
EXACT AND PARALLEL INTERSECTION OF 3D
TRIANGULAR MESHES

By

Salles Viana Gomes de Magalhães

A Dissertation Submitted to the Graduate

Faculty of Rensselaer Polytechnic Institute

in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

Major Subject: COMPUTER SCIENCE

Examining Committee:

Dr. W. Randolph Franklin, Dissertation Adviser

Dr. Christopher D. Carothers, Member

Dr. Barbara M. Cutler, Member

Dr. Richard J. Radke, Member

Rensselaer Polytechnic Institute
Troy, New York

November 2017
(For Graduation December 2017)

c© Copyright 2017

by

Salles Viana Gomes de Magalhães

All Rights Reserved

ii

CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . viii

ACKNOWLEDGMENT . xii

ABSTRACT . xiii

1. Introduction . 1

2. Background and related works . 6

2.1 Roundoff errors . 6

2.1.1 Arithmetic filters and interval arithmetic 11

2.2 Representing spatial data . 13

2.2.1 2D maps . 13

2.2.2 3D meshes . 15

2.3 Overlay and point location . 17

2.3.1 The point location problem 17

2.3.2 The overlay problem . 19

2.3.2.1 2D map overlay . 19

2.3.2.2 3D mesh overlay . 21

2.4 Simulation of Simplicity . 24

3. Processing 2D maps . 28

3.1 Two-level uniform grid . 29

3.1.1 Implementation details . 30

3.2 Overlaying 2D planar graphs . 31

3.2.1 The algorithm . 31

3.2.1.1 Exploiting local topology 32

3.2.1.2 Creating the two-level uniform grid 32

3.2.1.3 Computing the intersection points 33

3.2.1.4 Locating one map’s vertices in the other 34

3.2.2 Constructing the resulting map 36

3.2.2.1 Parallel implementation 37

3.3 Experimental results . 38

iii

3.3.1 Algorithm performance . 39

3.3.2 The two-level uniform grid relevance 47

3.4 Summary . 49

4. 2-level 3D uniform grid indexing . 50

4.1 Implementation details . 52

4.2 Summary . 55

5. The point location problem . 56

5.1 The problem . 56

5.2 Performing queries . 56

5.3 Using a two-level uniform grid to accelerate the queries 60

5.4 Implementation details . 61

5.4.1 Parallel implementation . 64

5.4.2 Special cases . 66

5.4.3 Implementing the symbolic perturbations 70

5.5 Experimental evaluation . 73

5.5.1 Correctness evaluation . 74

5.5.2 Performance evaluation . 76

5.6 Summary . 81

6. 3D mesh intersection . 82

6.1 Data representation . 83

6.1.1 The symbolic perturbation . 83

6.2 Implementing intersection with simple geometric predicates 90

6.2.1 Orientation predicates . 91

6.3 The mesh intersection algorithm . 92

6.3.1 Uniform grid . 92

6.3.2 Intersecting triangles . 93

6.3.2.1 Implementation with orientation predicates 94

6.3.3 Retesselating the triangles . 95

6.3.3.1 Implementation with orientation predicates 98

6.3.4 Classifying triangles . 102

6.3.4.1 Implementation with orientation predicates 105

6.4 Implementing the symbolic perturbation 106

iv

6.5 Experiments . 110

6.5.1 Datasets . 110

6.5.2 The effect of the use of arithmetic filters and other optimizations111

6.5.3 The importance of the uniform grid 120

6.5.4 The effect of different choices for the grid sizes 121

6.5.5 Comparing the performance of 3D-EPUG-Overlay against
other methods . 128

6.5.6 Correctness evaluation . 132

6.5.6.1 Visual inspection . 134

6.5.6.2 Rotation invariance 136

6.5.7 Limitations . 138

6.6 Summary . 141

7. Conclusion and future work . 143

7.1 Future work . 144

REFERENCES . 146

v

LIST OF TABLES

3.1 Experimental datasets. 38

3.2 Elapsed time (in seconds) for the overlay of the BrSoil dataset with
BrCounty. 40

3.3 Elapsed time (in seconds) for the overlay of the UsAquifers dataset with
UsCounty. 41

3.4 Elapsed time (in seconds) for the overlay of the UsWaterBodies dataset
with UsBlockBoundaries. 42

3.5 Elapsed time of the main steps of EPUG-Overlay for the overlay
of the BrSoil with BrCounty. Times considering the grid size from
Equation (3.2) and using 1 and 16 threads. 45

3.6 Elapsed time of the main steps of EPUG-Overlay for the overlay of
the UsAquifers with UsCounty. Times considering the grid size from
Equation (3.2) and using 1 and 16 threads. 45

3.7 Elapsed time of the main steps of EPUG-Overlay for the overlay
of the UsWaterBodies with UsBlockBoundaries. Times considering the
grid size from Equation (3.2) and using 1 and 16 threads. 46

3.8 Elapsed time and memory size spent just to create a Quadtree sequentially. 48

5.1 Datasets used in the experiments. 74

5.2 Experimental pre-processing and query times for PinMesh and RCT. . 78

5.3 Time spent by the main steps of PinMesh. Experiments performed on
the 24 Materials dataset using a varying number of threads. The query
time is the average time per query (in µs). 80

6.1 Datasets used in the 3D intersection experiments. 113

6.2 Pairs of meshes evaluated, number of triangles (in the input and output
meshes) and default grid configuration employed in the experiments. . . 114

6.3 Times, in seconds, spent by key steps of 6 versions of 3D-EPUG-
Overlay using either 1 or 32 threads. 116

6.4 Parallel speedup (ratio between the time spent using 1 thread and the
time spent using 32 threads) obtained in the key steps of 6 versions of
3D-EPUG-Overlay. 119

vi

6.5 Comparing the times (in seconds) for detecting pairwise intersections of
triangles using CGAL (sequential) versus using a uniform grid (parallel).122

6.6 Times spent intersecting meshes using different configurations for the
uniform grid sizes. The rows detached in boldface represent the config-
urations chosen using the strategy described in Section 6.5.4. 123

6.7 Times spent intersecting meshes using different configurations for the
uniform grid sizes (continued). The rows detached in boldface represent
the configurations chosen using the strategy described in Section 6.5.4. . 124

6.8 Times spent intersecting tetrahedral meshes using different configura-
tions for the uniform grid sizes. The rows detached in boldface represent
the configurations chosen using the strategy described in Section 6.5.4. . 125

6.9 Times, in seconds, spent by different methods for intersecting pairs of
meshes. QuickCSG reported errors during the intersections whose times
are flagged with *. Only 3D-EPUG-Overlay was employed in the
experiments with tetrahedral meshes (last three rows). 129

6.10 Speedup of 3D-EPUG-Overlay when compared against different meth-
ods. QuickCSG reported errors during the intersections whose speedups
are flagged with *. 130

6.11 Memory usage (in GB) of the different algorithms. QuickCSG reported
errors during the intersections whose entries are flagged with *. 132

6.12 Hausdorff distances (normalized as a percentage of the bounding-box)
between the output meshes generated by the reference method (LibiGL)
and 3 other algorithms. 133

vii

LIST OF FIGURES

1.1 Example of mesh intersection. 2

1.2 Creation of an engineering part (in red) as the intersection of two 3D
models in a CAD system. Source: [2]. 2

2.1 Roundoff errors in the planar orientation problem - Geometry of the pla-
nar orientation predicate for double precision floating point arithmetic.
Yellow, red and blue points represent, respectively, collinear, negative
and positive orientations. The diagonal line is an approximation of the
segment (q, r). Source: [8]. 8

2.2 Snap rounding - (a) Initial set of segments. (b) Arrangement after the
snap rounding execution: each segment endpoint and each intersection
point has been snapped to the pixel center. 9

2.3 Baarle-Nassau and Baarle-Hertog exclaves. Source: [23]. 14

2.4 Example of map and the chains representing it. 15

2.5 Example of problems caused by a non-watertight 2D map (a) and by
a self-intersecting map (b): in both situations there is a contradiction
related to the face where point p is located. 16

2.6 Example of mesh representing 2 polyhedra - Triangle ABC bounds the
two main polyhedra of the mesh while the other triangles bound one of
the two polyhedra and the exterior polyhedron. 17

2.7 Example of map overlay: (a) two superimposed maps, (b) overlay, (c)
overlay without the polygons intersecting the exterior of the maps. . . . 20

2.8 Testing edges for intersection after the application of SoS. 25

2.9 Example of special cases during the process of finding an edge bounding
a polygon. 27

3.1 Two-level uniform grid - Uniform grid with 4×7 first level and 3×3
second level (created in first level cells containing more than 4 edges). . 30

3.2 Determining the face containing a vertex. 35

3.3 Two maps with no edge intersection. 36

3.4 Example of an edge of map A intersecting more than one edge of map B. 37

viii

3.5 Examples of maps used in the overlay experiments - BrSoil (a), Br-
County (b), UsAquifers (c), UsCounty (d) (these figures are not to scale). 39

3.6 Histogram for the number of pairs of edges in the grid cells - The number
of grid cells distribution considering the number of pairs of edges to be
evaluated when overlaying maps UsWaterBodies (containing 21 million
edges) with UsBlockBoundaries (containing 32 million edges): (a) 1-
level uniform grid (with 20002 cells); (b) 2-level uniform grid (with 402

cells). 48

4.1 Dynamic array versus ragged array - 3 × 3 uniform grid (for clarity, a
2D grid was used) using dynamic arrays (a) versus ragged array (b).
Only the memory related to the first row of the grid is shown. 52

5.1 Example of an input mesh and a query point. 57

5.2 Example of a query point q directly below a triangle ABC with normal
n. 58

5.3 Challenge to the 2D version of the point location problem caused by
vertical edges - In (a) q’s location can be easily computed since the ray
starting on q hits the interior of the edge AB. In (b) and (c), on the
other hand, the orientation of AB cannot be easily used to locate q
since AB is a vertical line segment. 59

5.4 Computing the point locations using a uniform grid. 64

5.5 Query point exactly below a mesh edge. 67

5.6 Using SoS for avoiding special cases in the 2D version of the point
location problem. 68

5.7 Illustration of some datasets used in the experiments - Horse (a), Ar-
madillo (b), Hand (c), Rolling Stage (d), Elephant (e) and Neptune (f).
These figures were renderized using MeshLab. 75

5.8 Example of dataset representing a special case. 77

5.9 Comparing the preprocessing (a) and average query (b) times spent by
PinMesh and RCT. 79

6.1 Detecting the intersection between an edge and a triangle using 5 ori-
entation predicates - The interior of edge ED will intersect the interior
of triangle ABC iff E and D are on opposing sides of the plane of ABC
and the sideness of D w.r.t. the triangles EBC, ABE and AEC are
the same. 95

ix

6.2 Computing the intersection of two tetrahedra - (a): input meshes, (b)
and (c): retesselated meshes, (d): classifying the triangles to generate
the output. 96

6.3 Retesselating a triangle that intersects other triangles - (a): triangle abc
intersects three other triangles (the edges from the intersection are in
red), (b) the edges are split at the intersection points, duplicated and
a search procedure is employed to extract the faces generated from the
retesselation. 97

6.4 Retesselating a triangle where the corresponding graph is disconnected
- (a): the original edges from abc and the edges generated by the inter-
section of abc with other triangles are disconnected, (b) after greedily
trying to insert all the edges (generated by each pair of vertices) that do
not intersect the interior of a previously inserted edges, abc is completely
retriangulated. 98

6.5 Sorting the vertices along an edge - A 3D orientation is employed to
determine which vertex generated by an intersection (v1ε or v2ε) is closer
to an input vertex (aε). 99

6.6 Labeling the triangles once the location of at least one triangle is known:
(a) before the labeling process, (b) after the regions (abbreviated as reg.)
are labeled. 105

6.7 Sorting the vertices along an edge - Since v1ε and qε are on the same
side of aεcε, then v1ε is lower than v2ε. 106

6.8 Some of the pairs of meshes employed in the experiments - Each row
presents, respectively, the pair of meshes, the two meshes in the same
image layer and the computed intersection. 112

6.9 (a) Exterior of the 914686Tetra mesh. (b) clipped version of mesh
914686Tetra, showing its internal tetrahedra. 115

6.10 Intersection of the Bimba and Vase meshes computed by 3D-EPUG-
Overlay (a), QuickCSG (b), zoom (of the red square from (b)) pre-
senting the details of some errors in the QuickCSG result (c) and the
two input meshes presented on together (d) (figures not to scale). 135

6.11 Detail of the intersection of Ramesses with Ramesses Translated gener-
ated by QuickCSG using different ranges for the numerical perturbation:
no perturbation (a), 10−1 (b), 10−3 (c) and 10−6 (d). 137

x

6.12 Effect of two different perturbations during the self intersection of squares
- (a) Two squares intersect at a common edge (ad and fg), (b) The top
rectangle is perturbed (translated by positive infinitesimals), (c) The
bottom rectangle is perturbed. 139

6.13 Challenge caused by perturbations during the intersection of two squares
that intersect at an edge - (a) the two squares intersect at an edge.
(b) square efgh is perturbed by positive infinitesimals (intersection is
empty). (c) square abcd is perturbed by positive infinitesimals (inter-
section is an infinitesimal rectangle aεuεgεvε). 140

xi

ACKNOWLEDGMENT

I want first to thank my supervisor, Dr. Franklin, for all the support during my

Ph.D. studies. His enthusiasm, friendliness and encouragements were fundamental

to the development of this work.

Also, I want to thank my lovely family for the support. I would especially like

to thank my wife Ĺıgia, my parents Eliezer and Ana, my sisters Maisa and Laura,

and my grandmothers Cećılia and Odete.

Furthermore, I would like to express my appreciation to all the wonderful pro-

fessors from Universidade Federal de Viçosa for all the support and encouragement.

I especially owe a great deal of gratitude to Drs. Andrade, Bastos and Ferreira.

The professors of Rensselaer Polytechnic Institute were also very important to

the development of this work. I would especially like to thank the members of my

thesis committee: Drs. Carothers, Cutler and Radke.

Last, but not least, I want to dedicate this thesis to the memory Alcy Barcelos

Gomes, my grandfather and teacher. I owe a great deal of appreciation and gratitude

to him. His kindness, dedication and intelligence were fundamental for stimulating

my curiosity and interest in science since my childhood.

This research was partially supported by CAPES (Ciência sem Fronteiras -

grant 9085/13-0) and NSF (grant IIS-1117277).

xii

ABSTRACT

This thesis presents an exact parallel algorithm for computing the intersection be-

tween two 3D triangular meshes, as used in CAD/CAM (Computer Aided De-

sign/Computer Aided Manufacturing), CFD (Computational Fluid Dynamics), GIS

(Geographical Information Science) and additive manufacturing (also known as 3D

Printing). Geometric software packages occasionally fail to compute the correct

result because of the algorithm implementation complexity (that usually needs to

handle several special cases) and of precision problems caused by floating point

arithmetic. A failure in an intersection computation algorithm may propagate to

any software using the algorithm as a subroutine. As datasets get bigger (and the

chances of failure in an inexact algorithm increase), exact algorithms become even

more important.

While other methods for exactly intersecting meshes exist, their performance

makes them non-suitable for applications where the fast processing of big geometric

models is important (such as interactive CAD systems).

The key to obtain robustness and performance is a combination of 5 separate

techniques:

• Multiple precision rational numbers, to exactly represent the coordinates of

the objects and completely eliminate roundoff errors during the computations.

• Simulation of Simplicity, a symbolic perturbation technique, to ensure that all

geometric degeneracies (special cases) are properly handled.

• Simple data representations and local information, to simplify the correct pro-

cessing of the data and make the algorithm more parallelizable.

• A uniform grid, to efficiently index the data, and accelerate some of the steps

of the algorithm such as testing pairs of triangles for intersection or locating

points in the mesh.

xiii

• Parallel programming, to accelerate the intersection process and explore better

the ubiquitous parallel computing capability of current hardware.

To evaluate our ideas, we have developed and implemented EPUG-Overlay

(Exact Parallel Uniform Grid Overlay), an exact and efficient algorithm for overlay-

ing 2D maps. EPUG-Overlay applies all the techniques mentioned above and, as

a result, it was not only exact but also very efficient. Indeed, it was able to compute

the intersection of a map containing 32 million edges with another map having 21

million edges in 264 elapsed seconds using 16 threads with dual 8-core processors.

By comparison, GRASS (a Geographic Information System) took 5, 300 seconds to

perform the same computation, partly because it is only single-threaded.

We have also developed PinMesh (Point In Mesh), an exact and efficient

method for locating points in 3D meshes. The point location problem is an impor-

tant step we intend to use for computing the intersection of 3D meshes. PinMesh

was carefully implemented to always handle point location queries correctly. The use

of efficient data structures associated with parallel programming made PinMesh

very fast. According to our experiments, PinMesh was up to 27 times faster than

the RCT (Relative Closest Triangle) 3D point location algorithm (that was, to the

best of our knowledge, the fastest point location algorithm available).

Finally, we developed 3D-EPUG-Overlay, an algorithm for exactly com-

puting the intersection of pairs of 3D meshes. 3D-EPUG-Overlay employs all

the techniques mentioned above to ensure its correctness and efficiency. Experi-

ments showed that it was up to 101 times faster than the algorithm available in

LibiGL (the state of art algorithm for exact mesh intersection) and, also, it had a

performance that was comparable to a parallel inexact algorithm that was specifi-

cally developed to be very fast. Besides being fast, 3D-EPUG-Overlay was more

memory efficient than the other evaluated methods. Furthermore, in all test cases

the result obtained by 3D-EPUG-Overlay matched the reference solution.

All the software developed for this thesis is freely available for other researchers

to use and extend.

xiv

CHAPTER 1

Introduction

Computing intersections is a very important operation for CAD systems, com-

puter games, computational geometry, graphic editing, CFD, and GIS. In 2D, given

a pair of maps A and B, that are composed of sets of faces or polygons representing

partitions of the E2 plane, the intersection of A with B is a map C where each

polygon is the intersection of a polygon of A with a polygon of B. For example,

the intersection of a map representing the states of the United States with a map

representing American drainage basins is another map where the polygons represent

the portion of each basin that is in each state.

These operations also extend to 3D objects. For example, if a set of 3D solids

Portions of this chapter previously appeared as:

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li, “Fast
exact parallel map overlay using a two-level uniform grid”, in in Proc. 4th
ACM SIGSPATIAL Int. Workshop Analytics for Big Geospatial Data, BigSpa-
tial’15. New York, NY, USA: ACM, 2015.

M. G. Gruppi, S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and
W. Li, “Using rational numbers and parallel computing to efficiently avoid
round-off errors on map simplification”, in Proc. XVI Brazilian Symp. Geoin-
formatics, GeoInfo’15, 2015, pp. 162 - 173.

S. V. G. Magalhães, “An efficient algorithm for computing the exact overlay of
triangulations”, in Proc. 2nd ACM SIGSPATIAL PhD Workshop, SIGSPA-
TIAL PhD’15. New York, NY, USA: ACM, 2015, pp. 3:13:4.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li,“Pinmesh
- Fast and exact 3D point location queries using a uniform grid”, Comput. &
Graph., vol. 58, pp. 1 - 11, 2016, Shape Modeling International 2016.

S. V. G. Magalhães, W. R. Franklin, and M. V. A. Andrade, “Fast exact par-
allel 3D mesh intersection algorithm using only orientation predicates”, Proc.
17th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information
Systems, SIGSPATIAL’17. New York, NY, USA:ACM, 2017.

1

2

Figure 1.1: Example of mesh intersection.

A represents the layers of soil in a given region and another set B contains one

polyhedron representing a section of the soil that will be excavated, the intersection

between A and B will represent the different layers of soil that will be extracted

during the digging. Figure 1.1 presents an example of the intersection of two poly-

hedra.

The ability to represent and process 3D data in CAD/CAM and GIS is im-

portant in several domains such as architecture, engineering, urban planning, trans-

portation, and military planning [1]. Figure 1.2 illustrates the use of the intersection

of two 3D models to create an engineering part in a CAD system.

Figure 1.2: Creation of an engineering part (in red) as the intersection of two
3D models in a CAD system. Source: [2].

A popular way to represent 3D objects is the triangular mesh [3], where the

boundary of the solids are represented by a set of triangles that are connected in

their common edges and vertices.

However, according to Feito et al. [3], although 3D models have been widely

3

used in computer science, processing them is still a challenge. Due to the algorithm

implementation complexity (that usually needs to handle several special cases), the

necessity of processing big volumes of data and precision problems caused by floating

point arithmetic, software packages occasionally “fail to give a correct result, or they

refuse to give a result at all” [3]. The likelihood of failure increases as datasets get

bigger. This is a challenge particularly in the problem of intersecting triangulations.

Even though in some situations an algorithm that occasionally fails is accept-

able, it is often important to have an algorithm that is both efficient and robust. For

example, overlay algorithms are frequently used as subroutines for other algorithms

and, therefore, if their outputs are not exact or they are too slow, these problems

may propagate to the algorithms using them.

The main goal of this thesis is to develop an efficient and robust algorithm

for exactly computing the overlay of 3D triangular meshes. This algorithm employ

a combination of 5 separate techniques to achieve both robustness and efficiency.

Exact arithmetic is employed to completely avoid errors caused by floating point

numbers. Special cases are treated using Simulation of Simplicity (SoS) [4]. The

computation is performed using simple local information to make the algorithm

easily parallelizable and to easily ensure robustness. Since the use of exact arithmetic

is expected to add an overhead, efficient indexing techniques and High Performance

Computing (HPC) are employed to mitigate this.

As a proof of concept, we initially developed a 2D map intersection algo-

rithm (named EPUG-Overlay– Exact Parallel Uniform Grid Overlay), that can

efficiently compute the intersection between 2 maps using exact arithmetic. EPUG-

Overlay uses the five techniques mentioned above.

Furthermore, we have developed an efficient and exact algorithm for perform-

ing point location in triangular meshes. Besides being an important step of the

intersection computation, locating points is also an important problem in computa-

tional geometry and, thus, part of this thesis is dedicated to present our solutions

to this problem.

Finally, the experience acquired during the development of EPUG-Overlay

and PinMesh was employed to develop 3D-EPUG-Overlay, our exact algorithm

4

for computing the intersection of pairs of 3D triangulations.

The main contributions of this thesis are:

• We presented EPUG-Overlay, an efficient and exact 2D map overlay algo-

rithm.

• We developed PinMesh, an algorithm for exactly locating points in 3D meshes.

• We presented 3D-EPUG-Overlay, an exact and efficient algorithm for mesh

intersection.

• We designed the three aforementioned algorithms to be parallelizable, to better

use the computing capability of current computers (typically containing multi-

core processors).

• We showed that the symbolic perturbation scheme employed by 3D-EPUG-

Overlay eliminates all the special cases.

• We combined exact arithmetic with symbolic perturbation to guarantee that

3D-EPUG-Overlay is exact.

• We combined a series of techniques such as a 3D parallel uniform grid and

arithmetic filtering to make 3D-EPUG-Overlay not only exact but also

efficient.

• Experiments showed that 3D-EPUG-Overlay was up to 101 times faster

than the state of the art algorithm for intersecting meshes.

This work is organized as follows:

• Chapter 2 cites related works and presents a background about the problems

solved in this thesis and the challenges associated with them.

• Chapter 3 presents our exact 2D map intersection algorithm.

• Chapter 4 presents the implementation details of the 3D uniform grid employed

in the point location and mesh intersection algorithms.

5

• Chapter 5 describes the algorithm developed for exactly locating points in 3D

meshes.

• Chapter 6 presents the algorithm for exactly computing the intersection of 3D

meshes.

CHAPTER 2

Background and related works

2.1 Roundoff errors

Usually, non-integer numbers are approximately represented in computers with

floating-point values. The difference between the value of a non-integer number and

its approximation is often referred as roundoff error. Even though these differences

are usually small, arithmetic operations frequently create more errors and, thus, a

Portions of this chapter previously appeared as:

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li, “Fast
exact parallel map overlay using a two-level uniform grid”, in in Proc. 4th
ACM SIGSPATIAL Int. Workshop Analytics for Big Geospatial Data, BigSpa-
tial’15. New York, NY, USA: ACM, 2015.

M. G. Gruppi, S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and
W. Li, “Using rational numbers and parallel computing to efficiently avoid
round-off errors on map simplification”, in Proc. XVI Brazilian Symp. Geoin-
formatics, GeoInfo’15, 2015, pp. 162 - 173.

S. V. G. Magalhães, “An efficient algorithm for computing the exact overlay of
triangulations”, in Proc. 2nd ACM SIGSPATIAL PhD Workshop, SIGSPA-
TIAL PhD’15. New York, NY, USA: ACM, 2015, pp. 3:13:4.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li,“Pinmesh
- Fast and exact 3D point location queries using a uniform grid”, Comput. &
Graph., vol. 58, pp. 1 - 11, 2016, Shape Modeling International 2016.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, M. G. Gruppi and
W. Li, “Exact intersection of 3D geometric models”, in Proc. XVII Brazilian
Symp. Geoinformatics, GeoInfo’16, 2016, pp. 44 - 55.

S. V. G. Magalhães, W. R. Franklin, and M. V. A. Andrade, “Fast exact par-
allel 3D mesh intersection algorithm using only orientation predicates”, Proc.
17th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information
Systems, SIGSPATIAL’17. New York, NY, USA:ACM, 2017.

6

7

set of operations performed in sequence usually leads to larger errors.

The presence of floating point errors in computer programs often creates seri-

ous consequences in diverse fields such as the failure of the first Ariane V rocket [5],

the failure of the Patriot missile defense system [6] and the error in the Vancouver

Stock Exchange index [7].

In geometry, roundoff errors can generate topological inconsistencies causing

globally impossible results for predicates like point inside polygon. Kettner et al. [8]

presented an interesting study of the failures caused by roundoff errors in geomet-

ric problems. In this study, they presented examples of how rounding in floating

point arithmetic affects the planar orientation predicate and, as consequence, other

applications that rely on this predicate such as a planar convex hull algorithm.

The planar orientation predicate is the problem of finding whether three points

p, q, r are collinear, make a left turn, or make a right turn. This predicate is

computed by verifying the sign of the following determinant containing the points:

∣∣∣∣∣∣∣∣
px py 1

qx qy 1

rx ry 1

∣∣∣∣∣∣∣∣
This determinant will be positive, negative or zero which means that points

(p, q, r) form a left turn, right turn or are collinear, respectively. Due to round-off

errors in floating point arithmetic the results can be classified incorrectly due to

rounding to zero, perturbed zero, or sign inversion. Respectively, it means a non-

zero result may be rounded to zero, a zero result may be mis-classified as positive

or negative, and a positive result may be mis-classified as negative or vice-versa.

To observe the occurrence of issues caused by floating-point arithmetic, Ket-

tner et al. [8] developed a C++ program to apply the planar orientation predicate

(orientation(p, q, r)) on a point p = (px + xu, py + yu) where u is the step between

adjacent floating point numbers in the range of p and 0 ≤ x, y ≤ 255. This results

in a 256× 256 matrix containing either 1, -1 or 0 if the point corresponding to the

matrix position is to the right, to the left or on the line that passes through q and

r. Figure 2.1 shows the geometry of this experiment for p = (0.5, 0.5), u = 2−53,

8

Figure 2.1: Roundoff errors in the planar orientation problem - Geometry of
the planar orientation predicate for double precision floating point arithmetic.
Yellow, red and blue points represent, respectively, collinear, negative and
positive orientations. The diagonal line is an approximation of the segment
(q, r). Source: [8].

q = (12, 12) and r = (24, 24). The black diagonal line is an approximation of part

of the segment (q, r). Yellow, red and blue cells represent, respectively, collinear,

negative and positive orientations with respect to the segment (q, r). According to

Kettner et al., even using extended double arithmetic was not enough to overcome

this issue.

As shown by [8], these inconsistent results in the orientation(p, q, r) predicate

could make algorithms that use this predicate (such as the Incremental Convex Hull

algorithm) to fail.

Several techniques have been proposed in order to overcome this problem.

The simplest one consists of using an ε tolerance to consider two values x and y are

equal if |x − y| ≤ ε. However this is a formal mess because equality is no longer

transitive, nor invariant under scaling. Thus, in practice, epsilon-tweaking fails in

several situations [8].

Snap rounding is another method to approximate arbitrary precision segments

into fixed-precision numbers [9]. However, Snap rounding can generate inconsis-

tencies and deform the original topology if applied consecutively on a data set.

Figure 2.2 illustrates how Snap rounding deform the original geometry of some

9

(a) (b)

Figure 2.2: Snap rounding - (a) Initial set of segments. (b) Arrangement after
the snap rounding execution: each segment endpoint and each intersection
point has been snapped to the pixel center.

segments. Some variations of this technique attempt to get around these issues

[10]–[12].

Controlled Perturbation (CP), [13] is another approach, based on the use of

finite precision approximation techniques. The basic idea is to slightly perturb

the input in a controlled manner to remove all degeneracies and such that all the

geometric predicates are correctly evaluated even using floating-point arithmetic.

Boissonat [14] describes a robust implementation of the plane sweep approach

for detecting segments that intersect using triple of the precision of the input data.

The basic idea is to implement the algorithm using predicates that can be reliably

evaluated using floating point numbers with more precision than the input numbers.

Shewchuk [15] presents the Adaptive Precision Floating-Point technique, that

focus on exactly evaluating predicates (e.g. orientation tests). The idea is to per-

form this evaluation using the minimum amount of precision necessary to achieve

correctness. As a result, it is possible to develop some efficient exact geometric

algorithms. Geometric predicates can often be evaluated by computing the sign of

a determinant and, thus, the actual value of this determinant does not need to be

exactly computed as long as the sign of the approximated result is guaranteed to

be correct. To determine if the sign of an approximation can be trusted, the ap-

proximation and an error estimate are computed and, if the error is big enough to

make the sign possibly incorrect, the values are recomputed using higher precision.

As mentioned by Shewchuk [15], this technique focuses on geometric predicates and

10

it is not suitable to solve all geometric problems. For example, “a program that

computes line intersections requires rational arithmetic; an exact numerator and

exact denominator must be stored” [15].

Li [16] presented the Exact Geometric Computation (EGC) model, which

represents mathematical objects using algebraic numbers to perform computations

without errors. By definition, an algebraic number is the root of an univariate

polynomial with integer coefficients. For instance, the number
√

2 has no finite rep-

resentation, but it can be represented exactly as the pair (x2− 2, [1, 2]), interpreted

as the root of the polynomial x2 − 2 that lies in the interval [1, 2]. This model

has some interesting features but its main drawback is the performance penalty.

Even determining the sign of an expression is nontrivial. E.g.: what is the sign of√√√
5 + 1 +

√√
5− 1− 4

√
2
√

5 + 4 ? (answer: 0)

The formally proper way to effectively eliminate roundoff errors and guarantee

algorithm robustness is to use exact computation based on rational number with

arbitrary precision [8], [17]–[19]. In this work we intend to develop algorithms that

are efficient enough to perform the computations using arbitrary precision rationals.

Computing in the algebraic field of the rational numbers over the integers, with

the integers allowed to grow as long as necessary, allows the traditional arithmetic

operations, +,−,×,÷, to be computed exactly, with no roundoff error.

The cost is that the number of digits in the result of an operation is about

equal to the sum of the numbers of digits in the two inputs. E.g., 214
433

+ 659
781

= 452481
338173

.

Casting out common factors helps, but that is rarely possible. E.g., we can cast

out a common factor of two when the numerator and denominator are both even —

1/4 of the time. This behavior is acceptable if the depth of the computation tree is

small, which is true for the algorithms we will present. Furthermore, as it will be

mentioned in section 2.1.1, in some situations the exact computation can be further

accelerated by employing techniques such as interval arithmetic.

Besides ensuring exact results in the predicates and arithmetic computations,

the use of arbitrary precision rational numbers has other two advantages. First,

Simulation of Simplicity [4], the technique we use for treating the special cases,

requires exact arithmetic in order to work properly. Second, our algorithm will be

11

able to support input geometrical data where the coordinates are exactly represented

using rational numbers and, thus, we will be able to process meshes that cannot be

exactly represented using floating point arithmetic.

2.1.1 Arithmetic filters and interval arithmetic

One technique to accelerate algorithms based on exact arithmetic is to em-

ploy arithmetic filters and interval arithmetic [20]. The idea is to use an interval

of floating-point numbers containing each exact value. During the evaluation of

predicates (which typically consists in the computation of the sign of an arithmetic

expression), the arithmetic operations are initially applied to the intervals. After

each arithmetic operation the result (an interval) is adjusted to guarantee that it

will still contain the exact result of the operation (this is called the containment

property). At the end, if the sign of the exact result can be safely inferred based on

the sign of the bounds of the interval, its value is returned. Otherwise, the predicate

is re-evaluated using exact arithmetic instead of the floating-point intervals. The

term arithmetic filter derives from the process of filtering the unreliable results and

recomputing them with exact arithmetic.

The key to the correct and efficient implementation of operations with inter-

val arithmetic is the fact that the IEEE-754 standard for floating-point numbers

explicitly define how the arithmetic operations are approximated: “the result of op-

erations can be seen as if they were performed exactly, but then rounded to one of the

nearest floating-point values enclosing the exact value” [20]. IEEE-754 also defines

three rounding-modes (that can be selected at runtime): the results of the opera-

tions can be rounded to the nearest representable floating-point value, towards −∞
or +∞ (which selects, respectively, the previous or the next nearest representable

floating-point numbers).

These rounding modes are employed to adjust the intervals after each arith-

metic operation, which guarantees that they always contain the exact value of the

expressions. [20] illustrates this process with the addition operation. Suppose

xInterval = [x.lower, x.upper] and yInterval = [y.lower, y.upper] are, respec-

tively, floating-point intervals containing the exact values xExact and yExact. The

12

floating-point interval [x.lower±y.lower, x.upper∓y.upper] (where ± and ∓ repre-

sent, respectively, rounding towards −∞ or +∞) is guaranteed to contain the exact

value of the expression xExact+ yExact.

Since the intervals are computed in a way that the containment property is

always preserved, if both bounds have the same sign then this sign is equal to the

exact sign of the expression. Otherwise, the interval cannot be employed to infer

the exact sign and thus, the expression will have to be re-evaluated with exact

arithmetic. For example, if xExact is in the interval [0.01, 0.03], then xExact is

certainly a positive number. However, if xExact is in the interval [−0.0001, 0.0001],

then the sign of xExact can be either negative, zero or positive.

Since the roundoff errors accumulate, the width of the intervals increases as

arithmetic operations are performed and thus, the deeper the computation tree is,

the higher are the chances that computation with exact arithmetic will be necessary,

which could slow down the algorithms. However, many practical algorithms do not

present this problem [20]. The method proposed in this work, for example, has a

shallow computation tree.

While arithmetic filters can accelerate predicates, in some situations the exact

computation cannot be avoided. For example, exact arithmetic would be necessary

in operations where new coordinates have to be computed (these types of operations

are called geometric constructions). To illustrate this example, consider the prob-

lem of computing pairwise intersections of line segments: arithmetic filters could be

employed to accelerate the orientation predicates employed to detect if two line seg-

ments intersect, but exact arithmetic is necessary in order to output the coordinates

of the vertices generated by the intersection of pairs of edges.

The excellent Computational Geometry Algorithms Library (CGAL) [21] sup-

ports exact computation through the use of arbitrary precision rational numbers and

arithmetic filters in its algorithms. Furthermore, this library provides a framework

that allows programmers to easily develop algorithms with arithmetic filters.

Listing 2.1 illustrates one of the ways to develop an arithmetic filter using C++

and CGAL: variables with the suffix Exact were created as GMP (GNU Multiple

Precision Arithmetic Library) arbitrary precision rationals (which are represented

13

using the mpq class type) while the ones with suffix Interval were defined using

the interval arithmetic number type provided by CGAL. Arithmetic and boolean

operators are overloaded for both the interval and arbitrary precision arithmetic

types. If the comparison (line 4) cannot be evaluated safely, CGAL throws an

unsafe comparison exception. Once that exception is caught, the predicate can be

re-evaluated using the exact version of the respective variables (line 7).

Listing 2.1: Using CGAL interval arithmetic framework

1 //This p r ed i c a t e re turns 1 i f the sum of xExact wi th yExact i s

2 // p o s i t i v e and 0 o the rw i s e

3 // x I n t e r v a l and y I n t e r v a l must contain , r e s p e c t i v e l y , xExact and

4 // yExact

5 bool p r e d i c a t e (mpq class xExact ,CGAL: : I n t e r v a l n t<true> xInte rva l ,

6 mpq class yExact ,CGAL: : I n t e r v a l n t<true> y I n t e r v a l){
7 try {
8 i f (x I n t e r v a l+y I n t e r v a l > 0) return 1 ;

9 else return 0 ;

10 } catch (CGAL: : I n t e r v a l n t<true> : : unsa fe compar i son &ex) {
11 i f (xExact+yExact > 0) return 1 ;

12 else return 0 ;

13 }
14 }

As will be mentioned in Chapter 6, arithmetic filters will be employed to

accelerate the mesh intersection algorithm presented in this thesis. Even though

arithmetic filters could also be employed to accelerate the 2D map overlay algorithm

presented in Chapter 3 and the standalone point location algorithm described in

section 5, we have not implemented this optimization in these two algorithms yet

(this will be left as future work).

2.2 Representing spatial data

2.2.1 2D maps

For the scope of this work, a map (or polygonal map) is a partition of the E2

plane into a finite number of faces or polygons. Except for the infinite outside face,

all the other faces are finite.

14

Netherlands

Belgium

H1 H2

H3

H4

H5

H9

H6

H7

H8

H10

H15 H16

H11

H12

H13

H14

N1

N2

N3

N4

N5

N6

N7

Figure 2.3: Baarle-Nassau and Baarle-Hertog exclaves. Source: [23].

There are several possible ways to represent a map in a computer. We will

represent it as a planar graph, with faces bounded by edges and vertices, each face

labeled with an identification number (by convention, the map’s exterior face is

labeled with 0). A face does not need to be a connected set or convex. For example,

a face representing Spain would include the exclave (a portion of the territory of a

state that is disconnected from the main territory) Llivia. Perhaps the most extreme

example are the Baarle-Nassau and Baarle-Hertog exclaves [22]. See Figure 2.3.

We store a map in a text file containing a set of chains. A chain is a sequence

of edges with the same adjacent faces (Grouping edges into chains is done only for

efficiency).

Each chain has the following header: (l, ne, v0, v1, fl, fr), with l the chain label,

ne the number of edges in the chain, v0 and v1 respectively the initial and final

vertices, and fl and fr the left and right adjacent faces (in other words, fl and fr

represent, respectively, the faces in the positive and negative sides according to the

right hand rule). Each chain header is followed by the ne + 1 coordinates of its

vertices.

In a valid map, except for the exterior face, all the faces must be closed (i.e.,

the map must be watertight) and the chain labels must be consistent. Furthermore,

two chains can only intersect at their common endpoints (i.e., the map must be free

15

Chains:

(1,4,v1,v4,2,0)

(x1,y1);(x6,y6);(x5,y5);(x4,y4)

(2,2,v1,v4,1,2)

(x1,y1);(x4,y4)

(3,4,v1,v4,0,1)

(x1,y1);(x2,y2);(x3,y3);(x4,y4)

(4,5,v7,v7,0,2)

(x7,y7);(x8,y8);(x9,y9);(x10,y10);(x7,y7)

face 0
v1

v2

v3v4

v5

v6
v7

v8

v9

v10

face 1

face 2

face 2

Figure 2.4: Example of map and the chains representing it.

of self-intersections).

Since our algorithm does not need it, faces are not explicitly stored. That

is, the topology is represented implicitly. Figure 2.4 presents an example of a map

composed of 3 faces (face 2 has two connected components and face 0 is the exterior

of the map) and the corresponding chains that represent this map.

Figure 2.5 illustrates two invalid maps (one of them is not watertight and the

other one has a self-intersection). In Figure 2.5 (a) point p is apparently in face 1.

However, one could trace a curve connecting p to a point in face 0 without crossing

any edge and, thus, this would imply that p is in face 0.

In Figure 2.5 (b), if the ray l1 is traced it will first intersect edge (v5, v7), which

bounds, respectively, faces 2 and 0 on its positive and negative sides. Thus, this

would imply that p is in face 0. On the other hand, if the ray l2 was traced this

would imply that p is in face 2.

Thus, both maps in Figure 2.5 are ambiguous and we consider them to be

invalid inputs. As will be mentioned later, the same restrictions are applied to 3D

triangular meshes.

2.2.2 3D meshes

In this work, solids will be modeled using a 3D triangular mesh. This represen-

tation is similar to the representation of polygonal maps presented in section 2.2.1.

I.e., the E3 space will be partitioned into a finite number of polyhedra bounded by

triangular faces.

A mesh M is a set of triangles (a triangle soup) {ti}. Each triangle t is a tuple

16

face 0

v1
v2

v3v4

v5

v6

face 1

face 2

v7

p

(a)

face 0

v1 v2

v3
v4

face 1

p

face 2

v6 v7

v5
l1 l2

(b)

Figure 2.5: Example of problems caused by a non-watertight 2D map (a)
and by a self-intersecting map (b): in both situations there is a contradiction
related to the face where point p is located.

(a0, a1, a2, q+, q−). (a0, a1, a2) is the oriented list of triangle vertices, and (q+, q−)

are the adjacent polyhedra on the positive and negative sides of t (the order of its

vertices in the list gives t a well-defined positive and negative sides). Vertices and

polyhedra are labeled with ids.

Similarly to the polygonal map representation, since that information is unnec-

essary to our algorithms, in 3D we save space by not explicitly storing the polyhedra.

Thus, the global topology is represented only implicitly. Not having to worry about

global topological properties like face shells and nesting makes many things easier.

Figure 2.6 shows an example of a mesh containing 11 triangles and 3 polyhedra

(polyhedron 1 in red, polyhedron 2 in blue, and the exterior polyhedron). Triangle

ABC, for example, could be represented as (A,B,C, 2, 1) (polyhedra 2 and 1 are,

respectively, on the positive and negative sides of ABC). On the other hand, triangle

DCF could be represented as (D,C, F, 0, 1), since it bounds the exterior region

(represented, by convention, as polyhedron 0) on its positive side and the polyhedron

1 on its negative side.

Similarly to 2D maps, we require the polyhedra to be closed (watertight) and

two triangles can only intersect on shared vertices or edges (i.e., they must be

free from shelf-intersections). All triangles have a nonzero area and all polyhedra

a nonzero volume. (A mesh that violates those conditions can be cleaned up by

splitting edges and re-triangulating.)

17

Figure 2.6: Example of mesh representing 2 polyhedra - Triangle ABC bounds
the two main polyhedra of the mesh while the other triangles bound one of
the two polyhedra and the exterior polyhedron.

2.3 Overlay and point location

2.3.1 The point location problem

Given a set of query points and a polygonal map, the 2D point location problem

consists in determining in which polygon each point is. For the simplest case, there

is one input polygon and the objective is to determine if the point is inside or outside

the polygon. For the more general case, the map contains many polygons and the

objective is to determine in which polygon the point is.

This problem extends to 3D meshes: given a mesh representing one or more

polyhedra, the objective is to determine in which polyhedron each point is (or if it

is in the exterior of all polyhedra).

Both the 2D and 3D versions of this problem have many applications in

Computer Graphics, Computer Aided Design, Additive Manufacturing, Computer

Games, and Geographic Information Science [24], [25]. Point location is important

for solving problems such as computing the intersection of two meshes and detecting

collisions. Thus a correct and efficient algorithm is important.

Several existing solutions are presented in Ogayar et al. [24]. The most impor-

tant ones are Jordan Curve and Feito-Torres. The algorithm based on the Jordan

18

Curve Theorem [26] is an extension of PNPOLY, the well known ray casting 2D

point-in-polygon algorithm [27]. The idea is to cast a semi-infinite ray starting at

the query point, and count the number of intersections between this ray and the

polygon’s edges. The point is considered to be inside the polygon iff the number

of intersections is odd. Although this method is simple and efficient for performing

single queries, it is a challenge to efficiently implement it to correctly handle all the

singularities, which get much worse in 3D. For example, if the ray hits a vertex how

many intersections should be counted?

Feito-Torres [28] builds on the ease of determining whether a point is in a

tetrahedron by evaluating the sign of a determinant. It partitions the polyhedron

into tetrahedra, one between each triangular polyhedron face and the coordinate

origin, and then counts how many of them contain the query point q. Iff that is

odd, then q is in the polyhedron.

These methods work well for performing single queries against single polyhe-

dra; without preprocessing, a query takes linear time in the data size. A query

against a mesh with many polyhedra can be reduced to successive queries against

all the polyhedra in turn. However, in the usual cases of many queries on the same

dataset, or many polyhedra, this is not optimal. Therefore, Ogayar et al. [24] also

extend these two algorithms with common pre-processing techniques (such as the

use of an octree to index the mesh) to accelerate the multiple query case.

Recently, Liu et al. presented RCT (Relative Closest Triangle) [29], an efficient

method for locating points in 3D triangular meshes. RCT can perform point location

tests even in models composed of multi-materials, that is, in models where internal

boundaries divide the polyhedron into smaller polyhedra and the objective is to

determine in which smaller polyhedron the query point is.

For each query point q, RCT uses an octree to efficiently locate a mesh triangle

t that is visible from q. t is visible from q if a line segment that does not cross the

mesh can be traced between q and t. Once a visible triangle t is found, an orientation

operation that evaluates t’s normal is used to determine q’s position with respect

to the polyhedron. To the best of our knowledge, RCT is the fastest algorithm

available for performing multiple queries in polyhedra. Indeed, according to the

19

experiments in Liu et al. [29], RCT was much faster than an efficient ray-casting

algorithm based on Axis-Aligned Bounding Boxes, and also than the CGAL [21]

point location algorithm.

In Chapter 5 we will present PinMesh, an exact and efficient algorithm for

performing point location queries in 3D triangular meshes, which is faster than RCT.

2.3.2 The overlay problem

2.3.2.1 2D map overlay

Given a pair of polygonal maps A and B, the overlay (or intersection) of A

with B is a map C where each polygon is the intersection of a polygon of A with

a polygon of B. This is a classical problem with many applications in Computa-

tional Geometry, Computational Cartography and Geographic Information Science

(GIS) [30]–[34].

Figure 2.7 illustrates the overlay of two maps (the black map contains two

polygons: polygon 1 and polygon 2, and the blue map contains the polygons 3

and 4). Each map also contains an exterior polygon (by convention, the exterior is

labeled with 0). In Figure 2.7 (a) the two maps are superimposed, and in Figure 2.7

(b) the overlay of them is computed.

In this thesis we consider a variation of the overlay where the output polygons

intersecting the exterior of one of the input maps are removed from the output after

the overlay is computed (this is illustrated in Figure 2.7 (c)). While both problems

are equally hard to solve (the polygons are removed in a simple classification step),

we decided to choose this variation in order to compare our algorithm with other

algorithms that deal with the same variation.

Sometimes, the special case of triangulation overlay is considered [35] (an

excellent survey of various surface representations and algorithms). Map overlay

can also be embedded into higher-level algorithms such as interpolating from known

county populations to estimated watershed populations [33], [36].

Franklin [33] presented an efficient algorithm that uses local topological for-

mulae to compute the area of the overlay. This algorithm can be used in situations

where the application does not need to explicitly compute the actual overlaid poly-

20

1 2

3

4

(a)

1 4
2 4

2 3
1 3

0 4

0 3

1 0

(b) (c)

Figure 2.7: Example of map overlay: (a) two superimposed maps, (b) overlay,
(c) overlay without the polygons intersecting the exterior of the maps.

gons but only needs to know the area of these polygons. An example of such an

application is to estimate the population of some regions, which can be done by

computing the area of the overlay of a map containing the polygons of these regions

with another map containing polygons representing different population densities.

Other similar works using minimal local topology for polygons and polyhedra were

presented in [37]–[41].

A common group of algorithms are the ones based on the plane sweep paradigm

[32], [42]–[44] but, as stated by Audet et al. [45]: “the plane sweep strategy does

not parallelize efficiently, rendering it incapable of benefiting from recent trends of

multicore CPUs and general-purpose GPUs”.

Other map overlay algorithms use a special data structure, such as an R-

Tree [30], [46], QuadTree [47], [48], or Uniform Grid [33]. The basic idea is a spatial

sort to reduce the number of pairs of edges to be tested for intersection, since only

segments that are in the same cell of a data structure need to be tested against each

other.

Geometric Performance Primitives (GPP), the commercial product described

in [45] also uses a uniform grid to compute map overlays in parallel . However it

computes with floats, and must ameliorate the resulting roundoff errors with snap

rounding, which can change the maps’ topology.

Other early presentations of using the uniform grid index in computational ge-

ometry and GIS include [49]–[51]. Earlier parallel computational geometry research

with the uniform grid includes [52]–[56]. Wu[57], [58] used Prolog for overlaying

polygons.

21

2.3.2.2 3D mesh overlay

Similarly to the map overlay problem, the computation of mesh intersections

has applications in fields such as Computational Geometry, GIS and CAD systems.

A common technique for overlaying 3D polyhedra is to convert the data to a

volumetric representation (this process is known as voxelization), and then perform

the overlay using the converted data. This approach has several advantages: first,

the volumetric model can be created using any precision, and thus, if the application

does not demand a high precision, this algorithm can be used to compute a fast

approximation of the overlay. Furthermore, it is trivial to perform a robust overlay

of volumetric representations. The drawback of this approach is that the volumetric

representation is usually not exact, and thus the overlay results are usually an

approximation. Pavić et al. [59] present an efficient algorithm for performing this

kind of overlay.

For computing the non-approximate overlay, a common strategy is to use in-

dexing to accelerate spatial operations performed during the overlay process (such

as computing the triangle-triangle intersection). For example, Franklin [60] uses

a uniform grid to intersect two polyhedra, Feito et al. [3] and Mei et al. [61] use

octrees and Jing et al. [62] use Oriented Bounding Boxes trees (OBBs) to intersect

triangulations.

While the authors of these algorithms consider them exact in the sense that

they do not use approximation techniques such as voxels, robustness cannot be

always guaranteed due to floating point errors. For example, the algorithm presented

in [3] uses a tolerance to process floating-point numbers, which as was mentioned

in Section 2.1 is not guaranteed to always work.

Another example of algorithm that does not guarantee robustness is QuickCSG

[63], a method that was specifically designed to be extremely efficient. QuickCSG

employs parallel programming and a kd-tree index to accelerate the computation.

However, it does not handle special cases (it assumes vertices are in general position),

and does not handle the numerical non-robustness associated with floating-point

arithmetic [64]. In order to try to reduce errors caused by special cases, QuickCSG

allows the user to apply random numerical perturbations to the input (however, this

22

does not guarantee robustness).

Even if an algorithm using floating-point arithmetic can intersect two specific

meshes consistently (i.e., without creating topological impossibilities or crashing),

the resulting mesh may not correctly represent the actual intersection since the

coordinates of the vertices created after the intersection may not be exactly repre-

sentable as floating-point numbers. For example, even though the vertices of the

segment connecting (0,−1) to (1, 2) can be exactly represented using floating point

numbers, the intersection of this segment with the line y = 0 (point (1
3
, 0)) cannot

be represented.

Even though in some applications small errors in the position of the resulting

vertices may be acceptable, these errors may accumulate if several inexact operations

are performed in sequence. The problem of accumulating errors is even worse in

CAD and GIS systems because, in these applications, it is common to perform a

sequence of many operations to combine and transform the data sets.

Since in many applications it is important to have exact algorithms, Hachen-

berger [65] presented an algorithm for computing the exact intersection of Nef poly-

hedra. The basic idea of a Nef polyhedron is to represent the polyhedron as a finite

sequence of complement and intersection operations on half-spaces [65]. This kind

of representation has some important features. For example, Nef polyhedra can rep-

resent open and closed objects, are closed for intersection and other set operations.

Even though Nef polyhedra have been known since the 1970’s, only in the

2000’s were concrete algorithms and data structures for representing and process-

ing these kind of geometric data presented [65]. Because of their importance, the

algorithms proposed by Hachenberger were implemented in the CGAL library[66].

An example of an application of CGAL exact geometry in GIS is the SFCGAL [67]

backend of the PostGIS DBMS. SFCGAL wraps the CGAL exact representation for

2D and 3D data, allowing PostGIS to perform exact geometric computations.

According to Leconte et al. [68], even though these algorithms are exact they

have some limitations such as poor performance, which limits the applications that

can benefit from their exactness. Besides the performance problems, another limi-

tation is that geometric data are more commonly stored using other representations

23

such as triangular meshes than Nef Polyhedra.

Bernstein et al.[69] also presented an algorithm that tries to achieve robustness

in mesh intersection. Their basic idea is to represent the polyhedra using binary

space partitioning (BSP) trees with fixed-precision coordinates. The algorithm pro-

posed by Bernstein et al. can intersect two polyhedra represented using a BSP

by only evaluating predicates (which can be done using fixed-precision arithmetic).

As the authors mention, the main limitation is that the process to convert BSPs to

widely used representations (such as triangular meshes) is slow and, more important,

inexact.

Recently Zhou et al.[64] presented an exact and parallel algorithm for per-

forming booleans on meshes. The key of their algorithm is to use the concept of

winding numbers to disambiguate self-intersections on the mesh. Their algorithm

first constructs an arrangement with the two (or more) input meshes, and then re-

solves the self-intersections in the combined mesh by retesselating the triangles such

that intersections happen only on common vertices or edges. The self-intersection

resolution eliminates not only the triangle-triangle intersections between triangles

of the different input meshes, but also between triangles of the same mesh, and

as result their algorithm can also eliminate self-intersections in the input meshes,

repairing them. Finally, a classification step is applied to compute the resulting

boolean operations.

This algorithm is freely available and distributed in the LibiGL [70] package

(in this thesis we will refer to this algorithm as LibiGL). Its implementation employs

exact predicates provided by CGAL. Furthermore, the triangle-triangle intersection

computation is accelerated using CGAL’s bounding-box-based spatial index.

As shown by the authors [64], LibiGL is not only exact, but also much faster

than CGAL algorithm for Nef Polyhedra (however, it is still slower than fast inexact

algorithms such as QuickCSG).

As will be shown in Chapter 6, the mesh intersection algorithm presented

in this thesis was able to outperform LibiGL (it was up to 101 times faster than

LibiGL) and, in general, it also outperformed QuickCSG.

24

2.4 Simulation of Simplicity

Another common source of error in geometric algorithms is special cases (geo-

metric degeneracies). Algorithms are usually described considering they will process

non-degenerate input. However, during the actual implementation, degenerate data

have to be considered. Degeneracies increase the number of cases that must be

considered. E.g., when comparing point q against line l, there are now three cases:

q may be (above / on / below) l instead of only two (above / below). By itself,

this would not be bad, except that this predicate may be a component of a larger

one. Perhaps q is a vertex of a piecewise straight line m with vertices qpr, and we

wish to know how m intersects l. There are now more special cases. Next, consider

the intersection of the piecewise straight line with vertices a0a1a2 with the piecewise

straight line with vertices b0b1b2. Perhaps a1 = b1, or a0a1 is collinear with b1b2, and

so on...

As mentioned by Yap [71], “sometimes, even careful attempts at capturing all

degenerate cases leave hard-to-detect gaps”. Properly handling special cases is a

challenge mainly in geometric problems such as the mesh intersection, that depend

on several subproblems, each one with its own special cases.

To correctly handle special cases in the algorithms we developed, we employed

Simulation of Simplicity (SoS) [4]. This is a general purpose symbolic perturbation

technique designed to treat special (degenerate) cases, or geometric coincidences

in the data. The inspiration for SoS is that if the coordinates of the points are

perturbed, the degeneracies disappear. However, too big a perturbation may create

new problems, while a too small one may be ineffective because of the limited

precision of floating point numbers.

SoS is a brilliant solution that uses a symbolic perturbation by a formal indeter-

minate infinitesimal value, ε, or by εi, for some natural number i. The mathematical

formalization of SoS extends some exactly computable field, such as exact reals or

rationals, by adding orders of infinitesimals, εi. Floating point numbers with round-

off errors cannot be the base. Indeed, floats are not even a field because roundoff

errors cause most of the field axioms to be violated. E.g., because (10−20+1) rounds

to 1, so (10−20 + 1)− 1 6= 10−20 + (1− 1).

25

The infinitesimal ε is an indeterminate. It has no meaning apart from the rules

for how it combines. E.g., if a is a positive finite number, then two of those rules

are that a+ ε is equivalent to a and ε < a. For a charming take on this, see [72].

All positive first-order infinitesimals are smaller than the smallest positive

number. All positive second-order infinitesimals are smaller than the smallest posi-

tive first-order infinitesimal, and so on. All this is logically consistent and satisfies

the axioms of an abstract algebra field. It is attractive to think of ε as an actual very

small finite number, perhaps 10−10 or 10−100. Although it may be useful to develop

an initial intuitive understanding, the use of a concrete value for the infinitesimals

could lead to wrong conclusions.

The result of SoS is that degeneracies are resolved in a way that is globally

consistent. For example, consider Figure 2.8: two identical squares (abcd represented

using solid edges and efgh represented using dashed edges) are overlaid, but all the

vertices of efgh are slightly translated using the vector (ε, ε2). This translation is

globally consistent, i.e., even if the square is stored as separate edges an intersection

test with edge ef will return true only when this test is performed against the edge

ad while an intersection test performed with gf will return true only when the test

is performed against cd.

a

b c

d

e

f
g

h

Figure 2.8: Testing edges for intersection after the application of SoS.

To see how hard it would be to explicitly treat degeneracies without a logical

framework such as SoS, consider the problem of intersecting two edges or line seg-

ments, e1 and e2. The relevant degeneracies occur when the end vertex of one lies

on the other, or when two vertices coincide. With SoS, the lines are symbolically

26

perturbed so that this does not happen. Considering the degeneracies explicitly is

difficult because there are many more cases to get correct. Consider the problem of

intersecting two polylines p1 and p2. Without degeneracies, p1 and p2 cross if and

only if their constituent edges intersect an odd number of times. With degenera-

cies, every incidence type of a vertex or edge with another vertex or edge must be

considered. SoS simplifies the problem considerably.

For another example, consider the 2D point-in-polygon test PNPOLY [27],

that checks if a point is a polygon by casting a semi-infinite ray r and counting the

number of intersections between r and the polygon’s boundary. The simple case of

the ray intersecting a vertex is easy; the whole PNPOLY function has only 8 lines

of executable C code. But now consider the problem of tracing a vertical ray in a

polygonal map to find an edge that bounds the polygon containing a query point.

This problem could be solved by locating the lowest intersection point between the

ray and the polygons’ boundaries and, then, returning the edge containing that

point. Consider Figure 2.9: the vertical ray traced from q1 hits the map’s boundary

first on a point in edge GC. Thus, it is clear that this edge bounds the polygon

containing q1 (Polygon 2). However, there are special cases that need to be handled:

the query point may be on the boundary of a polygon or the lowest intersection point

may be on a vertex. If the lowest intersection point is on a vertex v, some of the

edges ending on v may not even bound the polygon containing q. For example,

the ray traced from q3 hits a vertex of edge EH (vertex E) and EH does not even

bound the polygon containing q3. Thus, the algorithm solving this problem needs

to carefully handle theses special cases. This version of this problem for polyhedral

meshes would be even harder to solve correctly.

To use SoS for perturbing the dataset, it is important to present a suitable

perturbation scheme. Edelsbrunner and Mücke [4] presented a perturbation scheme

to avoid degeneracies in the point orientation problem in Ed. In this problem,

the geometric objects are points and the scheme added a different infinitesimal

perturbation (more specifically, the j-th coordinate of the i-th point is translated

by ε2
id−j

) to each coordinate of each point. By doing that, all the perturbed points

are in general position (in E3, this means that no set of 4 perturbed points can be

27

q1

q2

q3

A

F

EB

C D

G H

Polygon 2

Polygon 1

Polygon 3

Poly. 4

Figure 2.9: Example of special cases during the process of finding an edge
bounding a polygon.

co-planar) and, therefore, the input is non-degenerate. As shown by the authors,

this perturbation choice satisfies 3 important conditions:

1. The perturbed geometric objects are simple (non-degenerate) if ε > 0 is suffi-

ciently small.

2. If an object is non-degenerate, then its perturbed version retains the properties

of its original version.

3. The computational overhead of processing the perturbed objects is negligible.

Since these conditions are satisfied, the orientation algorithm implemented to

perform the computation using the perturbed points will correctly (and efficiently)

handle all the special cases.

Implementing SoS and computing with orders of infinitesimals would seem to

be very slow. However, the infinitesimals do not need to be explicitly used in the

program since they will be used only to determine signs of expressions. The only

time that the infinitesimals change the result is when the exact computation with

rationals, would have caused a tie in a predicate, e.g., make a determinant to be

zero. Then, the infinitesimals break the tie. The effect is to make the code harder

to write and longer. However, unless a degeneracy occurs, the execution speed is

the same. When a degeneracy does occur, the code is slightly slower.

CHAPTER 3

Processing 2D maps

In this chapter, the algorithms for processing 2D maps will be presented. Even

though the main objective of this thesis is to develop an exact method for processing

3D triangular meshes, we also developed methods for processing polygonal maps to

evaluate the techniques we intended to apply to the 3D algorithms.

Initially, the two-level uniform grid, the indexing data structure we used, will

be described. Then, EPUG-Overlay, our exact map overlay algorithm will be

presented and evaluated. EPUG-Overlay is novel because it combines the tech-

niques for exactness and efficiency mentioned in Chapter 2: exact arithmetic and

Simulation of Simplicity are used for ensuring robustness, and a two-level parallel

uniform grid and parallel programming are employed for accelerating the compu-

tation. Furthermore, the overlay is performed using only simple local information

about the individual edges representing the map.

Besides being exact, EPUG-Overlay is also fast. The largest test case for

EPUG-Overlay (using big rationals) overlaid two maps: one having 32 million

edges and 220 thousand faces with another map having 21 million edges and 519

thousand faces in 264 elapsed seconds using 16 threads with dual 8-core 3.1 GHz

Intel Xeon E5-2687 processors. That is a factor of 5 speedup compared to using

one thread. By comparison, GRASS (using roundoff-error-prone floats), took 5, 300

seconds, partly because it is only single-threaded. (However, even when only one

thread was used EPUG-Overlay was still faster than GRASS.)

Portions of this chapter previously appeared as:

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li, “Fast
exact parallel map overlay using a two-level uniform grid”, in in Proc. 4th
ACM SIGSPATIAL Int. Workshop Analytics for Big Geospatial Data, BigSpa-
tial’15. New York, NY, USA: ACM, 2015.

28

29

3.1 Two-level uniform grid

Franklin et al [73] proposed a uniform grid to accelerate his algorithm for

computing the area of overlaid polygons. The basic idea for creating an index

based on a uniform grid is to superimpose a regular grid over the input maps and

determine, for each edge, the set of incident grid cells. Then, pointers to the edges

are inserted into the corresponding cells. In our implementation we used a C++

vector for each cell to record the edges incident on it. (Another implementation

choice would be a ragged array.)

The uniform grid will be employed to accelerate two steps of the map overlay

process: the point location and the computation of the edge-edge intersections.

Each grid cell c contains the edges from both maps intersecting c. Thus, the edges

intersections (for example) can be found by processing each cell and comparing the

edges in that cell pair-by-pair (one edge from each map) to determine which pairs

intersect and to compute the intersection points.

The uniform grid works well even for uneven data for various reasons [33], [74]–

[76]. First, the total time is the sum of one component (inserting edges into cells)

that runs slower with a finer grid, plus other components (for example, intersecting

edges in cells) that run faster. The sum varies only slowly with changing grid size.

Second, an empty grid cell is very inexpensive, so that sizing the grid for the dense

part of the data works.

Nevertheless, to process very uneven data, in this project we have incorporated

a second level grid into those few cells that are densely populated with edges. The

exact criteria for determine what cell to refine depends on the algorithm that will

use the grid. For example, since in the intersection computation in each cell the

edges from one map are tested for intersection with edges from the other map, one

could refine the grid cells where the number of intersection tests (i.e, the number of

pairs of edges from the two maps) is greater than a threshold.

Figure 3.1 presents an example with two maps superposing this 2-level uniform

grid. In this example, the first level has 4× 7 cells and the second level (created in

those first level cells having more than 4 edges) was created with 3× 3 cells.

This nesting could be recursively repeated until all grid cells have fewer el-

30

Figure 3.1: Two-level uniform grid - Uniform grid with 4×7 first level and 3×3
second level (created in first level cells containing more than 4 edges).

ements than a given threshold, creating a structure similar to quadtree, although

with more branching at each level. Our solution could be considered a special case

of that. However, the general solution uses more space for pointers (or is expensive

to modify) and is irregular enough that parallelization is difficult. Also, for map

overlay, our tests have shown that the best performance is achieved using just a

second level. This can be explained because the first level grid, in general, has many

cells with more elements than the threshold justifying the second level refinement.

But, in the second level, only a few number of cells exceed the threshold and the

overhead (processing time and memory use) to refine those cells is never recaptured.

3.1.1 Implementation details

The uniform grid can be easily constructed. Initially, the edges from both maps

are processed to determine in what grid cells they must be inserted. Determining

which grid cells contain each edge (i.e., rasterizing the edges) can be parallelized

over the edges, although inserting them into the grid structure must be serialized,

e.g. with an atomic increment-and-copy operation on the count of edges in the cell.

After the edges are inserted into the corresponding grid cells, those cells that

need to be refined (for example, the ones with more than, say, 50 edges) are pro-

cessed. For each of those cells c, a second level uniform grid is created in c and

the edges in c are again rasterized and inserted into the corresponding second-level

grid cells. Since the edges in a first-level cell do not interact with other cells, the

refinement process can be easily parallelized by refining the cells in parallel.

31

3.2 Overlaying 2D planar graphs

We represent a map as a planar graph as described in section 2.2.1. The faces

are bounded by edges and vertices, and each face is labeled with an identification

number.

Since our algorithm does not need it, faces are not explicitly stored. That

is, the topology is represented implicitly basing on the adjacency information that

is stored in the edges. For performance, edges with the same adjacent faces are

grouped in chains.

Given two maps A and B, the objective is to create a resulting map where

each face represents the intersection of a face of A with a face of B.

3.2.1 The algorithm

In EPUG-Overlay all the coordinates are represented using rational num-

bers managed by the GMP (GNU Multiple Precision Arithmetic Library) library

[77]. EPUG-Overlay reads the two input maps and the vertices coordinates are

converted to rationals using the GMP (overloaded) operand. This operand auto-

matically uses the required precision to represent the number exactly. (Another

strategy to convert float to a rational is to use a continued fraction to find the

simplest rational within some given tolerance, such as one half the least significant

bit.)

Algorithm 3.1 summarizes the overlay process; the next sections give details.

Algorithm 3.1: Computes the overlay of two maps A and B given as input.

1: Create the 2-level uniform grid
2: Compute the intersection points between all edges of maps A and B
3: Locate all vertices of map A in map B and vice-versa
4: Create the resulting map

Our reported times are elapsed times, that is wall clock times. For parallel

computation, reporting total CPU time is meaningless because it does not capture

the parallelization’s effectiveness. That is, does an algorithm taking 1 CPU-minute,

run sequentially in 1 elapsed minute, or does it run on 16 parallel threads, taking 4

seconds on each, finishing in 4 elapsed seconds? Elapsed time is not susceptible to

32

that ambiguity. This also avoids technical difficulties with reliably measuring CPU

times for parallel threads.

3.2.1.1 Exploiting local topology

When computing a map C corresponding to the overlay of maps A and B, each

of whose faces is the intersection of a pair of faces from the two maps, the obvious

solution is to intersect each face from map A with each face from B, and report the

non-empty intersections. We do not do that.

Instead, we exploit the fact that a face’s boundary is a set of edges, and look

for edge intersections. This has several advantages. First, it is easier to test a pair

of edges for possible intersection than to test a pair of faces (which would devolve to

testing pairs of edges anyway). Second, knowing an intersection of a pair of edges

contributes information about four output faces. Third, as an edge is fixed size but

a face is not, parallel operations on edges are more efficient.

3.2.1.2 Creating the two-level uniform grid

The uniform grid is constructed in parallel as described in section 3.1. Since

in the overlay problem the two input maps need to be indexed, edges from the two

maps are inserted simultaneously into the grid.

Of course, an alternative is to create two separate grids to index each map

separately. However, having only one grid to index the two maps simultaneously

simplifies the overlay process. For example, to detect the intersections between the

edges of the two maps, for each grid cell c, the edges from one map in c are tested

for intersection with the edges from the other map also in c. If two grids were used,

for each cell c of one grid, the edges in c would need to be tested for intersection

with edges from all the cells from the other grid that intersect c.

Choosing the resolution of a uniform grid gives the user an opportunity to trade

off speed and size. Section 3.3 presents some experiments showing this tradeoff. The

exact grid size is not too important for the time because varying it a factor of two in

either direction from the optimum often increases the time by much less than 50%.

For example, in our largest experiment (presented in Table 3.4) if the resolution

of the uniform grid was reduced from 40002 cells to 20002 (that is, if the total

33

number of cells was reduced by a factor of 4) the elapsed running time (excluding

I/O) increased in only 16% (if we consider the I/O the difference in the time is

even smaller since I/O time does not change). Therefore, we used a conservative

empirical formula for the grid size that gave a good execution time and a reasonable

memory usage.

As it will be explained in section 3.2.1.3, the edge-edge intersection compu-

tation (one of the most important steps of the overlay process) is performed by

intersecting, for each cell c, all the edges from one of the maps in c with the edges

from the second map in c. Therefore, the running time to compute the edge-edge

intersection in each cell c is expected to be proportional to the number of pairs of

edges (composed of edges from the two maps) in c.

The time spent locating vertices of one map in the other one is also related to

the number of pairs of edges in the cells: as it will be explained later, to locate the

vertices from the map A in the map B (and vice-versa), for each vertex of A in a

grid cell c (the number of vertices in a cell is proportional to the number of edges)

a vertical ray is traced and this ray is tested for intersection with the edges of the

map B in c.

Thus, the total number of pairs of edges in the uniform grid is an important

factor in the running-time of EPUG-Overlay. Therefore, we decided to refine the

cells where this product is greater than or equal to a given threshold. In these cells

we add a 40 × 40 second level uniform grid (the exact size is not critical) — more

details are in Section 3.3.

3.2.1.3 Computing the intersection points

The next step is a parallel iteration over all the grid cells. In each cell, we test

each edge of map A in the cell against each edge of B in that cell. This process is

extremely parallelizable since the cells do not influence each other.

Degenerate cases are handled with Simulation of Simplicity (SoS) [4]. The

idea is to pretend that map A is slightly below and to the left of map B. Thus no

edge from A will coincide with an edge from B during the intersection computation.

Oversimplified slightly, the process proceeds by translating map B by (ε, ε2), where

34

ε is an infinitesimal that is smaller than any positive real number. The second order

infinitesimal ε2 is smaller than any positive finite multiple of the first order infinites-

imal ε. As mentioned in section 2.4, such a number system can be axiomatized

and is consistent [72]. We do not actually compute with infinitesimals, but instead

determine the effect that they would have on the predicates in the code, and mod-

ify the predicates to have the same effect when evaluated as if the variables could

have infinitesimal values. For instance, the test for (a0 ≤ b0)&(b0 ≤ a1) becomes

(a0 ≤ b0)&(b0 < a1). With SoS, no point in A is identical to any point in B, neither

is any point in A on any edge in B, nor do two any edges coincide.

As mentioned before, using SoS to resolve degeneracies is a solution that gen-

eralizes up. If we use it to test whether two edges intersect, we can utilize that

function in a test of whether two chains intersect, and get topologically valid re-

sults. E.g., if two chains cross at a common vertex, we will get a total of either one

or three edge-edge intersections, even though our edge intersection function knows

nothing about chains.

3.2.1.4 Locating one map’s vertices in the other

The third step is to determine which face of map A contains each vertex of

map B and vice-versa. When a vertex is on an edge, SoS puts it into exactly one of

the two adjacent faces in a way that later will produce a consistent answer.

The idea is to run a semi-infinite ray up from vertex v of A, to find the lowest

edge e of B that it hits. Then, v is in one of the adjacent faces of e, which one

depending on whether the ray hits e from the left or the right. Because of SoS, if e

is vertical then no ray will ever hit it.

The expected time to locate a point in a map using our grid is constant,

independent of the map’s size.

Assume that the grid is sized so that the expected number of edges per cell

is constant. Determining which cell c contains v takes constant time. Testing the

ray against all the edges in c takes constant time. If the ray hits at least one edge,

then we know the face. However there is a probability p that it does not. Because

the expected number of edges in c is constant, so also p is a constant independent

35

of the map size. Then we continue the ray into the next higher cell and test for

an intersecting edge. The expected number of cells to process until we find an

intersecting edge is 1/(1 − p). If we fall off the top of the grid without finding an

intersecting edge, then v is inside B’s exterior face, i.e., face 0.

For example, in Figure 3.2, we have to follow the ray up through three cells

until it hits edge e = (u,w).

v

u

w

r

Figure 3.2: Determining the face containing a vertex.

If a grid cell does not contain any edge from one of the maps, then this cell is

completely inside a face f of this map (or in the exterior face) and, because of the

Jordan Curve Theorem, any vertex in this cell will automatically be in f . Thus, to

accelerate even more the point location process, an empty grid cell is labeled with

the identification number of the face containing it.

Furthermore, when a point v is queried if the vertical ray hits an empty grid

cell c before hitting any edge, a continuous path connecting v to the cell c can be

traced along this ray and this path will not intersect any edge. Thus, it is clear

that , because of the Jordan Curve Theorem, v will be in the same face where c is.

Therefore, c’s label can be used to locate v. In the example presented in Figure 3.2,

the ray r hits an empty cell just before hitting the detached cell containing u − w
and, therefore, the point location algorithm could have returned the label associated

with that empty cell and avoided the processing of the cell above it.

To perform the cell labeling process, for each empty cell c the point location

algorithm presented in this section is applied to determine the face f where the

center point of c is located and, then, c is labeled with f . If a grid cell c′ adjacent

to c is empty, c′ can also be labeled with f since a continuous path connecting c to

36

c′ can be traced without crossing any edge. Thus, whenever an empty grid cell is

found its entire connected component of empty cells is labeled with the information

about the face where the cell is.

3.2.2 Constructing the resulting map

It is possible that edge e of map A does not intersect any edge of map B. Then

e is completely inside one face (perhaps the exterior face) of B. It is even possible

that no edge of A intersects any edge of B.

If e is inside a face that is not the exterior face (i.e. face 0), e will be an edge

of the resulting map. Otherwise, if e is exterior (i.e. inside the face 0), e will not be

an edge of the resulting map. For example, in Figure 3.3, the edge e from map A
(represented by dotted lines) is inside face B1 (the face 1 of map B represented by

solid lines). Thus, e will be an edge of the resulting map having as adjacent faces:

one face resulting from the intersection between faces A1 and B1 and the exterior

face resulting from the intersection of faces B1 and A0 (the exterior face of map A).

On the other hand, the edge f will not be in the resulting map since it is outside

the map A (it is inside face A0).

e

A1

fB1

B0

A0

Figure 3.3: Two maps with no edge intersection.

Furthermore, an edge can intersect one (or more) edges of the other map. Let

e = (u,w) be an intersecting edge and suppose that e intersects k ≥ 1 edges of

the other map and that the intersection points are i1, i2, ..., ik. Then, e is subdi-

vided into k + 1 non-intersecting edges e1 = (u, i1), e2 = (i1, i2), e3 = (i2, i3), ...ek =

(ik−1, ik), ek+1 = (ik, w). To determine which of these (new) edges will be included

in the resulting map, the midpoint mj of each edge ej is analyzed: if mj is outside

the other map, ej will not be in the resulting map. Otherwise, if mj is inside a face

g of the other map, ej will be in the resulting map since the faces in both sides of

ej will intersect with g.

37

Figure 3.4 presents an example of an edge e = (u,w) from map A (represented

by dotted line) that intersects more than one edge from map B (solid lines). In this

case, the new edge e3 = (i2, i3) has midpoint m3 that is inside face B2. Since the

face in the right and left sides of (original edge) e were, respectively, A1 and A0,

the face in the right side of e3 will be the new face obtained from the intersection

of face A1 with B2 and the face in the left side of e3 will be the exterior face that

results from the intersection A0 with B2. The edge e5 = (i4, w), on the other hand,

will not be in the resulting map since its midpoint m5 is outside map B.

B1

A1

B2 B3

u
w

i1 i2
i3 i4m3

m5

B0

A0

Figure 3.4: Example of an edge of map A intersecting more than one edge of
map B.

3.2.2.1 Parallel implementation

We implemented EPUG-Overlay in parallel using a shared-memory archi-

tecture with the OpenMP API. The edges are processed in parallel to determine the

cells incident on each edge. Each thread employs a private array to accumulate its

results, and at the end a critical section is employed to merge them.

The next step, edge intersection is parallelized over the grid cells as mentioned

in section 3.2.1.3.

We also parallelize locating the vertices of each map in the other map’s faces.

First, to initialize the empty cell labels the uniform grid was divided into smaller

blocks and the labeling process was performed in each block separately. Second,

when the vertices of one map are located in the other map’s faces this process is

parallelized over the vertices.

Finally, the output faces are computed by processing the output edges in paral-

lel. Since these three steps were designed to be processed without data dependency,

they can be easily parallelized.

38

3.3 Experimental results

We implemented EPUG-Overlay in C++ and OpenMP using the multiple

precision arithmetic package GMP[77]. It was compiled with g++ 4.8.2 and tested

on a workstation with dual Intel Xeon E5-2687 processors, each with 8 cores. The

workstation has 128 GiB of RAM memory and runs the Linux 3.16 Mint 17 operating

system.

The tests were performed using six datasets: two from Brazil, distributed by

IBGE (the Brazilian geography agency) and four from the United States. Figure 3.5

illustrates some of these datasets. They were obtained from the ArcGIS, United

States Census and National Atlas web-pages:

· BrSoil : kinds of soils in Brazil.

· BrCounty : Brazilian counties.

· UsAquifers : US aquifers.

· UsCounty : US counties.

· UsWaterBodies : the surface drainage system of the United States.

· UsBlockBoundaries : 2010 United States Census block groups.

Table 3.1 gives statistics about the maps. After conversion to the representa-

tion described in section 2.2.1 we did these overlay tests:

· BrSoil with BrCounty,

· UsAquifers with UsCounty, and

· UsWaterBodies with UsBlockBoundaries.

Table 3.1: Experimental datasets.

Size
Dataset Vertices Edges Polygons (GB)

BrSoil 248,493 251,011 2,959 0.03
BrCounty 320,621 326,193 5,567 0.04
UsAquifers 351,813 352,924 3,552 0.04
UsCounty 3,633,226 3,636,347 3,110 0.37
UsWaterBodies 21,014,498 21,060,354 518,837 2.25
UsBlockBoundaries 31,875,031 32,103,306 219,831 3.40

39

(a) (b)

(c) (d)

Figure 3.5: Examples of maps used in the overlay experiments - BrSoil (a),
BrCounty (b), UsAquifers (c), UsCounty (d) (these figures are not to scale).

3.3.1 Algorithm performance

First we tested the effect of different grid sizes and collected some statistics

during this processing. The threshold for refining a first level cell was 50 pairs of

edges, that is, if the product of the number of edges from the first map with the

number of edges of the second map in a cell c is greater than 50 then c was refined

creating a second level grid. In all experiments the times represent the average of 3

executions.

Tables 3.2, 3.3 and 3.4 present the results of this experiments for the three

pairs of maps evaluated in the experiments. These tables present the elapsed times

(in seconds) spent by each category of processing performed by EPUG-Overlay

using 16 threads: column Grid. represents the time spent to create and refine

40

the uniform grid; column Inte. presents the time spent intersecting edges; Loc.

represents the time spent labeling empty grid cells, locating points and creating the

output map; Total represents the total elapsed time. The more detailed timing data

will be presented in another table later.

Table 3.2: Elapsed time (in seconds) for the overlay of the BrSoil dataset with
BrCounty.

BrSoil × BrCounty

Grid size Time (s) Mem. # inter. % cells % cells

1st 2nd Grid.a Inte.b Loc.c Total (GB) testsd×106 refinede labeledf

252 0.90 0.13 0.37 1.40 0.3 0.21 28.80 84.52
1002 402 1.02 0.10 0.46 1.58 0.5 0.14 28.80 90.06

552 1.18 0.10 0.60 1.88 0.8 0.11 28.80 92.68

252 1.00 0.10 0.46 1.56 0.5 0.14 20.37 90.18
2002 402 1.22 0.10 0.76 2.08 1.1 0.11 20.37 93.77

552 1.48 0.12 1.17 2.77 1.9 0.10 20.37 95.44

252 1.10 0.12 0.59 1.81 0.7 0.17 13.09 91.69
3002 402 1.44 0.14 1.11 2.69 1.6 0.15 13.09 94.76

552 1.54 0.15 2.02 3.71 2.7 0.15 13.09 96.18

252 1.14 0.18 0.71 2.03 0.8 0.26 7.75 92.19
4002 402 1.35 0.20 1.22 2.77 1.7 0.25 7.75 95.09

552 1.53 0.26 1.93 3.72 2.8 0.25 7.75 96.43

252 1.12 0.27 0.76 2.15 0.7 0.37 4.28 92.25
5002 402 1.32 0.28 1.38 2.98 1.5 0.36 4.28 95.15

552 1.46 0.41 1.82 3.69 2.4 0.36 4.28 96.48

Elapsed time in seconds (excluding I/O) for the main steps of EPUG-Overlay and
other statistics using different grid sizes for the first and second level;
a time spent creating and refining the uniform grid; b time spent intersecting edges;
c time spent labeling empty grid cells, locating points and creating the output map;
d total number of edge-edge intersection tests performed; e percentage of first level
grid cells that were refined; f percentage of grid cells that were labeled.

As it can be seen, in all the experiments the time to create the uniform grid

depends mainly on the size of the input maps. Indeed, in the smallest datasets the

total grid creation time ranged from 1.6µs to 2.7µs per input edge (with average

2.2µs per edge) while in the UsAquifers × UsCounty experiment it ranged from

1.5µs to 1.6µs (with average 1.5µs) and in the largest dataset it ranged from 1.4µs

to 1.5µs (with average 1.5µs).

41

The time performing intersections and locating points is also dependent on

the grid resolution. Indeed, it is expected that higher grid resolutions reduce the

intersection times (since each grid cell will have fewer pairs of edges to intersect)

and also the point location times, since it is expected that finer grid cells will lead

to a higher percentage of empty cells (that are labeled with the id of the polygon

where it is and, thus, accelerate the queries) and the point location in non-empty

cells will also be faster (since there will be fewer edges per cell).

As it can be seen in Tables 3.2, 3.3 and 3.4, in the largest datasets higher grid

resolutions led to fewer intersection tests (column # inter. tests ×106). However, in

the smallest dataset the number of intersections tested increased as the resolution

Table 3.3: Elapsed time (in seconds) for the overlay of the UsAquifers dataset
with UsCounty.

UsAquifers × UsCounty

Grid size Time (s) Mem. # inter. % cells % cells

1st 2nd Grid.a Inte.b Loc.c Total (GB) testsd×106 refinede labeledf

252 6.38 2.06 1.48 9.92 0.3 3.88 9.13 82.90
1002 402 6.26 1.19 1.53 8.98 0.5 1.95 9.13 88.53

552 6.06 0.75 1.45 8.26 0.8 1.26 9.13 91.41

252 5.97 0.86 1.32 8.15 0.5 1.43 6.58 88.94
2002 402 6.22 0.52 1.41 8.15 1.1 0.81 6.58 92.80

552 6.09 0.36 1.51 7.96 1.9 0.56 6.58 94.68

252 5.93 0.49 1.18 7.60 0.7 0.86 4.97 91.21
3002 402 6.12 0.33 1.36 7.81 1.6 0.52 4.97 94.32

552 5.94 0.27 1.68 7.89 2.7 0.37 4.97 95.82

252 5.96 0.35 1.13 7.44 0.8 0.62 3.79 92.32
4002 402 5.89 0.27 1.40 7.56 1.7 0.39 3.79 95.04

552 5.99 0.23 1.88 8.10 2.8 0.29 3.79 96.35

252 6.13 0.33 1.13 7.59 0.7 0.50 2.95 92.99
5002 402 6.11 0.26 1.55 7.92 1.5 0.31 2.95 95.47

552 6.39 0.24 2.06 8.69 2.4 0.24 2.95 96.67

Elapsed time in seconds (excluding I/O) for the main steps of EPUG-Overlay and
other statistics using different grid sizes for the first and second level;
a time spent creating and refining the uniform grid; b time spent intersecting edges;
c time spent labeling empty grid cells, locating points and creating the output map;
d total number of edge-edge intersection tests performed; e percentage of first level
grid cells that were refined; f percentage of grid cells that were labeled.

42

increased. This happened because in this dataset the smallest grid resolutions were

already enough to minimize the number of intersection tests and, as the resolution is

increased (and the size of the cells was reduced), the number of grid cells intersected

by some edges increased and, thus, these edges were tested for intersection in several

cells. Indeed, during the overlay of the smallest datasets each edge intersected, on

average, 2.1 cells when the resolution of the first and second level grid sizes were

set to, respectively, 1002 and 252 and 5.1 cells when the resolution was set to the

largest value (5002 and 552).

In the experiment with the largest datasets (during the overlay of UsWater-

Bodies with UsBlockBoundaries) each edge intersected, on average, 1.1 cells when

Table 3.4: Elapsed time (in seconds) for the overlay of the UsWaterBodies
dataset with UsBlockBoundaries.

UsWaterBodies × UsBlockBoundaries

Grid size Time (s) Mem. # inter. % cells % cells

1st 2nd Grid.a Inte.b Loc.c Total (GB) tes.d×106 refinede labeledf

252 77.13 299.04 53.78 429.95 9.0 497.93 0.64 82.42
10002 402 78.82 143.07 40.25 262.14 9.6 233.15 0.64 86.32

552 79.75 83.23 36.61 199.59 10.1 143.20 0.64 89.00

252 77.65 92.11 38.83 208.59 10.0 165.51 0.53 88.77
20002 402 78.90 50.18 36.53 165.61 11.6 83.13 0.53 91.13

552 79.04 32.79 38.92 150.75 13.5 54.16 0.53 92.87

252 80.17 54.63 35.37 170.17 11.2 91.16 0.43 91.18
30002 402 78.52 28.40 38.45 145.37 14.1 48.46 0.43 92.89

552 79.05 20.50 46.26 145.81 17.5 32.98 0.43 94.25

252 77.36 37.94 36.34 151.64 12.6 61.45 0.36 92.58
40002 402 76.24 21.87 44.49 142.60 16.5 34.21 0.36 93.89

552 77.85 15.92 56.32 150.09 21.7 24.08 0.36 95.03

252 76.38 29.66 36.50 142.54 14.0 46.06 0.30 93.53
50002 402 78.50 18.15 49.64 146.29 19.4 26.65 0.30 94.54

552 81.56 14.31 70.11 165.98 25.9 19.31 0.30 95.52

Elapsed time in seconds (excluding I/O) for the main steps of EPUG-Overlay and other
statistics using different grid sizes for the first and second level;
a time spent creating and refining the uniform grid; b time spent intersecting edges;
c time spent labeling empty grid cells, locating points and creating the output map;
d total number of edge-edge intersection tests performed; e percentage of first level grid
cells that were refined; f percentage of grid cells that were labeled.

43

the resolution of the grid was the smallest one (10002 in the first level and 25 in the

second one) and 1.5 cells when the resolution of the grid was the largest one (50002

and 552).

Thus, too coarse grids will lead to more pairs of edges tested for intersection

in each grid cell while too fine grids leads edges to be copied to several grid cells,

which also may increase the amount of intersection tests.

It is also interesting to observe that the number of intersection tests performed

is usually small if compared with the number of edges in the input maps. If we choose

a first level grid with sizes 2002, 4002 and 20002 (which, as it will be described later, is

a reasonable choice) and a second level grid with size 452, the number of intersection

tests performed was maximum 2.6 times the number of edges in the largest map of

the pair being intersected.

As expected, the percentage of cells that are labeled with information about

the polygons where they are located increases as the resolution of the uniform grid

increases (since higher resolution grids tend to have more empty cells). While, on

one hand, a larger amount of empty cells (labeled) accelerates the point location

process more, on the other, the larger the amount of cells that need to be labeled

the higher the amount of time spent labeling the connected component of empty

grid cells.

As it can be seen, some components of EPUG-Overlay benefit from coarser

grid while others benefit from finer grids. However, as these experiments suggest, the

actual running time of the algorithm changes slowly as the grid resolution changes

and, therefore, a reasonable choice for the resolution is enough to obtain a good

performance.

We employed a heuristic for choosing a reasonable first level grid resolution.

Supposing that the resolution of the first level grid is g1, the maps A and B have,

respectively, nA and nB edges, and that an edge from maps A and B will intersect,

respectively, kA and kB cells on average, the expected number of edges per grid cell

in the two maps will be, respectively, kA×nA

g21
and kB×nB

g21
.

Assuming the distribution of edges per grid cell is uniform, the expected num-

ber of pairs of edges per cell (pairs) will be:

44

pairs =
nA × nB × kA × kB

g41
(3.1)

Thus, the resolution of the first level grid can be estimated using the following

formula:

g1 = 4

√
nA × nB × kA × kB

pairs
(3.2)

If we fix kA×kB
pairs

= 1
50

and round g1 to a simple multiple of a power of ten (for

readability since the optimum is so broad), the suggested grid resolution for process-

ing the pairs of maps BrSoil/BrCounty, UsAquifers/UsCounty, and UsWaterBod-

ies/UsBlockBoundaries will be, respectively, 2002, 4002 and 20002, what represents

a reasonable balance between memory and performance according to Tables 3.2, 3.3

and 3.4. Based on these experiments, we always use a 40× 40 second level grid.

Of course, since the grid resolution and the criteria for refining the first level

grid can be easily changed in EPUG-Overlay, the user may use other strategies

for fine-tuning these parameters.

Tables 3.5, 3.6 and 3.7 show the quality of EPUG-Overlay’s implementa-

tion processing 3 pairs of maps and using the design choices described above, that is,

the resolution of the first level grid was set using equation 3.2, the expected number

of pairs of edges per cell was set to 50 and all cells with more than 50 pairs of edges

was refined creating a 40 × 40 second level grid. The table gives the elapsed times

for our three test cases. The times are given for each of the program’s eight stages,

both when using one thread and when using 16 threads.

Excluding the I/O time, the total parallel speedup ranged from 5 to 7 times. It

is less than 16 because operations like memory allocation and writing to a common

global array are sequential and because the Xeon processor used in the experiments

supports the Intel R© Turbo Boost technology [78] to increase their frequency from

their 3.1GHz base operating frequency to up to 3.8GHz when fewer cores are active.

In general, the slowest processing steps of EPUG-Overlay scale better. For

example, during the processing of the largest pair of maps (Table 3.7), the two

slowest steps are computing the intersections and locating the vertices of one map

45

in the other one. Both these steps achieved a 10 times speedup.

The initialization of the empty cell labels presented a reasonable parallel

speedup in the smallest dataset (5 times speedup), but this speedup was reduced

as the dataset size increased (in the largest dataset this step achieved 1.4 times

Table 3.5: Elapsed time of the main steps of EPUG-Overlay for the overlay
of the BrSoil with BrCounty. Times considering the grid size from Equation
(3.2) and using 1 and 16 threads.

Maps: BrSoil × BrCounty
Grid size: 200×200

Time (sec.) Parallel
Threads: 1 16 speedup

Read maps 0.88 0.86 1.0
Make grid 2.11 0.67 3.1

Refine 2-level grid 6.45 0.55 11.7
Intersect edges 1.20 0.10 12.0

Initialize cell labels 2.57 0.48 5.4
Locate vertices 1.78 0.17 10.5

Comp. output faces 0.37 0.11 3.4
Write output 0.70 0.63 1.1

Total w/o I/O 14.48 2.08 7.0
Total with I/O 16.06 3.57 4.5

Table 3.6: Elapsed time of the main steps of EPUG-Overlay for the overlay of
the UsAquifers with UsCounty. Times considering the grid size from Equation
(3.2) and using 1 and 16 threads.

Maps: UsAquifers × UsCounty
Grid size: 400×400

Time (sec.) Parallel
Threads: 1 16 speedup

Read maps 5.47 5.23 1.0
Make grid 15.05 5.22 2.9

Refine 2-level grid 8.75 0.67 13.1
Intersect edges 2.79 0.27 10.3

Initialize cell labels 2.27 0.53 4.3
Locate vertices 9.73 0.77 12.6

Comp. output faces 0.79 0.10 7.9
Write output 3.82 4.71 0.8

Total w/o I/O 39.38 7.56 5.2
Total with I/O 48.67 17.50 2.8

46

speedup). This can be explained because, for simplicity, the labeling process was

implemented using a recursive flood-fill algorithm, what is very memory intensive

and does not scale well mainly for larger grids. However, this scalability does

not significantly affect EPUG-Overlay since the labeling step is the fastest one

in EPUG-Overlay (taking only 0.9% of the total running time when EPUG-

Overlay process the largest dataset sequentially). If the performance of this stage

become critical, we suggest to implement it using a faster and more memory efficient

flood-fill algorithm (such as a scan-line algorithm).

Even the sequential version of EPUG-Overlay is very competitive compared

to other overlay programs. E.g., the GRASS GIS [79] overlay (sequential) module

that uses floating point (and thus, does not compute the exact overlay) takes 5321

seconds to overlay UsWaterBodies with UsBlockBoundaries while the sequential

version of EPUG-Overlay uses only 1240 seconds (including I/O) with a 2000×
2000 1st-level grid and 40 × 40 2nd-level grid. EPUG-Overlay’s execution time

is reduced to 264 seconds if it is executed in parallel. Of course, its important to

notice that the GRASS running time includes some systems overheads associated

with the GIS environment.

Thus, the overhead added by using exact arithmetic can be balanced by using

Table 3.7: Elapsed time of the main steps of EPUG-Overlay for the overlay of
the UsWaterBodies with UsBlockBoundaries. Times considering the grid size
from Equation (3.2) and using 1 and 16 threads.

Maps: UsWaterBod. × UsBlockBound.
Grid size: 2000×2000

Time (sec.) Parallel
Threads: 1 16 speedup

Read maps 72.39 70.98 1.0
Make grid 184.89 63.51 2.9

Refine 2-level grid 162.62 15.39 10.6
Intersect edges 506.08 50.18 10.1

Initialize cell labels 11.03 7.66 1.4
Locate vertices 251.87 24.75 10.2

Comp. output faces 22.60 4.12 5.5
Write output 29.00 27.44 1.1

Total w/o I/O 1,139.09 165.61 6.9
Total with I/O 1,240.48 264.03 4.7

47

a simple and efficient data structure and parallel programming.

3.3.2 The two-level uniform grid relevance

In this section we will present some results to show the relevance of using a

two-level uniform grid instead of a conventional uniform grid or a Quadtree.

First, the main purpose for using a data structure in map overlay is to try to

reduce the number of segment pairs that need to be checked to verify if they intersect.

For example, Figure 3.6 presents some statistics for overlaying maps UsWaterBodies

with UsBlockBoundaries using a 2-level uniform grid with 2000 × 2000 cells in the

first level, 40× 40 cells in the second one and 50 as the threshold. After the 1-level

uniform grid creation, see Figure 3.6(a), there are 20000 cells with over 10000 pairs

of edges to be checked. Then, it would be necessary to check more than 2×108 edge

pairs. Nevertheless, with a second level, see Figure 3.6(b), there are now about only

100 cells with more than 10,000 pairs of edges to be checked.

As mentioned before, besides accelerating the edge-edge intersection compu-

tation process, the uniform grid also accelerates the point location step for similar

reasons.

The next question is, why do not use a more dynamic data structure such as a

Quadtree? This is a bad idea because our tests found that just creating a Quadtree

requires too much memory and takes more time than the whole process to overlay

the two maps using a 2-level uniform grid. Furthermore, it is harder to navigate in

the cells of dynamic data structures, and also they are usually harder to parallelize

efficiently.

For example, Table 3.8 shows the time and the memory required just to create

a Quadtree for the three datasets used in the tests (the threshold for creating another

branch in these structures was set to 50 pairs of edges). Also, the maximum depth

achieved by the tree and the total number of pairs of edges in the cells are presented.

In all cases, just the grid creation spent more time than the EPUG-Overlay

processing time presented in Tables 3.5, 3.6 and 3.7.

48

(a)

(b)

Figure 3.6: Histogram for the number of pairs of edges in the grid cells - The
number of grid cells distribution considering the number of pairs of edges to be
evaluated when overlaying maps UsWaterBodies (containing 21 million edges)
with UsBlockBoundaries (containing 32 million edges): (a) 1-level uniform
grid (with 20002 cells); (b) 2-level uniform grid (with 402 cells).

Table 3.8: Elapsed time and memory size spent just to create a Quadtree
sequentially.

Max. Time Memory Pairs of edges
Maps overlaid Depth (sec.) (GB) (×106)

BrSoil × BrCounty 13 64.21 0.16 0.7
UsAquifers × UsCounty 18 423.76 0.68 0.8
UsWBodies × UsBBound. 21 8,270.07 9.81 30.8

49

3.4 Summary

We have presented EPUG-Overlay, an efficient algorithm, with implemen-

tation, using rational numbers to compute the exact overlay between two maps.

Even though EPUG-Overlay performs computation using multiple precision ra-

tional arithmetic, which is much slower than hardware-implemented floating point,

its performance is at least competitive (being more than 4 times faster when exe-

cuted sequentially and more than 20 times faster when executed using 16 threads)

to the approximate overlay method included in the widely used GRASS GIS.

Furthermore, EPUG-Overlay is eminently parallelizable. With OpenMP,

we achieved a speedup (excluding I/O) of a factor of up to 7 compared with the

sequential implementation. And, we have ideas about how to make these times even

better, if there were a need.

EPUG-Overlay was developed to evaluate the ideas we planned to apply

for exactly computing the intersection of triangular meshes in E3. As it will be

shown in Chapter 6, these ideas were extended to E3 with good results.

CHAPTER 4

2-level 3D uniform grid indexing

In this chapter, we will present the details of an efficient implementation of a parallel

3D uniform grid. A 2D uniform grid was already described in Chapter 3, where it

was applied to the 2D map overlay problem. In this chapter we will describe a 3D

version of the grid and present details about the optimization techniques we have

incorporated into this index.

Since the 3D uniform grid is employed in both the PinMesh and 3D-EPUG-

Overlay methods, experiments related to the grid will be performed in the chapters

presenting these two algorithms.

As mentioned in Section 3.1, the uniform grid is useful in computational ge-

ometry to efficiently cull a combinatorial set of pairs or triples of objects, to find

a much smaller subset that are likely to coincide. For data that is uniformly in-

dependently and identically distributed, the expected number of pairs or triples of

objects processed is linear in the size of the input plus the output [74], [76], [80].

The basic idea is to superimpose a grid over the data, with the grid cell size set so

that the expected number of edges per cell remains constant as the total number of

edges grows. Then, insert into each cell c the edges of the map intersecting c. As

presented in Chapter 3, we have already used a two-level uniform grid to develop

an exact parallel 2D map overlay algorithm. Experimentally, three-level grids and

trees are slower.

In this project we implemented a two-level 3D uniform grid to accelerate the

Portions of this chapter previously appeared as:

S. V. G. Magalhães, “An efficient algorithm for computing the exact overlay of
triangulations”, in Proc. 2nd ACM SIGSPATIAL PhD Workshop, SIGSPA-
TIAL PhD’15. New York, NY, USA: ACM, 2015, pp. 3:13:4.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li,“Pinmesh
- Fast and exact 3d point location queries using a uniform grid”, Comput. &
Graph., vol. 58, pp. 1 - 11, 2016, Shape Modeling International 2016.

50

51

point location algorithm. We intend to use this same indexing data structure to also

accelerate the other steps of the intersection computation. Thanks to its simplicity

and regularity, the uniform grid creation was successfully implemented in parallel

using OpenMP.

Given the input mesh M composed of a set of 3D triangles as described in

Section 2.2.2, a 3D regular g1 × g1 × g1 grid G overlapping M is created. Then,

each triangle t in M is inserted into the grid cells that it intersects. Each cell

actually stores pointers to the triangles whose axis-aligned bounding boxes intersect

it. The resolution of the grid (g1) is a parameter that can be defined manually or

dynamically computed based on statistics about the input data.

The grid cells’ contents (the pointers to the triangles) are stored in a ragged

array. This is more compact than an array of linked lists, and stores each cell’s

contents contiguously, which might play better with the computer’s cache. A ragged

array is created by scanning the data twice. In the first scan, the number of triangles

that will be inserted into each grid cell is added up. Then a linear array A containing

enough slots to store all the pointers to the triangles is allocated. Since the number

of triangles in each grid cell is now known, for each cell c we create a pointer pointing

to the beginning of a subarray of A containing enough slots to store c’s triangles.

Finally, a second scan is performed on the triangles and their pointers are inserted

into their positions in A. Figure 4.1 illustrates the difference between the memory

layout obtained when each cell has a dynamic data structure (such as a C++ vector)

and the layout obtained using a ragged array. This technique is also common in,

e.g., parallel bucket sorting.

While the creation of the ragged array requires two scans through the data, it

replaces the allocation of many small memory blocks with one big allocation of the

array A. This strategy has two advantages.

First, by avoiding the use of dynamic data structures such as lists and dy-

namic arrays, the ragged array reduces the memory overhead: since the uniform

grid is 3D, the number of cells grows cubicly with the grid resolution and, thus, the

total memory requirement of the grid would be big if each cell stored a dynamic

array (which, because of its allocation strategy, usually requires more slots than the

52

t1 t2 t3

t4

t5 t6 t7

(a)

t1 t2 t3 t4 t5 t6 t7

(b)

Figure 4.1: Dynamic array versus ragged array - 3×3 uniform grid (for clarity,
a 2D grid was used) using dynamic arrays (a) versus ragged array (b). Only
the memory related to the first row of the grid is shown.

number of elements stored) or a linked list (which has an overhead caused by the

pointers in each node). By using a ragged array, on the other hand, we have exactly

one slot for each triangle stored, and each grid cell needs to store only one pointer.

Second, since one big allocation is performed instead of several smaller alloca-

tions the memory is not fragmented and there is more data locality. Furthermore,

big allocations are usually performed faster than several smaller allocations.

As will be mentioned in Section 5.3, in our point location algorithm the uniform

grid was tuned by choosing an specific grid size that is suitable to efficiently perform

queries and by augmenting the grid cells with information about the polyhedron

where each cell is located.

4.1 Implementation details

Algorithm 4.1 summarizes the process of creating a two-level uniform grid.

Initially, the first level uniform grid is created. Then, some of the cells are refined

(creating a second level grid).

53

Algorithm 4.1: Creation of the uniform grid.

1: M : mesh represented as a set of triangles
2: g1: resolution of the first level of the uniform grid
3: g2: resolution of the second level of the uniform grid
4: maxTrianglePerCell: threshold for refining a cell
5: //Create and refine the uniform grid G
6: G ← g31 3D uniform grid
7: for each triangle t in M do
8: Insert t into the G’s cells intersecting its bounding-box
9: end for

10: for each grid cell c in G do
11: if |triangles(c)| > maxTrianglePerCell then
12: Create a g32 uniform grid in c
13: for each triangle t in triangles(c) do
14: Insert t into the c’s cells intersecting its b.box
15: end for
16: end if
17: end for

As was mentioned before, because of the ragged array in our actual imple-

mentation the insertion of the triangles into the uniform grid is performed in two

steps using a ragged array. Algorithm 4.2 illustrates the creation of a uniform grid

using a ragged array (this algorithm considers only one of the levels of the grid).

For simplicity, Algorithm 4.2 assumes the uniform grid is represented linearly and

the cells are labeled from 0 to g3 − 1 (where g is the grid size).

First (lines 5 to 10), the number of triangles in each grid cell is counted (the grid

NT contains the counter of each cell). Then (lines 11-14), a prefix-sum is employed

to compute StartPos, the starting position (in the ragged array of triangles) of

each uniform grid cell. Next (lines 15-18), the ragged array (Triangles) is allocated

with size equal to the total number of triangles in all cells and a temporary array

NInsertedTris is created. NInsertedTris will store the current number of triangles

already inserted into each grid cell.

Finally, in the second pass through the triangles (lines 21 to 26), they are

actually inserted into the ragged array Triangles.

Because of its uniformity and simplicity, the uniform grid can be easily con-

structed in parallel. Initially, the bounding-boxes of the triangles in the input mesh

54

Algorithm 4.2: Inserting triangles into a ragged array.

1: M : mesh represented as a set of triangles
2: g: resolution of the uniform grid
3:

4: //First pass: count number of triangles in each cell
5: NT ← array with g3 zeros
6: for each triangle t in M do
7: for each grid cell c intersecting t do
8: NT [c] ← NT [c] + 1
9: end for

10: end for
11: StartPos ← array with g3 zeros
12: for each grid cell c in 1...g3 − 1 do
13: StartPos[c] ← StartPos[c− 1] +NT [c− 1]
14: end for
15: TotalNT ← StartPos[g3 − 1] +NT [g3 − 1]
16: //Allocates ragged array of triangles
17: Triangles ← array with TotalNT triangles
18: NInsertedTris ← array with g3 zeros
19:

20: //Second pass: insert triangles into grid
21: for each triangle t in M do
22: for each grid cell c intersecting t do
23: TriPosThisCell ← NInsertedTris[c]
24: NInsertedTris[c] ← NInsertedTris[c] + 1
25: Triangles[StartPos[c] + TriPosThisCell] ← t
26: end for
27: end for

can be computed in parallel.

Then, the first level grid can be created in parallel. Consider Algorithm 4.2:

the for loop in lines 6-10 can iterate through the triangles in parallel (to avoid

atomics, in our implementation each thread keeps a private grid NT to count its

triangles and these private grids are added at the end of the for loop).

The loop in lines 12-14 could also be processed in parallel using a parallel

prefix-sum algorithm. However, for simplicity it was not parallelized since it is not

a performance bottleneck: the complexity of this loop is Θ(g3) and the grid sizes

are typically small in comparison with the number of triangles in the meshes.

Finally, the triangles can be inserted into the grid cells in parallel (loop in

55

lines 21-27). However, since two triangles may concurrently be inserted into the

same cell, the operations performed in lines 23 and 24 have to be done as a single

atomic operation (this can be efficiently performed using the atomic and capture

OpenMP directives).

Once the first level of the grid is created, the next step is to refine the grid

cells. Since during the refinement of a grid cell c a new (nested) uniform grid is

created inside c and c’s triangles are inserted only into this new grid, different first

level cells can be safely refined in parallel without the use of synchronization and,

therefore, the set of grid cells that need to be refined is processed in parallel.

4.2 Summary

This chapter described the 3D two-level uniform grid we intend to use for

indexing the triangular meshes, and thus accelerate the computation. Because of

its uniformity and simplicity, the uniform grid can be quickly created in parallel.

As will be shown in Chapters 5 and 6, this data structure was successfully

applied to accelerate the point location and mesh intersection processes.

CHAPTER 5

The point location problem

This chapter presents PinMesh our solution for the 3D point location problem.

Given an input mesh and a set of query points, the objective is to determine in what

polyhedron each point is located.

As mentioned in chapter 2, the point location problem is an important step

of the overlay computation. However, since this problem itself is an important

Computational Geometry subject, we dedicated this chapter to it.

5.1 The problem

To illustrate the point location problem, Figure 5.1 presents an example input

mesh containing 11 triangles and 3 regions (region 1 in purple, region 2 in yellow,

and the exterior region). Triangle ABC bounds regions 1 (on the negative side)

and 2 (on the positive side) while the other triangles bound the exterior region and

either region 1 or 2. In this example there is only one query point q and it is in

region 2.

5.2 Performing queries

Given a mesh M and a set of query points Q, the objective is to determine

what region contains each point q ∈ Q. If a point is not inside a polyhedron in the

mesh it is considered to be in the exterior region.

Portions of this chapter previously appeared as:

S. V. G. Magalhães, “An efficient algorithm for computing the exact overlay of
triangulations”, in Proc. 2nd ACM SIGSPATIAL PhD Workshop, SIGSPA-
TIAL PhD’15. New York, NY, USA: ACM, 2015, pp. 3:13:4.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li,“Pinmesh
- Fast and exact 3D point location queries using a uniform grid”, Comput. &
Graph., vol. 58, pp. 1 - 11, 2016, Shape Modeling International 2016.

56

57

Figure 5.1: Example of an input mesh and a query point.

Given a query point q ∈ Q, its location is determined by casting a vertical

ray l oriented from q in the positive z direction (the particular orientation is not

important) and, then the mesh triangle t that intersects l in the lowest intersecting

point m is computed. Supposing m is on a face of M (but not on an edge or vertex,

which are two special cases), then the segment qm will only intersect the mesh at

m and q will necessarily be in one of the two regions bounded by t.

Consider, for example, the mesh in Figure 5.1: the vertical ray l starting on q

intersects the mesh at points m and m′. Since m is the lowest mesh point intersecting

l, we know that q is in one of the two regions adjacent to the triangle containing m

(otherwise, because of the Jordan Curve Theorem, l would intersect the mesh again

on a point closer to q than m, which is impossible since m is the lowest mesh point

above q).

To determine in which of the two regions bounded by a triangle t a query point

q is, the sign of the dot product between the vector (0, 0,−1) (a vector parallel to

l) and t’s normal is computed (this process is similar to the Back-Face Culling

technique commonly used in Computer Graphics). Iff the sign is positive, q is on

the positive side of t. If the slope of t’s normal is 0, then t is a vertical triangle and

the ray intersected t on a vertex or edge; we will discuss this later.

Figure 5.2 presents an example where a triangle t is used to determine the

region where a query point q is: since the sign of the dot product between the vector

(0, 0,−1) and the normal n is negative, q is on the negative side of t. Figure 5.3

presents an example of the 2D version of the point containment problem (the 3D

58

version is equivalent) that illustrates the challenge of determining the position of

a query point q basing on the orientation of a vertical edge (similar to a vertical

triangle in 3D): in Figure 5.3 (a) the edge AB is the first edge crossed by the

ray traced from q and, since the sign of the dot product between (0,−1) and n is

negative, this means that q is on the region that is on the negative side of AB. If

the normal was parallel to the x-axis (Figures 5.3 (b) and (c)), on the other hand,

the first point hit by the ray would be on a vertex of AB and, thus, the process of

determining in what region q is would need to treat an ambiguity: even though the

segment AB is the same on Figure 5.3 (b) and (c) and q is on the same region in

these two figures, in (b) q is on the region on the negative side of AB while in (c) it

is on the positive side.

Figure 5.2: Example of a query point q directly below a triangle ABC with
normal n.

To summarize, PinMesh needs three basic predicates in order to determine

in what region a query point q is:

• isOnProj(t, q) : given a triangle t and a query point q, returns true iff the

vertical projection of q onto the plane passing through t is in the interior of t.

• isAbove(t, q) : given a query point q and a triangle t such that isOnProj(t, q)

is true, returns true iff the projection of q onto t is above q. That is, this

operation verifies if a triangle is above a point.

59

(a)

(b) (c)

Figure 5.3: Challenge to the 2D version of the point location problem caused
by vertical edges - In (a) q’s location can be easily computed since the ray
starting on q hits the interior of the edge AB. In (b) and (c), on the other
hand, the orientation of AB cannot be easily used to locate q since AB is a
vertical line segment.

• isBelow(t, t′, q) : given two triangles t and t′ directly above a query point q,

returns true iff the z component of the projection of q onto t is smaller than

the z component of the projection of q onto t′.

Thus, to locate q, the first step constructs a subset T of the triangles in the

meshM that are directly above q, that is, T = {t ∈M | isOnProj(q, t) and isAbove(q, t)}.
Then the lowest triangle u directly above q is selected from T using the operation

isBelow(q, t, t′) to compare pairs of triangles. Finally, the location of q is deter-

mined by verifying the sign of the dot product between the vector (0, 0,−1) and u′s

normal.

The predicate isOnProj(t, q) was implemented using the barycentric coordi-

nates of the projection of t onto the plane z = 0. Similarly, isBelow(t, t′, q) was

implementing by computing the plane equations for the triangles t and t′ and, then,

using these equations to project q onto the triangles and compute the z-coordinates

60

of the two projections. More details about this implementation will be presented in

Section 5.4.3.

5.3 Using a two-level uniform grid to accelerate the queries

As mentioned in Section 4, we use a two-level 3D uniform grid quickly cre-

ated in parallel to accelerate the point location algorithm. In this section we will

explain why the uniform grid is an efficient indexing data structure for performing

point location queries and present how we augmented the grid cells with labels that

accelerate even more the queries.

If the grid resolution is chosen such that the expected average number of tri-

angles per cell is constant, the expected time to locate each point q will be constant:

determining in what grid cell c the point q is takes constant time. Testing the in-

tersection between the ray and the triangles in c also takes constant time (since the

number of triangles in the cells is constant). If the ray hits at least one triangle, the

query result is found in constant time. However, there is a probability p that it does

not. Because the expected number of triangles in c is constant, p is also expected

to be a constant independent of the map size. Then we continue the ray into the

next higher cell and test for an intersecting triangle. The expected number of cells

to process until to find an intersecting triangle is 1/(1− p).
To further accelerate the queries, we augmented each grid cell c with a label

indicating in what region c is. If there is no triangle in c, this means that c is

completely inside a region R and, therefore, c’s label is initialized with R. Because

of the Jordan Curve Theorem, any query point q in c will automatically be in R and,

therefore, queries performed using points in empty cells can be quickly performed by

just returning the label associated with the cell. If c contains at least one triangle,

on the other hand, c may cover more than one region and, therefore, its label is not

initialized.

Given an empty cell c, its label is initialized by sampling a point in c (for

example, the center of the cell), and then querying this point using the proposed

point location algorithm. If c has an empty neighbor cell c′ it is clear that, because

a continuous path connecting these two cells may be traced without crossing any

61

triangle, c′ is in the same region where c is, and therefore c′ could be tagged with the

same label. This process could be performed recursively labeling entire connected

components of empty cells. For performance purposes, it is performed using a scan-

line flood fill algorithm.

5.4 Implementation details

PinMesh is composed of two steps: in the first one (the pre-processing step),

the uniform grid is created, refined and, finally, empty grid cells are labeled to

identify the region where they are. After that, in the second step the queries are

performed.

Algorithm 5.1 presents the pseudo-code of the pre-processing step discussed

in the previous Section. Initially, the uniform grid is initialized as described in Sec-

tion 4. After the creation and refinement of the uniform grid, the next step is the

initialization of the labels of the empty grid cells with the ids of the regions they are

located. As mentioned in Section 5.3, these labels are initialized using a scan-line

flood-fill algorithm to label the connect-components of empty grid cells. To avoid

the implementation of a parallel scan-line algorithm (which would require synchro-

nizations), we divided the first level uniform grid into cubic blocks (for example, a

643 grid could be divided into 512 83 blocks) and used the flood-fill algorithm to

label the connected components in each block independently. Since the blocks are

processed independently, this processing was performed in parallel.

Algorithm 5.2 presents the high level pseudo-code of the point location func-

tion. For simplicity, we assume the grid has only one level (the algorithm for a grid

with two levels is similar).

Since the objective is to find the lowest intersection point m between a triangle

(the lowest triangle) and a vertical ray l starting on q, the algorithm iterates through

all the grid cells that would intersect l (since m will be necessarily on a triangle in

one of these cells).

Therefore, the loop on line 7 iterates through the cells c from qc (q’s cell) to

the highest cell above qc. Since the cells are processed in order from the lowest to

the highest one, if a labeled cell is hit (that is, if l hits an empty cell) before any

62

Algorithm 5.1: PinMesh’s pre-processing step.

1: M : mesh represented as a set of triangles
2: G ← 3D uniform grid to index M
3: //Label G’s cells
4: Initialize G’s cells labels with NULL
5: for each empty grid cell c in G do
6: if c.label = NULL then
7: q ← point in the center of c
8: label ← locatePointInMesh(q,M,G)
9: //Use a scanline algorithm to label c’s connected

10: //component of empty cells
11: scanlineFloodFill(c,label)
12: end if
13: end for

triangle the label of this cell is returned. Otherwise, for each triangle t in c (loop

on line 12) that is directly above q, if the projection of q on t is lower than the

projection of q on the lowest triangle seen so far, the lowest triangle is updated with

t.

For performance, every time a lower triangle is found, the highest cell that

needs to be processed is updated with the cell c containing the projection of q

on lowestTriangle (line 15) since no cell above c can have a lower triangle. This

strategy reduces the number of grid cells that need to be processed.

Figure 5.4 illustrates this process in 2D: the algorithm starts the search on c0

(q’s cell) and, among the 4 edges in c0, only edge xy intersects the ray l (on point

m2). Notice that, even though xy is in c0, m2 is not in c0 since xy intersects several

grid cells. In the next iteration, cell c1 is processed and the edge uv containing the

intersection point m1 (that is lower than m2) is found. Since the lowest intersection

seen so far (m1) is on an edge in c1, no grid cell above c1 needs to be processed.

After the loop on line 7 ends, the algorithm tests if the lowest triangle was

initialized. If it was not, this means that all cells above qc were processed and no

triangle directly above q was found. Thus, q must be in the exterior region. If

the lowest triangle was initialized, we know that the face of this triangle is directly

above q (and the projection of q on this face represents the lowest point on the mesh

that is directly above q) and, thus, the sign of the dot product between (0, 0,−1)

63

and the normal of the lowest triangle is used to determine in what region q is.

Algorithm 5.2: Function locatePointInMesh(q,M,G).

1: q (argument): query point
2: M (argument): mesh represented as a set of triangles
3: G (argument): 3D uniform grid created on M
4: (qcx, qcy, qcz) ← coordinates of the grid cell containing q
5: highestCzToProcess ← G.gridResolution
6: lowestTriangle ← NULL
7: for cz in qcz...highestCzToProcess do
8: c ← grid cell of G in coordinate (qcx, qcy, cz)
9: if lowestTriangle = NULL AND c.label 6= NULL then

10: return c.label
11: end if
12: for each triangle t in triangles(c) | isOnProj(t, q) AND isAbove(t, q) do
13: if lowestTriangle = NULL OR isBelow(t, lowestTriangle, q) then
14: lowestTriangle ← t
15: highestCzToProcess ← getGridZProjection(q, t)
16: end if
17: end for
18: end for
19: if lowestTriangle 6= NULL then
20: if lowestTriangle.normalz < 0 then
21: return lowestTriangle.positiveSide
22: else
23: return lowestTriangle.negativeSide
24: end if
25: else
26: return EXTERIOR //q is in the exterior region
27: end if

Besides the special cases (that will be treated later), PinMesh could also

fail because of floating point roundoff errors. To completely avoid these errors,

PinMesh was implemented in C++ using GMP [77] to store and process all coor-

dinates using rational numbers. Another advantage of using exact computation is

that the technique we use to treat the special cases (Simulation of Simplicity [4])

requires exact arithmetic to correctly handle these cases. Although, in principle,

adapting code to use rational numbers is a straightforward task, simply replacing

the floating-point variables with multiple precision ones does not lead to good per-

formance. Thus, PinMesh was carefully developed to use these numbers in an

64

Figure 5.4: Computing the point locations using a uniform grid.

efficient way.

For example, the temporary multiple precision variables created in functions

that are called several times (for example, the isOnProj(q, t) function) usually

require memory allocations on the heap. These allocations especially slow down

the algorithm when the function is called by several threads in parallel. So, we

avoided the creation of temporary rational numbers by carefully implementing the

functions to use pre-allocated variables. Also, we avoided mathematical expressions

that lead to the creation of temporary rationals (the particular kind of expressions

which creates temporary allocations is described in the GMP manual [77]).

Furthermore, we also performed a space-time tradeoff by pre-computing values

that involve rational numbers and that would need to be computed often. For

example, given a vertex v of the mesh the operation that determines the grid cell

containing v is usually performed several times through the algorithm. Thus, in the

pre-processing step we compute in what cell each vertex is and store this information

associated with the vertex.

5.4.1 Parallel implementation

PinMesh was developed to be easily parallelizable. Our current implemen-

tation was parallelized using OpenMP. In the pre-processing step, the axis-aligned

bounding boxes of the triangles and the location of the vertices in the grid cells are

computed in parallel. Because of its uniformity and simplicity, the uniform grid can

65

also be easily constructed in parallel.

After the bounding-boxes of the triangles are computed, the next step is to

allocate the grid and insert the triangles into the corresponding grid cells. This

step could be performed in parallel as described in Chapter 4, however, preliminary

experiments performed during the implementation of PinMesh showed that this

process is very fast if compared with other steps of PinMesh, and thus it was not

worth the parallelization.

Once the first level of the grid is created, the next step is to refine the grid

cells. Since during the refinement of a grid cell c a new (nested) uniform grid is

created inside c and c’s triangles are inserted only into this new grid, different first

level cells can be safely refined in parallel without the use of synchronization and,

therefore, the set of grid cells that need to be refined is processed in parallel. Because

in the creation of the nested uniform grids no synchronization is performed and no

memory is allocated for the rational numbers (since the triangles are inserted basing

on the pre-computed grid coordinates of their bounding boxes, no operation with

rational numbers is performed during this step), the grid refinement step presents a

good parallel scalability (as it will be shown in Section 5.5).

After the creation and refinement of the uniform grid, the next step is the

initialization of the labels of the empty grid cells with the ids of the regions they are

located. As mentioned in Section 5.3, these labels are initialized using a scan-line

flood-fill algorithm to label the connect-components of empty grid cells. To avoid

the implementation of a parallel scan-line algorithm (which would require synchro-

nizations), we divided the first level uniform grid into cubic blocks (for example, a

643 grid could be divided into 512 83 blocks) and used the flood-fill algorithm to

label the connected components in each block independently. Since the blocks are

processed independently, this processing was performed in parallel.

Finally, since the queries do not change the index, they can all be performed

in parallel.

66

5.4.2 Special cases

Special cases, also called geometric degeneracies, are a nasty part of the life of

a geometric algorithm designer. This section presents our solutions to the special

cases arising in point location.

Given a query point q, its location is computed by tracing a vertical ray l

starting on q and pointing to the positive z direction, and then determining what

is the lowest point m of intersection between l and the surface of the mesh. If q is

directly below the interior of a triangle t and m is in the interior of this triangle,

q is considered to be in the region R below this face. No special case can happen

in this situation since a continuous path connecting q to t’s interior can be traced

along l and this curve would not intersect any other triangle.

If two or more triangles intersect l at the point m (that is, if there is a tie in

the process of determining the lowest triangle intersecting l), m will be, necessarily,

on an edge or vertex (if m was on a face, one or more triangles would intersect on

that face, what is an invalid input since triangles can intersect only on common

edges or vertices).

Thus, the only possibilities of degenerate cases may happen if the query point

q is on the surface of the mesh or if m is on the edge or vertex of a triangle.

First, let us assume q is not on the surface of the mesh. If m is on a vertex

or edge of a triangle, we cannot arbitrarily choose one of the triangles to determine

in what region q is since some of these triangles may not even be on the surface of

the region containing q. See the example in Figure 5.5: in this figure we have two

pyramids and the query point is exactly below the edge AB. This edge is shared

among 3 triangles: ABC, ABD and ABE and, therefore, the lowest point directly

above q (point m) is shared by the three triangles. However, only the triangles ABD

and ABE bounds q′s region (the exterior region).

If q is on the surface of the mesh, during the processing of the triangles to

determine the lowest mesh point above q, PinMesh would eventually find a point

with height equal to q’s height and, therefore, PinMesh could be easily adapted

to treat this special case by returning a flag to indicate that q is on the surface.

However, as it will be explained later, we symbolically perturb the points and, in

67

Figure 5.5: Query point exactly below a mesh edge.

order to be consistent with this perturbation, a point will never be considered to be

on the surface.

To correctly handle these special cases, we used Simulation of Simplicity

(SoS) [4]. Since the special cases only happen when the query point is directly

below a vertex or edge of the mesh, we perform a symbolic perturbation where

each query point is translated using the vector (ε,ε2,ε3), where ε is a positive in-

finitesimal constant, that is, each query point q = (qx, qy, qz) is replaced with

qε = (qx + ε, qy + ε2, qz + ε3). As it will be shown later, this specific choice of

perturbation correctly handles all these special cases.

Figure 5.6 illustrates some special cases of the 2D version of the point location

problem and the effect caused by SoS, when each point qi is slightly translated to

qiε.

As mentioned in Section 2.4, Edelsbrunner and Mücke [4] presented three re-

quirements to guide the choice of the polynomials used to represent the perturbations

in an algorithm using SoS:

1. The perturbed geometric objects must be simple (non-degenerate) if ε > 0 is

sufficiently small.

2. If an object is non-degenerate, then its perturbed version must retain the

properties of its original version.

68

q1 q1

q2

q2

q3 q4

q3 q4

A

F

EB

C D

G H

Polygon 2

Polygon 1

Polygon 3

Poly. 4

Figure 5.6: Using SoS for avoiding special cases in the 2D version of the point
location problem.

3. The computational overhead of processing the perturbed objects should be

negligible.

We claim that the perturbation scheme used in our work is suitable for the

point location problem and satisfies the three conditions presented above. Condition

2 is automatically satisfied for a sufficiently small ε, that is, if the lowest mesh point

above a query point q is in the interior of a triangle, the lowest point on the mesh

directly above qε will also in the interior of the same triangle. Similarly, if q is

not inside the mesh, qε will also not be in the mesh. As it will be shown later,

the computational overhead of processing qε instead of q is negligible and, thus,

condition 3 is also met.

To show that condition 1 is also satisfied we need to show that qε will be a

non-degenerate input, that is, qε will never be exactly below a vertex or edge of the

triangles and, also, qε will never be on the mesh surface.

First, let us show that qε will never be on the mesh surface. If q is on a mesh

triangle t, qε cannot be on the plane Π passing through t for the following reason:

suppose Π has a plane equation: ax+ by + cz + d = 0 and both q and qε are on Π.

Since q is on Π, we have aqx + bqy + cqz + d = 0 and, since qε is also on Π we have

a(qx + ε) + b(qy + ε2) + c(qz + ε3) + d = 0. Thus, aε+ bε2 + cε3 = 0 and, since ε > 0,

a + bε + cε2 = 0 ⇒ a = −bε − cε2. Because a, b and c cannot simultaneously be

0, b and c are not simultaneously 0 and, thus, a is infinitesimal (what is impossible

since, by definition, an infinitesimal is smaller than any measurable value).

69

Also, qε cannot be on the surface of another triangle t′ not intersecting q

because a ball with infinitesimal radius centered on q cannot intersect t′.

Now, lets show that qε will never be exactly below a vertex or edge of the

triangles. Consider the projections q′ and q′ε of, respectively, q and qε onto the plane

z = 0. To show that qε will never be directly below a mesh vertex or edge we need

to show that q′ε will never be on the projection of any vertex or edge onto z = 0.

Lemma 5.4.1. If q′ is exactly on the projection v′ of a mesh vertex v onto the plane

z = 0, q′ε cannot be on the projection of any vertex or edge.

Proof. Since v′ is a point and q′ is translated by a positive distance, q′ε cannot be on

v′. Also, q′ε cannot be on the projection u′ of any other vertex u onto z = 0 since,

otherwise, the distance between v′ and u′ would be proportional to
√
ε2 + ε4 =

ε
√

1 + ε2, what is infinitesimal.

Furthermore, if q′ is on v′ then q′ε cannot be on the projection e′ of an edge e

onto z = 0 for two reasons. First, if v′ does not intersect e′, the shortest distance

between e′ and v′ should be a non-infinitesimal positive value, but the distance

between q′ and q′ε is infinitesimal. Second, if v′ intersects e′ and q′ε is on e′, this

means that q′ and q′ε should be on the same edge e′. However, q′ and q′ε could not

be on the same edge because q′ε = (q′x + ε, q′y + ε2) and, thus, the slope of this edge

would be infinitesimal.

It is also straightforward from this previous Lemma that if q′ is on the projec-

tion of an edge then q′ε will not on the projection of a vertex.

It is worth mentioning that the property that q′ and q′ε could not be simul-

taneously on the same segment would not be true for any edge if qε was equal to

(qx + ε, qy + ε, qz + ε) since, in this case, q′ and q′ε could be simultaneously on a

segment with slope 1. This shows that a careful choice of the infinitesimals is an

important task for correctly developing a SoS strategy.

Lemma 5.4.2. If q′ is on the projection e′ of a mesh edge e onto the plane z = 0,

q′ε will not be on the projection of any edge.

70

Proof. As mentioned above, q′ and q′ε cannot be simultaneously on the same edge.

Thus, we only need to show that if q′ is on e′, q′ε will not be on the projection f ′ of

another edge f onto z = 0.

If f ′ does not intersect e′, the shortest distance between f ′ and e′ should be

a non-infinitesimal positive value and, thus, q′ε could not be on e′ (otherwise the

shortest distance between e′ and f ′ would be infinitesimal).

If f ′ intersects e′ on a vertex v′, q′ could be either on v′ or not. As mentioned

in the previous lemma, if q′ is on v′, then q′ε cannot be on an edge. If the smallest

angle between e′ and f ′ is not zero, it should be a positive non-infinitesimal and

since the distance between q′ and v′ is also a positive non-infinitesimal value, then

an infinitesimal disc centered on q′ could not intersect the projection of any edge

other than e′. Because the distance between q′ and q′ε is infinitesimal, it follows that

q′ε cannot be on f ′.

If the smallest angle between e′ and f ′ is zero and the two edges intersect, it

is clear that if q′ is on e′, then q′ε could not be on f ′ (otherwise the slope of these

edges would be infinitesimal).

To conclude, as explained above, all query points q will be translated to a

position qε that is not on the mesh and either below the interior of a triangle or not

below any triangle. Notice that, since a perturbed point qε will never be directly

below a vertex or edge, qε will also never directly below a vertical triangle (that is,

a triangle whose normal is parallel to the plane z = 0).

5.4.3 Implementing the symbolic perturbations

The only parts of PinMesh that directly deal with the point coordinates,

and thus need to be adapted to use SoS are the three main operations described in

Section 5.2, that is, the functions isOnProj(q, t) , isAbove(q, t) and isBelow(q, t, t′).

In this section we will present details of how these functions were implemented and

how they where adapted to treat the special cases using SoS.

Given a triangle t and a point q, the function isOnProj(q, t) uses the q’s

barycentric coordinates to determine whether or not the projection of q onto the

plane passing through t is on t. More specifically, we project both q and t onto

71

the plane z = 0, creating the point q′ and the triangle t′, compute the barycentric

coordinates of q′ with respect to t′ and, then, use these coordinates to check whether

or not q′ is in the interior of t′.

Consider the three vertices t′0, t
′
1 and t′2 of t′ and the point q′. The barycentric

coordinates λ0,λ1,λ2 of q′ with respect to t′ can be computed using the following

equations:

λ0 =
(t′1y − t′2y)× (q′x − t′2x) + (t′2x − t′1x)× (q′y − t′2y)

det
(5.1)

λ1 =
(t′2y − t′0y)× (q′x − t′2x) + (t′0x − t′2x)× (q′y − t′2y)

det
(5.2)

λ2 = 1− λ0 − λ1 (5.3)

det = (t′1y − t′2y)× (t′0x − t′2x) + (t′2x − t′1x)× (t′0y − t′2y) (5.4)

In order to q′ be in the interior of t′, the following condition must be met:

0 < λi < 1, for i = 0, 1, 2. The degenerate cases for this test happens when det = 0

(this means the normal of the original triangle t is parallel with respect to the plane

z = 0 and, therefore, t is a vertical triangle), when one of the λi is 1 (this means q′

is on one of the vertices of t′) or when one of the λi is 0 and the others are not 1

(this means q′ is on one of the edges of t′).

As mentioned in Section 5.4.2, a perturbed vertex will never be exactly below a

vertical triangle and, therefore, if det = 0 the function isOnProj(t, q) should return

false. Therefore, the only special cases that need to be considered are the ones that

happen when at least one of the λi is either 0 or 1.

If q is perturbed creating the new point qε = (qx + ε, qy + ε2, qz + ε3), the

projection q′ε of qε onto the plane z = 0 will be equal to (qx+ ε, qy + ε2). Replacing q′

with q′ε in the equations 5.1,5.2 and 5.3 we have the following barycentric coordinates

of the perturbed points:

72

λε0 = λ0 +
(t′1y − t′2y)× ε+ (t′2x − t′1x)× ε2

det
(5.5)

λε1 = λ1 +
(t′2y − t′0y)× ε+ (t′0x − t′2x)× ε2

det
(5.6)

λε2 = 1− λε0 − λε1 (5.7)

As expected, because of SoS, λε0 will never be 0 or 1: λε0 is equal to λ0 plus an

expression containing an infinitesimal and this expression can never be zero since,

otherwise, we would have t′1y = t′2y and t′2x = t′1x (what would imply in det = 0).

This same observation is also valid for λε1 and λε2 .

Therefore, if the function isOnProj(t, q) is implemented such that it returns

true iff 0 < λεi < 1, for i = 1, 2, 3 , no degeneracy will happen. As it can be

seen below, this implementation will be as efficient as an implementation that does

not consider the special cases (and, thus, does not deal with the infinitesimals),

satisfying the requirement 3 of SoS mentioned in Section 5.4.2.

For example, consider the problem of verifying the following predicate 0 <

λε0 < 1:

• if λ0 6= 0 or 1 (what is expected to happen most of the time): it is clear that

0 < λε0 < 1 ⇐⇒ 0 < λ0 < 1.

• if λ0 = 0: λε0 < 1 and, thus, we only need to check if 0 < λε0 . Considering

that det > 0 (if det < 0 the value of this predicate needs to be negated),

0 < λε0 ⇐⇒ (t′1y − t′2y) × ε + (t′2x − t′1x) × ε2 > 0, what happens if t′1y > t′2y

or if (t′1y = t′2y) and (t′2x > t′1x) (since ε2 << ε).

• if λ0 = 1: λε0 > 0 and, thus, we only need to check if λε0 < 1. Considering

that det > 0 (again, if det < 0 the value of this predicate needs to be negated),

λε0 < 1 ⇐⇒ (t′1y − t′2y) × ε + (t′2x − t′1x) × ε2 < 0, what happens if t′1y < t′2y

or if (t′1y = t′2y) and (t′2x < t′1x).

This same strategy can be used to implement the functions isAbove(t, q) and

isBelow(t, t′, q). Besides the three functions mentioned in this section, the only

73

other step of PinMesh that deals with the coordinates of the query points is the

operation of determining in what uniform grid cell c a query point q is. The only

possibility of degeneracy in this operation happens when q is exactly on the border

of a cell. This case is treated by considering that the point is in the cell with greatest

index (that is, if a point is on the border between a cell with x index 8 and a cell

with x index 9, we consider it is on the cell with index 9), what is consistent with

the perturbation presented in this section (that adds positive infinitesimals to all

coordinates).

5.5 Experimental evaluation

We implemented PinMesh in C++ using the packages GMP [77] to provide

multiple precision rational numbers and OpenMP 4.0 to provide shared memory

parallel programming constructors. Our implementation was compiled using g++

4.9.3 (with the -O3 optimization flag) and tested on a workstation with a dual

Xeon 3.1GHz E5-2687 processor (each one with 8 physical cores), 128 GiB of RAM

and running the Linux Mint 17 operating system. Since PinMesh is parallel, unless

otherwise noted it was configured to use 16 threads in the performance experiments.

PinMesh was compared with RCT, a sequential point location algorithm pro-

posed by Liu et al.[29]. Differently from PinMesh, RCT is based on floating-point

arithmetic and, thus, it is not guaranteed to always locate the points exactly. As

far as we know, RCT is the most efficient available algorithm for the point location

problem. According to the experiments performed by Liu et al.[29], their algorithm

was much faster than other algorithms such as the one implemented in CGAL and

the AABB-tree-based algorithm proposed by Baerentzen et al.[81]. RCT’s C++

source code was made available by the authors [29] and, thus, we were able to

compile and run RCT using the same platform we used to evaluate PinMesh.

Experiments were performed on 13 datasets, with sizes ranging from one hun-

dred thousand triangles to fifty million triangles, as described in Table 5.1. Some

of them were downloaded from the Stanford Scanning Repository [82], while oth-

ers were downloaded from the Large Geometric Model Archive [83] and from the

AIM@SHAPE-VISIONAIR Shape Repository [84]. Table 5.1 also includes the cre-

74

ator of each model downloaded from the AIM@SHAPE-VISIONAIR Shape Repos-

itory. Figure 5.7 illustrates some of these meshes.

The ten smallest meshes are single-material meshes, that is, meshes containing

only one object while the three largest ones are multi-material. The 6 Materials

dataset was created by joining the six largest single-material meshes used in the

experiments side-by-side (creating a grid with 3x2 meshes, where each grid cell has

size equal to the bounding-box of the largest mesh and there is no intersection

between the triangles bounding different materials). The datasets with 12 and 24

materials, on the other hand, were generated by joining, respectively, 2 and 4 copies

of each object used in the 6 Materials dataset.

Table 5.1: Datasets used in the experiments.

Dataset Source Creator Vertices Triangles

Horse GIT - 48,485 96,966
Armadillo Stanford - 172,974 345,944

Hand GIT - 327,323 654,666
Pierrot AIM@SHAPE Frank terHaar 443,805 887,606

Chinese dragon AIM@SHAPE Laurent Saboret 655,980 1,311,956
Rolling stage AIM@SHAPE INRIA 660,267 1,320,558

Buddha AIM@SHAPE VCG-ISTI 719,553 1,439,102
Ramesses AIM@SHAPE Marco Attene 826,266 1,652,528
Elephant AIM@SHAPE ISTI 1,512,290 3,024,588
Neptune AIM@SHAPE Laurent Saboret 2,003,932 4,007,872

6 Materials - - 6,378,288 12,756,604
12 Materials - - 12,756,576 25,513,208
24 Materials - - 25,513,152 51,026,416

5.5.1 Correctness evaluation

PinMesh is simple enough that its correctness is more obvious than would be

the case with a more complicated algorithm, such as a topological sweep line. In

addition, two strategies were used to verify the correctness of our implementation.

1. Points randomly positioned in the bounding-box of the objects were queried

using PinMesh and RCT. Since it is improbable that point location queries

with random points are incorrectly computed (because of floating point er-

75

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Illustration of some datasets used in the experiments - Horse (a),
Armadillo (b), Hand (c), Rolling Stage (d), Elephant (e) and Neptune (f).
These figures were renderized using MeshLab.

76

rors or special cases not treated), it is expected that the results obtained by

PinMesh are equal to the ones obtained by RCT.

2. Experiments with query points positioned to represent special cases were used

to test if PinMesh correctly located the points.

In our experiments we evaluated millions of queries and PinMesh correctly

handled all of them. Since we are carefully treating all the singularities using SoS

and, because of the exact arithmetic, PinMesh does not have any roundoff error,

we believe that it can correctly handle any valid input.

We also generated a mesh that represents a challenge to the point locations

algorithms. This mesh, illustrated in Figure 5.8, consists of two pyramids with

height 10, each one representing different regions. The top one has id 2 while the

bottom one has id 1 and the two pyramids intersect on the vertex v = (0, 0, 10) (this

point is shared among 4 triangles of the bottom pyramid and 4 triangles of the top

pyramid).

If a query point q is positioned directly below v (for example, in point (0, 0, 9)),

the vertical ray used by PinMesh will intersect the mesh in v and, thus, it will need

to correctly choose a triangle that actually bounds the region where v is (and not

the other region). In our experiments PinMesh successfully handled this special

case. The RCT algorithm, on the other hand, was not able to correctly compute

the region containing q for the following reason: in this mesh, the RCT will try to

find the closest triangle to q. Since all the 8 triangles containing v are at the same

distance from q (that is, they are the closest ones to q) and since the RCT does

not perform any treatment to disambiguate this computation, the first of these 8

triangles found by the algorithm is used to compute q’s position. If the triangles

bounding the region 2 are stored before the triangles bounding the region 1, the

RCT will choose a triangle in region 2’s boundary to locate q and, thus, return an

incorrect output.

5.5.2 Performance evaluation

For each test dataset, we created a set of query points containing 500,000 points

randomly and uniformly distributed inside the mesh and 500,000 points randomly

77

v

Figure 5.8: Example of dataset representing a special case.

distributed outside the mesh, but inside its bounding-box. These same points were

used to evaluate the performance of RCT and PinMesh. Our reported running

times represent the average wall-clock time of 10 runs.

The uniform grid used by PinMesh was created having a resolution of 643

cells in the first level and each cell containing more than 1 triangle was refined. The

resolution of the second level grid was chosen such that the expected number of

triangles per cell is 0.0005. More specifically, the resolution of each second level grid

is (3
√
t/(643 × 0.0005))3, where t is the number of triangles in the mesh.

Table 5.2 compares the times spent by PinMesh with the time spent by the

RCT algorithm. If we consider the total running-time (that is, the pre-processing

and time to perform one million queries), PinMesh was up to 27 times faster than

RCT. As it can be seen in this table, the speedup of PinMesh improves as the size

of the mesh increases, indicating that it scales better than RCT.

The main performance advantage of PinMesh over RCT is in the pre-processing

time, that is the bottleneck of the two algorithms even when 1 million queries are

performed. Because of a careful implementation of the uniform grid and of the use

of parallel programming, PinMesh constructs the index much faster than RCT,

being up to 28 times faster. If we consider the query times, the difference between

RCT and PinMesh is smaller and PinMesh is up to 8 times faster than RCT.

Figure 5.9 illustrates how the processing time of PinMesh and RCT behaves

as a function of the number of triangles in the mesh. As it can be seen in Figure 5.9

(a), the pre-processing step of both algorithms scales linearly, but PinMesh is much

78

faster than RCT. Considering the query time (Figure 5.9 (b)), it is easy to see that

the time spent by PinMesh changes very slowly as the number of triangles increase

(being almost constant).

To evaluate PinMesh’s parallel performance, we performed experiments con-

sidering a varying amount of threads. Table 5.3 presents the times (in seconds) spent

by the main steps of PinMesh during the processing of the 24 Materials dataset,

the largest mesh used in the experiments.

Even when only 1 thread is used, PinMesh was able to pre-process the dataset

faster than RCT. Indeed, while RCT (that is sequential) spent 388 seconds to pre-

process the 24 Materials dataset and 2.55µs to perform each query, PinMesh pro-

cessed it in 64 seconds and spent 6.61µs per query when only one thread was used.

Since the pre-processing time is usually big compared with the query time, the to-

tal time spent by the RCT algorithm is only smaller than the total time spent by

PinMesh running with 1 thread when more than 80 million points are queried in

this dataset. When 4 or more threads were used, PinMesh was faster than RCT

in both the pre-processing step and during the queries.

Table 5.2: Experimental pre-processing and query times for PinMesh and
RCT.

Nt
a PinMesh RCT

Mesh ×103 G2
b Tp(s)

c Tq(µs)d Tp(s)
c Tq(µs)d

Horse 97 93 0.30 0.45 0.42 0.84
Armadillo 346 143 0.86 0.35 1.88 1.07
Hand 655 173 0.78 0.47 3.64 1.78
Pierrot 888 193 2.83 0.27 5.24 2.07
Rolling Stage 1,312 223 3.73 0.30 8.27 2.05
Chinese Dragon 1,321 223 3.34 0.29 7.31 1.43
Buddha 1,439 223 2.89 0.28 8.20 1.37
Ramesses 1,653 233 1.84 0.30 10.72 1.04
Elephant 3,025 283 3.38 0.25 20.50 1.93
Neptune 4,008 313 3.07 0.36 28.88 1.85
6 Materials 12,757 463 5.86 0.39 91.34 1.76
12 Materials 25,513 583 7.31 0.56 187.18 1.97
24 Materials 51,026 733 14.00 0.59 388.38 2.55

a number of triangles in each dataset;
b size of the second level uniform grid; c data set pre-processing
time, in seconds; d query time, per point, in microseconds.

79

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 10 20 30 40 50 60

P
re

p
ro

ce
ss

in
g
 t

im
e
 (

se
co

n
d
s)

Millions of triangles in the mesh

RCT
PinMesh

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 10 20 30 40 50 60

Q
u
e
ry

 t
im

e
 (

m
ic

ro
se

co
n
d
s)

Millions of triangles in the mesh

RCT
PinMesh

(b)

Figure 5.9: Comparing the preprocessing (a) and average query (b) times
spent by PinMesh and RCT.

The slowest pre-processing steps of PinMesh when only one thread is used are

the initial computation of the grid cells where each mesh vertex is and the refinement

of the grid. As mentioned in Section 5.4.1, these steps are easily parallelizable and,

as it can be seen in Table 5.3, they are the pre-processing steps that better scale as

the number of threads increases.

The creation of the first level uniform grid, on the other hand, is the fastest

80

step when PinMesh runs using only one thread. This step was not parallelized since

it consists basically in inserting the ids of the triangles into the relevant positions

of the ragged array representing the uniform grid, what is a very memory intensive

process that would require synchronizations to be implemented in parallel.

PinMesh presents a good scalability mainly when the number of threads

ranges from 1 to 8. For example, when the number of threads is increased from 1

to 2, the total running time is reduced by 41%. This scalability happens because

the slowest steps are the ones that scale better. It is worth mentioning that the

Xeon processor used in the experiments supports the Intel R© Turbo Boost technol-

ogy [78] to increase its frequency from their 3.1GHz base operating frequency to up

to 3.8GHz. However, to keep from overheating the CPU, when more cores are ac-

tive, less Turbo Boosting is allowed. Therefore, one cannot expect perfect scalability

even in a completely parallelizable function.

When the number of threads increases from 8 to 16, on the other hand, the

total running time is reduced by 20%. This smaller reduction happens mainly

because of two reasons. First, because of Amdahl’s law, the percentage of time

spent performing operations that do not scale (such as memory allocations) and

running the steps that were not implemented in parallel increases as the number

of threads increase. Second, since some of the steps are very memory intensive we

believe that they saturate the processor’s memory when 16 threads are used.

Table 5.3: Time spent by the main steps of PinMesh. Experiments performed
on the 24 Materials dataset using a varying number of threads. The query
time is the average time per query (in µs).

Preprocessing (s) Queries (µs)

Threads Locate Create 1st Refine Label empty Comp. query Locate
gr. cells level grid grid gr. cells points grids points

1 31.92 4.04 15.08 12.57 1.30 5.31
2 16.43 4.34 8.52 8.44 0.74 2.85
4 8.84 4.41 4.85 5.88 0.39 1.54
8 4.60 4.13 2.86 5.54 0.21 0.80
16 2.49 4.04 2.00 5.46 0.13 0.46

81

5.6 Summary

In this section we presented PinMesh, an exact and efficient algorithm for lo-

cating points in 3D meshes. PinMesh was carefully implemented to always handle

point location queries correctly. The use of rational numbers to store and process

the 3D coordinates completely avoids problems caused because of roundoff errors

typically present in algorithms implemented using floating-point arithmetic. An-

other typical source of errors in 3D algorithms, the treatment of special cases, was

also carefully handled in PinMesh using Simulation of Simplicity.

PinMesh is not only exact, but also very efficient. The use of efficient data

structures associated with parallel programming made PinMesh very fast. Ac-

cording to our experiments, PinMesh was up to 27 times faster than the RCT

algorithm (that was, to the best of our knowledge, the fastest 3D point location

algorithm available).

CHAPTER 6

3D mesh intersection

This chapter presents 3D-EPUG-Overlay, our algorithm for exactly inter-

secting 3D meshes. Its input is composed of two triangular meshes M0 and M1. Each

mesh contains a set of 3D triangles as described in Section 2.2.2 and represents a

set of polyhedra. The output is another mesh where each represented polyhedron

is the intersection of a polyhedron from M0 with another one from M1.

We incorporated in 3D-EPUG-Overlay all the optimization techniques

we previously tested on EPUG-Overlay and on PinMesh. Furthermore, two

techniques (that have not been applied to 3D-EPUG-Overlay and to EPUG-

Overlay yet) were employed to accelerate 3D-EPUG-Overlay: arithmetic filters

to accelerate the exact computation and a better parallelization of the uniform grid

creation.

Portions of this chapter previously appeared as:

S. V. G. Magalhães, “An efficient algorithm for computing the exact overlay of
triangulations”, in Proc. 2nd ACM SIGSPATIAL PhD Workshop, SIGSPA-
TIAL PhD’15. New York, NY, USA: ACM, 2015, pp. 3:13:4.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, and W. Li,“Pinmesh
- Fast and exact 3D point location queries using a uniform grid”, Comput. &
Graph., vol. 58, pp. 1 - 11, 2016, Shape Modeling International 2016.

S. V. G. Magalhães, M. V. A. Andrade, W. R. Franklin, M. G. Gruppi and
W. Li, “Exact intersection of 3D geometric models”, in Proc. XVII Brazilian
Symp. Geoinformatics, GeoInfo’16, 2016, pp. 44 - 55.

S. V. G. Magalhães, W. R. Franklin, and M. V. A. Andrade, “Fast exact par-
allel 3D mesh intersection algorithm using only orientation predicates”, Proc.
17th ACM SIGSPATIAL Int. Conf. Advances in Geographic Information
Systems, SIGSPATIAL’17. New York, NY, USA:ACM, 2017.

82

83

6.1 Data representation

The program input is a pair of triangular meshes in 3D (E3) as described

in Section 2.2.2 (both meshes must be watertight and free from self-intersections).

The polyhedra may have complex topologies, with holes and disjoint components.

The two meshes have a nonempty intersection (else the output is trivial) and often

are identical (i.e., represent the same polyhedra). Indeed, intersecting two identical

meshes is an excellent stress test, because of all the degeneracies.

Two types of vertices are processed by the algorithm: (1) input vertices occur-

ring in the input meshes, and (2) intersection vertices resulting from intersections

between an edge of one mesh and a triangle of the other.

Each input vertex stores two ids: the vertex id and the id of the mesh to where

it belongs (since meshes are processed in pairs, we assume there are two possible

mesh ids: 0 or 1). Input vertices in the same mesh sharing the same coordinates are

considered identical (i.e., they share the same ids).

Similarly to the vertices, there are two types of triangles: input triangles and

triangles from retesselation. The first one contains only input vertices while the

second one may contain vertices generated from intersections, which are created

during the retesselation of input triangles.

A vertex from intersection is represented by the edge (composed of two input

vertices) and the input triangle whose intersection generated it. Even though it is

possible to compute the coordinates of these vertices using the information about

how they were generated, we have an additional data structure that caches these

coordinates to avoid recomputation.

As will be mentioned later, distinguishing input vertices from vertices gener-

ated from intersections is important for the implementation of the symbolic pertur-

bation.

6.1.1 The symbolic perturbation

Edelsbrunner [4] uses the convex hull problem as example of application of

Simulation of Simplicity. In the 2D version of the problem, the j-th coordinate of

the i-th vertex was perturbed by translating it by ε2
2i−j

. As shown by the authors,

84

even if all the points were originally coincident, after the perturbation no three

points would be collinear, which completely eliminates degeneracies for the convex

hull problem.

In contrast, for the mesh intersection problem, we assume that the individual

meshes are not degenerate, and coincidences happen only when they are processed

together. For example, two triangles from the same mesh only intersect at common

edges or vertices but the interior of a triangle from one mesh can intersect a co-planar

triangle from the other mesh, which represents a special case of the intersection

algorithm.

Allowing an individual mesh M to be degenerate is challenging because it is

hard to develop a perturbation scheme that ensures M will be consistent after the

perturbation. For example, M could contain two triangles t1 and t2 where all six

vertices coincide. Even though a perturbation scheme such as the one employed by

Edelsbrunner [4] for the 3D orientation would ensure no two vertices will coincide

anymore, there is no guarantee that the information about the tetrahedra on each

side of the triangles will be consistent after the perturbation.

For the rest of this chapter the following notation will be employed. The two

input meshes will be represented by M0 and M1 (or simply by mesh 0 or mesh 1)

and the corresponding perturbed meshes will be, respectively, M0ε and M1ε. All the

perturbed geometric objects (vertices, edges and triangles) will be followed by an ε

subscript (for example, vertex vε is the perturbed version of vertex v).

We propose the following perturbation scheme for the 3D mesh intersection

problem:

1. Do not modify mesh 0.

2. Translate each vertex of mesh 1 equally by the vector (ε, ε2, ε3), i.e., vjε =

(vjx + ε, vjy + ε2, vjz + ε3).

Now, no vertex from M0ε can coincide with any vertex from M1ε (since vertices

from M0ε do not have infinitesimal components).

The rest of this section will present lemmas describing properties of the per-

turbed meshes. As will be shown later, a consequence of these lemmas is that there

85

will be no special case during the intersection of M0ε with M1ε.

Lemma 6.1.1. If aε is a vertex from mesh i (i is 0 or 1) and tε is a triangle from

mesh 1− i, then aε and tε are not coplanar.

Proof. Since aε is in mesh i and tε is in mesh (1 − i) (for i = 0 or 1), then, aε =

(ax, ay, ay) + (iε, iε2, iε3) and each vertex of tε is represented by tjε = (tjx, tjy, tjz) +

((1− i)ε, (1− i)ε2, (1− i)ε3) (j = 0...2).

Let t0ε = (t0x+ (1− i)ε, t0y + (1− i)ε2, t0z + (1− i)ε3), e = (ex, ey, ez) = t1ε− t0ε
and f = (fx, fy, fz) = t2ε − t0ε. Observe that, because of the subtraction, neither e

nor f do not contain infinitesimal terms.

The plane containing t can be represented by the parametric equation:

t0ε + se+ uf = X (6.1)

where s and u are parameters.

Suppose, that aε and tε were coplanar. Then, there would exist two scalars s

and u such that:

t0ε + se+ uf = (ax + iε, ay + iε2, ay + iε3) (6.2)

Since all the coordinates of f and e are finite numbers and either t0ε or aε contain

infinitesimal terms (since they are from different meshes and only one of the meshes

is translated by infinitesimals), then s and u are ε-polynomials. Let s = s0 + sε and

u = u0 + uε, where s0 and u0 represent, respectively, the rational monomials (i.e.,

the ε-monomials of degree 0) of s and u. Thus, sε and uε represent the higher order

ε-terms of s and u. Then:

t0 + (1− i)(ε, ε2, ε3) + (s0 + sε)e+ (u0 + uε)f = a+ (i)(ε, ε2, ε3) (6.3)

Let r = a− t0 − s0e− u0f , then:

sεe+ uεf = (2i− 1)(ε, ε2, ε3) + r (6.4)

86

Since r, e and f contain only rational coordinates and sε and uε are ε-polynomials

where all the monomials contain degree larger than 0, then r = (0, 0, 0) and Equa-

tion 6.4 can be rewritten as:

sε(ex, ey, ez) + uε(fx, fy, fz) = (2i− 1)(ε, ε2, ε3) (6.5)

We have to show that Equation 6.5 cannot be satisfied, which will make the

assumption that aε and tε are coplanar contradictory.

If either sε or uε are 0, then it is clear that Equation 6.5 cannot be satisfied

since the product of an ε-polynomial and a rational vector cannot be a vector where

each term has a different degree.

Furthermore, no term of e or f can be 0. For example, if ex = 0, then

uε = ε
fx

(fx and ex cannot simultaneously be 0 since sεex + uεfx = (2i − 1)ε) and

sεey + ε fy
fx

= (2i − 1)ε2. Since ey and fy
fx

are rational numbers, then the degree of

sε is 2. Because the degree of uε is 1, the degree of sε is 2 and the right side of

Equation 6.5 has an ε-coefficient of degree 3, then the equation cannot be satisfied.

Now, we have to show that Equation 6.5 cannot be satisfied when sε 6= 0,

uε 6= 0 and no term of e or f is 0.

From Equation 6.5, it follows that

uε =
(2i− 1)ε− sεex

fx
=

(2i− 1)ε2 − sεey
fy

(6.6)

uε =
(2i− 1)ε2 − sεey

fy
=

(2i− 1)ε3 − sεez
fz

(6.7)

Since the coordinates of e and f are rational numbers, Equation 6.6 above implies

that sε is a polynomial of degree 2 while Equation 6.7 implies that sε has degree 3,

which is a contradiction.

Therefore, the assumption that a vertex aε from mesh i (for i = 0 or 1) and a

triangle tε from mesh (1− i) can be coplanar is an absurdity.

87

Lemma 6.1.2. Given an edge e1ε = aεbε (aε 6= bε), i.e., the endpoints are aε and

bε, from mesh i and another edge e2ε = cεdε (cε 6= dε) from mesh 1− i such that e1ε

and e2ε are not parallel, then e1ε and e2ε do not intersect.

Proof. W.l.o.g., assume e1ε is in mesh 0. Then, aε = (ax, ay, az), bε = (bx, by, bz),

cε = (cx + ε, cy + ε2, cz + ε3) and dε = (dx + ε, dy + ε2, dz + ε3).

A necessary condition for their intersection of e1ε and e2ε is the coplanarity of

aε, bε, cε and dε.

Let Π be the plane containing aε, bε and cε, a point (x, y, z) will be on Π iff:∣∣∣∣∣∣∣∣∣∣∣

ax ay az 1

bx by bz 1

cx + ε cy + ε2 cz + ε3 1

x y z 1

∣∣∣∣∣∣∣∣∣∣∣
= 0 (6.8)

Assuming dε is on Π, if (x, y, z) is replaced in the determinant with dε, the

resulting equation obtained after the determinant is expanded will have the following

format:

D0 +D1ε+D2ε
2 +D3ε

3 = 0 (6.9)

, where:

D0 = bz(cydx − cxdy) + az(cxdy − cydx + by(dx − cx) + bx(cy − dy))+

by(cxdz − czdx) + bx(czdy − cydz) + ax(cydz − czdy + bz(dy − cy)+

by(cz − dz)) + ay(bz(cx − dx) + czdx − cxdz + bx(dz − cz)),

D1 = (ay − by)(cz − dz)− (az − bz)(cy − dy),

D2 = (az − bz)(cx − dx)− (ax − bx)(cz − dz),

D3 = (ax − bx)(cy − dy)− (ay − by)(cx − dx)

(6.10)

88

Equation 6.9 has the following four solutions:{
dy =

(ax − bx)cy − (ay − by)(cx − dx)
ax − bx

, dz =
(ax − bx)cz − (az − bz)(cx − dx)

ax − bx

}
(6.11){

bx = ax, dx = cx, dz =
(ay − by)cz − (az − bz)(cy − dy)

ay − by

}
(6.12)

{bx = ax, by = ay, dx = cx, dy = cy} (6.13)

{bx = ax, by = ay, bz = az} (6.14)

However, the line segments e1ε = aεbε and e1ε = cεdε satisfying any of these

four solutions are either parallel or have coincident endpoints, what contradicts the

original assumptions of the lemma.

Lemma 6.1.3. Given two distinct vertices aε and bε from mesh i and another vertex

cε from mesh 1− i, then aε, bε and cε are not collinear.

Proof. Assume the three distinct vertices aε = (ax + iε, ay + iε2, az + iε3), bε =

(bx + iε, by + iε2, bz + iε3) and cε = (cx + (1− i)ε, cy + (1− i)ε2, cz + (1− i)ε3) were

collinear. Then, (bε − aε)× (cε − aε) = (0, 0, 0).

If aε and bε are in mesh 0 (and, consequently, cε is in mesh 1), then (bε− aε)×
(cε − aε) will be equal to the following vector:

(ay(bz − cz) + az(cy − by)− bzcy + bycz) + (az − bz)ε2 + (by − ay)ε3

(az(bx − cx) + ax(cz − bz)− bxcz + bzcx) + (bz − az)ε+ (ax − bx)ε3

(ax(by − cy) + ay(cx − bx)− bycx + bxcy) + (ay − by)ε+ (bx − ax)ε2

 (6.15)

Similarly, if aε and bε are in mesh 1 (and, consequently, cε is in mesh 0), then

(bε − aε)× (cε − aε) will be equal to the following vector:

(ay(bz − cz) + az(cy − by)− bzcy + bycz) + (bz − az)ε2 + (ay − by)ε3

(az(bx − cx) + ax(cz − bz)− bxcz + bzcx) + (az − bz)ε+ (bx − ax)ε3

(ax(by − cy) + ay(cx − bx)− bycx + bxcy) + (by − ay)ε+ (ax − bx)ε2

 (6.16)

89

The vectors 6.15 and 6.16 will be equal to ~0 when all the epsilon-coefficient

vanishes. A necessary condition for having the epsilon-coefficients equal to 0 is that

a = b (and, consequently, aε = bε since both points are in the same mesh), what

contradicts the assumption of this lemma that aε and bε are distinct points.

Therefore, a triple of vertex containing at least one vertex from each perturbed

mesh cannot be collinear.

Corollary 6.1.4. An edge eε from mesh i cannot intersect a parallel edge fε from

mesh 1− i.

Proof. A necessary condition for the intersection is that one of the endpoints of eε

are collinear w.r.t. fε, what contradicts Lemma 6.1.3.

Lemma 6.1.5. If an edge eε from a mesh i intersects a triangle tε from mesh (1−i),

then this intersection happens in the interior of tε.

Proof. If eε and tε intersect on an edge etε of tε, then either eε and an etε are collinear

or they are coplanar and nonparallel. Because of Corollary 6.1.4, if they are parallel

then they cannot intersect. Furthermore, if eε and etε are not parallel, because of

Lemma 6.1.2 they cannot intersect.

Lemma 6.1.6. If eε is an edge from mesh i and tε is a triangle from mesh 1 − i,
then eε and tε are not coplanar.

Proof. If eε and tε were coplanar, then tε and one of the vertices vε of eε would be

coplanar, which contradicts Lemma 6.1.1.

Lemma 6.1.7. If tiε and t(1−i)ε are triangles belonging to, respectively, meshes i

and 1− i, then tiε and t(1−i)ε are not co-planar.

Proof. If tiε and t(1−i)ε were coplanar, then tiε and an edge of t(1−i)ε would be copla-

nar, which contradicts Lemma 6.1.6.

While these lemmas could be still valid for some other perturbation schemes,

they are not valid for all perturbations. For example, if mesh M1 was translated

by (ε, ε, ε) instead of (ε, ε2, ε3), then the following three points would be collinear:

90

aε = (0, 0, 0), bε = (1, 1, 1) and cε = (0 + ε, 0 + ε, 0 + ε) (where aε and bε are in mesh

M0ε and cε is in mesh M1ε).

When the mesh intersection algorithm is described later, we will assume that

it will process meshes perturbed as described in this section. Thus, the meshes will

have all the properties mentioned in these lemmas.

6.2 Implementing intersection with simple geometric pred-

icates

To simplify the implementation of the symbolic perturbation, we developed

two versions of each geometric function employed in the mesh intersection algo-

rithm. The first one focused on efficiency, and was implemented based on efficient

algorithms available in the literature. The second one focused on simplicity, and

was implemented using as few geometric predicates as possible.

The idea is that, during the computation, the first version of each function is

called. If a special case is detected, then the second version is called. In order to

make sure the special cases are properly handled we only need to implement the

perturbation scheme on these predicates.

As will be seen, the second version of most functions was implemented with

only orientation predicates. The only exceptions are the ones related to indexing

the data; they are necessary only for performance, not for correct execution.

The main advantage of having the orientation predicates as a base for other

functions is the simplicity of the implementation. It is usually much easier to imple-

ment symbolic perturbation with orientation predicates than with more complicated

functions, such as using barycentric coordinates to detect if a point is in a trian-

gle. Furthermore, the number of predicates that have to be adapted to handle the

perturbation is smaller. Indeed, once the lower level predicates are adapted, then

all the higher level functions will be automatically consistent with the perturbation

scheme.

Since the functions we employed are traditional computational geometry func-

tions (such as point in triangle tests or triangle-triangle intersection detection),

details about the first version of the geometric functions will not be presented. Fur-

91

thermore, as mentioned before, the first versions of the functions are used only for

speed. Our algorithm can be correctly implemented without them.

6.2.1 Orientation predicates

From Edelsbrunner [4], the orientation of a sequence of d + 1 points in Ed is

“either negative or positive - unless the d + 1 points lie on a common hyperplane,

in which it is undefined”. The orientation is

orientation(p0, p1, .., pd) = sgn

∣∣∣∣∣∣∣∣∣∣∣

p00 p01 ... p0(d−1) 1

p10 p11 ... p1(d−1) 1

...

pd0 pd1 ... pd(d−1) 1

∣∣∣∣∣∣∣∣∣∣∣

 (6.17)

where pij is the j-th coordinate of point i and sgn is the sign function that returns

−1 if the argument is negative, 1 if it is positive and 0 if it is 0. Thus, the number

0 will indicate a coincidence in the orientation predicate.

As will be shown later, the predicates employed by the 3D mesh intersection

algorithm will be the 1D, 2D and 3D orientation. In 1D, orientation(p0, p1) =

sign(p00 − p10) will be positive if p0 > p1 and negative if p0 < p1, i.e., if p1

is on the ”left” side of p0. In 2D, the orientation(p0, p1, p2) will be positive iff

p2 is on the left side of the directed line passing from p0 to p1. Finally, the 3D

orientation(p0, p1, p2, p3) is positive iff p3 is on the positive side of an oriented tri-

angle p0p1p2.

These predicates will be adapted to handle the perturbed points, remaining

consistent with the perturbation. For example, because of Lemma 6.1.1, the pred-

icate orientation(aε, bε, cε, dε) will never be 0 if aεbεcε is a triangle from one mesh

and dε is a vertex of the other mesh.

Not all coincidences are eliminated by the perturbations. For example, be-

cause all vertices of the same mesh are translated by the same infinitesimals, then

orientation(aε, bε, cε, dε) may be 0 if all the points belong to the same input mesh.

However, as will be shown later, in the few functions where these coincidences may

92

happen, the behavior of the algorithm is well defined and the coincidence does not

propagate to other steps of the algorithm.

6.3 The mesh intersection algorithm

The computation is performed using only local information stored in the in-

dividual triangles. The algorithm has 3 basic steps and a uniform grid is employed

to accelerate the computation:

1. First, the intersections between triangles of one mesh and triangles of the other

mesh are detected and the new edges generated by the intersection of each pair

of triangles are computed.

2. Then, a new mesh containing the triangles from the two original meshes is

created and the original triangles are split (retesselated) at the intersection

edges. I.e., if a pair of triangles in this resulting mesh intersect, then this

intersection will happen necessarily on a common edge or vertex.

3. Finally, a classification step is performed: triangles that shouldn’t be in the

output are removed and the adjacency information stored in each triangle is

updated to ensure that the new mesh will consistently represent the intersec-

tion of the two original ones.

6.3.1 Uniform grid

Similarly to PinMesh, a two-level 3D uniform (as described in Section 4) was

employed in 3D-EPUG-Overlay. The grid is created at the beginning of 3D-

EPUG-Overlay and employed to accelerate two important steps of the algorithm:

the detection of intersections between pairs of triangles from the input meshes and

the point location algorithm employed in the triangle classification step.

The uniform grid operations are the only ones not implemented using orien-

tation predicates. However, this will not make the implementation of the symbolic

perturbations harder for two reasons.

First, the uniform grid is used only for speed; the algorithm could be imple-

mented without indexing the data, but would be much slower.

93

Second, the only geometric operation related to the uniform grid is the opera-

tion that, given a vertex, returns the coordinates (indexes) of the grid cell containing

that vertex. If we assume the lower extreme of the bounding-box of the data is at

coordinate (0, 0, 0) (otherwise, translate the data), the indexes of the grid cell con-

taining a vertex v are obtained by dividing the corresponding coordinates of v by

the size of the cells and rounding the result down.

Since the indexes are always rounded down, non-negative infinitesimals added

to the coordinates of the cells will not change the result of these computations and,

thus, no special treatment need to be performed to locate a perturbed vertex.

6.3.2 Intersecting triangles

For speed, the uniform grid is employed to cull the number of pairs of triangles

that need to be tested for intersection. For each uniform grid cell, the intersections

between pairs of triangles from the two triangulations are computed. Triangles

that do not occur in the same cell are not tested. Therefore, although there is a

quadratic number of triangle pairs, only a much smaller number, often linear, is

tested for intersection.

More specifically, a two-level 3D uniform grid is employed to accelerate the

computation. That is, the grid will be created by inserting in its cells triangles from

both meshes M0ε and M1ε. Then, for each grid cell c, the pairs of triangles from both

meshes in c are intersected. If the resolution of the uniform grid is chosen such that

the expected number of triangles per grid cell is a constant K, then it is expected

that each triangle will be tested for intersection with the other K triangles in its grid

cell. Thus, the expected total number of intersection tests performed will probably

be linear in the size of the input maps. The exception would be if there were a

superlinear number of triangle pairs very close to each other. This does not occur

in real datasets, which satisfy a form of Lipschitz condition bounding the maximum

density of elements. Also, as mentioned before, experiments with uniform grids in

various applications show excellent performance on real data.

Since the cells do not influence each other, the process of intersecting the

triangles can be trivially parallelized: the grid cells can be processed in parallel by

94

different threads using a parallel programming API such as OpenMP.

6.3.2.1 Implementation with orientation predicates

Let t0 and t1 be two triangles from, respectively, meshes M0 and M1. Assume

t0ε and t1ε intersect and, w.l.o.g, let eε be an edge of one of the triangles tiε that

intersects t(1−i)ε. Since, because of Lemma 6.1.1, no vertex of eε can be on the plane

of t(1−i)ε, it is clear that the intersection will necessarily happen in the interior of eε.

Furthermore, eε will intersect the interior of t(1−i)ε (Lemma 6.1.5)

Since t0ε and t1ε cannot be co-planar (Lemma 6.1.7), input triangles are non-

degenerate and edges intersect only the interior of triangles, the intersection of

t0ε and t1ε will always be an edge uεvε (with uε 6= vε), where uε and vε are vertices

generated from the intersection of the interior of one of the triangles and the interior

of one edge of the other triangle.

Vertices uε and vε can be computed by testing the intersection of the six com-

binations of edges from one triangle against the other triangle. Since intersections

happen only between the interior of an edge and the interior of a triangle, the num-

ber of intersections detected will be either zero (when the triangles do not intersect)

or two (when they do intersect).

As mentioned by [85] and illustrated in Figure 6.1, the intersection between

an edge eε and a triangle can be detected by computing five 3D orientations. For

example, if both vertices of eε are on the same side of the triangle, then they do not

intersect. Therefore, the intersection computation can be implemented employing

only 3D orientation predicates.

Since intersections are computed only between input triangles, in this step the

only geometric predicate that is necessary is the 3D orientation of input vertices.

The vertices from intersection are created in this step of the algorithm, and since

their coordinates are stored implicitly as the pair (edge, triangle) that generated

them, no further computation is necessary.

Furthermore, since there will be no coincidence between edges of one perturbed

mesh and triangles of the other perturbed mesh, the 3D orientation predicates will

never return 0.

95

Figure 6.1: Detecting the intersection between an edge and a triangle using 5
orientation predicates - The interior of edge ED will intersect the interior of
triangle ABC iff E and D are on opposing sides of the plane of ABC and the
sideness of D w.r.t. the triangles EBC, ABE and AEC are the same.

6.3.3 Retesselating the triangles

After computing the intersections between each pair of triangles, the next

step is to split the triangles where they intersect, so that after this process all the

intersections will happen only on common vertices or edges. When a triangle is

split, the labels of its two bounding objects will be copied to the new triangles.

Figure 6.2 presents an example of intersection computation. In Figure 6.2(a),

we have two meshes representing two tetrahedra with one region in each one: the

brown mesh (mesh M0) bounds the exterior region and region 1 while the yellow

mesh (mesh M1) bounds the exterior region and region 2.

After the intersections between the triangles are computed, the triangles from

one mesh that intersect triangles from the other one are split into several triangles,

creating meshes M ′
0 and M ′

1 (for clarity, these two meshes are displayed separately in

Figures 6.2(b) and (c), respectively). The only triangle from mesh M0 that intersects

mesh M1 is the triangle BCD. Since BCD intersects three triangles from M1, it

was split into seven triangles when M ′
0 was created (triangles LMN , CLN , CBN ,

BDN , DMN , DLM and CDL). Similarly, each of the three triangles from M1

intersecting M0 was split into three smaller triangles.

Before retesselating each triangle tε, the original edges of tε that intersect other

triangles are split at the intersection points. This process is performed by sorting

96

(a) (b)

(c) (d)

Figure 6.2: Computing the intersection of two tetrahedra - (a): input meshes,
(b) and (c): retesselated meshes, (d): classifying the triangles to generate the
output.

the intersection points along the edge based on their distance from one of the end

vertices of the edge. Then, a planar graph G is created to represent the original non-

intersecting edges of tε, the intersecting edges of tε split at the intersection points,

and the edges generated by intersecting tε with the other mesh. Since this process

is performed on the plane, tε is first projected onto a plane (x = 0, y = 0 or z = 0)

that it is not nearly perpendicular to.

Figure 6.3 (a) illustrates this process: triangle abc (that represents a projection

of one of the input triangles onto a plane) intersects three other triangles (generating

the edges from intersection xy, yz and zw). To split the edge ca (creating edges cw,

97

a b

c

x

y

z

w

(a)

a b

c

x

y

z

w

(b)

Figure 6.3: Retesselating a triangle that intersects other triangles - (a): trian-
gle abc intersects three other triangles (the edges from the intersection are in
red), (b) the edges are split at the intersection points, duplicated and a search
procedure is employed to extract the faces generated from the retesselation.

wx and xa) the vertices w and x are sorted along ca based on their distance to c.

The retesselation of tε is performed using two strategies. First, if the graph

G contains only one connected component, then the algorithm presented in [86] is

employed to extract the faces of G. This algorithm is based on the idea of replacing

each edge with two directed edges (with opposing directions), sorting the edges

around each vertex by their polar angles and, then extracting the wedges around

each vertex. After that, a search procedure is employed to connect the wedges and

generate the list of the faces in G.

Figure 6.3 (b) illustrates this process: after all edges are duplicated, for each

vertex v in the graph, the edges starting at v are sorted based on their polar angles.

For example, the sorted list of directed edges starting at y is: (yb, yz, yx, ya). Then,

the wedges around each vertex are extracted by traversing consecutive items from

the previously generated lists: the wedges around y are: (byz, zyx, xya, ayb). Finally,

all the wedges from the graph are sorted and a search procedure creates the faces.

For example, wedges zyx, yxw, xwz, wzy generates the face zyxwz.

The time complexity of this polygon extraction is θ(m logm), where m is the

number of edges in G. In the set of faces from G, each face is triangulated using the

ear-clipping algorithm[87], which has a time complexity quadratic in the number

of vertices in the face (the only face in the triangle in Figure 6.3 that needs to be

triangulated is the face zyxwz, which will be split into two triangles). That time

98

is acceptable because the expected size of a face is small and constant. If it were

a problem, more efficient polygon triangulation algorithms exist, using as little as

linear time in the face size, at the cost of considerable complexity.

a b

c

x

y

z

w

(a)

a b

c

x

y

zw

(b)

Figure 6.4: Retesselating a triangle where the corresponding graph is discon-
nected - (a): the original edges from abc and the edges generated by the inter-
section of abc with other triangles are disconnected, (b) after greedily trying to
insert all the edges (generated by each pair of vertices) that do not intersect
the interior of a previously inserted edges, abc is completely retriangulated.

Second, if G contains multiple connected components, a trivial algorithm is

employed to triangulate G: the resulting set of edges is initialized with the edges of

G and for each pair of vertices (u, v) from G, the edge uv is inserted into the solution

iff it does not intersect previously inserted edges (except at the endpoints). This

process is illustrated in Figure 6.4. A trivial implementation has θ(n4) complexity,

where n is the number of vertices in G. The reasons why we decided to employ this

simpler algorithm are two: the graphs should be relatively small in practice and, ac-

cording to preliminary experiments, disconnected graphs happen rarely if compared

to connected ones. Again, this decision was taken for simplicity and if necessary

this algorithm can be replaced with a faster one for constrained triangulation.

6.3.3.1 Implementation with orientation predicates

Assume tε is a triangle from mesh Miε and T is the set of triangles from mesh

M(1−i)ε intersecting tε. We will show how to retesselate tε employing only orientation

predicates.

As mentioned before, during the retesselation the vertices are projected onto

a plane (x = 0, y = 0 or z = 0) with which tε is non-perpendicular. For simplicity,

99

unless otherwise noted all orientation operations will be performed using the pro-

jected vertices. For example, if the 2D orientation is applied to three 3D vertices,

this operation will assume the three vertices are projected onto one of the planes

x = 0, y = 0 or z = 0.

Splitting edges at intersection points Let eε = aεbε be an edge of tε. In this

step, the vertices generated from the intersection of eε with triangles from M(1−i)ε are

sorted based on their distance to aε. The required geometric predicate to perform

this operation is a comparison predicate that verifies if a vertex is closer to aε than

another vertex is.

Let v1ε and v2ε be two vertices generated from the intersection of eε, with

respectively, t′1ε and t′2ε of mesh M(1−i)ε. Since both v1ε and v2ε are on eε, there

would be a coincidence on the distance of these points to aε iff v1ε and v2ε coincided.

But, they cannot coincide because otherwise the interior of t′1ε and t′2ε would intersect

(which cannot happen since t′1ε and t′2ε are from the same mesh and self-intersecting

meshes are considered to be invalid input).

Figure 6.5 illustrates this. Since both aε and v1ε are on the positive side of

t′2ε = dεeεfε, then v1ε is closer to aε than v2ε is.

Figure 6.5: Sorting the vertices along an edge - A 3D orientation is employed
to determine which vertex generated by an intersection (v1ε or v2ε) is closer to
an input vertex (aε).

The predicate to decide which vertex is closer to aε can be easily implemented

by applying a 3D orientation to the non-projected (3D) vertices: v1ε is closer to aε

100

than v2ε is iff v1ε and aε are on the same side of t′2ε. Since, as shown above, no

coincidence can happen the orientation predicate will never return 0.

Face extraction The only geometric predicate required by the polygon extraction

algorithm is the one that sorts pairs of edges by their polar angle around a shared

vertex. Given two edges e1ε = uεvε and e2ε = uεwε, if vε and wε are in the same

quadrant (assuming that uε is the origin) then the polar angle of e1ε is smaller than

the polar angle of e2ε iff the 2D orientation of uε, vε and wε is positive. If they are

in different quadrants, then comparing their polar angle is trivial.

Since vertices on the planar graph may be either input vertices or vertices

from the intersection (the planar graph contains the 3 input vertices of the triangle

tε being retesselated and the vertices generated by the intersection of tε with other

triangles), the 2D orientation predicate has to handle all eight combinations of these

two types of vertices.

To determine in which quadrant a vertex vε is considering wε is the origin,

it is necessary to evaluate the sign of each coordinate of the vector wεvε, which

is equivalent to computing the 1D orientation of wε and vε for the corresponding

coordinate.

During the retesselation of tε ∈ Miε the edges e1ε = uεvε or e2ε = uεwε can be

either one of the original edges of tε (possibly split) or one edge generated by the

intersection of tε with a triangle t′ε from M(1−i)ε.

If, say, e1ε is one of the original edges of tε, then its polar angle cannot be

equal to e2ε’s polar angle otherwise tε would be degenerate (input meshes with

degenerate triangles are invalid), or e1ε and t′ε would be co-planar (this contradicts

Lemma 6.1.6). The first and second situations would happen if, respectively, e2ε was

an edge of tε or an edge generated from an intersection.

Now, suppose e1ε and e2ε are edges generated from intersections. Since both

edges are on tε, they are generated from the intersection of tε with other triangles t′1ε

and t′2ε of mesh M(1−i)ε. Since the interior of edges generated from intersections is

always in the interior of the triangles that generated them, e1ε and e2ε cannot have

the same polar angle otherwise the intersection of these two edges would have a

101

common interior point and, thus, t′1ε and t′2ε would intersect in their interior (which

cannot happen since both triangles are in the same mesh). Therefore, there will be

no coincidence in the predicate to compare pairs of edges by their polar angle when

the perturbed input is processed.

An attentive reader may notice that, even though there will be no coincidence

in the sorting, the symbolic perturbation may modify the result of the comparison

predicate for a non-degenerate input (which violates one of the three requirements

of a SoS perturbation). If before the perturbation an edge has polar angle exactly

0, then after the perturbation this angle can continue to be 0, be greater than 0

or slightly smaller than 2π, which may modify the order of the edges. However,

this modification does not affect the face extraction algorithm since the objective of

sorting the edges is to extract the wedges and the algorithm works properly as long

as the list is sorted in a cyclic order.

Ear-clipping The ear-clipping algorithm employs only two geometric predicates

[87]. The first one verifies if a vertex is an ear (convex) while the second one verifies

if a vertex is inside (or on the boundary) of a triangle.

Again, these two operations can be trivially performed using 2D orientations.

Given two oriented edges uεvε and vεwε of a face, vε is convex iff orientation(uε, vε, wε)

is positive.

Also, given a triangle tε = aεbεcε, we can determine if vε is inside tε by evalu-

ating the orientation of vε w.r.t. the edges aεbε, bεcε and cεaε (vε is inside tε iff all

three orientations are equal).

During the ear-clipping some coincidences may happen even in the perturbed

input. Since all vertices of the same mesh are translated using the same perturbation,

three vertices from the intersection uε, vε and wε may be collinear (they can be

generated, for example, from the intersection of two coplanar triangles from one

mesh with a triangle from the other mesh). As a consequence, the 2D orientations

employed to verify if a vertex is convex or if a vertex is in a triangle may return 0.

Even though these coincidences may happen, they do not affect the ear-

clipping algorithm since it does not need to perform any kind of special treatment

102

when they happen: if three consecutive vertices uε, vε and wε are collinear then vε is

not considered to be convex (ear). Also, the algorithm assumes the point in triangle

algorithm always returns true if a vertex is exactly on the boundary of the triangle.

One could argue that even these simple coincidences should be completely

eliminated. However, we believe they do not negatively affect the algorithm since

they happen only in a lower level predicate, and do not propagate to higher level

functions (even though the orientation of three vertices may be 0, the predicate

that detects if a vertex is convex will never return 0). Furthermore, they cannot be

completely removed without violating some mathematical properties: for example,

the point of intersection of an edge with a triangle will always be collinear with the

endpoints of the edge.

Triangulating disconnected subdivisions Disconnected subdivisions are tri-

angulated using only one kind of geometric predicate, which verifies if any two

edges e1ε = uεvε and e2ε = kεwε intersect other than at their endpoints.

Since all the vertices have unique coordinates, two edges will intersect at their

endpoints iff they share a vertex. 2D orientation predicates can be employed to

detect if e1ε and e2ε intersect at their interior. The only coincidence that cannot

be straightforwardly detected using the signs of the orientations happens when e1ε

and e2ε are collinear (which, as mentioned above in the Section on ear-clipping, can

occur even in the perturbed dataset).

If e1ε and e2ε are collinear, an intersection in the interior of these edges can

be detected by projecting them onto one of the Cartesian axes and verifying if the

intervals defined by this projection intersect at their interior. A 1D orientation

predicate can be employed to perform this verification.

6.3.4 Classifying triangles

As illustrated in Figure 6.2, after the intersections are detected and all the

triangles that intersect other triangles are split at the intersection points, two new

meshes M ′
0ε and M ′

1ε are created such that each new mesh M ′
iε will have the following

two kinds of triangles:

103

• Triangles from the original mesh: if triangle tε from Miε did not intersect any

triangle from the other mesh (or if this intersection was located on a vertex or

edge), then tε will be in M ′
iε.

• New triangles: if triangle tε from Miε intersects one or more triangles from the

other mesh (and this intersection is not located on a common vertex or edge),

then tε will be partitioned into smaller triangles that will be inserted into M ′
iε.

It is clear that each mesh M ′
iε will exactly represent the same regions that Miε

represents. In fact, if no triangle from Miε intersects the mesh M(1−i)ε, then M ′
iε will

be equal to Miε. Otherwise, each triangle tε from Miε that intersects M(1−i)ε will be

split in n triangles t0ε, t1ε, ..., t(n−1)ε and these new triangles will be inserted into M ′
iε

instead of tε. Since the union of the triangles t0ε, t1ε, ..., t(n−1)ε is tε and these split

triangles contain the same attributes as tε, then M ′
iε represents the same regions Miε

represents.

Thus, computing the intersection between M ′
iε and M ′

(1−i)ε is equivalent to

computing the intersection of Miε with M(1−i)ε. However, M ′
iε and M ′

(1−i)ε are easier

to process: since the triangles from one mesh intersect with the triangles of the

other one only in common vertices or edges, then each triangle tε from M ′
iε will be

completely inside a region from M ′
(1−i)ε. Suppose a triangle tε from M ′

iε bounds

regions Ra and Rb and is completely inside region Rc from mesh M ′
(1−i)ε. When M ′

iε

is intersected with M ′
(1−i)ε, tε will be in the resulting mesh and it will bound regions

Ra ∩Rc and Rb ∩Rc.

Therefore, the process of classifying the triangles to create the output mesh

consists in processing each triangle tε from the meshes M ′
iε (i = 0, 1), determining in

what region of M ′
(1−i)ε tε is and, then, updating the information about the regions

tε bounds such that we will have a consistent mesh.

If a triangle tε is in the exterior of the other mesh, in the resulting mesh the

two regions tε bounds will be the exterior region. To maintain the mesh consistency,

the triangles bounding only the exterior region can be ignored and not stored in the

output mesh.

Figure 6.2(d) illustrates the classification step. All the intersections happen at

common edges, and the only triangle from M ′
0 that is completely inside region 2 (of

104

M ′
1) is triangle LMN . Since LMN bounds region 1 and the exterior region in M ′

0,

in the resulting intersection LMN will bound region 1 ∩ 2 and the exterior region.

All the other triangles from M ′
0 are in the exterior region of M ′

1 and, thus, they will

only bound the exterior region in the resulting intersection (therefore, they will be

ignored when the output mesh is computed). Similarly, in M ′
0 the only triangles

that are inside region 1 of M ′
0 are triangles EMN , ELM and ELN . These three

triangles will also bound the exterior region and region 1 ∩ 2 in the resulting mesh.

The process of locating triangles of one mesh in the other one can be performed

using a point location and a flood-fill algorithm. Suppose triangles of mesh M ′
iε

are being located. If two adjacent triangles tε and t′ε share an edge that was not

generated by an intersection with M ′
(1−i)ε, then these triangles are in the same region

of M ′
(1−i)ε. If tε and t′ε share an edge that was generated by an intersection with

triangle t′′ε of mesh M ′
(1−i)ε, then tε and t′ε are in different regions of the other mesh.

Since the regions t′′ε bound are known, it is possible to determine the location of tε

and t′ε once the location of at least one of these two triangles is known.

Figure 6.6 (a) illustrates this process. Suppose the triangle t = abc (that

was split into triangles ti (i = 1...7) during the retesselation) intersects four other

triangles from the other mesh and that these four triangles bound regions 1 and

2 (of the other mesh). Since t1 and t5 share an edge that was generated by an

intersection, then they are in different regions of the other mesh (thus, either t1 is in

region 1 and t5 is in region 2 or t1 is in region 2 and t5 is in region 1). The triangles

in each set {t1, t2}, {t3, t4, t5} , {t6} ,{t7}, on the other hand, share edges that were

not generated by an intersection an, therefore, the components of each set belong

to the same region of the other mesh. If it is known that t1 is in region 2 of the

other mesh (Figure 6.6 (b)), this implies that t2 is also in region 2, t3, t4 and t5 are

in region 1 and t6 and t7 are in region 2.

Thus, the location of all triangles in each connected component of triangles can

be performed by locating one of the triangles as a seed and, then, using a traversal

algorithm to locate the other ones. We use as seed a triangle containing an input

vertex. Since the location of an input vertex is the same of the triangles containing

it, the seed is located by locating one of its input vertices. This process is performed

105

a b

c

x

y

z

w

k

t1

t2

t3
t4

t5

t6

t7

(a)

a b

c

x

y

z

w

k

t1

t2

t3t4

t5

t6

t7

reg. 2

reg. 1

reg. 2

reg. 2

reg. 1

reg. 1

reg. 2

(b)

Figure 6.6: Labeling the triangles once the location of at least one triangle is
known: (a) before the labeling process, (b) after the regions (abbreviated as
reg.) are labeled.

using the PinMesh [88] point location algorithm that, besides being able to perform

queries in expected constant time, uses the same index we employ for indexing the

triangles.

6.3.4.1 Implementation with orientation predicates

The triangles from one mesh are located in the other one by employing Pin-

Mesh to locate triangles with input vertices and, then, using a flood-fill algorithm to

assign the location of the other triangles. Thus, we only have to show that PinMesh

can be implemented using only orientation predicates.

As mentioned in [88], PinMesh performs only 3 geometric operations:

• isOnProj(tε, qε) : given a triangle tε and a query point qε, decide if the pro-

jection of qε onto the plane passing through tε is on the interior of tε.

• isAbove(tε, qε) : given a query point qε and a triangle tε such that

isOnProj(tε, qε) is true, decide if the projection of qε onto tε is above qε, i.e.,

the triangle is above the point.

• isBelow(tε, t
′
ε, qε) : given two triangles tε and t′ε directly above a query point

qε, decide if the z component of the projection of qε onto tε is smaller than the

z component of the projection of qε onto t′ε.

The first operation is exactly the point in triangle test and, as mentioned earlier

106

in the Section on ear-clipping, it can be implemented using three 2D orientation

predicates. The operation isAbove(tε, qε) can be implemented by deciding on which

side of tε qε lies and, then, verifying if tε’s normal has a positive or negative z-

component (which can be computed by verifying if the 2D orientation of the 3

vertices of tε is positive considering tε is projected onto z = 0).

Finally, isBelow(tε, t
′
ε, qε) can also be implemented using orientation: let vε be

the vertex generated from the intersection of tε with a vertical edge passing through

qε. isBelow(tε, t
′
ε, qε) will be true iff the (3D) orientation of qε with respect to t′ε is

equal to the orientation of vε with respect to t′ε (i.e., if both qε and vε are on the

same side of t′ε). This predicate can be implemented by creating the vertex vε as a

dummy vertex from the intersection and applying the 3D orientation predicate.

Figure 6.7 illustrates an analogous process in 2D: to determine if the segment

aεbε intersects a vertical line passing through qε at a lower point than aεcε intersects,

a dummy vertex v1ε is created as the intersection of aεbε with qεuε, where uε is an

arbitrary point above qεuε. Since v1ε and qε are on the negative side of aεcε, then v1ε

is lower than v2ε.

q

a b

c

v1

v2

u

Figure 6.7: Sorting the vertices along an edge - Since v1ε and qε are on the
same side of aεcε, then v1ε is lower than v2ε.

PinMesh is employed to query an input vertex of one mesh against the other

original mesh and, thus, only input vertices are processed. Also, PinMesh employs

the same perturbation scheme employed by 3D-EPUG-Overlay and, thus, there

will be no coincidence during the point location queries.

6.4 Implementing the symbolic perturbation

Since all geometric operations can be implemented using only orientation pred-

icates, the symbolic perturbation needs to be implemented only for these predicates.

107

Because of the determinants’ regularity, orientation predicates can be easily

adapted to process perturbed points [4].

However, there is a challenge in the mesh intersection problem: the predicates

will have not only to handle input vertices (with rational coordinates), but also

vertices generated from intersections. Since the coordinates of a vertex generated

from an intersection is a function of five input points (two points defining an edge

of one mesh and three points defining a triangle of the other mesh) and these points

are perturbed, then the orientation has to be modified to handle these points.

As shown above in the Section describing the mesh intersection algorithm, the

3D orientation will only be computed using, as arguments, the three vertices of an

input triangle and another vertex that may be either an input vertex or a vertex

from the intersection. Thus, at least two versions of the 3D orientation predicate

will have to be implemented.

For the 2D orientation, on the other hand, any of the three parameters may

be either an input vertex or a vertex generated by an intersection. Thus, eight

versions of the orientation predicate will be required. However, since the orientation

is computed using a determinant, the order of the parameters may be modified as

long as the sign of the result is negated for each parameter swap. For example,

orientation(p0, p1, p2) = −orientation(p0, p2, p1). Then the number of functions

actually written can be reduced by sorting the parameters by their type (input

vertex or vertex from intersection).

During the evaluation of a predicate where at least one of the parameters pε is a

vertex from the intersection, the coordinates of this vertex need to be computed. By

definition, pε is represented by the points t0ε = t0 +(iε, iε2, iε3), t1ε = t1 +(iε, iε2, iε3)

and t2ε = t2 +(iε, iε2, iε3) of the triangle tε and e0ε = e0 +((1− i)ε, (1− i)ε2, (1− i)ε3)
and e1ε = e1 + ((1 − i)ε, (1 − i)ε2, (1 − i)ε3) of the edge eε, where i is the id (that

may be either 0 or 1) of the mesh containing tε (consequently, (1 − i) is the id of

the mesh containing eε) and pε is the intersection of tε with eε.

Each coordinate of pε will be an ε-expression with degree 3, where each coeffi-

cient is a function of the coordinates of the input vertices and of id. The coefficient

of degree 0 represents the corresponding coordinate of the intersection point if tε

108

and eε were not perturbed.

Once the coordinates are employed in the determinant to compute the sign

of the orientation, the resulting ε-expression will have maximum degree 6, where

the coefficient of degree 0 represents the result that would be obtained in the corre-

sponding predicate if the meshes were not perturbed. Since ε is an infinitesimal, the

sign of the determinant will be the sign of the non-vanishing coefficient of smaller

degree, or 0 if all coefficients vanish.

Given an orientation predicate orientation(p0ε, p1ε, ..., pdε), there are only two

possibilities for the perturbation of each vertex pjε. If pjε is an input vertex, then

pjε will be either translated by (ε, ε2, ε3) if it belongs to mesh 1 or it will not be

translated if it belongs to mesh 0. If pjε is a vertex from the intersection, then either

the edge that generated pjε or the triangle that generated pjε will be translated

by (ε, ε2, ε3). Since the number of combinations is relatively small, we decided to

generate a different predicate to handle each combination instead of evaluating the

perturbations at runtime.

For the 2D orientation, for example, there will be eight possible combinations

of perturbation schemes used in the three parameters. Furthermore, each of the

three parameters may be either input vertices or vertices from the intersection,

which results in eight combinations for the parameter types (since the parameters

may be sorted, the actual number of combinations that have to be implemented is

four). Finally, since the orientation 2D deals with 3D points projected onto one

of the planes x = 0, y = 0 or z = 0, one version of the predicate will have to be

implemented for each plane. Thus the total number of functions will be 96. For the

3D orientation, at least three of the parameters will be input vertices (because the

3D orientations employed by 3D-EPUG-Overlay always consider the orientation

of one vertex with respect to a triangle formed by three input vertices) and, thus,

the number of predicates that will be implemented is 32.

Similarly, in the 1D orientation the number of predicates will be 36: the pred-

icate has 2 parameters, each one may be either an input or a vertex from the

intersection (thus, there are 4 combinations of parameters – however, since they

may be sorted only 3 combinations actually have to be implemented). Furthermore,

109

each parameter may be from either mesh 0 or 1 and, also, the predicate is evaluated

considering the points are projected onto the x, y or z axis. Therefore, the total

number of combinations that have to be implemented is 3x4x3 = 36.

The advantage of having different versions of the predicates for each combina-

tion of the parameters is that the degrees of the ε coefficients are known at compile

time, and the implementation may compute the coefficients by processing first the

ones with smaller degrees, and returning as soon as the first coefficient processed

is non-zero (as mentioned before, the sign of the epsilon-expressions is the signum

of the lowest degree non-vanishing coefficient). Also, since the expressions defining

the coefficients are known at compile time, they may be easily simplified.

Let us present an example of the implementation of a 2D orientation predicate:

consider the function orientation z0 001, the predicate to evaluate the orientation

of three vertices p0ε, p1ε and p2ε when they are projected onto z = 0 and vertices p0ε

and p1ε belong to mesh 0 while vertex p2ε belongs to mesh 1 (the suffix 001 in the

name of the predicate represents the id of the mesh of each parameter).

Since p0ε and p1ε are in mesh 0, then p0ε = p0 and p1ε = p1. Because p2ε is

in mesh 1, p2ε = p2 + (ε, ε2, ε3). As mentioned in Section 6.2.1, the 2D predicate to

evaluate the orientation of these three points when they are projected onto z = 0

will be:

orientation z0 001(p0, p1, p2) = sgn

∣∣∣∣∣∣∣∣
p0x p0y 1

p1x p1y 1

p2x + ε p2y + ε2 1

∣∣∣∣∣∣∣∣

= sgn(p0x(p1y−p2y) +p1x(p2y−p0y) +p2x(p0y−p1y) + ε(p0y−p1y) + ε2(p1x−p0x))
(6.18)

Observe that the epsilon monomials of degree 0 in Equation 6.18 represent the

determinant of the unperturbed points. Because of the magnitude of the infinitesi-

mals, the return value of the orientation z0 001 predicate will be:

• sgn(p0x(p1y−p2y)+p1x(p2y−p0y)+p2x(p0y−p1y)) (the sign of the determinant

of the unperturbed points), if the value of this expression is not zero.

110

• sgn(p0y − p1y), if the value of the previous expression is zero and if this one is

not.

• sgn(p1x − p0x), otherwise.

One may argue that implementing 164 functions is a hard (and error-prone)

task. However, all the functions are very regular and a program to generate them

automatically can be implemented. Indeed, during the implementation of this mesh

intersection algorithm a Wolfram Mathematica script was developed and the code

for all the predicates was created automatically by the script.

6.5 Experiments

3D-EPUG-Overlay was implemented in C++ and compiled using g++

5.4.1. For a better parallel scalability, the Tcmalloc memory allocator provided by

gperftools [89] was employed. Parallel programming was provided by OpenMP 4.0,

multiple precision rational numbers were provided by GNU GMPXX and arithmetic

filters were implemented using the Interval nt number type provided by CGAL for

interval arithmetic. All the experiments were performed on a workstation with dual

Intel Xeon E5-2687 processors, each with 8 physical cores, each core able to run 2

threads using the Intel Hyper-threading technology. The workstation has 128 GiB

of RAM and runs Ubuntu Linux 16.04.

We evaluated 3D-EPUG-Overlay, by comparing it against three state of the

art algorithms: the exact and parallel algorithm developed by [64] and distributed

in the LibiGL library, the exact algorithm for intersecting Nef Polyhedra available

in the CGAL library, and the fast and parallel intersection algorithm available in

QuickCSG [63]. Even though QuickCSG is not an exact algorithm and does not

handle special cases [63], we compared 3D-EPUG-Overlay against it to verify

how our exact algorithm compared with a fast approximate algorithm.

6.5.1 Datasets

Experiments were performed with a variety of meshes downloaded from 3

datasets. All these meshes are non self-intersecting and watertight. Table 6.1

111

presents the names of the meshes, source, creator (only for the meshes downloaded

from the AIM@SHAPE-VISIONAIR repository), number of vertices, triangles and

polyhedra (for meshes with internal structure).

Meshes whose names are numbers were downloaded from the Thingi10k repos-

itory [90] (the number represents the id employed by the repository). The ones

with the suffix kf were obtained from the dataset provided by Barki [91]. All the

other meshes were downloaded from the AIM@SHAPE-VISIONAIR Shape Reposi-

tory [84]. Some models are available in different datasets with different resolutions

(e.g., there is a version of Armadillo with 331 thousand triangles and another one

with 52 thousand).

Also, some of the meshes (the ones with suffix tetra) were tetrahedralized (i.e.,

tetrahedral meshes were generated for the 3D domain defined by the original meshes)

using the GMSH tool [92]. For example, ArmadilloTetra is the tetrahedralization of

the Armadillo mesh.

Table 6.2 presents the pairs of meshes used in the intersection experiments,

the number of input triangles, the number of triangles in the resulting meshes and

the default configuration of the uniform grid employed in the experiments (details

about how these configurations were chosen will be presented in Section 6.5.4).

Figure 6.8 illustrates some of these pairs of meshes (models without internal

structure) and Figure 6.9 illustrates mesh 914686Tetra, the smallest tetra mesh used

in the experiments.

6.5.2 The effect of the use of arithmetic filters and other optimizations

In order to evaluate the effect of different optimization techniques employed

in 3D-EPUG-Overlay we profiled two key steps of the algorithm that directly

benefit from these optimizations: the creation of the uniform grid and the detection

of intersections between pairs of triangles.

These experiments were performed with the Neptune and Neptune translated

meshes using a uniform grid with resolution 643 in the first level and 163 in the

second one.

112

(a) Casting10kf (b) Clutch2kf (c) Same layer (d) Intersection

(e) Armadillo52kf (f) Dinausor40kf (g) Same layer (h) Intersection

(i) 461112 (j) 461115 (k) Same layer (l) Intersection

(m) Kitten (n) RedCir-
cBox

(o) Same layer (p) Intersection

(q)
Ramesses

(r)
Ram.Transl.

(s) Same
layer

(t) Inter-
section

Figure 6.8: Some of the pairs of meshes employed in the experiments - Each
row presents, respectively, the pair of meshes, the two meshes in the same
image layer and the computed intersection.

113

Table 6.1: Datasets used in the 3D intersection experiments.

Mesh Source Creator Vertices Triangles Polyh.
(×103) (×103) (×103)

Clutch2kf Barki - 1 2 -
Casting10kf Barki - 5 10 -
Horse40kf Barki - 20 40 -

Dinausor40kf Barki - 20 40 -
Armadillo52kf Barki - 26 52 -

Camel AIM@SHAPE - 35 69 -
Camel69kf Barki - 35 69 -
Cow76kf Barki - 38 76 -
Bimba AIM@SHAPE Marco Attene 75 150 -
Kitten AIM@SHAPE Frank terHaar 137 274 -

Armadillo Stanford - 173 346 -
461112 Thingi10k - 403 805 -
461115 Thingi10k - 411 822 -

RedCircBoxa AIM@SHAPE Marco Attene 701 1,403 -
Ramesses AIM@SHAPE Marco Attene 826 1,653 -

Ramesses Rot. AIM@SHAPE Marco Attene 826 1,653 -
Ramesses Transl. AIM@SHAPE Marco Attene 826 1,653 -

Vase AIM@SHAPE Pierre Alliez 896 1,793 -
226633 Thingi10k - 1,226 2,452 -

Neptune AIM@SHAPE Laurent Sab. 2,004 4,008 -
Neptune Transl. AIM@SHAPE Laurent Sab. 2,004 4,008 -

914686Tetra Thingi10k+GMSH - 66 605 281
68380Tetra Thingi10k+GMSH - 107 1,067 506

Armad.Tetrab Stanford+GMSH - 340 3,377 1,602
Arm.Tet.bTransl. Stanford+GMSH - 340 3,377 1,602

518092Tetra Thingi10k+GMSH - 603 5,938 2,814
461112Tetra Thingi10k+GMSH - 842 8,495 4,046

* meshes with the suffix Tetra have been tetrahedralized;
* the abbreviations Rot. and Transl. mean, respectively, that the mesh has been rotated or
translated; a abbreviation of Red Circular Box.
b tetrahedralized version of the Armadillo mesh.

The following versions of the algorithm were evaluated in the experiments:

• Vector: each level of the uniform grid is created by performing a single-pass

through the triangles, what requires the use of dynamic STL vectors to push

the triangles into the grid cells.

• Ragged: a ragged array is employed to reduce the number of memory allo-

cations. Each level of the uniform grid has to be created by performing two

114

passes through the data (one to count the amount of triangles to be inserted

into each cell and another one to effectively insert the triangles).

• NoAlloc: temporary memory allocation is avoided by reusing temporary ratio-

nal numbers and by rewriting the arithmetic expressions in order to avoid the

creation of temporary rationals (this version includes the optimizations from

the Ragged version of the algorithm).

• Interval: interval arithmetic is employed to avoid the use of operations with

rationals in the predicates (this version includes the optimizations from the

NoAlloc version of the algorithm)

Furthermore, some experiments were performed using the default glibc memory

allocator (using the default g++ compilation flags), while others were performed

using the gperftools Tcmalloc allocator (abbreviated to Tcm. in the table).

Table 6.2: Pairs of meshes evaluated, number of triangles (in the input and
output meshes) and default grid configuration employed in the experiments.

Number of triangles (×103) Grid size
Mesh 0 Mesh 1 Mesh 0 Mesh 1 Output G1

a G2
b

Casting10kf Clutch2kf 10 2 6 64 2
Armadillo52kf Dinausor40kf 52 40 25 64 4

Horse40kf Cow76kf 40 76 24 64 4
Camel69kf Armadillo52kf 69 52 16 64 4

Camel Camel 69 69 81 64 4
Camel Armadillo 69 331 43 64 4

Armadillo Armadillo 331 331 441 64 8
461112 461115 805 822 808 64 8
Kitten RedCircBox 274 1,402 246 64 8
Bimba Vase 150 1,792 724 64 8
226633 461112 2,452 805 1,437 64 8

Ramesses RamessesTranslated 1,653 1,653 1,571 64 16
Ramesses RamessesRotated 1,653 1,653 1,691 64 16
Neptune Ramesses 4,008 1,653 1,112 64 16
Neptune NeptuneTranslated 4,008 4,008 3,303 64 16

68380Tetra 914686Tetra 1,067 605 9,393 64 2
ArmadilloTetra ArmadilloTetraTransl. 3,377 3,377 61,325 64 4

518092Tetra 461112Tetra 5,938 8,495 23,181 64 4

a resolution of the first level grid; b resolution of the second level grid.

115

(a) (b)

Figure 6.9: (a) Exterior of the 914686Tetra mesh. (b) clipped version of mesh
914686Tetra, showing its internal tetrahedra.

Table 6.3 presents the times (in seconds) spent by the different versions of the

algorithm both when it was run sequentially and when it was run using 32 threads.

As mentioned in Chapter 4, the creation of the 3D uniform grid has 4 important

steps. First, the uniform grid cell where each vertex is located is computed (row

Comp. grid cell), what is a computationally intensive step mainly when rationals are

employed. Then, a first pass (row First pass) through the triangles is performed: if

the uniform grid stores the triangles in each cell in vectors, these triangles are stored

in this step. Otherwise, if a ragged array is employed, the number of triangles in each

cell is counted and the triangles are effectively inserted into the cells during a second

pass (row Second pass). Finally, a second level grid is created (row Refinement).

These three last steps are more memory intensive.

The intersection detection is performed in two steps: first, the uniform grid is

traversed and a list of pairs of triangles to be tested for intersection is created (row

List pairs of tri.). In the second step, pairs of triangles in the list are tested for

intersection (row Detect inters.).

116

Table 6.3 also presents the total times spent creating the grid (row total time

grid) and detecting intersections (row total time inter.).

Table 6.3: Times, in seconds, spent by key steps of 6 versions of 3D-EPUG-
Overlay using either 1 or 32 threads.

Version Vector Ragged Ragged NoAlloc NoAlloc Interval
Allocator Tcm. a Tcm. a Glibc Tcm. a Glibc Tcm. a

Threads 1

Comp. grid cell b 8.29 8.66 8.82 7.00 6.93 0.34
First pass c 0.39 0.35 0.31 0.30 0.30 0.31
Second pass d 0.41 0.40 0.40 0.39 0.41
Refinement e 0.92 0.70 0.65 0.67 0.65 0.69

List pairs of tri. f 0.82 0.77 0.78 0.76 0.77 0.76
Detect inters. g 1,421.46 1,425.21 1,442.67 1,199.36 1,221.12 2.19

Total time grid h 9.60 10.12 10.18 8.37 8.27 1.74
Total time inter. i 1,422.28 1,425.97 1,443.45 1,200.12 1,221.89 2.95

Version Vector Ragged Ragged NoAlloc NoAlloc Interval
Allocator Tcm. a Tcm. a Glibc Tcm. a Glibc Tcm. a

Threads 32

Comp. grid cell b 0.58 0.58 0.77 0.44 0.42 0.10
First pass c 0.39 0.07 0.06 0.06 0.07 0.07
Second pass d 0.04 0.04 0.04 0.05 0.04
Refinement e 0.13 0.06 0.36 0.06 0.36 0.06

List pairs of tri. f 0.17 0.16 0.22 0.15 0.21 0.17
Detect inters. g 81.77 83.48 126.54 66.77 66.71 0.19

Total time grid h 1.10 0.75 1.24 0.60 0.89 0.27
Total time inter. i 81.94 83.64 126.76 66.92 66.93 0.35

a abbreviation of the Tcmalloc memory allocator; b time spent determining in which
grid cell each input vertex is; c time spent performing the first pass throught the tri-
angles in order to count the number of triangles in each cell;
d time spent actually inserting the triangles into the cells; e time spent creating the
second level grid; f time creating the list of pairs of triangles that may intersect;
g time testing triangles for intersection; h total time spent creating the uniform grid;
i total time detecting the intersections once the grid has been created.

Considering the time for the uniform grid creation, while the algorithm using

a ragged array is slightly slower than the version using dynamic vectors in single-

thread mode, when the algorithm is run in parallel the version with a ragged array

is 32% faster than the Vector version. This difference happens for three reasons.

117

First, the version using vectors is less parallelizable: during the first pass the

triangles are distributed to the cells and the insertion into the vectors must be done

sequentially (since insertion into vectors is not thread-safe). The ragged array, on

the other hand, inserts the triangles using two passes that are parallelizable: in the

first pass the number of triangles that will be inserted into each cell is counted (for

performance, the triangles are processed in parallel and each thread keeps private

counters for each cell – after processing all triangles the counters in each thread are

added). In the second pass, the ragged array is allocated as one single array and the

triangles are effectively inserted into the corresponding positions. The insertion can

be performed in parallel because the number of triangles in each cell is already known

and, thus, OpenMP atomic capture and increment operations can be employed to

perform the insertion safely.

Second, the ragged array has better locality of reference in comparison with

a matrix of vectors: while the ragged array is stored as one big sequential memory

block, the different vectors associated with each cell may be stored sparsely in the

heap.

Third, the use of a ragged array leads to fewer memory allocations on the heap

in comparison with dynamic vectors, which parallelizes better. For example, during

the refinement of the grid the first level cells are processed independently in parallel.

During this processing, a second level grid is created in each refined cell. When the

ragged array is employed, each refined first level cell allocates one ragged array. On

the other hand, when vectors are employed each refined first level cell allocates G3
2

vectors (where G2 is the resolution of the second level grid) and each vector may

lead to further memory allocations as they grow when the triangles are inserted.

As result, the grid refinement in the experiments with the parallel version of the

algorithm took 0.06 seconds when a ragged array was employed and 0.13 seconds

when vectors were used.

Observe also that, while there are fewer parallel memory allocations in the

grid refinement when the ragged array is employed, this kind of allocation is not

completely avoided (since the cells are refined in parallel, and thus the ragged ar-

rays in each cell have to be allocated in parallel). The effect of this behavior can

118

be observed by comparing the time spent by the Ragged version of the algorithm

(running in parallel) compiled with and without the Tcmalloc allocator: the version

using Tcmalloc was 6 times faster (0.06 seconds versus 0.36 seconds) than the ver-

sion using the standard Glibc memory allocator. This difference in the performance

can be explained because Tcmalloc was specifically designed to reduce the overhead

of parallel memory allocations [89], which dominates this step of the algorithm.

The use of Tcmalloc also improves the performance of computationally inten-

sive steps of the algorithm (mainly when it is run in parallel). Consider the Ragged

version: the time spent computing the grid cell where each vertex is was 0.58 sec-

onds and 0.77 seconds when, respectively, the Tcmalloc and the Glibc allocators

were employed. A similar behavior can be observed in the time spent testing pairs

of triangles for intersection. These improvements happen because these computa-

tions lead to parallel memory allocation for creating the temporary rational numbers

used in the arithmetic expressions.

Besides employing better memory allocators, avoiding memory allocations

(whenever possible) can also improve the performance of the algorithm. For ex-

ample, in the NoAlloc version of the algorithm the arithmetic expressions with

rationals were rewritten to avoid the creation of temporary rationals and, as result,

the two computationally intensive steps mentioned above performs better in this

version than in the Ragged version.

Since computing the grid cell where each vertex is and detecting intersections

are the only steps directly dealing with rationals, they were the only steps that

benefited from the use of interval arithmetic. The best results were observed in

the intersection detection, which improved 357 times when interval arithmetic was

employed.

Table 6.4 presents the parallel speedup obtained by the 6 different versions

of the algorithm in each step. Observe that the best speedups were obtained when

memory allocations were avoided and when the Tcmalloc allocator was employed.

For a given algorithm, the best speedups were obtained in the most computationally

intensive steps.

While the Interval version of the algorithm was the fastest one, it presented

119

the worst total speedup (6.4 times during the creation of the uniform grid and

8.3 times during the intersection detection). This can be explained because in the

previous versions of the algorithm detecting intersections and computing the grid

cells of each vertex were important bottlenecks and, since these two steps presented

the best speedups, the total time of the algorithm also scaled well. In the Interval

version these two steps still present good speedups, however, since their performance

was significantly improved, the speedup is now more dependent on the times spent

by less scalable steps of the algorithm.

Notice also that, while improving the times for creating the uniform grid makes

little difference in the total running-time of the Vector version of the algorithm

(since the grid creation accounts for only 1% of the total running time), once in-

terval arithmetic is employed the time spent in the grid creation becomes a very

important bottleneck (accounting for 44% of the total running time) and, thus, the

improvements in the grid creation obtained thanks to the better memory alloca-

tion strategies mentioned above are crucial for the good performance of the Interval

version.

Table 6.4: Parallel speedup (ratio between the time spent using 1 thread and
the time spent using 32 threads) obtained in the key steps of 6 versions of
3D-EPUG-Overlay.

Version Vector Ragged Ragged NoAlloc NoAlloc Interval
Allocator Tcm. a Tcm. a Glibc Tcm. a Glibc Tcm. a

Comp. grid cellb 14.3 14.9 11.4 16.1 16.6 3.4
First passc 1.0 5.2 4.9 4.7 4.6 4.6
Second passd 9.7 9.0 9.2 8.3 9.6
Refinemente 6.9 11.4 1.8 11.1 1.8 11.1
List pairs of tri.f 4.7 4.7 3.6 4.9 3.6 4.6
Detect inters.g 17.4 17.1 11.4 18.0 18.3 11.7
Total time gridh 8.7 13.5 8.2 13.9 9.3 6.4
Total time inter.i 17.4 17.0 11.4 17.9 18.3 8.3

a abbreviation of the Tcmalloc memory allocator;
b time spent determining in which grid cell each input vertex is;
c time spent performing the first pass throught the triangles in order to count the
number of triangles in each cell; d time spent actually inserting the triangles into
the cells; e time spent creating the second level grid;
f time spent creating the list of pairs of triangles that may intersect; g time spent
testing triangles for intersection; h total time spent creating the uniform grid;
i total time detecting the intersections once the grid has been created.

120

In the next sections of this thesis we will always perform experiments with

the most optimized version of 3D-EPUG-Overlay, i.e., the version that avoids

temporary memory allocations, use the Tcmalloc allocator, ragged arrays and arith-

metic filtering implemented with interval arithmetic.

6.5.3 The importance of the uniform grid

As mentioned before, in this work the uniform grid is mainly employed to ac-

celerate the detection of pairs of triangles that intersect. To evaluate the efficiency

of this step of the algorithm, we compared it against an implementation using the

CGAL method for intersecting dD Iso-oriented Boxes. Both evaluated algorithms

are exact and employ arithmetic filters with interval arithmetic. Indeed, this CGAL

algorithm is employed by LibiGL to accelerate the triangle-triangle intersection de-

tection step of its mesh intersection method.

The CGAL method is sequential and employs a hybrid approach composed of

a sweep-line and a streaming algorithm to detect intersection between pairs of Axis

Aligned Bounding Boxes. Thus, pairwise intersection of triangles can be detected by

filtering the pairs of intersecting bounding-boxes, and then testing the triangles for

intersection. Since the CGAL exact kernel is not thread-safe yet, even the triangle-

triangle intersection tests were performed sequentially.

Since the uniform grid employed in this work was specifically designed to be

parallel, we evaluated it using 32 threads.

Table 6.5 presents the experiments performed in 6 pairs of meshes. Column #

int. represents the number of intersections detected, column Int.tests presents the

number of pairwise triangle intersection tests performed by the algorithms, column

Pre.proc. represents the time spent either creating the uniform grid and extracting

pairs of triangles for intersection or using CGAL to extract pairs of intersecting

bounding-boxes. Finally, column Inter. presents the times spent by the algorithms

performing intersection tests.

Observe that the number of intersections detected is not necessarily the same

in the two algorithms. This is justified because our algorithm implements Simulation

of Simplicity, and thus co-planar triangles, for example, never intersect.

121

In general, the CGAL algorithm is better at culling pairs of non-intersecting

bounding-boxes and, thus, the number of intersection tests performed by it is smaller

than the number of tests performed by the algorithm based on the uniform grid. The

biggest difference is observed in the last dataset, where CGAL performed 8 times

fewer intersection tests than the uniform grid method. However, since the uniform

grid is a lightweight structure and since it parallelizes well, its pre-processing time is

much smaller (it was up to 134 times faster) than the pre-processing time of CGAL

and this difference is never recaptured by CGAL. Indeed, except for the intersection

of the Armadillo with itself, even if CGAL took 0 seconds to detect the intersections

the total time spent by uniform grid method would still be smaller.

The only situation where the intersection detection time was much larger than

the pre-processing time was in the intersection of the Armadillo mesh with itself. In

this situation the uniform grid was still faster than CGAL for two reasons: first, the

number of intersection tests performed by the two methods was similar. Second, the

intersection computation done by the uniform grid method is performed in parallel.

Considering the number of intersection tests performed per second, the worst

performance for both methods happened during the intersection of the Armadillo

mesh with itself. This can be explained because in this situation there are many

coincidences (co-planar triangles being tested for intersection, triangles intersecting

other triangles on the edges, etc). These coincidences lead to arithmetic filter failures

(because the result of some of the orientation predicates is 0 and, thus, the intervals

representing these results are likely to have different signs for their bounds), which

lead to exact computations with rationals. Furthermore, coincidences lead to the

use of SoS predicates (which have not been optimized yet) in the method based on

uniform grid.

6.5.4 The effect of different choices for the grid sizes

To evaluate the impact of different configurations for the uniform grid sizes,

we evaluated the running times of 3D-EPUG-Overlay using 6 different meshes

and a variety of grid sizes.

Tables 6.6 and 6.7 presents the results of the experiments for 4 meshes without

122

internal structure while Table 6.8 presents the results for 3 tetrahedral meshes.

Column Grid Size describes the uniform grid configuration, that is composed of two

numbers: the first one is the size of the first level grid and the second one is the

size of the second level. For example, the configuration 64, 8 represents a grid with

resolution 64x64x64 in the first level and 8x8x8 in the second one. The rows are

sorted by the product of the sizes of the two levels of the grid. Column Pairs of

triangles represents the number of pairs of triangles processed: Grid is the number

of pairs in all grid cells, Unique is the number of unique pairs of triangles (since a

triangle may be in different cells, some of the pairs may be duplicate) and Inter.

represents the number of pairs effectively intersecting.

We present the separate times for the steps that mainly depend on the uni-

Table 6.5: Comparing the times (in seconds) for detecting pairwise intersec-
tions of triangles using CGAL (sequential) versus using a uniform grid (par-
allel).

CGAL

faces (×103) # int.a Int.testsb Time (s)

Mesh 0 Mesh 1 Mesh 0 Mesh 1 (×103) (×103) Pre.proc.c Inter.d

Camel Armadillo 69 331 3 14 0.32 0.01
Armadillo Armadillo 331 331 4,611 5,043 1.27 259.23

Kitten RedC.Boxe 274 1,402 3 13 2.33 0.01
226633 461112 2,452 805 23 128 7.18 0.08

Ramesses Ram.Tran.f 1,653 1,653 36 237 12.38 0.17
Neptune Nept.Tran.g 4,008 4,008 78 647 36.24 0.47

Uniform grid

faces (×103) # int.a Int.testsb Time (s)

Mesh 0 Mesh 1 Mesh 0 Mesh 1 (×103) (×103) Pre.proc.c Inter.d

Camel Armadillo 69 331 3 33 0.06 0.02
Armadillo Armadillo 331 331 50 5,351 0.25 63.80

Kitten RedC.Boxe 274 1,402 3 27 0.08 0.02
226633 461112 2,452 805 23 307 0.16 0.05

Ramesses Ram.Tran.f 1,653 1,653 36 866 0.16 0.10
Neptune Nept.Tran.g 4,008 4,008 78 5,087 0.27 0.35

a number of intersections detected; b number of intersection tests performed;
c pre-processing time; d time testing pairs of triangles for intersection;
e abbreviation of Red Circular Box; f abbreviation of Ramesses Translated;
g abbreviation of Neptune Translated.

123

form grid size: the creation of the grid (column Grid), the intersection of pairs of

triangles (column Inter.) and the triangle classification (column Class.). Total time

represents the total time of the program (excluding I/O) and, thus, it also includes

Table 6.6: Times spent intersecting meshes using different configurations for
the uniform grid sizes. The rows detached in boldface represent the configu-
rations chosen using the strategy described in Section 6.5.4.

Mesh 0: 226633 (2M triangles), Mesh 1: 461112 (805K triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Sizea Gridb Uniquec Inter.d (GB) Gride Inter.f Class.g Total

16,8 6,631 6,184 23 1.68 0.09 0.48 0.40 1.12
16,16 2,023 1,633 23 1.67 0.11 0.24 0.49 1.00
32,8 2,023 1,633 23 1.66 0.09 0.25 0.48 0.97
16,32 1,066 603 23 1.85 0.11 0.20 0.46 0.91
32,16 1,066 603 23 1.72 0.09 0.19 0.46 0.88
64,8 1,066 603 23 1.67 0.12 0.19 0.44 0.90
16,64 1,057 307 23 3.09 0.26 0.26 0.48 1.15
32,32 1,057 307 23 2.12 0.14 0.22 0.48 0.99
64,16 1,057 307 23 1.81 0.14 0.20 0.48 0.97
32,64 2,096 204 23 5.15 0.50 0.34 0.50 1.50
64,32 2,096 204 23 2.68 0.27 0.27 0.50 1.19
64,64 7,061 163 23 9.36 1.06 0.60 0.47 2.27

Mesh 0: Armadillo (346K triangles), Mesh 1: Armadillo (346K triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Sizea Gridb Uniquec Inter.d (GB) Gride Inter.f Class.g Total

16,8 17,727 14,326 50 1.15 0.03 63.45 0.49 67.48
16,16 13,670 7,855 50 0.81 0.03 61.36 0.50 65.45
32,8 13,670 7,855 50 0.85 0.05 60.83 0.50 64.89
16,32 18,758 5,669 50 1.18 0.06 62.70 0.47 66.72
32,16 18,758 5,669 50 1.04 0.07 61.51 0.50 65.60
64,8 18,758 5,669 50 0.98 0.08 61.52 0.50 65.62
16,64 45,935 5,351 50 3.94 0.33 61.72 0.55 66.13
32,32 45,935 5,351 50 2.98 0.22 61.10 0.57 65.41
64,16 45,935 5,351 50 2.56 0.25 62.49 0.56 66.82
32,64 170,098 5,198 50 15.31 1.34 63.14 0.67 68.69
64,32 170,098 5,198 50 10.82 0.95 65.42 0.69 70.60
64,64 871,209 5,119 50 69.40 6.34 70.70 0.83 81.40

a resolution of the first and second level grids;
b total number of pairs of triangles in the grid cells; c number of unique pairs
of triangles; d number of intersecting pairs of triangles; e create the uniform
grid; f detect the intersections; g classify the output triangles.

124

the time of the retesselation step (this step does not use the grid). Furthermore,

column Memory presents the peak memory used by 3D-EPUG-Overlay.

In general, small uniform grids can be constructed more quickly but, on the

other hand, they lead to more pairs of triangles being tested for intersection. Grids

with too high resolutions, on the other hand, are slower to be constructed and, also,

Table 6.7: Times spent intersecting meshes using different configurations for
the uniform grid sizes (continued). The rows detached in boldface represent
the configurations chosen using the strategy described in Section 6.5.4.

Mesh 0: Ramesses (2M triangles), Mesh 1: Ramesses.rot.h(2M triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Sizea Gridb Uniquec Inter.d (GB) Gride Inter.f Class.g Total

16,8 94,302 90,616 60 4.59 0.11 6.20 0.72 7.72
16,16 22,585 19,852 60 2.31 0.11 1.52 0.59 2.88
32,8 22,585 19,852 60 2.27 0.12 1.41 0.58 2.79
16,32 8,287 5,748 60 1.92 0.13 0.76 0.53 2.13
32,16 8,287 5,748 60 1.84 0.13 0.77 0.61 2.18
64,8 8,287 5,748 60 1.79 0.13 0.74 0.57 2.10
16,64 5,486 2,275 60 3.08 0.27 0.67 0.57 2.21
32,32 5,486 2,275 60 2.44 0.19 0.59 0.57 1.98
64,16 5,486 2,275 60 2.08 0.18 0.61 0.60 2.11
32,64 7,365 1,240 60 7.00 0.74 0.90 0.55 2.90
64,32 7,365 1,240 60 4.08 0.42 0.70 0.60 2.42
64,64 18,899 865 60 19.26 2.31 1.80 0.52 5.29

Mesh 0: Neptune (4M triangles), Mesh 1: Neptune.transl.i (4M triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Sizea Gridb Uniquec Inter.d (GB) Gride Inter.f Class.g Total

32,8 84,108 81,174 78 6.81 0.26 5.12 1.11 6.90
32,16 19,592 17,286 78 4.22 0.31 1.57 1.18 3.48
64,8 19,592 17,286 78 4.06 0.26 1.45 1.13 3.25
32,32 7,503 5,069 78 4.32 0.31 0.85 1.12 2.73
64,16 7,503 5,069 78 4.05 0.30 0.89 1.13 2.78
32,64 5,929 2,123 78 7.36 0.67 0.86 1.11 3.07
64,32 5,929 2,123 78 5.37 0.48 0.79 1.08 2.79
64,64 10,599 1,234 78 15.16 1.70 1.45 1.08 4.65

a resolution of the first and second level grids;
b total number of pairs of triangles in the grid cells; c number of unique pairs
of triangles; d number of intersecting pairs of triangles; e create the uniform
grid; f detect the intersections; g classify the output triangles;
h abbreviation of Ramesses Rotated; i abbreviation of Neptune Translated.

125

Table 6.8: Times spent intersecting tetrahedral meshes using different config-
urations for the uniform grid sizes. The rows detached in boldface represent
the configurations chosen using the strategy described in Section 6.5.4.

Mesh 0: 68380Tetra (1M triangles), Mesh 1: 914686Tetra (605K triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Sizea Gridb Uniquec Inter.d (GB) Gride Inter.f Class.g Total

16,2 276,689 222,000 3,222 9.65 0.04 32.89 3.44 64.59
16,4 147,820 80,877 3,222 6.13 0.05 22.59 2.51 53.39
32,2 147,820 80,877 3,222 6.36 0.05 22.86 2.48 54.38
16,8 161,778 41,707 3,222 6.10 0.06 20.86 2.34 51.03
32,4 161,778 41,707 3,222 6.12 0.06 20.36 2.31 50.41
64,2 161,778 41,707 3,222 6.08 0.11 20.28 2.24 50.83
16,16 359,051 28,118 3,222 11.45 0.11 22.49 2.34 52.10
32,8 359,051 28,118 3,222 10.69 0.11 20.96 2.20 51.93
64,4 359,051 28,118 3,222 10.43 0.15 20.74 2.22 51.45
32,16 1,354,640 22,475 3,222 38.93 0.32 31.34 2.43 61.66
64,8 1,354,640 22,475 3,222 38.86 0.41 30.77 2.24 61.61

Mesh 0: 518092Tetra (6M triangles), Mesh 1: 461112Tetra (8M triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Sizea Gridb Uniquec Inter.d (GB) Gride Inter.f Class.g Total

16,2 710,086 573,863 5,345 22.62 0.27 69.91 6.22 144.70
16,4 559,230 337,272 5,345 18.57 0.27 53.98 5.75 128.59
32,2 559,230 337,272 5,345 19.03 0.26 54.13 5.50 129.11
16,8 729,436 255,703 5,345 21.58 0.28 52.27 5.60 125.83
32,4 729,436 255,703 5,345 23.09 0.26 52.49 5.43 128.15
64,2 729,436 255,703 5,345 22.12 0.37 52.35 5.49 127.23
16,16 1,524,993 220,650 5,345 41.00 0.38 62.82 5.66 138.99
32,8 1,524,993 220,650 5,345 39.26 0.34 60.90 5.46 136.47
64,4 1,524,993 220,650 5,345 41.41 0.44 61.52 5.53 136.71
64,8 5,020,036 205,020 5,345 103.10 0.85 122.76 5.20 198.22

Mesh 0: ArmadilloTet. (3M triangles), Mesh 1: Arm.Tetr.Transl. (3M triangles)

Grid Pairs of triangles (×103) Memory Time (s)

Size Grid Unique Inter. (GB) Grid Inter. Class. Total

64,2 895,394 520,640 21,001 39.09 0.22 155.97 16.99 279.09
64,4 902,735 259,436 21,001 33.23 0.26 142.7 14.55 263.11
64,8 1,819,576 168,122 21,001 51.00 0.46 152.19 13.71 271.44

a resolution of the first and second level grids; b total number of pairs of triangles in the
grid cells; c number of unique pairs of triangles;
d number of intersecting pairs of triangles; e create the uniform grid;
f detect the intersections; g classify the output triangles.

126

have more pairs of triangles. The reason why too-high resolution grids can have more

pairs of triangles in their cells is because when the cells become smaller than the

triangles the higher the resolution the more cells the bounding-box of each triangle

intersect on average. As a result, the same pair of triangles may be in different cells.

To reduce the number of pairs tested for intersection, before the tests we remove

the duplicate pairs from the list of pairs of triangles to evaluate.

For example, for the first set of experiments (intersection of mesh 226633 with

461112) if the first level grid is set to 163 cells and the second level is set to 83 cells,

6 million pairs of triangles are tested for intersection. This number is reduced to

1.6 million when the second level grid is increased to 168 cells (i.e., a 8 times larger

grid) and, as result, the time processing intersections is reduced by 50%.

In general, the time spent processing intersections did not change in the

same proportion that the number of pairs of unique triangles tested for intersec-

tion changed. The reason is because the intersection time includes some steps that

run slower and others that run faster for finer grids. Example: traversing the grid

generating the list of pairs of triangles to test is slower for finer grids (since more

cells have to be traversed), processing a cell tends to be faster for finer grids (since

the number of triangles per cell is reduced) and testing pairs of triangles for inter-

section is faster the smaller the number of pairs is. Furthermore, the intersection

phase of the algorithm has a step whose time does not depend on the grid resolution:

computing the coordinates of the vertices generated by the intersection (the time

of this step depends on the number of intersections found). Finally, testing a pair

of triangles for intersection is, on average, faster when the pair does not intersect

(since the algorithm can terminate earlier) and, thus, the proportion of intersecting

pairs in the list of pairs to test influentiates the running time.

As result, in general the total time spent by 3D-EPUG-Overlay varies

slowly for different grid configurations. For example, considering the intersection

of meshes 226633 and 461112 (first set of experiments on Table 6.6), the maximum

total time observed was 2.6 times greater than the minimum one even though we

performed experiments with several grid configurations such that the size of the

second level grid cells in the largest resolution (64, 64) was 32, 768 times smaller

127

than the size of the cells in the experiments using the smallest resolution (16, 8).

Similar results were observed in all other experiments.

If the grid is too coarse for a mesh, on the other hand, the memory usage (due

to a high number of pairs of triangles being tested for intersection) and the processing

time may become too high. For example, during the intersection of Neptune and

Neptune translated when a first level grid with 163 cells and a second level grid with

83 cells were employed the memory usage grew to more than the available memory in

the testing machine and we aborted the execution of 3D-EPUG-Overlay. This

happened because the total number of pairs of triangles in all uniform grid cells

was 88 billion pairs. This suggests that, even though the range of configurations

with reasonable performance is broad, at some point a wrong choice for the grid

configuration will lead to a poor performance.

We propose sizing the uniform grid such that the expected number of pairs of

triangles tested for intersection in each cell is a small constant. Since the number of

expected pairs per cell (np) in a uniformly independently and identically distributed

dataset (and assuming each triangle of meshes M0 and M1 is inserted in, respectively,

k0 and k1 cells on average) would be np = k0×n0

G3
1×G3

2
× k1×n1

G3
1×G3

2
(where n0 and n1 are the

number of triangles in the each mesh and G1 and G2 are, respectively, the resolution

of the first and second level grids), then G1 ×G2 = 6

√
k0×k1×n0×n1

np
.

Experiments suggest that using k0×k1
np

= 100000 leads to reasonable perfor-

mance. For example, for intersecting the meshes 226633 and 461112, if k0×k1
np

=

100000, then G1 ×G2 = 763. If we round 763 to the next power of 2 (for simplicity

we decided to perform all experiments using powers of 2 for the grid resolutions, but

this is not a restriction of 3D-EPUG-Overlay) and fix the first level grid at 64,

then the size of the second level grid should be 8. Observe that this configuration

is close to the best configuration in Table 6.6.

For tetra meshes, we observed that the best results are obtained with a smaller

target number of expected triangles per cell. This can be explained because, differ-

ently from meshes without internal structure (where all triangles are concentrated

in the boundary), tetrahedral meshes typically have triangles in their interior, which

makes them more evenly distributed. Thus, we set k0×k1
np

to 10.

128

We employed this strategy for choosing the grid configuration in all experi-

ments described in this thesis. The rows detached in bold in Tables 6.6, 6.7 and 6.8

represent test cases using these chosen configurations.

While this strategy may not work in all situations, in all experiments we per-

formed the results were reasonable (even in meshes without internal structure, which

concentrate all their triangles on their boundaries). The usage of empirical config-

urations for algorithms with tuning parameters is common in Computer Science.

For example, octrees typically have threshold values to determine when they should

stop being refined. The algorithm for intersecting pairs of bounding-boxes present in

CGAL (and evaluated in Section 6.5.3) also has a cutoff threshold: this algorithm

is a hybrid of two other methods and one of its parameters determines in which

situation each of the two algorithms will be employed for the computation.

Since the grid creation in 3D-EPUG-Overlay is very fast in comparison with

other steps of the algorithm, a possible idea for future work consists in creating an

heuristic to automatically choose a reasonable grid resolution. The choice could be

tested by trying to create the grid and, verifying, for example, the total number

of pairs of triangles in all grid cells. If this choice is considered poor, the heuristic

could select a different configuration and try to recreate the grid.

6.5.5 Comparing the performance of 3D-EPUG-Overlay against other

methods

We compared 3D-EPUG-Overlay against other three algorithms using the

pairs of meshes presented in Table 6.2. The resulting running times (in seconds,

excluding I/O) are presented in Table 6.9. Since the CGAL exact intersection al-

gorithm deals with Nef Polyhedra, we also included the time it spent converting

the triangulating meshes to this representation and to convert the result back to a

triangular mesh (it often takes more time to convert the dataset than to compute

the intersection).

Table 6.10 presents the speedup of 3D-EPUG-Overlay when compared to

LibiGL, CGAL and QuickCSG. 3D-EPUG-Overlay was up to 101 times faster

than LibiGL. The only test cases where the times spent by LibiGL were similar

129

to the times spent by 3D-EPUG-Overlay were during the computation of the

intersections of a mesh with itself (even in these test cases 3D-EPUG-Overlay

was still faster than LibiGL). This can be explained because in this situation the

intersecting triangles from the two meshes are never in general position, and thus

the computation has to frequently trigger the SoS version of the predicates (which

were not optimized yet) in order to evaluate them considering the perturbed meshes.

As future work we intend to optimize these functions in order to be faster even in

unusual situations where the special cases happen frequently.

Table 6.9: Times, in seconds, spent by different methods for intersecting pairs
of meshes. QuickCSG reported errors during the intersections whose times
are flagged with *. Only 3D-EPUG-Overlay was employed in the experiments
with tetrahedral meshes (last three rows).

Time (s)

CGAL

Mesh 0 Mesh 1 3D-Epug LibiGL Converta Intersectb QuickCSG

Casting10kf Clutch2kf 0.2 1.3 4.2 1.1 0.1*
Armadillo52kf Dinausor40kf 0.1 3.0 38.0 21.5 0.1

Horse40kf Cow76kf 0.1 3.2 51.1 24.2 0.1
Camel69kf Armadillo52kf 0.1 3.2 54.3 25.7 0.1

Camel Camel 13.9 18.0 62.7 230.6 0.9*
Camel Armadillo 0.2 11.7 189.9 80.0 0.3

Armadillo Armadillo 67.0 88.1 339.7 1,198.2 4.1*
461112 461115 0.8 58.9 753.2 473.2 1.1
Kitten RedCircBox 0.3 28.6 819.8 329.6 1.1
Bimba Vase 0.6 58.0 971.7 455.7 1.1
226633 461112 0.9 96.0 1,723.7 905.5 2.2*

Ramesses Ram.Transl.c 1.3 93.0 1,558.8 946.1 2.4*
Ramesses Ram.Rot.d 2.1 122.0 1,577.3 989.8 2.4
Neptune Ramesses 1.2 118.1 3,535.5 1,535.6 4.1
Neptune Nept.Tran.e 2.7 220.2 5,390.7 2,726.2 6.1
68380Tet.f 914686Tet.g 51.3 - - - -

Armad.Tet.h Arm.Tet.Tran.i 263.3 - - - -
518092Tetra 461112Tetra 136.6 - - - -

a time converting the meshes to CGAL Nef Polyhedra;
b time intersecting the Nef Polyhedra; c Ramesses Translated; d Ramesses Rotated;
e Neptune Translated; f 68380Tetra; g 914686Tetra; h ArmadilloTetra;
i ArmadilloTetra Translated.

It is worth noting that, as mentioned in Section 2.3.2.2, differently from other

130

algorithms, LibiGL also repairs meshes (by resolving self-intersections) during the

intersection computation. Since in the representation employed by 3D-EPUG-

Overlay (where each triangle stores the ids of the two polyhedra it bounds) self-

intersecting meshes are ambiguous, 3D-EPUG-Overlay does not attempt to per-

form mesh repair (as mentioned before, experiments were performed only with non

self-intersecting meshes).

Because of the overhead associated with the Nef Polyhedra and since it is

a sequential algorithm, CGAL was always the slowest. When computing the in-

tersections, 3D-EPUG-Overlay was up to 1, 284 times faster than CGAL. The

difference is much higher if the time CGAL spends converting the triangular mesh

to Nef Polyhedra is taken into consideration: intersecting meshes with 3D-EPUG-

Overlay was up to 4, 241 times faster than using CGAL to convert and intersect

the meshes.

Table 6.10: Speedup of 3D-EPUG-Overlay when compared against different
methods. QuickCSG reported errors during the intersections whose speedups
are flagged with *.

CGAL

Mesh 0 Mesh 1 LibiGL Intersecta Totalb QuickCSG

Casting10kf Clutch2kf 8.2 6.9 32.7 0.4*
Armadillo52kf Dinausor40kf 22.2 160.1 442.7 0.8

Horse40kf Cow76kf 23.0 175.9 547.5 0.8
Camel69kf Armadillo52kf 22.3 180.9 563.3 0.8

Camel Camel 1.3 16.5 21.0 0.1*
Camel Armadillo 63.0 431.5 1,455.8 1.6

Armadillo Armadillo 1.3 17.9 23.0 0.1*
461112 461115 71.4 573.5 1,486.3 1.3
Kitten RedCircBox 82.0 943.4 3,289.8 3.0
Bimba Vase 101.1 795.1 2,490.5 1.9
226633 461112 101.1 953.5 2,768.8 2.4*

Ramesses Ram.Transl.c 73.7 750.1 1,986.0 1.9*
Ramesses Ram.Rot.d 58.0 470.4 1,219.9 1.2
Neptune Ramesses 98.8 1,284.3 4,241.2 3.4
Neptune Nept.Transl.e 81.5 1,008.4 3,002.3 2.2

a Speedup when the time spent by 3D-EPUG-Overlay is compared only against
the CGAL intersection time; b Speedup when the time spent by 3D-EPUG-
Overlay is compared against the total CGAL time; c Ramesses Translated;
d Ramesses Rotated; e Neptune Translated;

131

While 3D-EPUG-Overlay was faster than QuickCSG in most of the test

cases (mainly the largest ones), in others QuickCSG was up to 20% faster than

3D-EPUG-Overlay. The relatively small performance difference between 3D-

EPUG-Overlay and an inexact method (that was specifically designed to be very

fast) indicates that 3D-EPUG-Overlay presents good performance allied with

exact results. Besides reporting errors during the experiments detached with a * in

Table 6.9, QuickCSG also failed in situations where errors were not reported (this

will be detailed later).

Finally, we also performed experiments with tetra-meshes. Each tetrahedron

in these meshes is considered to be a different object and, thus, the output of 3D-

EPUG-Overlay is a mesh where each object represents the intersection of two

tetrahedra (from the two input meshes). These meshes are particularly hard to

process because of their internal structure, which generates many triangle-triangle

intersections. For example, during the intersection of the Neptune with the Neptune

translated datasets (two meshes without internal structure), there are 78 thousand

pairs of intersecting triangles and the resulting mesh contains 3 million triangles. On

the other hand, in the intersection of 518092 tetra (a mesh with 6 million triangles

and 3 million tetrahedra) with 461112 tetra (a mesh with 8 million triangles and 4

million tetrahedra) there are 5 million pairs of intersecting triangles and the output

contains 23 million triangles.

To the best of our knowledge, LibiGL, CGAL and QuickCSG were not designed

to handle meshes with multi-material and, thus, we couldn’t compare the running

time of 3D-EPUG-Overlay against them in these test cases.

We also evaluated the peak memory usage of each algorithm. The results

are presented in Table 6.11. Except for the smallest mesh and self-intersections

(where 3D-EPUG-Overlay used 13% more memory than LibiGL), in almost all

test cases 3D-EPUG-Overlay used less memory than LibiGL (in the intersection

of Neptune with Ramesses, for example, LibiGL used 2.6 times more memory than

3D-EPUG-Overlay). Because of its heavy data structures employed to represent

Nef Polyhedra, CGAL used much more memory than 3D-EPUG-Overlay (up to

40 times more memory). Even QuickCSG (an inexact algorithm) was less memory

132

efficient than 3D-EPUG-Overlay: the only situations where QuickCSG used less

memory than 3D-EPUG-Overlay were in two test cases where it failed.

Table 6.11: Memory usage (in GB) of the different algorithms. QuickCSG
reported errors during the intersections whose entries are flagged with *.

Mesh 0 Mesh 1 3D-Epug LibiGL CGAL QuickCSG

Casting10kf Clutch2kf 0.05 0.03 0.21 0.08*
Armadillo52kf Dinausor40kf 0.08 0.13 1.29 0.13

Horse40kf Cow76kf 0.09 0.15 1.97 0.15
Camel69kf Armadillo52kf 0.09 0.16 1.67 0.15

Camel Camel 0.21 0.20 3.32 0.17*
Camel Armadillo 0.21 0.53 7.88 0.34

Armadillo Armadillo 1.02 0.90 20.79 0.53*
461112 461115 0.96 2.18 24.12 1.06
Kitten RedCircBox 0.78 1.92 31.41 1.09
Bimba Vase 1.00 2.43 37.57 1.27
226633 461112 1.68 3.92 51.32 1.99*

Ramesses Ram.Transl.a 1.77 4.17 48.24 2.02*
Ramesses Ram.Rot.b 2.10 4.44 48.78 2.06
Neptune Ramesses 2.58 6.66 83.52 3.32
Neptune Nept.Transl.c 4.06 9.95 115.39 4.66
68380Tet.d 914686Tet.e 6.13 - - -

Armad.Tet.f Arm.Tet.Transl.g 33.00 - - -
518092Tetra 461112Tetra 42.84 - - -

a Ramesses Translated; b Ramesses Rotated; c Neptune Translated;
d 68380Tetra; e 914686Tetra; f ArmadilloTetra;
g ArmadilloTetra Translated.

6.5.6 Correctness evaluation

3D-EPUG-Overlay was developed on a solid foundation (i.e., all computa-

tion is exact and special cases are properly handled using Simulation of Simplicity)

in order to ensure correctness. However, a correct algorithm does not ensure that

its implementation is bug-free. In order to have evidence that the implementation

is correct, we performed experiments comparing it against LibiGL (as reference

solution).

We employed the Metro tool [93] to compute the Hausdorff distances between

the meshes being compared. Metro is widely employed, for example, to evaluate

mesh simplification algorithms by comparing their results with the original meshes.

133

Let e(p, S) be the minimum Euclidean distance between the point p and the

surface S. [93] defines the one sided distance E(S1, S2) between two surfaces S1 and

S2 as: E(S1, S2) = maxp∈S1 e(p, S2). The Hausdorff distance between two surfaces

S1 and S2 is the maximum between E(S1, S2) and E(S2, S1). The Metro implemen-

tation employs an approximation strategy that samples points on the surface of the

meshes in order to compute the Hausdorff distance. In all experiments we employed

the default parameters (where 10 points are sampled per face).

As mentioned by the authors [93], Metro is not exact (all the computation is

performed using double variables), and thus we intend to use the distance between

meshes only as evidence that our implementation is correct.

Table 6.12 reports the distances between the meshes. Since we are evaluating

several models (with different scales), we configured Metro to report the distance

as a percentage of the diagonal of the bounding-box of the meshes instead of the

absolute error values.

Table 6.12: Hausdorff distances (normalized as a percentage of the bounding-
box) between the output meshes generated by the reference method (LibiGL)
and 3 other algorithms.

Difference (%)

Mesh 0 Mesh 1 3D-Epug CGAL QuickCSG

Casting10kf Clutch2kf 0.0000 0.0000 -
Armadillo52kf Dinausor40kf 0.0000 0.0001 0.1181

Horse40kf Cow76kf 0.0000 0.0001 0.0490
Camel69kf Armadillo52kf 0.0000 0.0001 0.1254

Camel Camel 0.0000 0.0000 -
Camel Armadillo 0.0000 0.0001 0.1121

Armadillo Armadillo 0.0000 0.0000 -
461112 461115 0.0000 0.0002 0.0119
Kitten RedCircBox 0.0000 0.0005 0.1020
Bimba Vase 0.0000 0.0001 0.0847
226633 461112 0.0000 0.0003 -

Ramesses Ram.Transl. a 0.0000 0.0007 -
Ramesses Ram.Rot. b 0.0000 0.0007 0.0465
Neptune Ramesses 0.0000 0.0007 0.0386
Neptune Nept.Transl. c 0.0000 0.0004 0.0149

a Ramesses Translated; b Ramesses Rotated;
c Neptune Translated.

134

As it can be seen, in all test cases the difference between 3D-EPUG-Overlay

and LibiGL was reported as 0. In some situations the difference between LibiGL

and CGAL was a small number (maximum 0.0007% of the diagonal of the bounding-

box): this can be explained because, even though CGAL is exact, the results are

stored using floating-point variables and different strategies to round the vertices co-

ordinates to floating-point numbers and write the values to the text file representing

the meshes may lead to slightly different results.

QuickCSG, on the other hand, generated errors much larger than the ones

generated by CGAL: in the worst case, the difference between QuickCSG output

and LibiGL was 0.13% of the diagonal of the bounding-box). Also, as said before,

in some situations QuickCSG reported failure to intersect the meshes (indicated by

a dash in Table 6.12).

6.5.6.1 Visual inspection

We also performed visual inspection (using the MeshLab tool) in order to verify

the results. Even though small changes in the coordinates of the vertices cannot be

easily identified by visual inspection (and even the program employed for displaying

the meshes may have roundoff errors), topological errors (such as triangles with

reversed orientation, self-intersections, etc) can often be identified visually mainly

in small meshes.

As mentioned before, QuickCSG reported failures during the intersection of

several meshes. Furthermore, even during some intersections where errors have not

been reported the output results were frequently inconsistent, presenting problems

such as open meshes, spurious triangles or inconsistent orientations.

Figure 6.10 illustrates one test case where QuickCSG did not report any error

during the processing, but visual inspection found several triangles with inconsistent

orientations. As can be seen, some triangles are oriented incorrectly (since the

camera is in the exterior of the meshes, the visible sides of the triangles should be

colored the same way MeshLab colors the external sides of the triangles, i.e., with a

light color). 3D-EPUG-Overlay, on the other hand, generated consistent results

(Figure 6.10 (a)).

135

(a) (b)

(c) (d)

Figure 6.10: Intersection of the Bimba and Vase meshes computed by 3D-
EPUG-Overlay (a), QuickCSG (b), zoom (of the red square from (b)) pre-
senting the details of some errors in the QuickCSG result (c) and the two
input meshes presented on together (d) (figures not to scale).

Figure 6.11 (a) presents a zoom in the output of QuickCSG for the intersection

of the Ramesses dataset with Ramesses Translated: some triangles are oriented

incorrectly. These errors may be created either by floating-point errors or because

136

QuickCSG doesn’t handle the coincidences.

To mitigate this later problem, QuickCSG provides options where the user

can apply a random perturbation in the input dataset. In contrast to the sym-

bolic perturbations employed by 3D-EPUG-Overlay (that are conceptual and

use indeterminate infinitesimals), these numerical perturbations are not guaranteed

to work and the user has to choose the maximum range for them. A too small range

may not eliminate all errors while a too big range may modify the mesh too much.

Figures 6.11 (b) and (c) and (d) display the results obtained when perturbations

with maximum range 10−1, 10−3 and 10−6 were employed. As it can be seen, none

of these perturbations removed all errors and the bigger perturbation (10−1) even

added undesirable artifacts to the output. Similar problems in QuickCSG have been

reported by Zhou et al. [64].

6.5.6.2 Rotation invariance

We also performed experiments to validate 3D-EPUG-Overlay by verifying

that its result does not change when the input meshes are rotated. I.e., given a pair

of meshes, they were rotated around the same point, intersected, and then the

resulting mesh was rotated back. To ensure exactness, we chose a rotation angle

whose sine and cosine are rational numbers.

We evaluated all pairs of meshes presented in Table 6.2. For each pair, we

performed a rotation around the x axis and, then, a rotation around the y axis (the

origin was defined as the center of the joint bounding-box of the two meshes). We

chose a rotation angle whose sine and cosine are, respectively, 400
10,004

and 9,996
10,004

(this

angle measures approximately 2.29 degrees).

In all the experiments Metro reported that the resulting meshes were equal

(i.e., the Hausdorff distance was 0.000000) to the corresponding ones obtained with-

out rotation.

Furthermore, experiments where each mesh from Table 6.2 was intersected

with a rotated version of itself were performed. The reasoning of this experiment

is that intersecting a mesh with a slightly rotated version of itself could generate

a large number of intersections and small triangles (thus it is challenging to the

137

(a)

(b)

(c)

(d)

Figure 6.11: Detail of the intersection of Ramesses with Ramesses Translated
generated by QuickCSG using different ranges for the numerical perturbation:
no perturbation (a), 10−1 (b), 10−3 (c) and 10−6 (d).

138

algorithms). Each mesh M was rotated (generating another mesh Mr) around the

center of its bounding-box using the angle with rational sine and cosine presented

above (approximately 2.29 degrees), and then the intersection of M with Mr was

computed using LibiGL and 3D-EPUG-Overlay. In all experiments the results

obtained by the two algorithms were considered to be equal by Metro (i.e., the

Hausdorff distance between the two outputs was 0.000000).

6.5.7 Limitations

Even though all the computation is performed exactly, common file formats for

3D objects such as OFF represent data using floating-point numbers. The process

of converting the rational output into floating-point numbers may introduce errors

since not all rationals can be represented exactly as floating-point numbers. While

the input coordinates are always read exactly, in this work the output files were

created by simply converting the rationals to floating-point numbers, and thus they

are not guaranteed to be always correct. Approaches to solve this problem include

avoiding the conversion (i.e., always employing multiple-precision rationals in the

representations) or using heuristics such as the one presented by Zhou et. al. [64]

in order to try to choose floating-point numbers for each coordinate such that the

approximate output will not only be similar to the exact one, but also it will not

present topological errors.

A limitation of the symbolic perturbation is that the results are consistent

considering the perturbed dataset, not necessarily considering the original one [4].

Thus, if the perturbation in the mesh resulting from the intersection is ignored

the unperturbed mesh may contain degeneracies such as triangles with area 0 or

polyhedra with volume 0 (these polyhedra would have infinitesimal volume if the

perturbation was not ignored).

To illustrate this problem, let us first consider an example (in 2D) where re-

moving the perturbation of the output generates a mesh without degenerate features.

Figure 6.12 illustrates the intersection of two coincident squares abcd (square 0) and

efgh (square 1): Figure 6.12 (a) assumes that the square 0 is not perturbed and

square 1 is translated by infinitesimals before the intersection is computed (gener-

139

a

b c

d

e

f g

h
u

v

(a)

e

f g

h

a

b c

d
u

v

(b)

Figure 6.12: Effect of two different perturbations during the self intersection
of squares - (a) Two squares intersect at a common edge (ad and fg), (b)
The top rectangle is perturbed (translated by positive infinitesimals), (c) The
bottom rectangle is perturbed.

ating square eεfεgεhε). The resulting intersection of the abcd with eεfεgεhε is the

square uεfεvεdε, where uε, for example, represents the intersection of edges eεfε and

ad. If the perturbation in the output is ignored (i.e., if the infinitesimals in the co-

ordinates of the output vertices are dropped, generating ufvd as output instead of

uεfεvεdε), the resulting square ufvd will be identical to the two unperturbed input

squares abcd and efgh.

Figure 6.12 (b) assumes that square 1 is not perturbed and square 0 is trans-

lated by infinitesimals before the intersection computation. Similarly to example

in Figure 6.12 (a), ubvh (the unperturbed version of the output uεbεvεhε) will be

identical to the input squares abcd and efgh.

Therefore, in both examples illustrated above the perturbations can be safely

ignored when the output is generated and the resulting polygons are the expected

result for the intersection.

Figure 6.13 illustrates (in 2D) a situation where extracting a valid unperturbed

mesh is a challenge: if two squares abcd and efgh intersect exactly at edges ad

and fg (this is illustrated in Figure 6.13 (a)), then an infinitesimal perturbation

may lead to two possible results: if efgh is translated by positive infinitesimals

(and abcd is not modified), then the intersection of abcd with eεfεgεhε will be empty

(Figure 6.13 (b)). On the other hand, if efgh is not translated and abcd is translated

(generating aεbεcεdε), then the intersection will be the rectangle aεuεgεvε, that will

have infinitesimal area (since u = a and g = v).

140

e

f g

h

a

b c

d

(a)

e

f g

h

a

b c

d

(b)

e

f
g

h

a

b c

d
u

v

(c)

Figure 6.13: Challenge caused by perturbations during the intersection of
two squares that intersect at an edge - (a) the two squares intersect at an
edge. (b) square efgh is perturbed by positive infinitesimals (intersection is
empty). (c) square abcd is perturbed by positive infinitesimals (intersection is
an infinitesimal rectangle aεuεgεvε).

Thus, even though there is no degeneracy in the perturbed output, if the

infinitesimal components of aεuεgεvε are dropped (for example, when the output is

stored in a file) the resulting output will have a degenerate rectangle.

In the experiments performed in this thesis the output files were generated by

ignoring the symbolic perturbation and outputting the rational coordinates of the

vertices (converted to floating-point numbers). Therefore, even though the resulting

perturbed meshes are guaranteed to be correct and free of degenerate features, the

meshes stored in the output files are not guaranteed to always retain these properties.

An interesting direction for future work is to develop an algorithm for cleaning

the perturbed output dataset when the user does not want a perturbed output (for

example, a post-processing could regularize the mesh removing polyhedra with vol-

ume 0), generating an unperturbed mesh that is consistent with the non-degenerate

features of the perturbed one. Another alternative is to process the output mesh

using only algorithms that are aware of the symbolic perturbation (i.e., the pipeline

of algorithms processing a dataset should not ignore the infinitesimal factors of the

coordinates).

141

6.6 Summary

We have presented 3D-EPUG-Overlay, an algorithm to intersect a pair of

3D triangular meshes. Except for the indexing (which is necessary only for perfor-

mance), we showed that all the geometric functions employed by the algorithm can

be expressed using 1D, 2D and 3D orientation predicates.

Implementing the symbolic perturbation is simplified since fewer lower level

predicates are used, and only these predicates have to directly deal with the pertur-

bation.

Since the perturbations are not expected to modify the results of the functions

when there is no coincidence, one can implement the higher level functions using

possibly faster strategies and only employ the implementation using orientations

when a coincidence is detected.

We showed that the symbolic perturbation eliminates the special cases and,

thus, the algorithm can correctly handle all valid inputs. Since all the special cases

are properly handled by the perturbation and all computation is exact, the algorithm

can exactly compute the intersection of any valid input.

3D-EPUG-Overlay was designed to parallelize very well. Since no global

topology needs to be maintained, the individual triangles of the two input meshes can

be processed individually in parallel. The process is mostly a series of map-reduce

operations. Therefore our implementation can build upon any of many existing,

well constructed, parallel tools.

3D-EPUG-Overlay was implemented in C++ using OpenMP to parallelize

the computation and GMPXX to provide exact arithmetic. Furthermore, arithmetic

filtering (implemented using the CGAL interval arithmetic number type) was em-

ployed to accelerate the exact computation, employing multiple-precision rationals

in the predicates only when really necessary. 3D-EPUG-Overlay was up to 101

times faster than the parallel and exact algorithm available in LibiGL and up to

1, 284 times faster than the exact algorithm available in CGAL (or up to 4, 241

times faster than CGAL if the time CGAL spends converting the meshes to its

Nef Polyhedra representation is taken into consideration). Also, it was faster than

QuickCSG (a very fast, but inexact, parallel algorithm) in most of the experiments.

142

The excellent performance of 3D-EPUG-Overlay allied with its robustness

makes it suitable to be used as a subroutine in larger systems such as 3D GIS or

CAD systems.

While we decided to focus on the problem of computing intersections, 3D-

EPUG-Overlay can be trivially adapted to compute other kinds of overlays (such

as union, difference, exclusive-or, etc). Indeed, the only required modification is in

the classification step.

CHAPTER 7

Conclusion and future work

We have showed that, by employing a combination of techniques, it is possible to

develop efficient exact algorithms for handling geometric data.

3D-EPUG-Overlay, the main result of this thesis, is a parallel algorithm

for exactly intersecting pairs of 3D triangular meshes. It employs a combination of

five main techniques to achieve correctness and performance. Exact arithmetic is

employed to completely avoid errors caused by floating point numbers. Special cases

are treated using Simulation of Simplicity (SoS). The computation is performed

using simple local information to make the algorithm easily parallelizable and to

easily ensure robustness. An efficient index and parallel programming are employed

for performance.

Before developing 3D-EPUG-Overlay, two simpler algorithms were devel-

oped using the five aforementioned techniques. The objective was to evaluate these

strategies and iteratively improve them before completing the implementation of

3D-EPUG-Overlay.

The first algorithm we developed was EPUG-Overlay, an efficient algorithm

for exactly intersecting 2D maps. EPUG-Overlay applies all the five techniques

mentioned above to efficiently compute the exact overlay of 2D polygonal maps.

Even though EPUG-Overlay is parallel, even if executed using only one thread

it is faster than the inexact overlay algorithm available in GRASS GIS.

Then, we extended some of the ideas employed in EPUG-Overlay to 3D.

More specifically, we showed how a 3D two-level uniform grid for indexing triangular

meshes could efficiently be constructed in parallel. Then, PinMesh, an exact and

efficient algorithm for locating points in 3D meshes, was presented. PinMesh can

efficiently locate points in meshes containing millions of triangles. Indeed, according

to our experiments it was up to 27 times faster than the RCT algorithm (that, to the

best of our knowledge, is the state of the art inexact algorithm for point location).

Finally, the experience acquired during the development of EPUG-Overlay

143

144

and PinMesh was employed to develop 3D-EPUG-Overlay. Besides applying all

the techniques previously employed in EPUG-Overlay and PinMesh, we further

improved 3D-EPUG-Overlay by using a better strategy for creating the uniform

grid in parallel and by employing arithmetic filtering to accelerate the evaluation

of the exact predicates, what significantly reduced the overhead associated with the

operations on multiple precision rationals.

We showed that the symbolic perturbation scheme developed for 3D-EPUG-

Overlay eliminates the special cases, and thus the algorithm can correctly handle

any valid input. Except for the indexing, 3D-EPUG-Overlay can be implemented

using only orientation predicates. As result, only these predicates have to deal with

the symbolic perturbation used by SoS, which simplifies the implementation of SoS.

As shown in the experiments, 3D-EPUG-Overlay was not only able to

outperform other exact algorithms (being up to 101 times faster than LibiGL and up

to 1, 284 faster than CGAL), but also to present a performance similar to an inexact

parallel algorithm that was specifically designed to be very efficient. Furthermore,

3D-EPUG-Overlay was more memory efficient than the other methods evaluated.

This excellent performance associated with its exactness makes 3D-EPUG-

Overlay suitable for applications where these two characteristics are important.

Examples of such applications are CAD/GIS systems, where the user typically deals

with big 3D models and needs fast responses when editing these models. Further-

more, since 3D-EPUG-Overlay is parallel it uses better the computing capability

of current computers, that usually have multi-core processors.

7.1 Future work

Since the three algorithms presented in this thesis were developed in sequence,

some of the techniques employed by 3D-EPUG-Overlay, the method developed

lastly, have not been applied to the two previous algorithms. Thus, as future work

we intend to use the knowledge acquired during the development of 3D-EPUG-

Overlay to improve these other two algorithms. We particularly believe that these

two algorithms could benefit from the use of arithmetic filters that, as shown in

section 6.5.2, significantly improved the performance of the 3D predicates employed

145

in our mesh intersection algorithm.

Also, another direction of future work is to adapt 3D-EPUG-Overlay to

compute other kinds of overlays (such as union, difference and exclusive-or). Indeed,

this adaptation can be easily performed and the only required modification is in the

classification step of the algorithm.

We also intend to develop a CGAL kernel containing the predicates employed

by 3D-EPUG-Overlay (i.e., predicates adapted to use Simulation of Simplicity).

The advantage of having this kernel is that when there is a coincidence the CGAL

algorithms will compute results that are consistent with the perturbation scheme

employed by 3D-EPUG-Overlay and, as consequence, we will be able to trivially

reuse these algorithms in 3D-EPUG-Overlay (for example, the CGAL Delaunay

triangulation method could replace the triangulation algorithm implemented in 3D-

EPUG-Overlay).

Another future work is to improve the performance of the SoS predicates that

are called when coincidences happen. For simplicity, since special cases should

happen much less often than the general cases, these predicates have not been

optimized yet.

Furthermore, developing new strategies for choosing reasonable configurations

for the uniform grid could also be an interesting research topic. While in all the

experiments evaluated in this paper the uniform grid performed well, we believe

that having a more dynamic way to choose the grid configuration could improve the

performance of the algorithm even more. For example, as mentioned in Section 6.5.4,

since the grid can be quickly constructed in parallel a possible strategy for choosing

the grid size could be to have a set of possible grid configurations, quickly construct

the grid using each configuration and choose the one that could lead to the best

performance (for example, the configuration that generates the smallest number of

pairs of triangles in all grid cells).

Finally, as mentioned in Section 6.5.7, removing the symbolic perturbation of

the results and converting the rational coordinates into floating-point numbers may

introduce topological errors to the output. Thus, another future work is to study

strategies for performing this kind of conversion or for avoiding it.

REFERENCES

[1] S. Zlatanova, A. A. Rahman, and M. Pilouk, “Trends in 3D GIS

development,” J. Geospatial Eng., vol. 4, no. 2, pp. 71–80, Dec. 2002.

[2] A. knowledge network. (2017) “Autocad INTERSECT (command)”. [Online].

Available: http://knowledge.autodesk.com (Retrieved on 10/19/2017).

[3] F. Feito, C. Ogayar, R. Segura, and M. Rivero, “Fast and accurate evaluation

of regularized boolean operations on triangulated solids,” Comput. Des.,

vol. 45, no. 3, pp. 705 – 716, Mar. 2013.

[4] H. Edelsbrunner and E. P. Mücke, “Simulation of simplicity: a technique to

cope with degenerate cases in geometric algorithms,” ACM Trans. Graph.,

vol. 9, no. 1, pp. 66–104, Jan. 1990.

[5] E. S. Agency. (2015) “Ariane 501 inquiry board report”. Paris. [Online].

Available: http://ravel.esrin.esa.it/docs/esa-x-1819eng.pdf (Retrieved on

06/15/2015).

[6] R. Skeel, “Roundoff error and the patriot missile,” SIAM News, vol. 25, no. 4,

p. 11, July 1992.

[7] M. AKANBI, “Propagation of errors in numerical computations,” in Decision

Making Systems Business Administration: Proc. MS’12 Int. Conf., vol. 8.

World Scientific, 2013, p. 475.

[8] L. Kettner, K. Mehlhorn, S. Pion, S. Schirra, and C. K. Yap, “Classroom

examples of robustness problems in geometric computations,” Comput.

Geom., vol. 40, no. 1, pp. 61–78, May 2008.

[9] J. D. Hobby, “Practical segment intersection with finite precision output,”

Comput. Geom., vol. 13, no. 4, pp. 199–214, Oct. 1999.

146

147

[10] M. de Berg, D. Halperin, and M. Overmars, “An intersection-sensitive

algorithm for snap rounding,” Computational Geometry, vol. 36, no. 3, pp.

159–165, Apr. 2007.

[11] J. Hershberger, “Stable snap rounding,” Comput. Geom., vol. 46, no. 4, pp.

403–416, May 2013.

[12] A. Belussi, S. Migliorini, M. Negri, and G. Pelagatti, “Snap rounding with

restore: An algorithm for producing robust geometric datasets,” ACM Trans.

Spatial Algorithms and Syst., vol. 2, no. 1, pp. 1:1–1:36, Mar. 2016.

[13] K. Mehlhorn, R. Osbild, and M. Sagraloff, “Reliable and efficient

computational geometry via controlled perturbation,” in Proc. 33rd Int. Conf.

Automata, Languages and Programming - Volume Part I, ser. ICALP’06.

Berlin, Heidelberg: Springer-Verlag, July 2006, pp. 299–310.

[14] J.-D. Boissonnat and F. P. Preparata, “Robust plane sweep for intersecting

segments,” SIAM J. on Comput., vol. 29, no. 5, pp. 1401–1421, Mar. 2000.

[15] J. R. Shewchuk, “Adaptive precision floatingpoint arithmetic and fast robust

geometric predicates,” Discret. & Comput. Geom., vol. 18, no. 3, pp. 305–363,

Oct. 1997.

[16] C. Li, “Exact geometric computation: theory and applications,” Ph.D.

dissertation, Dept. Comp. Sci., Courant Institute - New York Univ., Jan. 2001.

[17] C. Li, S. Pion, and C. K. Yap, “Recent progress in exact geometric

computation,” The J. Log. Algebr. Program., vol. 64, no. 1, pp. 85–111, July

2005.

[18] C. M. Hoffman, “The problems of accuracy and robustness in geometric

computation,” Comput., vol. 22, no. 3, pp. 31–40, Mar. 1989.

[19] C. K. Yap, “Towards exact geometric computation,” Comput. Geom., vol. 7,

no. 12, pp. 3 – 23, Jan. 1997.

148

[20] S. Pion and A. Fabri, “A generic lazy evaluation scheme for exact geometric

computations,” Sci. Comput. Program., vol. 76, no. 4, pp. 307 – 323, Apr.

2011.

[21] The CGAL Project, CGAL User and Reference Manual, 4.8 ed., 2016,

http://doc.cgal.org/4.8/Manual/packages.html (Retrieved on 10/19/2017).

[22] B. Smith. (2010) “Baarle-Nassau / Baarle-Hertog”. [Online]. Available:

http://ontology.buffalo.edu/smith/baarle.htm (Retrieved on 10/19/2017).

[23] Wikipedia. (2017) “Enclave and exclave — Wikipedia, the free encyclopedia”.

[Online]. Available: https://en.wikipedia.org/wiki/Enclave and exclave

(Retrieved on 10/16/2017).

[24] C. J. Ogayar, R. J. Segura, and F. R. Feito, “Point in solid strategies,”

Comput. & Graph., vol. 29, no. 4, pp. 616 – 624, Aug. 2005.

[25] W. Wang, J. Li, H. Sun, and E. Wu, “Layer-based representation of

polyhedrons for point containment tests,” IEEE Trans. Vis. Comput.

Graphics, vol. 14, no. 1, pp. 73–83, Jan 2008.

[26] J. O’Rourke, Computational Geometry in C, 2nd ed. New York, NY, USA:

Cambridge Univ. Press, 1998.

[27] W. R. Franklin. (2006) “Pnpoly-point inclusion in polygon test”. [Online].

Available: http:

//www.ecse.rpi.edu/Homepages/wrf/Research/Short\ Notes/pnpoly.html

(Retrieved on 10/19/2017).

[28] F. R. Feito and J. C. Torres, “Inclusion test for general polyhedra,” Comput.

& Graph., vol. 21, no. 1, pp. 23–30, Jan. 1997.

[29] J. Liu, Y. Q. Chen, J. M. Maisog, and G. Luta, “A new point containment

test algorithm based on preprocessing and determining triangles,” Comput.

Aided Des., vol. 42, no. 12, pp. 1143–1150, Dec. 2010.

149

[30] P. van Oosterom, “An R-tree based map-overlay algorithm,” in Proc.

EGIS/MARI, Paris, 1994, pp. 318–327.

[31] A. U. Frank, “Overlay processing in spatial information systems,” in Proc.

Autocarto 8, 1987, pp. 12–31.

[32] J. Nievergelt and F. P. Preparata, “Plane-sweep algorithms for intersecting

geometric figures,” Commun. ACM, vol. 25, no. 10, pp. 739–747, Oct. 1982.

[33] W. R. Franklin, V. Sivaswami, D. Sun, M. Kankanhalli, and

C. Narayanaswami, “Calculating the area of overlaid polygons without

constructing the overlay,” Cartogr. and Geogr. Inf. Syst., pp. 81–89, Apr.

1994.

[34] M. de Berg, H. Haverkort, S. Thite, and L. Toma, “I/o-efficient map overlay

and point location in low-density subdivisions,” in Algorithms and

Computation, ser. Lecture Notes in Computer Science, T. Tokuyama, Ed.

Berlin, Germany: Springer Berlin Heidelberg, Dec. 2007, vol. 4835, pp.

500–511.

[35] M. van Kreveld, “Digital elevation models: overview and selected TIN

algorithms,” in Course Notes for the CISM Advanced School on Algorithmic

foundations of Geographical Information Systems. Dept. Computer Science

Utrecht University, the Netherlands, Aug. 1996,

http://www.cs.uu.nl/docs/vakken/gis/TINalg.pdf (Retrieved on 06/23/2015).

[36] W. R. Franklin, “Calculating map overlay polygon’ areas without explicitly

calculating the polygons — implementation,” in 4th Int. Symp. Spatial Data

Handling, Zürich, 23-27 July 1990, pp. 151–160.

[37] W. R. Franklin, N. Chandrasekhar, M. Kankanhalli, V. Akman, and P. Y.

Wu, “Efficient geometric operations for CAD,” in Geometric Modeling for

Product Engineering, M. J. Wozny, J. U. Turner, and K. Preiss, Eds.

Elsevier Science Publishers B.V. (North-Holland), 1990, pp. 485–498, selected

150

and expanded papers from the IFIP WG 5.2/NSF Working Conference on

Geometric Modeling, Rensselaerville, USA, 18-22 September 1988.

[38] W. R. Franklin, M. Kankanhalli, C. Narayanaswami, and V. Akman,

“Efficient intersection calculations in large databases,” in Int. Cartographic

Association 14th World Conf., Budapest, Aug. 1989, pp. A–62 – A–63.

[39] W. R. Franklin, M. Kankanhalli, and C. Narayanaswami, “Efficient primitive

geometric operations on large databases,” in Proc. Nat. Conf. Challenge

1990s GIS Geogr. Inf. Syst. Ottawa: Canadian Institute of Surveying and

Mapping, Feb. 1989, pp. 1247–1256.

[40] W. R. Franklin, “Computer systems and low level data structures for GIS,” in

GIS: Principles and Practice, D. Maguire, D. Rhind, and M. Goodchild, Eds.

London UK: Longman Higher Education and Reference, 1991, vol. 1, pp.

215–225.

[41] W. R. Franklin and V. Sivaswami, “OVERPROP — calculating areas of map

overlay polygons without calculating the overlay,” in Second Nat. Conf.

Geogr. Inform. Syst., Ottawa, Mar. 1990, pp. 1646–1654.

[42] J. W. van Roessel, “A new approach to plane-sweep overlay: Topological

structuring and line-segment classification,” Cartogr. Geogr. Inf. Syst.,

vol. 18, pp. 49–67, 1991.

[43] U. Finke and K. Hinrichs, “A spatial data model and a topological sweep

algorithm for map overlay,” in Advances in Spatial Databases, ser. Lecture

Notes in Computer Science, D. Abel and B. Chin Ooi, Eds. Berlin,

Germany: Springer Berlin Heidelberg, Jun. 1993, vol. 692, pp. 162–177.

[44] H. P. Kriegel, T. Brinkhoff, and R. Schneider, The combination of spatial

access methods and computational geometry in geographic database systems.

Berlin, Heidelberg: Springer Berlin Heidelberg, Aug. 1991, pp. 5–21.

[45] S. Audet, C. Albertsson, M. Murase, and A. Asahara, “Robust and efficient

polygon overlay on parallel stream processors,” in Proc. 21st ACM

151

SIGSPATIAL Int. Conf. Advances Geographic Information Systems, ser.

SIGSPATIAL’13. New York, NY, USA: ACM, Nov. 2013, pp. 304–313.

[46] T. Brinkhoff, H. Kriegel, and B. Seeger, “Efficient processing of spatial joins

using r-trees,” in Proc. 1993 ACM SIGMOD Int. Conf. Management Data,

ser. SIGMOD ’93. New York, NY, USA: ACM, 1993, pp. 237–246.

[47] H. Samet and R. E. Webber, “Storing a collection of polygons using

quadtrees,” ACM Trans. Graph., vol. 4, no. 3, pp. 182–222, July 1985.

[48] F. W. Burton, V. J. Kollias, and J. G. Kollias, “A general pascal program for

map overlay of quadtrees and related problems,” The Comput. J., vol. 30,

no. 4, pp. 355–361, Jan. 1987.

[49] W. R. Franklin, “A linear time exact hidden surface algorithm,” in Tutorial:

Computer Graphics: Image Synthesis, K. I. Joy et al., Eds., 1988, pp. 218–224.

[50] W. R. Franklin and V. Akman, “Adaptive grid for polyhedral visibility in

object space, an implementation,” Comput. J., vol. 31, no. 1, pp. 56–60, Feb.

1988.

[51] W. R. Franklin, “A linear time exact hidden surface algorithm,” Comput.

Graph., vol. 14, no. 3, pp. 117–123, 1980.

[52] M. Kankanhalli, “Techniques for parallel geometric computations,” Ph.D.

dissertation, Elect., Comput., and Syst. Eng. Dept., Rensselaer Polytech.

Inst., Troy, NY, Oct. 1990.

[53] C. Narayanaswami, “Parallel processing for geometric applications,” Ph.D.

dissertation, Elect., Comput., and Syst. Eng. Dept., Rensselaer Polytech.

Inst., Troy, NY, 1991.

[54] C. Narayanaswami and W. R. Franklin, “Determination of mass properties of

polygonal CSG objects in parallel,” in Proc. Symp. Solid Modeling Found.

CAD/CAM Applicat., J. Turner, Ed. ACM/SIGGRAPH, 5–7 June 1991, pp.

279–288.

152

[55] ——, “Determination of mass properties of polygonal CSG objects in

parallel,” Internat. J. Comput. Geom. Appl., vol. 1, no. 4, pp. 381–403, 1991.

[56] W. R. Franklin and M. Kankanhalli, “Parallel object-space hidden surface

removal,” in Proc. SIGGRAPH’90, vol. 24, Aug. 1990, pp. 87–94.

[57] P. Y. F. Wu, “Polygon overlay in prolog,” Ph.D. dissertation, Elect.,

Comput., and Syst. Eng. Dept., Rensselaer Polytech. Inst., Troy, NY, 1987.

[58] P. Y. Wu and W. R. Franklin, “A logic programming approach to cartographic

map overlay,” J. Comput. Intelligence, vol. 6, no. 2, pp. 61–70, May 1990.

[59] D. Pavić, M. Campen, and L. Kobbelt, “Hybrid booleans,” Comput. Graph.

Forum, vol. 29, no. 1, pp. 75–87, Jan. 2010. [Online]. Available:

http://dx.doi.org/10.1111/j.1467-8659.2009.01545.x

[60] W. R. Franklin, “Efficient polyhedron intersection and union,” in Proc.

Graphics Interface ’82, ser. GI ’82. Toronto, Ontario, Canada: National

Research Council of Canada, May 1982, pp. 73–80.

[61] G. Mei and J. C. Tipper, “Simple and robust boolean operations for

triangulated surfaces,” The Comput. Res. Repos., vol. abs/1308.4434, 2013.

[Online]. Available: http://arxiv.org/abs/1308.4434 (Retrieved on

10/19/2017).

[62] J. Yongbin, W. Liguan, B. Lin, and C. Jianhong, “Boolean operations on

polygonal meshes using obb trees,” in Proc. Int. Conf. Environmental Science

and Information Application Technology 2009, vol. 1. IEEE, 2009, pp.

619–622.

[63] M. Douze, J.-S. Franco, and B. Raffin, “Quickcsg: Arbitrary and faster

boolean combinations of n solids,” Ph.D. dissertation, Inria-Research Centre,

Grenoble–Rhône-Alpes, France, 2015.

[64] Q. Zhou, E. Grinspun, D. Zorin, and A. Jacobson, “Mesh arrangements for

solid geometry,” ACM Trans. Graph., vol. 35, no. 4, pp. 39:1–39:15, July 2016.

153

[65] P. Hachenberger, L. Kettner, and K. Mehlhorn, “Boolean operations on 3d

selective nef complexes: Data structure, algorithms, optimized implementation

and experiments,” Comupt. Geom., vol. 38, no. 1, pp. 64–99, Sept. 2007.

[66] The CGAL Project, Cgal, Computational Geometry Algorithms Library,

2015, http://www.cgal.org (Retrieved on 10/19/2017).

[67] Oslandia and IGN, SFCGAL, 2017, http://www.sfcgal.org/ (Retrieved on

10/19/2017).

[68] C. Leconte, H. Barki, and F. Dupont, “Exact and Efficient Booleans for

Polyhedra,” LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude

Bernard Lyon 1/Université Lumière Lyon 2/École Centrale de Lyon, Tech.

Rep. RR-LIRIS-2010-018, Oct. 2010. [Online]. Available:

http://liris.cnrs.fr/publis/?id=4883 (Retrieved on 10/19/2017).

[69] G. Bernstein and D. Fussell, “Fast, exact, linear booleans,” Eurographics

Symp. on Geom. Process., vol. 28, no. 5, pp. 1269–1278, 2009.

[70] A. Jacobson, D. Panozzo et al., libigl: A Simple C++ Geometry Processing

Library, 2016, http://libigl.github.io/libigl/ (Retrieved on 10/18/2017).

[71] C. K. Yap, “Symbolic treatment of geometric degeneracies,” in System

Modelling and Optimization: Proc. 13th IFIP Conference, M. Iri and

K. Yajima, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, pp.

348–358.

[72] D. E. Knuth, Surreal Numbers: How Two Ex-students Turned on to Pure

Mathematics and Found Total Happiness: A Mathematical Novelette.

Reading, MA, USA: Addison-Wesley, 1974.

[73] W. R. Franklin, D. Sun, M.-C. Zhou, and P. Y. Wu, “Uniform grids: A

technique for intersection detection on serial and parallel machines,” in Proc.

Auto Carto 9: Ninth Int. Symp. Computer-Assisted Cartography, Baltimore,

Maryland, Apr. 1989, pp. 100–109.

154

[74] V. Akman, W. R. Franklin, M. Kankanhalli, and C. Narayanaswami,

“Geometric computing and the uniform grid data technique,” Comput. Aided

Des., vol. 21, no. 7, pp. 410–420, Sept. 1989.

[75] L. Cucu, M. Dragan, V. Negru, and D. Mangu, “Three dimensional Delaunay

triangulation using an uniform grid,” in 11th European Workshop

Computational Geometry. Linz, Austria: Universität Linz, 1995, pp. 21–23.

[76] W. R. Franklin, N. Chandrasekhar, M. Kankanhalli, M. Seshan, and

V. Akman, “Efficiency of uniform grids for intersection detection on serial and

parallel machines,” in New Trends in Computer Graphics (Proc. Computer

Graphics Int.’88), N. Magnenat-Thalmann and D. Thalmann, Eds. Berlin,

Germany: Springer-Verlag, 1988, pp. 288–297.

[77] T. Granlund and the GMP development team, GNU MP: The GNU Multiple

Precision Arithmetic Library, 6th ed., 2014, http://gmplib.org/ (Retrieved on

10/19/2017).

[78] Intel. (2016) “Intel Turbo Boost technology 2.0”. [Online]. Available:

http://www.intel.com/content/www/us/en/architecture-and-technology/

turbo-boost/turbo-boost-technology.html (Retrieved on 10/19/2017).

[79] GRASS Development Team, Geographic Resources Analysis Support System

(GRASS GIS) Software, Open Source Geospatial Foundation, 2012,

http://grass.osgeo.org (Retrieved on 10/19/2017).

[80] S. Hopkins and R. G. Healey, “A parallel implementation of Franklin’s

uniform grid technique for line intersection detection on a large transputer

array,” in 4th Int. Symp. Spatial Data Handling, K. Brassel and H. Kishimoto,

Eds., Zürich, 23-27 July 1990, pp. 95–104.

[81] J. A. Baerentzen and H. Aanaes, “Signed distance computation using the

angle weighted pseudonormal,” IEEE Trans. Vis. Comput. Graphics, vol. 11,

no. 3, pp. 243–253, May 2005.

155

[82] The Stanford 3D Scanning Repository. (2016) “The stanford 3D scanning

repository”. [Online]. Available:

http://graphics.stanford.edu/data/3Dscanrep/ (Retrieved on 10/19/2017).

[83] GIT. (2016) “GIT large geometric model archive”. [Online]. Available:

http://www.cc.gatech.edu/projects/large models/ (Retrieved on 10/19/2017).

[84] AIM@SHAPE-VISIONAIR. (2016) “AIM@SHAPE-VISIONAIR Shape

Repository”. [Online]. Available: http://visionair.ge.imati.cnr.it (Retrieved on

10/19/2017).

[85] R. J. Segura and F. R. Feito, “Algorithms to test ray-triangle intersection.

comparative study,” in The 9-th Int. Conf. Central Europe Comput. Graph.,

Visualization Comput. Vision’2001, WSCG 2001, 2001, pp. 76–81.

[86] X. Jiang and H. Bunke, “An optimal algorithm for extracting the regions of a

plane graph,” Pattern Recognit. Lett., vol. 14, no. 7, pp. 553 – 558, July 1993.

[87] D. Eberly. (2002) “Triangulation by ear clipping”. [Online]. Available: https:

//www.geometrictools.com/Documentation/TriangulationByEarClipping.pdf

(Retrieved on 11/29/2017).

[88] S. V. G. Magalhes, M. V. A. Andrade, W. R. Franklin, and W. Li, “Pinmesh -

fast and exact 3d point location queries using a uniform grid,” Comput. &

Graph., vol. 58, pp. 1 – 11, Aug. 2016.

[89] S. Ghemawat and P. Menage, TCMalloc: Thread-caching Malloc, 2017,

http://goog-perftools.sourceforge.net/doc/tcmalloc.html (Retrieved on

10/19/2017).

[90] Q. Zhou and A. Jacobson, “Thingi10k: A dataset of 10,000 3d-printing

models,” The Comput. Res. Repos., vol. abs/1605.04797, May 2016,

http://arxiv.org/abs/1605.04797 (Retrieved on 10/19/2017).

[91] H. Barki, G. Guennebaud, and S. Foufou, “Exact, robust, and efficient

regularized booleans on general 3d meshes,” Comput. & Mathematics with

Applications, vol. 70, no. 6, pp. 1235–1254, Sept. 2015.

156

[92] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh generator

with built-in pre-and post-processing facilities,” Int. J. for Numerical Methods

in Eng., vol. 79, no. 11, pp. 1309–1331, May 2009.

[93] P. Cignoni, C. Rocchini, and R. Scopigno, “Metro: Measuring error on

simplified surfaces,” Comput. Graph. Forum, vol. 17, no. 2, pp. 167–174, June

1998. [Online]. Available: http://dx.doi.org/10.1111/1467-8659.00236

