4.1 will discuss this
problem. Rational arithmetic is exact and enables us to circumvent the
probiem of numerical inaccuracy. Section 4.2 presents the mathematics of
rational arithmetic for geometric intersection in polygon overlay. Section
4.3 describes the implementation in our overlay system in Prolog. Section
4.4 addresses the plausible problems involved in conversion between
regular floating point numbers and exact rational numbers. Section 4.5

concludes with an assessment on the cost of CPU time in using rational

arithmetic.

4.1 An Operational Problem In Polygon Overlay

A problem in implementation of geometry algorithms is numerical
inaccuracy. It is, however, not so much a problem of accuracy but that of
topological consistency which can be affected by numerical inaccuracy.
Coordinates, derived from measurements, are inherently subject to error
despite the precision level used in the numerical representation. More
important is the problem of geometric computation in which results are
subject to discretization errors in floating point arithmetic. Inaccurate
results may lead to topological inconsistency; figure 4.1 illustrates the case

of an overlay example with a triangle and a square. The vertex P of the
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Figure 4.1
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An Operational Problem:

topological inconsistency due to numerical inaccuracy
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triangle falls on the edge E of the square, but due to numerical inaccuracy,
only one of the two adjacent edges of the triangle intersects with E. The
problem then is that the output map is topologically inconsistent. Overlay
systems are therefore prone to unstability when dealing with situations such

as nearly coincidental points, almost touching chains, and other tangent

conditions.

Our system uses rational arithmetic which preserves total accuracy.
We are then able to circumvent the problems of inaccuracy arising from
discretization errors in calculating intersections, and we can guarantee

topological consistency in the overlay process.

4.2 Rational Arithmetic For Geometric Intersection

The arithmetic of calculating geometric intersections in polygon
overlay is based on that of calculating edge segment intersections. Given
the end-points of an edge segment, (z,,y;) and (z,,¥,), the equation of the
extended straight line is given by Az + By + C =0 where

A =y~ 1
B =z,- z,
C =y 2,- 219

and all the coefficients are rational. Given two straight lines represented by

A1$+Bly+01
Az + By y + C
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The intersection point (z,y) is given by the solution to the above system of
two equations. Given the input coordinates in rational numbers, the
intersection point will always have rational coordinates since it is the
solution to a linear system with rational coefficients. Hence, we have
closure of numerical representation in using rational arithmetic for

geometric intersections.

4.3 Rational Arithmetic In Prolog

This section describes our implementation of rational arithmetic in
Prolog. The package consists of two parts, one being built on top of the
other. The first package, BIG, implements multiple precision integers, and
the second, XQ, which builds upon BIG, implements exact rational
numbers. Arithmetic using these rational numbers is exact since the
operations are based on integer arithmetic with virtually no overflow limit.
The two following sections describe the packages, BIG and XQ,
respectively, and present the complexity measures of the arithmetic
operations based on data precision. The third section remarks on the
importance on modular installation in an experimental system. In the
fourth section, we present a test run of the BIG and XQ packages,
calculating m to an arbitrarily close approximation by a rational number

using an infinite series.
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4.3.1 BIG - Multiple Precision Integers

A BIG number is an integer with no overflow limit. We represent a
BIG number with a list of integers in Prolog. The absolute value of each
term in the list is limited to less than a certain maximum term size, say M.

The BIG number represented by the list [ a,, a,, ..., a,] is given by
g, +ag M +a; M2+ -+ +a, M*!

Since Prolog does not impose a limit to the number of terms in a list, the
BIG number has virtually no overflow limit. A legitimate BIG number
should have leading zeroes trimmed. Zero is therefore represented as [ |,
the empty list. A negative BIG number has the most significant term
negative and all other terms in the list non-negative. Given this standard,
we have both uniqueness and completeness in our representation. Figure

4.2 shows some examples, for M =100.

The maximum term size, M, is chosen such that
M2 <L

where L is the regular integer overflow limit. This is to prevent integer
overflow in any one term when evaluating an arithmetic expression. In the
following we will describe the arithmetic operations implemented: addition,
subtraction, multiplication, division and remainder (modulo arithmetic).
Arithmetic comparison is included. Given that the BIG integer operands
N, and N, having n; and n, terms each, respectively, we also present the

worst case time complexity measures. We will use Knuth’s notation:
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100
12345
-10023

represented as
represented as
represented as
represented as
represented as
represented as
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[0,1]
[45,23,1]
[-23,0,-1]

[-1]

Figure 4.2 Examples of BIG integers (M = 100)




T = 0( f(N))

denotes that there exist positive constants C and Ny such that T < Cf (N)
for N > N, (Knuth 76).

Addition/Subitraction. This can be done by taking the corresponding terms
together for the operation, so that

maz( ny, ny)

n . 2 .

Y oaMitle 30 oMl = 3 g M-l
i=l = k=1

where G = ap + b

and ey =0 for k>n;; b, =0 for k>n,.

The result is then a BIG integer with maz(n,,n,) terms to be validated to a
legitimate representation. Since each term is visited once, the time

complexity is O(maz(nq,n,)).

Multiplication. This is done by the common ‘‘shift-and-add.”’ Each term in
one operand is multiplied to every term of the other operand, shifting

according to the significance rank of each term and adding the results

together.

n, . n . n n L.
(% &M~ ) X( % bMFY) = 3 5 agb Mt
=l

j=1 =i j=4
ny4ngo-1
= Y oM
k=l
k
where G = Y, a, by,
r=]

Since we have to consider every pair of terms from the two operands, the
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complexity measure is O(n; n,).

Duwvision. Division gives both quotient and remainder. There are two stages
in our version of BIG integer division: long division and trial division. Let
n, be the number of terms in the dividend and n, the number of terms in
the divisor. First we apply long division: the'more significant portion of n,
terms from the dividend is considered for trial division by the divisor. This
division yields a one term quotient. The next term from the dividend is
then prepended (least significant term is at the beginning of the list) to the
remainder for another trial division to get the next term of the quotient.
The process is repeated n,— n, times until all the remaining n,~ n, terms of
the dividend are considered. Figure 4.3 illustrates the long division
process. We apply one trial division each time to obtain each term in the
quotient, the most significant one first. In trial division, we recursively test
subtracting the divisor from the dividend, doubling the divisor in each step.
With the recursion expanded, we can express the quotient @ in the

following form,

loge (M)
Q =[ Z ]qi2i_l

=l

where ¢; =1 or 0, depending on whether or not the testing subtraction is
successful for the corresponding step in the recursion. M is the maximum
term size, and I—logz(M) .l determines the maximum depth of recursion
necessary in the worst case. Trial division is therefore of complexity
O(n,), and coupled with the long division, the complexity measure of our

division algorithm is O(n,(n ;- n,)).
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[12,34,56] =[178,9] =[76,5] ... [ 84]

[ 76, 5 ]

[ 78, g]j [ 12, 34, 56 |
[ 90, 48

[ 28, 43, 7
| 84 ]

Figure 4.3 Long division of BIG integers
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Anthmetic Comparison. To compare two BIG numbers, we first compare the

sign, and then the number of terms in the representation. If both are
equal, we then compare each corresponding term in the list, starting with
the most significant term first. Worst case occurs when two operands are
equal, or they differ only at the least significant term; the complexity is
O(n;+n,).

4.3.2 XQ - Exact Rational Numbers

XQ numbers are built on BIG integers. An XQ number is a fraction
in which both the numerator and the denominator are BIG integers. We
represent an XQ number by a division expression with BIG integer
operands. For uniqueness of representation, a legitimate XQ number has
the numerator and the denominator reduced so that their greatest common
divisor, ged =1. Negative XQ numbers have negative numerators, and the
denominators are always positive. To provide compatibility with BIG
integers, we omit the denominator when it is unity. In other words, a BIG
integer is a legal XQ number with denominator equal to [1]; figure 4.4

illustrates some examples of XQ numbers. An XQ arithmetic expression

. N
can then have BIG integers mixed together. Given the operands as 31— and
1

N, . . . . .

D—z, we will describe the arithmetic operations, ged computation, and
2

arithmetic comparisons in the following. We will also give the worst case

time complexity, given that the numerators N; and N, each has n; and n,

terms, respectively, and that the denominators D, and D,, d; and d,

terms.

63




0

33
11/310
48/100
-321/170
-1

represented as
represented as
represented as
represented as
represented as
represented as
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11] / [10,3]
12] / [25]
1,-3] / [70,1]

L

/e e ey ey —
—

Figure 4.4 Examples of XQ - multiple precision rational numbers




Addition/Subtraction. We take the product of the denominators to form the

common denominator. Hence we have

Ni  Np _ NiDyx Ny D,
'Dl D2 - D1D2 -

For the asymptotic complexity, we need to consider only the BIG integer
multiplications, and it is given by O(d,dy+n,ds+n,d,).

Multiplication/Division. Multiplication and division are simpler than addition
and subtraction for XQ numbers. They are given by
N; N, NN, N, N, N,D,

= , d + = .
D, "D, Do, "™ D, 7D, = N,D,

Division needs some extra work when N, is negative. Considering the BIG
integer multiplications, the complexity measures are given by
O(nyny+dyd;) and O(n;dy+nyd,), for multiplication and division,

respectively.

ged Computation. To reduce the result from an arithmetic expression, we
need to divide both numerator and denominator by their gcd. We compute
gcd by repeated mutual division: given numerator N and denominator D,
we calculate Ny =N mod D. N, is non-zero if D does not divide N.
Then, we calculate D; =D mod N,, and so on until we get 0 or 1. If we
get O, the last divisor is the ged. If we get 1, N and D are mutually prime.
The asym ptotic complexity is dominated by that of the first integer division,
which is O(d(n-4d)) if n>d, or O(n(d-n)) if d>n, where n and d are

the number of terms in the numerator and denominator, respectively.
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. . . N N,
Arithmetic Comparison. To compare two XQ numbers Fl- and Fz" we only
1 2

need to compare the two BIG integers N;D, and N,D,. Hence, the

complexity is given by O(n;dy+n.d,).

4.3.3 Modularity In An Experimental System

Rational arithmetic as installed by BIG and XQ in Prolog
demonstrates high modularity. Modularity here means that we are able to
isolate in implementation the algorithm and the arithmetic domain. This is
important in an experimental system, such as our polygon overlay system.
We investigated the use of rational arithmetic for chain intersections. Our
system provides a vehicle for further experimentation. Since Prolog allows
operator overloading, the syntax for arithmetic expression remains
unchanged. This provides for the modular installation of other arithmetic
domains in both existing and new programs. On the other hand, the BIG
and XQ packages can also be installed into other systems for
experimentation. We note this here since this is an important design

feature of our system.

4.3.4 A Test for BIG and XQ: Computing 7

To test BIG and XQ, and in part also to demonstrate the modularity,
we present here a short program to calculate m to an arbitrarily close

approximation by a rational number. We use the following infinite series.
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4 4 6 6
T =2 X X X?XEX?X7X

e
0|

This series converges very slowly, but fast convergence is not the point of
the test run. BIG and XQ are installed using ‘‘are’’ for evaluation of BIG
integers and ‘‘#z’’ for XQ, the exact rational numbers. The following is

the Prolog code to compute 7; each backtracking step computes one more

term in the series.
pi([ ],[2]). % preset pi=2

step :-
Pi(R,P),
R1 are R+ [1],
R2 are R1 mod [2],
P1 sz P¥(R1+R2)/(R1-R2+ [1])),
retract( pi(R,P)),
assert{ pi(R1,P1)),!.

go :- repeat, step, fail.
The result after 100 steps of iteration is

50216813883093446110686315385661331328818843555712276103168
16063834434771661191161473607166722989851247353354683757549

The source listings of BIG and XQ are appended to this thesis.

4.4 Input/Output Conversion Problems

Since rational arithmetic preserves total accuracy in numerical

values, we are able to guarantee topological consistency in the polygon
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overlay process. This is based on having all the coordinates in rational
numbers. In practice, input maps with coordinates in floating point
numbers must first go through a conversion process. We convert the
coordinates into rational numbers before passing the maps on to the
overlay process. After the overlay process, we then convert the output
map back to one with floating point coordinates. It may seem plausible that
the conversion process can introduce inconsistency into the topology since
it also suffers from numerical inaccuracy. In this section we will address
the problems of converting coordinates from floating point to rational, and

viee versa.

In input conversion, since rational numbers can be arbitrarily close
to any numerical value, and floating point numbers have finite precision,
we can represent the given coordinates in rational numbers without loss in
accuracy. In practice, we often impose certain limits to the number of
significant digits in the numerical input values, and the conversion process
may then result in inconsistent topology. We however note that the
problem is then not due to the conversion imposed by the use of rational
arithmetic, but by the change in resolution beyond the minimum required

to maintain the map topology.

In output conversion, unfortunately, with floating point numbers we
cannot preserve totally the accuracy inherently in rational numbers.
However, it is possible to determine the minimal resolution in the
coordinates necessary to maintain the topology. This then determines the
precision level needed in the floating point numbers for output conversion.

We should note that the information density of the output map is the total
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of those of the input maps. Precision level of the input data may not be
sufficient for the output data. In that case, the map topology is unstable
because of insufficient precision in the source data; our overlay system
maintains the topology and the problem is identified in output conversion.
In section 8.3.1 under Further Considerations, we discuss a strategy to
remove sliver polygons in the output map. In the process, we may
eliminate nearly coincidental features and help to alleviate the problem of
unstable topology in output conversion. Furthermore, we refer to (Saalfeld
87) on the recent report in the determination of minimal resolution in the
coordinates to maintain map topology. Work in that direction is not within

the scope of this thesis.

4.5 On The Cost Of Rational Arithmetic

Rational arithmetic provides total accuracy. But how much CPU
time does it cost to achieve the accuracy? The section here will try to

answer this question.

There are two aspects to the cost of CPU time in arithmetic:
precision level, and data volume. In section 4.3, we described our
implementation of rational arithmetic, and presented the complexity
measures for each operation based on the number of significant terms in
the operands. This is a measure of data precision level. For the polygon
overlay system, we will then have to trace out the route of arithmetic
operations to measure the cost. Given the end-points of two edge

segments: (z;5,y1;), (%19,912) for one edge segment and (z4,¥s),
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(Z90,¥92) for the other. The equations of the two straight lines through the
edge segments are A;z + By + C; =0 and A,z + By + Cy =0,

respectively, where

A=y~ ¥ Ag =Ygp — ¥gy
By =z, - 71 and By =z9; — z99
Ci =¥y11%12 - T11¥12 Co =Yo1T90 — To1Ya0

The intersection point (z,y) is then given by

B,C,y- B,C, A,Cy ~ A,C,
~ AB,- A,B, "~ AB,- A,B,

Assume that the input numerical values (i.e., z,;, ¥y, Z12) Y95 - and so
on) have L significant terms. Then A,, B,, Ay, B, will each have L terms
and C,, C, will have 2L terms, because of the multiplication in the
expression for C; and C,. For the asymptotic complexity measure, the
multiplication dominates, giving O(L?). In the expression for the
intersection point (z,y), note that z and y each is a fraction of numerator
having 3L terms and denominator 2L terms, and the complexity measure
for the evaluation of the expressions involved is O(L?). Finally the ged
computation for two BIG integers having 3L terms and 2L terms has
complexity O(L?). Consider now the whole process of calculating the
intersection point: the highest order in complexity measure is O(L?). The
asymptotic growth of CPU cost with the requirement in precision level is

no faster than quadratic order.

Given the operands and their precision level fixed, evaluation of an

arithmetic expression is a constant time operation. Then in relation to data
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volume, rational arithmetic does not affect the asymptotic behavior of the
algorithm. The CPU time required to process any data volume will only
change by a multiplicative factor, with the use of rational arithmetic.
Hence, rational arithmetic will not impose a need for CPU time more than

linear to the size of the data volume.




Chapter 5 SPECIAL CASES AND STABILITY

Rational arithmetic gives exact results in calculation. We can
therefore properly identify the special cases of intersection such as touching
and partially overlapping edge segments. We check absolute equality
instead of setting a tolerance to identify cases of an end-point lying exactly
on another point or another edge segment, as well as cases of intersection

between two collinear edge segments.

Algorithm designers for computational geometry often put aside
special cases because of the rarity of their occurrence. It is also argued on
the basis that the probability of occurrence for the special cases such as two
exactly coincidental points, or two collinear lines vanishes in statistics.
While the approach renders a simplified picture for easier understanding of
a problem, it also leaves the algorithm specification incomplete for
implementation. Moreover, special cases do occur partly due to the
inherent limited resolution in the computer to represent numerical values,
and also partly due to the reason that we are not dealing with random data.
For polygon overlay, data dealing with artificial caricatures such as in urban

planning and parcel boundaries, very often carries numerous cases of data

coincidence by design.

Section 5.1 will describe the special cases and how these cases are
reduced to cases of edge segment intersections. In section 5.2, we develop
an algorithm for edge segment intersection complete with special cases
handling. In section 5.3, we discuss the stability of the overlay system thus

achieved, and the cost we have to pay.
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5.1 Special Cases In Polygon Overlay

Special cases are ‘‘special’’ because they call for special handling
when processing on the computer. Special cases occur not just because of
the data, but also because of the data'structure. This means that certain
cases need special handling because of our view we impose on these cases
by the data structure. A map is a spatial data structure consisting of nodes,
chains, and polygons. In polygon overlay, we deal with polygon
intersections. However, we will show that we can limit our special cases
handling to only those cases of edge segment intersection. In other words,
when the special cases in edge segment intersection are properly handled,
cases of coincidental nodes or chains do not need special handling. In this
section, we shall classify all the cases of intersection between two edge
segments, and in the next section, develop an algorithm to properly identify

and resolve them.

5.1.1 Coincidental Nodes And Vertices

Since a node or a vertex must be an end-point of an edge segment,
coincidental nodes or vertices are simply cases of edge segments touching
at the end-points. There is therefore no need to sort out coincidental
nodes and vertices; they are identified when processing edge segment
intersections. Furthermore, the edge segment intersection procedure takes
advantage of the adaptive grid strategy. The end-point in common
becomes a new node in the output map since it is an intersection point

between two touching edge segments.
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5.1.2 Partially And Totally Overlapping Chains

In the chain intersection stage of our polygon overlay system, we use
the adaptive grid method and we deal with the constituent edge segments
individually disregard of the chains. The approach is based on the
observation that when two chains intersect, they do so in between two
constituent edge segments in the same locality. The basis is the same in
dealing with partially or totally overlapping chains: overlapping chains must
comprise edge segments which overlap. The adaptive grid sorts them out
in the same way. When overlapping edge segments are properly handled,

overlapping chains do not impose a special case for special handling.

5.1.3 Cases Between Two Edge Segments

Figure 5.1 shows different cases of intersection between two edge
segments. Since each edge segment is associated with a specified direction
(along the chain), we distinguish as different cases when the intersecting
segments are in a different orientation. There are four groups of these
cases: when two intersecting segments cross over each other, we have the
well understood popular case of edge segment intersection; the rest are
special cases. When two edge segments are touching each other, the
intersection may involve an end-point and an interior point, or two
coincidental end-points. Partial overlap cases involve two intersection
points, between which the two intersecting edge segments overlap. Exact
overlap cases may involve two segments in the same or opposite direction,

but they are not treated as ‘‘intersecting’’ since the pair is to be replaced by
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a single edge segment.

5.2 A Complete Algorithm For Edge Segment Intersection

In this section, we will develop an algorithm for edge segment
intersection, complete with special cases handling. We will re-organize the
groups of intersection cases presented in the last section in order to
describe a more pragmatic approach to distinguish these cases. We will

begin with a discussion on the basis for the algorithm.

A straight line on the 2D plane is characterized by the equation
Az + By + C =0. The straight line divides the plane into three sets,

given by

{(a:,y) | Az +By+C'=O},

{(a:,y) | Az +By+C’>O}, and {(:z:,y) | Az +By+C’<O}.

Given the coordinates (z,,y,) of a point on the plane, let
d =Az, + By, + C.

The sign of d characterizes the topological relationship between the point
and the line, namely, that which side of the line the point lies on, or that it
lies on the line. This is going to play an important role in our algorithm.

Now we re-organize the different cases of edge segment intersection into

the following:




Case 1. Intersecting edge segments are collinear. If we disregard the
total overlap cases, two partially overlapping edge segments
have two intersection points: an intersection point is an end-
point of one segment lying on the other segment. Here we
also include the case when two collinear edge segments
touching each other at an end-point, which is the only

intersection point.

Case 2. One segment lies entirely on one side of the other segment.
This case can be further divided into two: the edge segments
meeting at the end-points, and the end-point of one touching
the interior of the other. In either case, there is exactly one

intersection point.

Case 3. Intersecting edge segments cross over each other.

Our algorithm approaches the intersection problem by sorting out
these cases. We check these cases out in reverse order so that most non-
intersecting cases and the cross-over intersection cases will be identified

first without checking into other special cases.

Let the two edge segments be EF; and E,, and their extended lines
be L, and L,. The end-points of E, are P;; and P,,; those of E, are P,,
and P,,. The following outlines our algorithm, checking the special cases

in the order presented:

o If P;; and P,, lie entirely on one side of L,, or if Py; and Py,

lie entirely the same side of L, E, and E, do not intersect.
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o If P;, and Py, lie on opposite sides of L,, and P,; and P,,
also lie on the opposite sides of L,, £, and E, intersect,

crossing over each other.

e If L, and L, are not collinear, E, and E, intersect at an end-
point of one of the edge segments, and the point touches the

other edge segment.

o If L, and L, are collinear, E; and £, may or may not overlap.
If they do, we consider two intersection points: an end-point
of one edge segment lying on the other edge segment is an
intersection point. The portion between the two intersection
points is the overlap portion. The overlap portion shrinks to a

single point when F, and E, just touch each other at an end-

point.

Now we formulate further programming details to identify these cases.
Refer back to our characterization of the topology between a point
P =(z,,y,) and aline L: Az+By+C =0. We have d =d(P,L) given by

d = Az, + By, + C.

The sign of d indicates which side of L P lies on; P lies on L if d=0. For

the four end-points, we let

{ d11 =d(P11:L2) { d21 =d(P21’L1)
dyg =d(Py,L,), " dog =d(Pyo,L ).

And we let




dy = dy; Xdyp, and dy = dy; Xdyy.

The sign of d; indicates whether P, and P;, are on the same or opposite
sides of L,, and similarly d, for Pj, and Py,. Our algorithm consists of the
following series of testing to identify all the cases; these are tabulated

below, in the prescribed order:

If (d;>0 or dy>0), E, and E, do not intersect.

If (d;<0 and d;,<0), E, and E, cross over each other.
If (dy; =0 and d,<0), P,, touches E,.

If (dy;s =0 and d,<0), P, touches E,.

If (d,<0 and dy; =0), P,, touches E,.
If (d;<0 and d,, =0), Py, touches E|.
If (dy; 72 0 and dy; =0), P;, touches P,,.
If (d;;5%0 and d,y, =0), P,, touches Py,.
If (d,9540 and d,, =0), P,, touches P,,.
If (d,95%0 and dy, =0), P,, touches P,,.

These account for all the cases when F, and E, are not collinear. If a case
passes through these tests, we can at this point ascertain that
dy; =d;p =dy) =dge =0. In order words, F, and E, are collinear. E,
and E, may or may not overlap; we examine the end-points Py;, Py, Py,
and Py, to determine whether or not each lies on the other edge segment.
If none is reported, £, and E, do not overlap. If two are reported, £, and
E, overlap between these two points. These two points may coincide; in
that case £, and E, touch each other at their end-points. If all four points
are reported, E, and E, overlap exactly over each other. The pair should

be replaced by a single edge segment.




5.3 Stability And What It Costs

We guarantee stability in the polygon overlay process based on two
aspects achieved in our system in Prolog. On the one hand, rational
arithmetic provides for total accuracy in numerical computation. Unstable
map topology does not suffer from problems of discretization errors in the
process. Consistency is therefore preserved. On the other hand, we have
also taken advantage of exact numerical results to identify all special cases
of intersection for proper handling. Neither tangent conditions nor nearly
coincidental features can cause failure in the overlay process. Thus we
have achieved stability. But how much does it cost, in terms of our
resources, to achieve stability in these aspects? In retrospective, we will try

to answer this question here.

In section 4.5, we have considered the cost of rational arithmetic.
The CPU time for rational arithmetic does not grow asymptotically more
than linear to the size of the data volume. In this chapter, although the
edge segment intersection problem may appear to be simple, we have gone
at length to deal with all the special cases involved. In fact, a substantial
portion of the code is there for the handling of these special cases.
Fortunately, this does not mean that special cases handling will impose a
substantial cost in CPU time. Here we must note that the special cases do
occur, but they do not occur frequently. Worst case performance analysis
would be deceptive, and should not take into account handling for the
special cases. While it is difficult to assess the average case berforma.nce,
we offer the following argument: identifying special cases does not

necessarily cost extra CPU time, since it can be done in the process of
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calculating output data. In the case of intersecting edge segments, testing
for intersection at the same time produces the information necessary to
identify touching and collinear cases. In the way we have prioritized
checking for ‘‘regular’’ cases first, special cases handling will not affect the

average case performance unless the ‘‘special’”’ cases dominate in

processing.
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Chapter 6 USING PROLOG FOR GEOMETRY

Prolog represents a radically different approach toward programming.
Using Prolog for our polygon overlay system is a venture motivated by the
quest for better programming tools to deal with geometry on the computer.
In this section, we will describe our experience in using Prolog, focused on
a few issues illustrated in the polygon overlay problem. We have
formulated certain paradigms of programming which appears to be useful in
general. Along with the discussion, we will also bring up certain pragmatic

issues involved with programming in Prolog.

6.1 A Logic Programming Example

Unlike conventional programming languages, Prolog is a declarative
language. This means, at least in theory, that a Prolog program is not a
prescribed set of instructions to solve a particular problem, but is instead a
description of the objects and their relationships involved in the problem
which provides sufficient information to solve the problem. Such an
approach has been commonly known as ‘‘logic programming.’”’ Consider

the Prolog program to append one list to another.

append([ |,L,L).
append([H |L1],L2,[H |L3]) :- append(L1,L2,L3).

Let us call the arguments of append by name: we shall call the list to be
appended list#1, and we append lst#2 to list#1, to form the result which
we shall call list#3. The first rule above says that if list#1 is empty, what

we get for ULst#3 is just the same as [list#2. The second rule gives a
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recursive definition of what it means to append to a list, if it is not empty:
e The first element of list#3 is the first element of list#1.

o The tail of list#3 consists of the tail of lLst#l, with lList#2
appended to it.

Such is the description in Prolog to append a list, and it provides sufficient
information to perform a number of functions, appending to a list included.

We show the following examples:

| append(|a,b],[c,d,e|,LIST).

This gives LIST =[a,b,c,d,e] for a solution, an example of appending to a
list. But we can also use append to generate successive partitions of a given

list.
append( L 1,L2,[a,b,c,d,e]).

L1 and L2 will give the following 6 possible solutions:

L1 =[], L2 = [a,b,c,d,e].
L1 = [a], L2 = [b,c,d,e].
L1 = [a,b], L2 = [c,d,e].
L1 = [a,b,c], L2 = [d,e].

L1 = [ab,c,d], L2 = [e].

L1 = [ab,c,dye], L2 =]].

We can also obtain the first and last elements of a list, such as getting the

beginning and ending nodes in the polyline LIST of a chain,
append| [ NZ |_],[ N2],LIST).

And examine in succession the vertices of a polyline LIST,




append(_,[V'|_],LIST).

In spite of the power of logic programming demonstrated by the predicate
append here, we must note that in practice we still have to be somewhat
imperative. An example is the definition of append. The two rules for

append must be maintained in that order so that linear search for resolution

would work properly in Prolog.

6.2 Data Structuring

Logic programs can be considered an extension to the relational data
model. The basic operations of relational algebra can be easily expressed in
logic programming. Using a relational model, we are able to simplify much
the design of data structures necessary in our polygon overlay system. We

represent geometric entities and their relationships as Prolog facts, such as

in
v(V#,[z,9]). % for a vertex
e( C#,E#,[V,V,]). % for an edge segment
c(C#,N{,Ny,P,,P,). % for a chain, (or polyline)
p( P#,[B;;Ba,...]). % for a polygon,

% where B; = th(C;) or ht( C;)
% ...of directed chain C,.

Figure 6.1 shows the data structure for a unit square. The same is also
demonstrated in interim data structures generated in the process of polygon

overlay, for example

i( V#,E#,Angle). % for edge-to-node incident angle
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Figure 6.1 Data Structures for the Unit Square
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vertices 1(1,[0,1]).
Y2,[1,1]).
¥(3,[1,0)).
node n(4,[0,0],[R(10),t(10)]).
chain ¢(10,4,4,200,100).
edges e(10,1,4,1).
¢(10,2,1,2).
€(10,3,2,3).
¢(10,4,3,4).
polygons p(100,[k¢(10))).
p(200,[th(10)]).
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A pragmatic issue is involved with efficiency in retrieving information from
a large set of facts. This may be different in different implementations of
Prolog. But most Prolog systems use hash coding on the functor names to
access the set of facts under the same functor name and then search the set
in linear search. We exploit the hashing of functor names to evade
unnecessary linear search when the key index is fully instantiated. Our
scheme is to generate a functor name using the key. For example, to

retrieve vertex with identifier =23, we use the following functor name,
v23([x,y])- % vertex id =23

On the other hand, to facilitate for iterative search through all vertices, we

maintain the set of identifiers in a list for linear search.

v( id#). % list of vertex identifiers

Although many Prolog versions have different built-in facilities for database
applications, our scheme, based on relatively standardized specification,

would achieve better transportability in practice.

6.3 Set-Based Operations

Our polygon overlay system illustrates decomposing a complicated
process into simple steps; often each step applies a certain operation to an
entire set of geometric entities. For example, in the adaptive grid method,
each grid cell is a bucket to keep a set of edge segments. We consider the

entire set of edge segments and distribute them to each grid cell it occupies.
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Clearly this is easy in Prolog. However, we must also be careful when
simultaneously iterating and updating the same database. More specifically,
assert and retract may affect an iterating sequence differently in different

Prolog implementations.

We opt to avoid this in many cases. In the case of polygon boundary
formation, we connect LINKAGE facts until the set is exhausted. The
operation involves retract and assert on the facts while iterating through.

We use a repeated retract predicate to retrieve each fact until no more

facts exist:

repeated_retract{ LINKAGE ) :-

repeat,
( not( call{ LINKAGE ) ),!,fail;
retract{ LINKAGE ) ).

Obviously, one can use the variable LINKAGE for any other set of facts.

6.4 Pattern Matching Geometric/Topological Properties

Another paradigm uses pattern matching to propagate properties.
For example, when linking chains to form the polygon boundaries, we first
form the corners of each polygon. The corners can be considered
fragments of the polygon boundaries. Whenever two fragments exist such
that they can be connected, we retract both fragments and assert the new

connected fragment. When no such fragments exist, we have all the

polygon boundaries.
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Given the following corner fragments of a polygon, as illustrated in

figure 6.2, each fragment being a linkage fact.

linkage( 2,b,[2,b]). % corner of a-P-b
linkage( b,c,[b,c]). | % corner of b-Q-c
linkage(c,d,[c,d]). % corner of ¢-R-d
linkage(d,a,[d,a]). % corner of d-S-a

To form and ‘‘recognize’’ the polygon, we define connect for pattern
matching linkage properties, and we use repeated_retract from section 6.3

to perform set-based operation on the set of fragments.

connect{A,A,[A |L]) :-
!,assert( new_polygon(L)). % complete cycle is polygon.

connect{ A,B,L.1) :-
retract(linkage(B,C,[B |L2})),
append(L1,L.2,L3),
assert(linkage( A,C,L3)). % fragments matched.

match_linkages :-
repeated_retract(linkage(A,B,L)),
connect{ A,B,L),
fail. % match until linkages exhausted.

match_linkages.

The predicate match_linkages performs a set operation on the set of
linkage’s; connect matches fragments of polygon corners until no more

fragments can be found. Given the set of linkage facts as illustrated in

figure 6.2, we will have one polygon:

new_polygon([a,b,c,d]}.
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linkage(a,b,|a,b]).
linkage(b,c,[b,c]).
linkage(c,d,[c,d]).
linkage(d,a,[d,a]).

Figure 6.2 Matching fragments of a polygon.




Note that the cyclic order in the polygon boundary has been omitted for
clarity, and ease of presentation. In linking chains for the overlay output

map, chains have their specified directions.

6.5 Unification and Graph Connectivity

Given a set of objects, if there exists an equivalence relation, we
may use unification of variables to classify objects under each equivalence
class. Graph connectivity is an equivalence relation between the nodes, and
so is polygon boundary adjacency between the polygons. When resolving
containment relationships between polygon boundaries to determine the
overlay containmeﬁt polygon, we need to determine only for one polygon
in each group of adjacent polygons. While we are searching recursively
through the neighbors of each polygon, we assign free variable to each
ﬁeighbor for the containment polygon, and have them unified in each
group of adjacent polygons. Once the containment polygon is resolved, the

uninstantiated variables in the entire group are resolved.

As an example, consider the following list of nodes in the graph
illustrated in figure 6.3; polygon adjacency is shown in dotted lines as the

dual graph. We associate a free variable as an attribute to each node.

[ [a_],[b_]s[e,_]s[d_]s[e_]s[Fi_] ]

Process the set of edges and for each edge, unify the free variables

associated with the end-points. The list becomes:
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Figure 6.3 Graph connectivity / Polygon adjacency
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[ [a,1]:[b1],[e,1],[d, 2] ,[e, 2], [f;_3] |

Binding a name to each uninstantiated variable will then identify the

connected components of the graph, such as in the following.
[ [a,0ne],[b,one |,[c,one |,[d,two |,[e,two [,[f,three ] ]

We then have each class of connected nodes identified and properly named.

6.6 Quick Prototype versus Production System

A final remark on using Prolog is, on the one hand, demonstrated in
the development of a quick prototype system. The general high level
nature of Prolog fosters an intuitive programming environment for
experimentation. Our polygon overlay system in Prolog exemplifies such
an experimental development effort: we have illustrated the advantages
offered in Prolog in this section. On the other hand, however, the
performance of our system in Prolog is far from that expected of a
production system. Will Prolog be suitable for a production system? In
other words, it is asking what can one expect of the performance of a
system in Prolog. We do not have the answer in this thesis, but we will

discuss briefly some of the prospects in the following.

Much of the performance factor in a Prolog system is tied to the
linear search strategy in accessing the database. Partially instantiated keys
make it difficult to design general search strategies, but present very
challenging problems for search optimization. We refer to (Freeston 86;

Vielle 86) for some of the recent work on organizing database search
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strategies in pre-processing for Prolog compilation.

Another possibility to improve Prolog performance depends on
parallel computation. Based on logic and automatic resolution, Prolog
appears to be inherently appropriate for parallel computation. In (Dwork
84), it is however proved that the general unification problem is log-space
complete, and it leads to the belief that unification, the primitive operation
in Prolog, is inherently sequential (Mizell 86). But in practice, many
applications in Prolog, such as in polygon overlay, do not depend on the
generalized unification, but rather commonly use the unification
mechanism in Prolog for term matching (or one-sided unification) when
searching a database with partially instantiated keys as we have mentioned
above. To our delight, searching multi-indexed database can parallelize

well to improve performance.

Furthermore, many are also considering architectures more suitable
for logic programming such as in Prolog. Hopefully, this will bring answers

to the demand for better performance in Prolog systems.
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Chapter 7 IMPLEMENTATION AND RESULTS

The chapter describes the organization of the programs for the
polygon overlay system, and presents the results of the test runs we have
made. Section 7.1 dwells on the details of software organization: programs
and data files in the overlay process. Readers who are not interested in
these details may skip the section since the concepts are simply re-stated to
explain the organization and the. strategies involved. The rest of the
chapter presents results of our overlay system on two types of test runs:

section 7.2 describes tests on its stability, and section 7.3 on its

performance.

7.1 Implementation

This section is written for those who are concerned with the details
of implementation. Also for them we append to this thesis the source
listing of our polygon overlay system and the rational arithmetic package.
Our system is in C-Prolog (Pereira 86) version 1.5, a Prolog interpreter
written in C. Our system runs on a Sun 2 micro-computer with Unix 4.2
bsd. We have altogether 12 programs organized into four groups, for the
four stages of the overlay system. We have revised the system four times
now in the course of this development, and we for now have named the

system OVER4. OVERA4 consists of these four groups of programs:

e XSECT: to calculate chain intersections.

e LINK: to form polygon boundaries.

¢ OVER: to determine overlay relationships.
e CONTR: to resolve boundary containment.
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We will discuss each group in the following sections.

7.1.1 XSECT: Chain Intersection.

XSECT takes the input maps and calculates all the chain
intersections. Each intersection splits the intersecting chains at the
intersection point, where a new node is generated. XSECT produces three
output files: the new set of network chains, the new nodes, and the old
adjacent polygons for each chain. XSECT implements the adaptive grid
method for edge segment intersections: the whole process is divided into

five steps. We will discuss each step in the following:

dform. We decompose the chains from the input maps into three data sets:
boundaries, vertices, and edges. The input chains are complete chains of

the following format:
chain( C#,MAP,N|,N,,| [z,v],...] ,P1,Ps)-

C# is the chain id. MAP identifies the input map. N; and N, are the
beginning and ending nodes. The list [ [z,y],...] comprises the coordinates
of the polyline from N, to N,. P, and P, are the polygons respectively on
the left and right of the chain. dform constructs the following data sets:

lXB#:’PI’-P2)‘
v( V#,TYPE,[z,y]).

e(E#, [V, Val)-

The id names B#, V#, and E# are 7 digit integers, with the MAP id, C#,
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integrated into different fields of the integer. (Note: For this reason,
OVER4 may not work in some modified versions of C-Prolog which do not
support full 27 bit integers.) The data set v includes both vertices and
nodes; TYPE can be nor v to indicate the type: node or vertex.

gstal. gstat sets the parameters for the adaptive grid. In gstat, we take the
input map data from dform to calculate several statistical measures, and
with them we calculate the parameters for the adaptive grid. We examine
the coordinates to determine the full extent of the object space. We divide
the size of the object space by the average edge segment length to get the
number of grid cells in each dimension. The parameters for the adaptive

grid comnsist of:

left( X-Origin). %X origin

bottom( Y-Origin). %Y origin

x_grid( XN-grids). % Number of cells along X-axis
y_grid( YN-grids). % Number of cells along Y-axis
x_gsize( X-Cell-Size). % Grid cell X dimension
y_gsize( Y-Cell-Size). % Grid cell Y dimension

zgrid. In zgrid, we cast the grid over the set of edge segments. We go
through sequentially the set of edges from dform, and maintain a set of
edge segments for each non-empty grid cell. gstat also needs to refer to the
set of vertices from dform for the coordinates. Output from gstat is the set

of (grid, set-of-edges) entries:

ge( G#’[EI’EQP"D'

96




We remove the entries for those grid cells that contain only edges from one

map, since they do not need to be examined for edge segment intersection.

zsect. zsect performs pairwise comparison between the edges if the pair
occupies some common grid cell. We take the set of (grid, set-of-edges)
entries from zgrid and examine every entry. We calculate edge segment
intersections for each pair of edges which are from different input maps but
occupy the same grid cell. zsect updates the set of edges as well as the set
of vertices, both from dform. When two edge segments intersect, a new

node is generated and added to the set of vertices,

v(N#,n[z,9]).

and the new node is marked on the intersecting edge segments as

e( E#,[ V ,N#,V,}).

zsect also keeps track of all the equations for the edge segments. An
equation is calculated once when the edge segment is first examined, and is
kept for subsequent use. When zsect examines a pair of edge segments, it
also keeps a record ok(FE,;,E;) so that if the pair occupies more than one
common grid cell, they will not have to be examined again. zsect takes care
of all special cases of edge segment intersection. The output from zsect are

the two updated sets of vertices and edges.

zconn. zconn connects the edge segments from xsect back into chains,
having them split at the new nodes. We take the two sets of edges and
vertices from zsect, and make references to the set of boundaries from

dform. From zconn, we can get the set of network chains and the set of

97




nodes for the output map:

c( C#,N,Ny,[ [z,¥],..])-
n( N#,[z,y]).

7.1.2 LINK: Polygon Boundary Formation

The network of chains and nodes partitions the 2D plane into
polygons. LINK takes the network chains and the nodes of the output map
to form the polygon boundaries, generating new names for each polygon.
Once we have the polygons, we can update the network chains with

complete information of the adjacent polygons. LINK comprises four

programs:

caler. We calculate for each chain the incident angles at both the beginning
and ending nodes. Taking for input the network chains from zconn, calci
computes the angle each incident vector makes with the positive X-axis.
Each node is therefore associated with either the head or tail of each
incident chain (h (C#) or t (C#)) and the incident angle. calci generates

the incidence file:
i( N#, Chain-Incidence, ANGLE).

The ANGLE is represented by an ordered pair [Q,A] where Q =1,2,3,4 to

identify the quadrant the angle falls in, and A is a rational number of the

ratio such that
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cos(ANGLE)

_ sn(ANGLE)
sin(ANGLE)

f =
cos(ANGLE ) or @=2,4

for @=1,3 and A =-

This is done to preserve accuf‘acy using rational arithmetic. The

representation conforms to the counter-clockwise positive cyclic order.

sortr. With the trig-rational representation for ANGLE 's, we can sort them

into proper cyclic order. Taking the incidence file from calet for input, sort:
sorts the incident chains around each node by the incident angles. The set
of nodes from zconn is then updated with the list of chain incidences at

each node. The output nodes have the format:
node( N#,[z,y],[1,19,..])-

where I; is either ¢ (C#) or h( C#) to indicate tail or head of the chain.

More, sorti generates linkage file with one entry for each polygon corner:
link( [BI,BQ] ,Bg).

where B; is either th( C#) or ht (C#) to indicate the direction of the chain
(tail-to-head or head-to-tail). The last element in the list is duplicated for

€asy access.

cpoly. cpoly takes the linkage file from sort and matches up the records to
form the boundary chains of each polygon. Each completed list of
boundary chains identifies a polygon boundary; cpoly generates new polygon
names and the output polygon file:

p( P#,|B,,Ba,...]).
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bound. When we have the polygons, we can update the network chains
from zconn with the information of the adjacent polygons for each chain.
bound takes the polygon file from cpoly and generates for each entry of the
list of boundary chains

left( C, P#). % for th ( CH).
right( C#,P#). % for ht ( C#).

Then cpoly updates each chain from zconn as

chain( C#,N,,No,[ [z,y],...] Py, Ps)-

7.1.3 OVER: Overlay Identification

OVER takes the topology of the new output map and determines for
each output polygon P# the input polygons P; and P, in the two input
maps such that P# is from PN P,. The output from OVER is the file of

overlay relationships, of the following format:

over( P#,P,,P,).

with one entry for each output polygon. OVER comprises two programs.

They are described below:

zover. zover takes the polygon file from LINK and the boundary file from

dform for input. zover goes through the list boundary chains for each
polygon to find the input polygons. If both P, and P, can be found, zover
enters the information into the file for overlay relationships as

over( P#,P,,P,). If only one of the two can be found, zover keeps a record
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. of either overl(P#,P,) or over2(P#,P,). The next step in zover examines
each entry in overl and over2. zover searches the neighbors of P# to
resolve the overlay relationship. If resolved, an entry for P# is appended
to the overlay relationships. If not, the connected group of polygons is

identified as

overl( Group#,P#,P,). or over2( Group#,P#,P,).

pcont. For each connected group of polygons, pcont performs the point-in-
polygon test to determine the containment polygon. pcont then resolves all

the overl and over2 entries and the file of overlay relationships is

appended.

7.1.4 CONTR: Containment Resolution

Our definition for a polygon is that it is a connected subset of the 2D
plane. Therefore, a polygon may have holes. In OVER, we have treated
each polygon boundary, holes included, as a separate polygon. CONTR
now determines which hole is inside which polygon and updates the
information in the output files of the new map. CONTR has only one

module:

jeconn. In jconn, we join the connected pieces of polygons. We take the file
of over( P#,P,,P,) and search for P#’s with the same P, and P,. Each
then identifies a polygon or a hole. jconn determines the cyclic order in the
boundary list to separate the holes and the polygons. Then each hole is
tested by point-in-polygon against each of the polygons. If a hole is inside a
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polygon, the two P#’s refer to the same polygon. The information in the
set of chains and polygons will be updated, and one of the two entries of

over( P#,P,,P,) will be deleted.

The output map from OVER4 comprises four files:

node( N#,[z,y],[h (C#) or t(CH), ...]).
chain( C#,N, Ny, [ [z,¥] -] s P1,Pa)-
polygon( P, [th ( C#) or ht(CH), ..]).
over( P#,P,,P,).

These files describe, respectively, the nodes, the chains, the polygons, and

the overlay relationships.

7.2 Test Runs On Stability

There are some commonly known tests for polygon overlay systems:
the overlay of a map on itself, and on a reduced version of the map itself.

We have done both of these here and an additional test of a map over itself

rotated by a small angle.

We use a United States map of the state boundaries. The map has
164 chains, 913 edges, 861 nodes and vertices, and 50 polygons. Figure 7.1
shows the map. We performed an overlay of the map on itself. The
overlay system generated a 113 X 73 adaptive grid, examined 5387 pairs of
edges and 873 actually intersected. The US map survived the test and
passed undistorted. The measurements concerning the adaptive grid and

total CPU time are tabulated together with the other tests in Figure 7.6.
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The second test involved expanding the US map to higher
complexity. We took the US map and for each edge segment long enough,
we shifted the mid-point to one side in the direction perpendicular to the

edge by a distance % of the edge length. An edge was long enough if the

perturbation would not result in any internal inconsistency. We repeated
the process two times to generate a US map with approximately four times
the number of edge segments. Figure 7.2 shows the US map with more
than 2 times the complexity: 164 chains, 1916 edges, 1864 nodes and
vertices. We put this map and the US map through the overlay system.
Figure 7.3 shows the output map, which now has 1738 chains, 3612 edges,

2948 nodes and vertices.

In the third test, we first rotated the US map by 1° about St. Louis
(approximately the center). Figure 7.4 shows the rotated map with
reference to the US map in dotted lines. Then we performed an overlay
with the two maps. Figure 7.5 shows the output map, which has 1288
chains, 2773 edges, 2619 nodes and vertices.

These results should verify the stability of our polygon overlay
system. While the measurements involved with the adaptive grid and CPU

time usage are interesting, we do not intend to make further inference

here, but we have inciuded the data for future reference.

7.3 Performance Results

In this section we will demonstrate our polygon overlay system with
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some ‘‘normal’’ test runs: for the categorization of spatial data. We will
still use the same US map which we also used in section 7.2. We will also
tabulate the distribution of resources, namely CPU time and storage space,

in the various steps of the process.

Figure 7.7 shows the US map with an overlay of January isotherms.
The overlay layer of January isotherms contains 24 chains, 633 edges, and
627 nodes and vertices. Figure 7.8 has the timing and storage space usage

for each step tabulated.

Figure 7.9 show the US map with an overlay of July isotherms. The
overlay layer of July isotherms contains 28 chains, 884 edges, and 880
nodes and vertices. Figure 7.10 has the timing and storage space usage for

each step tabulated.

Looking at the results, we can be sure that our experimental system
will not measure up to the speed necessary for a production system.
However, our results also show that it is due to the Prolog interpreter and
the use of rational arithmetic. We do note that this is not a necessary
trade-off for the stability we have achieved. The reasons are: (1) we do not
have to tie ourselves to Prolog, even though a conventional language would
make the programming task more cumbersome; (2) our implementation of
rational arithmetic is not aimed at fast execution. A good package for
rational arithmetic can perform much better. We have however made clear
that the asymptotic growth of CPU time for rational arithmetic is only

linear to the size of the data volume.
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Figure 7.3 The US map overlay on itse
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Figure 7.4 The US map rotated 1° about St. Louis
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Figure 7.5 The US map overlay on itself rotated by 1°
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# of adaptive | # of pairs | # of inter- | total CPU

edges grid | examined sections | (seconds)

USA 913 133 X 73 5387 873 54637

>2 times USA 1916 | 175 X113 6219 910 91668
rotated USA 913 | 113 X74 4632 483 44716

Figure 7.6 Stability Tests: timing and measurements
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Overlay Performance: USA with January isotherms

CPU (seconds) STORAGE (K-words)
global | loecal
total XQ | ged | atom | heap stack | stack
dform 63 - - 20 282 30 13
gstat 739 3 1 25 328 49 109
zgrid | 6518 | 5693 25 170 690 23 6
zsect | 4641 | 3822 | 224 24 375 16 3
zeonn 566 - - 19 393 31 19
calct | 1686 | 1620 | 731 23 292 7 3
sort 87 - - 20 238 1 20
cpoly 193 - - 19 108 1 2
bound 139 - - 19 415 4 2
zover | 20 - - 19 415 4 2
pecont 228 - - 24 188 78 27
Jeonn 160 - - 24 279 204 15

Figure 7.8 Overlay Performance: US map with January isotherms
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Figure 7.9 The US map with July isotherms




Overlay Performance

: USA with July isotherms

CPU (seconds) STORAGE (K-words)
global | loecal
total XQ | ged | atom | heap stack | stack
dform 76 - - 20 312 59 26
gstal 941 3 1 25 371 58 129
zgrid | 7448 | 6405 29 204 818 36 12
zsect | 4873 | 3934 | 271 24 409 16 3
zconn 762 - - 19 434 58 35
caler | 1740 | 1671 | 766 23 309 7 3
sorly 91 - - 20 243 1 2
cpoly 182 - - 19 109 1 2
bound 149 - - 19 447 3 2
zover 23 - - 20 280 3 2
pcont 389 - - 24 204 143 52
jeonn 246 - - 24 297 207 15

Figure 7.10 Overlay Performance: US map with July isotherms
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Chapter 8 CONCLUSION

This chapter presents a summary of the thesis, and reiterates the
research contributions. Then we will discuss some further considerations,
most of which concern the more realistic issues involved in automated
cartography and map data processing, as well as further applications of

Prolog in these areas.

8.1 Summary

Polygon overlay is the process of superimposing two maps into one,
so that the output map conveys the selected information of the input maps
together to illustrate the spatial correlation between them. Before the early
60’s, the process was done manually. The -cartographer made
transparencies of the original maps and traced out the new map on the light
table. Computerized data processing did not come to aid this manual and
tedious process until the 70’s. However, attempts to automate the process
revealed that polygon overlay encompasses a host of many subproblems.
These are mostly related to geometry and topology, but also include the
computer sciences such as algorithm design, complexity analysis, arithmetic
and numerical representations. We reviewed the research work in
computational geometry and specifically polyline intersection, which
contributed fundamentally to the development of algorithms for polygon

overlay. We also reviewed a few systems and software packages that

performed polygon overlay.

Prolog represents a radically new approach toward programming, an
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approach known as logic programming. Instead of presenting a prescribed
set of instructions, a Prolog program describes the objects and their
relationships involved in the problem to be solved. Using Prolog for
geometry problems is a venture motivated by the quest for better
programming tools in computational geometry. The polygon overlay
problem becomes for us a vehicle to investigate the practicability and

suitability of using Prolog for geometry applications.

We developed a polygon overlay system in Prolog, implementing an
algorithm due to Franklin (Franklin 83a) and extending it to handle also
maps Wwith separate components. The algorithm decomposes the complex
process of polygon overlay into simple stages, resulting in much simplified
data structures. Each stage is further subdivided into a number of steps.

The following are the four major stages:

Stage 1. Chain Intersection.

Determine intersecting chains and split them at the

intersection points.

Stage 2. Polygon Boundary Formation.
Link up the chains to form the polygon boundaries.

Stage 3. Polygon Overlay Identification.
For each polygon boundary, identify the two input polygons

to establish the overlay relationship.

Stage 4. Boundary Containment Resolution.
Resolve the containment relationships between boundaries

to compound polygons (with multiple boundaries).
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The system adopts a relational approach to data structuring. Geometric
entities are defined as Prolog facts, and the Prolog rules encoding geometry

algorithms perform data processing.

An adaptive grid sorts out potentially intersecting edge segments to
within those that occupy some common grid cells. We determine the chain
intersections by pairwise comparisons of the edges in each grid cell.
Geometric intersections are calculated using rational arithmetic. This
preserves numerical accuracy and thus topological consistency. It also
allows proper handling of special cases of touching and overlapping chains.

Hence, we can guarantee stability in processing geometric intersections.

In using Prolog, we have demonstrated several advantages as a
programming tool for geometry applications. Besides the general high level
nature of logic programming and a built-in relational data base in Prolog,
we formulated a few paradigms of programming revealed to be useful in

our application.

In conclusion, we have achieved in the experimental polygon overlay

system the following two-fold purpose:

On the one hand, we presented rational arithmetic as a practicable
solution to the problems stemming from discretization errors, in polygon
overlay. We achieved stability in the process of computation on two
aspects: (1) rational arithmetic preserves numerical accuracy in calculating

geometric intersections, and (2) a line segment intersection algorithm
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complete with all special cases can properly identify and handle tangential

situations.

On the other hand, we showed that Prolog is a viable programming
tool for geometric and topological problems. Prolog offers a general high
level environment and a relational approach toward data structuring.
Specifically, we formulated three paradigms of logic programming which
appear to be useful: set-based operation, pattern matching

geometric/topological properties, and using unification to form equivalence

classes.

8.2 Further Considerations

We have defined our polygon overlay problem to be strictly
geometric and topological. In this section, we will present some realistic
issues involved in automated cartography and map data processing. These
may be referred to as extensions to the polygon overlay system or further

application areas.

8.2.1 Sliver Removal

We have used rational arithmetic to guarantee stability in numerical
computation and circumvent possible problems of discretization errors
leading to topological inconsistency (Franklin 84). However, a realistic

problem with map data is nearly coincidental input data: two input maps
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may have data values of the same prominent feature (such as road or river)
only approximately equal. As a result, the overlay process generates an
output map with sliver polygons around the feature. These slivers should
be removed as a human cartographer would remove them. We can outline
certain rules to automatically recognize these sliver polygons: a sliver can
often be characterized by its size and shape, and the small number of edge
segments around the boundary which involves two chains, one from each
map (Goodchild 77). Figure 8.1 illustrates three kinds of slivers, along the
trail of two nearly coincidental input chains: a rounded sliver, an elongated
strip, and a bent strip. We can respectively identify these slivers by small
area, small minimum diameter (diameter is defined as the distance between
two parallel lines enclosing the polygon), and small ratio of its area to that
of its convex hull. To remove a sliver, we can coalesce it with one of its
neighboring polygons which is not a sliver. This is to avoid coalescing
slivers into a non-sliver polygon. A polygon is coalesced to its neighbor by
removing the common boundary chain, and updating the new polygon with

combined attributes.

8.2.2 Map Data Verification

We have freely assumed data consistency in our input maps.
Unfortunately, real maps are often plagued with errors and inconsistencies.
An interesting idea is to exploit overlay processing on one map to perform
data consistency verification. If an overlay system can identify an error in
given map data, or even better the source of such an error, it may also

possibly edit the data intelligently in the process. Some of these data
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a crooked strip

Figure 8.1 Three kinds of sliver polygons




inconsistencies may be chains crossing over each other (which need to be
separated), or same chain duplicated, or polygon identifier mismatch
around its boundary chains. Figure 8.2 illustrates the case of polygon

identifier mismatch due to incorrect orientation of one chain.

8.2.3 Map Generalization

Probably the most challenging problem in automated cartography is
that of map generalization - the problem of generating a map of reduced
scale from a given map. A map communicates spatial relationships. Map
generalization involves simplifying features, deleting insignificant features,
and converting features from one type to another, to effectively
communicate the spatial relationships in the reduced scale. Figure 8.3
depicts an example. An automated map generalization system will deal
with not only geometric/topological computation, but also common sense
and expert reasoning of the cartographer. While numerous applications
have been done in Prolog to demonstrate automated reasoning, we have
shown that it is also a viable tool for geometric/topological computation.
We therefore suppose that Prolog would be effective for automated map

generalization.
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Figure 8.2 Polygon id mismatch due to incorrect orientation
of a boundary chain
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Figure 8.3 A map generalization example
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Appendix 1: Rational Arithmetic Package

I append to the thesis here the Prolog source code which installs
rational arithmetic. The reader is referred to (Wu 86) which is a technical
report of the work on the package. Chapter 4, section 4.3 also explains
many of the underlying ideas. The version here is the latest version as of
the writing of this thesis. The software package should be very

transportable, and is free for sharing and further distribution.

The appendix includes the BIG package - multiple precision integers,
the XQ package - exact rational numbers, and the test program to compute

m.
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Appendix 2: OVER4 Source Listing

In this appendix, we include the Prolog source code of all 12
programs of OVER4, the polygon overlay system in Prolog. I have
documented the function of these programs in Chapter 7, section 7.1.
These programs are quite readable, and I have put in sufficient comment in
the listing. I hope this can be an example of a higher level approach in

programming toward geometry problems.

OVERA4 consists of 12 programs in 4 groups: XSECT, LINK, OVER
and CONTR. XSECT consists of dform, gstat, zgrid, zsect, zconn; LINK
consists of calcs, sorti, cpoly, bound; OVER consists of xover and pcont, and

CONTR consists of only jconn.
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