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Abstract

We present NearptD, a very fast parallel nearest neigh-
bor algorithm and implementation, which has processed
107 points in E6 and 184 · 106 points in E3. It uses 1/5
the space and as little as 1/100 the preprocessing time
FLANN (a well-known approximate nearest neighbor
program). Up to E4, its query time is also faster, by up
to a factor of 100. NearptD uses Nvidia Thrust and
CUDA in C++ to perform parallel preprocessing and
querying of large point cloud data. Nearest neighbor
searching is needed by many applications, such as col-
lision detection, computer vision or machine learning.
This implementation is an extension of the Nearpt3 al-
gorithm performed in parallel on the GPU for a variable
number of dimensions. NearptD shows that a uni-
form grid can outperform a kd-tree for preprocessing
and searching large datasets.

1 Introduction

Nearest neighbor searching is an operation performed
in many applications, in fields such as computer graph-
ics, computer vision, statistics and machine learning.
Nearest neighbor searching typically consists of prepro-
cessing the data into a search structure to reduce the
time needed for future queries on that dataset. A pop-
ular data structure for preprocessing spatial data is the
kd-tree[4]. Kd-trees cost Θ(NlogN) time to preprocess
N fixed points and an average Θ(logN) time per query.

NearptD uses a uniform grid[1], which stores the
fixed points in a flat search structure. This reduces the
time and space complexity of kd-trees. Because the uni-
form grid used by NearptD is not a hierarchical data
structure, the data can be preprocessed, with the appro-
priate choice of grid size, into a grid with a cost of Θ(N).
Because querying against the uniform grid does not in-
volve traversing a tree structure, NearptD can obtain
expected query times of Θ(1). It is possible for adver-
sarial input to increase query times to Θ(N), but these
inputs are not often found in real world datasets. Some
of our test datasets have very unevenly spaced data, but
NearptD still processed them quickly. These types of
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input would still induce many levels in a hierarchical
data structure, which would slow them as well.

Exact nearest neighbor searching can be an expensive
operation. It often requires continuing to search after
one near neighbor has been found, to ensure that it is,
in fact, the nearest neighbor. One method to increase
the performance of many data structures is to perform
approximate nearest neighbor search instead of exact[6].
This reduces the time required to ensure the validity
of the output, only ensuring that it is ”good enough”
for the application. However, NearptD shows that it
can perform exact nearest neighbor searching and still
outperform approximate searching.

2 Related Work

This work is mainly based on Nearpt3[2], a nearest
neighbor search algorithm which uses a uniform grid
in 3 dimensions. NearptD extends Nearpt3 to allow
the flexibility of any number of dimensions to be used,
though practicality limits this to 6 dimensions.

A widely used nearest neighbor search library is
the Fast Library for Approximate Nearest Neighbors
(FLANN)[3], a part of the OpenCV library. FLANN
is an approximate nearest neighbor library that utilizes
kd-trees and k-means trees[5] to preprocess data into a
search tree. The Computational Geometry Algorithms
Library (CGAL)[7] also offers both approximate and ex-
act nearest neighbor searching using kd-trees.

3 Parallel Programming in Geometry

NearptD executes in parallel on Nvidia GPUs. Per-
haps 1/3 of all PCs have them, intended to acceler-
ate graphics. However, they can also be used for gen-
eral parallel programming. The low-level access is via
CUDA, a small set of extensions to C++ together with a
library. Higher level APIs like Thrust add more power-
ful tools like a functional language paradigm, at the cost
of less low-level control. GPUs provide so much com-
puting power that geometric algorithms that are not
parallelizable are quite possibly obsolete. The challenge
is that parallelizable algorithms require simple regular
data structures and algorithms.

For parallel programming, multicore CPUs present
an attractive alternative to GPUs. All modern pow-
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erful CPUs are multicore, even those in smart phones.
The two types of parallel hardware have different capa-
bilities. Thrust can also be compiled to use multicore
CPUs, so that many algorithms can use either.

4 Algorithm

4.1 Antepreprocess

As described later, the query step will spiral out from
the cell containing the query point.

A table of cells, called the spiral order table, contain-
ing the order in which to spiral out, cell is computed
before preprocessing the data. This table does not de-
pend on the data. It also contains the stop cell, which
says many more cells to query after the first cell contain-
ing a fixed point is found. This is to ensure the nearest
neighbor is, in fact, found, because a later cell in the
spiral order might contain a closer point than the first
point found. The spiral order table’s size in the GPU
memory depends only on the dimensionality of the data,
shown in Table 1. The table is computed as follows.

Dimensions Memory
2 8MB
3 10MB
4 12MB
d (2d+ 4)MB

Table 1: GPU memory usage of cells array.

1. Generate coordinates (x1, x2, . . . , xd) for all grid
cells such that 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd ≤ R for
some R, calculated to ensure the total number of
cells will be less than 220.

2. Sort coordinates by
√
x12 + x22 + . . .+ xd2

3. For each cell, c, find its stop cell, whose closest point
to the origin is at least as close as the farthest point
in c.

The spiral order table can be computed by the pro-
grammer while developing NearptD, and distributed
in a file to be read at run time.

4.2 Preprocess

The uniform grid will contain G cells in each dimension,
for a total of Gd cells, where d is the dimensionality
of the data. G is called the grid’s resolution. Before
preprocessing the data, G must be determined. We use
G = Gr

d
√
Nf , where Nf is the number of fixed points,

and Gr is a scaling factor, usually 0.5 ≤ Gr ≤ 3, though
the ideal factor is another possible area of research. As
Gr varies, parts of NearptD run faster, and others
more slowly, so that the total time varies relatively little

even as Gr varies a factor of two away from its optimum.
However, larger values of Gr do increase the memory
footprint.

Next, three arrays are allocated, as follows.

1. cells, an array of size Nf , to contain pointers to the
points in each cell,

2. base, an array of size Gd + 1 for the indices of the
start of each cell within cells, so that the j-th point
of the i-th cell is point # cells[base[i]+j], and

3. index, a temporary array of size Nf allocated to
preprocess the points, and discarded afterwards.

Preprocessing the data into a uniform grid is done on
the GPU in parallel using these three arrays, as follows.

1. Store a sequence from 0 to Nf in index, to maintain
the initial order of the array.

2. Calculate the ID of the cell that each fixed point
belongs to, and store it in cells.

3. Sort cells and index based on the calculated IDs,
to group points together by cell.

4. Calculate the index of the start of each cell, and
store it in base.

5. Scan across each cell to calculate the number of
points in each cell, stored in cells.

6. Resort cells by the original index array, to restore
the original order of the points.

7. Transform the index array to contain the offset of
each point within its cell, calculated from the cells
and base arrays.

8. Fill cells with a sequence from 0 to Nf to keep
track of the order of the array.

9. Sort index and cells by the offset of each point.

10. cells now contains the index of each point, sorted
by their position in the grid.

If only the points’ coordinates are relevant, and not,
say, their location in some other data structure, then
cells could contain the points’ coordinates themselves
instead of pointers. In machine-level programming, this
is called immediate mode. The benefits are decreased
memory use and increased locality of memory reference.
On either CPUs or GPUs, that can reduce memory ac-
cess times by reducing cache misses.
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4.3 Query

There are three possible types of query that can be per-
formed for a given query point, q, denoted as the fast
case, the slow case, and the exhaustive case. A fast case
query is performed if c, the cell containing q, contains at
least one fixed point. If c is empty, a slow case query is
performed, spiraling out from c, checking if any nearby
cells contain fixed points for querying against. If the
slow case query fails, exhaustive querying is performed
to query against every fixed point.

This implementation supports querying many points
at once, which is performed in parallel on the GPU,
returning a list of the index of the closest fixed point
for each query point, as well as single point queries. In
more detail:

1. Calculate the number of fixed points in the cell con-
taining each query point.

2. For all queries that contain at least one fixed point
in their cell, perform a fast case query.

3. For all queries that don’t contain a fixed point in
their cell, perform a slow case query.

4. If the slow case query failed to find a fixed point,
perform an exhaustive query.

4.3.1 Fast Case Query

This query is only performed if there are fixed points in
c. Each point in the query cell is tested and the closest
fixed point, f , is found. It is possible, however, that a
neighboring cell could contain a point closer to q than
f , if, for instance, q was near a wall of c. So, calculate
the nearby cells that could contain a point closer than
f , and search them for the closest fixed point.

4.3.2 Slow Case Query

If c does not contain any points, the next step is to be-
gin searching around c for cells that may contain points.
This is done by using the spiral order table computed
in the antepreprocessing step to spiral out from c. For
each cell in the table, we derive other reflected and ro-
tated cells. For d dimensional data, there are up to
2dd! possible reflections and permutations, although if
some indices are zeros or repeated values, this number
can be smaller. These could be pre-computed in the
antepreprocessing stage, but this would require much
more fixed memory. If a fixed point is found in one of
these cells, we continue spiraling out until the stop cell
is reached, ensuring that the closest point is found.

4.3.3 Exhaustive Query

Exhaustive queries are the worst case query performed
if neither c nor any cells near c contain a fixed point.

This is very rare, not happening once in any of the real
3D datasets that we tested. However an adversary could
generate such a case. We exhaustively query by linearly
searching all the fixed points, in parallel on the GPU.

5 Performance

All tests were run on an Intel i7-5820k with 32 GB of
DDR4 memory and a Nvidia GTX 980Ti with 6GB of
GDDR5 memory.

NearptD was implemented using Thrust 1.8.2 in
C++ with CUDA 7.5, compiled using nvcc and clang++
3.5 with level 3 optimization. (Thrust is an efficient API
on top of C++ and CUDA that adds a functional pro-
gramming paradigm.) For uniform datasets, a Gr = 0.5
was used, and for all other datasets Gr = 1.0.

Nearpt3 was compiled using clang++ 3.5 with level
3 optimization, using the same scheme to choose Gr as
NearptD.

FLANN was compiled using clang++ 3.5 with level 3
optimization, preprocessing the data into a kd-tree with
default parameters and performing a KNN search with
default search parameters and k = 1.

The following datasets were used as real world com-
parisons of NearptD, Nearpt3 and FLANN in 3 di-
mensions. We are grateful to these projects for kindly
making this data available.

• uniXXX : A uniformly and independently dis-
tributed set of 104 to 108 random points.

• bunny (Nf = 35, 947): Stanford University Com-
puter Graphics Laboratory[9].

• hand (Nf = 327, 323): Clemson’s Stereolithogra-
phy Archive, via Georgia Tech[10].

• dragon (Nf = 437, 645): Brian Curless, via Stan-
ford and Georgia Tech.

• bone6 (Nf = 569, 636): The Visible Human
Project, and William E. Lorensen, via Georgia
Tech.

• blade (Nf = 882, 954): Visualization Toolkit
(VTK), via Georgia Tech.

• powerplant (Nf = 5, 423, 053): The complete pow-
erplant from the University of North Carolina’s
UNC Chapel Hill Walkthru Project[11].

• david (Nf = 28, 168, 109), and

• stmatthew (Nf = 184, 098, 599): The Stanford Dig-
ital Michelangelo Project Archive[8].

NearptD has some fixed costs independent of data
size, mainly the antepreprocessing step to create the
cell search order necessary for slow case queries, as well
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Figure 1: Time to preprocess fixed points into a search
structure, not including I/O.

as overhead to run tasks on the GPU. For this reason,
smaller datasets can take longer than existing programs,
but on larger datasets, this cost is negligible. NearptD
exhibits an order of magnitude speedup over Nearpt3 on
larger datasets, and two orders of magnitude speedup
vs FLANN. Figure 1 shows that NearptD becomes
faster than both FLANN and Nearpt3 for preprocess-
ing datasets of at least 106 points, with an order of
magnitude speedup as the number of points increases.

Arguably the antepreprocessing costs should not be
included any more than the compilation costs, since
both are incurred only once, not once per dataset.
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Figure 2: Per point time to preprocess fixed points into
a search structure, not including I/O.

Figure 2 compares the time per point for each pro-
gram to preprocess the fixed points into their respective
search structures, and we see that NearptD benefits
from its parallelism more on larger datasets. FLANN
averages roughly 753ns per fixed point, and Nearpt3
averages around 95ns per fixed point. NearptD can

take up to 2.5µs per fixed point for smaller datasets, but
preprocesses stmatthew in just 3.5ns per fixed point.
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Figure 3: Time to complete 104 queries sampled from
the fixed distribution.

To compare query times, each dataset had 104 points
sampled from it to use as query points, with the rest
preprocessed into a search structure. Figure 3 shows
that as the number of fixed points increases, NearptD
becomes faster than either existing program. For small
datasets, it does not demonstrate any speedup, likely
due to the GPU overheads necessary to compute these
queries. Even for extremely adversarial data, such as
the powerplant dataset (the large spike in Figure 3 at 5
million points), where 98% of fixed points are contained
within one cell, NearptD still performs just well as
FLANN. These results used an unoptimized grid reso-
lution, however, as doubling the grid resolution reduces
query time by 3 times, although it increases the memory
usage.

The powerplant dataset is important because it dis-
proves the notion that an adaptive dataset like the kd-
tree will process uneven data better than the uniform
grid. NearptD’s query time is more than ten times
slower than for a uniformly distributed dataset of the
same size. FLANN’s query time is also much slower,
though by a smaller factor. However, NearptD started
out faster, and the end result is that NearptD and
FLANN have about the same query time here, with
NearptD being a little faster.

There are two reasons. On such uneven data, the kd-
tree has many levels and more of its cells are empty.
These cells are allocated on the memory heap, whose
time cost is superlinear (the more objects on the heap,
the more time that allocating and freeing each object
costs). Each query has to walk down the deep tree. In
contrast, with the uniform grid, empty cells are almost
free to allocate, since only the complete grid is allocated,
and that in one step. Querying a grid with mostly empty
cells is cheaper, the only unknown is how far we need
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to spiral out.
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Figure 4: Time to complete queries on 108 fixed points
vs number of queries.

Figure 4 shows the speedup NearptD has as the
number of query points increases, with 108 fixed points.
FLANN and Nearpt3 take 28.9µs and 1.4µs per query
point, respectively, while NearptD takes 1.0µs per
query on small numbers of queries and 0.15µs per query
on larger numbers of queries.
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Figure 5: Time to preprocess fixed points into a search
structure for varying number of dimensions. The dark-
est line is 6 dimensional data, with lighter colors indi-
cating lower dimensions, down to 2.

For preprocessing fixed points, NearptD exhibits
over two orders of magnitude speedup vs FLANN, even
for higher dimensional data, as shown in Figure 5. At
5 and 6 dimensions, the 108 dataset did not fit into the
GPU memory, so it is not shown. Preprocessing points
into a uniform grid is largely independent of the dimen-
sionality of the data, for both FLANN and NearptD.

Concerning the limited size of the GPU’s memory:
There will always be datasets too big to fit into the

available memory. However, that occurs less often than
is generally realized. Later in 2016, Nvidia GPUs with
32GB of memory are expected to become available. In
addition, the bandwidth between the GPU and the CPU
is increasing, so that the cost of the GPU accessing the
CPU memory is shrinking. Indeed, one problem with
our research into designing parallel algorithms on GPUs
today, to process the large datasets expected in the fu-
ture, is finding large real test datasets today.
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Figure 6: Time to perform queries on 107 fixed points
for varying number of dimensions. The darkest line is
6 dimensional data, with lighter colors indicating lower
dimensions, down to 2.

Figure 6 shows the time to perform queries against
107 fixed points for dimensions 2 to 6. NearptD ex-
hibits an order of magnitude slowdown in query time
for each extra dimension. While NearptD is signifi-
cantly faster than FLANN in 2 to 4 dimensions, it per-
forms worse as dimensionality increases. Query times
for FLANN are completely independent of the dimen-
sionality of the data.

6 Space Complexity

Nf Fixed NearptD Nearpt3 FLANN
1M 5.7 115.9/137.7 36.9 263.8

10M 57.2 173.3/225.6 156.8 2594.1
100M 572.2 682.4/2223.6 1358.4 25897.6

Table 2: Comparison of total memory footprint of dif-
ferent programs, in MB, as well as the size of the fixed
points. NearptD values are given as CPU/GPU mem-
ory usage.

Besides speed, another benefit of a uniform grid is
the relatively small memory footprint to maintain the
search structure. As the number of fixed points grows,
almost the entirety of host memory used by NearptD
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is dedicated to simply holding the fixed points. The uni-
form grid is constructed entirely on the GPU, as well as
a copy of the fixed points. FLANN requires an order of
magnitude more memory to hold the kd-tree in memory,
almost exceeding the amount of host memory available
in the largest test case.

7 Future Work

The main limiting factor for the data size NearptD
can handle is the memory of the GPU. While the largest
real world dataset, stmatthew, fits into the 6GB of mem-
ory on the test machine, higher dimensions can reduce
the effective maximum size of the data that can be pro-
cessed on the GPU. Although GPU memory is con-
stantly increasing, modifying the NearptD algorithm
to preprocess the data in chunks that could fit into GPU
memory would allow for arbitrarily large datasets to
be processed, especially in higher dimensions. Another
possible solution would be to utilize Unified Memory in
CUDA along with Thrust to process datasets too big to
fit into GPU memory, but this could lead to lower per-
formance with the high cost of moving large amounts of
data between the CPU and GPU. Extending NearptD
to utilize multiple GPUs could also help in processing
large datasets.

When the Thrust library implements C++11 variadic
templates for tuples, NearptD could be refactored to
implement some of the C++11 features and use variadic
templates, which would remove the need for template
specialization. This could reduce the compilation time
and make the code more straightforward.

NearptD could also be extended to a k nearest
neighbor search by simply extending the query scheme
to continue searching until the k nearest neighbors are
found. For fast case queries where the cell contains at
least k fixed points, this does not increase the running
time in any significant manner. If a cell is empty or
contains less than k points, a slow case queries could be
performed until k fixed points are found, falling back on
exhaustive querying only when necessary.

8 Conclusion

This paper presented NearptD as an improvement on
more common nearest neighbor libraries that utilize kd-
trees to preprocess data. The uniform grid used by
NearptD has lower time and space complexity com-
pared to traditional kd-trees and by utilizing the GPU,
NearptD exhibits an order of magnitude speedup for
larger datasets over existing libraries for both prepro-
cessing and querying. On a dataset with over 184 mil-
lion points, each point can be preprocessed into a search
structure in just 3.5ns. When performing 10 million
queries on 100 million points, queries completed in an

average of 0.15µs. NearptD shows that a non hierar-
chical search structure can enable exact nearest neigh-
bor searching to outperform even approximate searching
using kd-trees.

The broader lesson from NearptD is that, counter-
intuively, simple data structures work better to process
large datasets in parallel. We have other algorithms
that also demonstrate this. We intend to make this code
freely available for nonprofit research and education.
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