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ABSTRACT

A framework is presented for the parallelization of a set of commonly encountered 

geometric problems. It combines the use of the uniform grid technique, parallel 

sorting, and data partitioning for parallelization. For many problems, the use 

of these techniques leads to algorithms whose complexity is linear in the sizes of 

the input, output, and intermediate results. In average cases, the sizes of the 

intermediate results are linear in some metric of the input and output. The data 

structures used by these techniques are simple to build, regularize memory access 

patterns, and promote locality of memory references in the parallel machine.

The framework is used to develop parallel algorithms for determining the 

convex hull of a set of points in the plane, the intersections between a set of seg

ments in the plane, and the boundaries of the Boolean combinations of polygons 

and polyhedra. Approximate complexity analyses for the convex hull and Boolean 

combination algorithms are provided and compared with experimental results. The 

implementation on a shared-memory Sequent Balance 21000 shows speedups rang

ing from 9 to 12 with 15 processors. Close to linear speedups have been achieved 

in most phases of our algorithms. Implementation on the Intel iPSC Hypercube 

also shows respectable performance.
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CHAPTER 1 
INTRODUCTION

1.1 Motivation

The interactive nature of geometric applications and the large quantities of 

data involved make fast and efficient processing mandatory. However, it is be

coming evident that significant increases in speed due to advances in uniprocessor 

design technology alone will soon be impossible to achieve. Fortunately, the nature 

of many geometric applications makes parallel processing an attractive alternative.

Researchers in computer graphics have concentrated on building 

special-purpose parallel machines for increasing the speed of specific, yet common, 

graphics operations such as scan conversion of polygons and rendering complex 

3-dimensional scenes [3, 15, 22, 27, 33, 34, 35, 36, 45, 51, 58, 60, 70, 73, 75, 77, 78]. 

These algorithms operate in image-space and are often architecture-specific. They 

are useful mainly for purposes of visualization. These characteristics limit their use 

in general geometric applications. While visualization is an important application 

for which image-space results may be sufficient, there are many geometric appli

cations which need results in object-space precision. Moreover, these applications 

deal with many different issues whose requirements cannot all be met efficiently 

by a special-purpose parallel machine. Therefore, to obtain faster performance 

for these applications, parallel object-space algorithms for general-purpose parallel 

machines need to be developed.

Important theoretical advances have been made in developing object-space 

parallel geometric algorithms in Aggarwal et al. [1], Yap [81], Goodrich [37], Atallah 

and Goodrich [11], and Miller and Stout [55]. Though a few general paradigms 

have been identified, research in this area is still in its infancy and there is a huge 

1
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gap between the development of algorithms and their implementation. Many of the 

above algorithms use the more general Parallel-Random-Access-Memory (PRAM) 

models of parallel computation and ignore some of the practical considerations such 

as data organization, resource allocation, load balancing, bus contention, and inter

processor communication. They also often assume an impractically large number 

of processors. In practical situations, the above issues must be considered [14, 23, 

42]. One of the reasons for this gap between theory and practice is that while 

research in this area began in 1980, parallel machines such as the Sequent Balance 

21000, NCUBE, and Connection Machine have been commercially available only 

since 1985. Poor environments for software development on parallel machines have 

aggravated this problem.

As an indication of the importance of research in this direction, we note 

that four of the eleven problems used as benchmark problems to evaluate parallel 

architectures for the DARPA Architecture Workshop Benchmark Study of 1986 [17] 

were problems encountered in geometric applications.

Thus, the important motivating factors for this research are the following:

1. The need for efficient and fast processing of large amounts of geometric data. 

Parallel processing appears to be a promising solution.

2. The need for object-space algorithms whose functionality is complementary 

to that of image-space algorithms.

3. The dearth of parallel object-space geometric algorithms which are suffi

ciently practical to be implemented on the currently available parallel ma

chines.
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1.2 Objectives

Many geometric applications, such as Solid-Modelers, Computer-Aided-Design 

and Geographic-Information-Systems require practical and implement able parallel 

algorithms. It is necessary to develop a simple yet sufficiently general framework 

which can be used to design parallel algorithms for these applications.

Since algorithms for these applications are expected to handle large amounts 

of data efficiently, it is desirable that the complexities of the uniprocessor algo

rithms be linear in the size of the input and output. It is also desirable that the 

parallel versions of these algorithms achieve close to linear speedups.

There is a need to analyze the experimental performance of parallel geometric 

algorithms. The complexities of the various phases in an algorithm have to be 

studied and phases which could be potential bottlenecks need to be identified. 

Such results will also help in predicting the performance of the algorithm for larger 

data sets, and for more massively parallel machines.

This thesis examines the issues outlined above. The results presented in this 

thesis will be useful for developing parallel algorithms for a variety of applications 

in the above-mentioned areas.

1.3 Problem Statement

A framework is presented for developing parallel algorithms for a set of ge

ometric problems. This framework is used to design parallel algorithms for the 

planar convex hull problem, the determination of all the intersections of a set of 

segments lying in the plane, and the determination of the Boolean combinations 

of polygons and polyhedra.
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The above set of problems have been chosen for the following reasons:

1. They are fundamental low-level operations that are encountered in many 

geometric applications. For example, they are all frequently encountered in 

the interference detection problem.

2. They differ in intrinsic complexity and test the framework more thoroughly 

than any one of them would.

3. They deal with geometric entities of different dimensionalities.

4. They differ in the balance of emphasis on geometric and topological aspects.

Each of the algorithms developed above is implemented on actual parallel 

machines and their performance is analyzed. The implementations are intended 

for demonstration of the basic ideas and their practicality, and not for working 

commercial systems.

1.4 Thesis Organization

Chapter 2 presents the framework and the techniques that are used for de

veloping the parallel algorithms for the above-mentioned problems. The practical 

advantages of our techniques are identified and the suitability of different models 

of parallel computation for our algorithms is examined. A brief description of the 

parallel computers used for the implementation of our algorithms is also provided. 

Chapters 3-6 each deal with the development and analysis of one of the problems 

chosen for parallelization. In each of these chapters, the problem to be solved is 

defined, the previous solutions (if any) are briefly reviewed, and a description and 

analysis of the algorithm developed and implemented is given. Chapter 7 presents 

the contributions of this thesis, summarizes the results of our experimental inves

tigations, and discusses avenues for further research.



CHAPTER 2 
TECHNIQUES AND TOOLS

In a recent paper, Guibas and Stolfi [41] note that:

Among the tools of computational geometry there seems to be a small 

set of techniques and structures that have such a wide range of appli

cations that they deserve to be called fundamental, in the same sense 

that balanced binary trees and sorting are fundamental to combinato

rial algorithms in general.

A framework is proposed for the parallelization of commonly encountered 

geometric problems. It uses the combination of data-parallelism, the uniform grid 

technique, and parallel sorting. To use the framework, it is first necessary to 

decompose the algorithm into a set of data-parallel phases. These phases operate 

on the elements of a tuple-set and generate the elements of another tuple-set. The 

uniform grid technique is used to prune the sizes of these tuple-sets and to generate 

sub-tasks. Parallel sorting schemes are used to sort the elements of the tuple-sets 

when required. The practicality and simplicity of these ideas are demonstrated in 

Chapters 3 to 6.

The suitability of shared/distributed-memory, SIMD/MIMD parallel ma

chines, and pipelining/parallelism for the implementation of our algorithms is ex

amined. The ease of parallelization of geometric and topological aspects of our 

problems is considered.

The significant features of the Sequent Balance 21000 and the Intel iPSCl 

parallel machines that are used for implementation, are discussed. The practical 

difficulties encountered in using these parallel machines are also reported.

5
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2.1 Data Parallelism

Most graphics and geometric applications that justify parallelization deal 

with a large number of objects on which many common operations are performed. 

It is natural to attempt parallelization of these algorithms by distributing the 

vertices, edges, faces, or complete objects among the processors. This technique is 

known as data partitioning.

We demonstrate the application of this technique to geometric problems. In 

order to use this technique, the attributes of the tuple-sets on which the algorithm 

has to operate have to be identified. For example, a set of (cell, edge) tuples 

form a tuple-set. For parallelization, the elements of the tuple-sets are distributed 

among the processors. An element of the tuple-set is defined by a set of attributes. 

The attributes for the above example are cell and edge. The number of attributes 

needed to describe an element of the tuple-set is its arity. The number of tuples 

in the tuple-set is its cardinality or size. A tuple-set is also known as a relation. 

However, we find the term tuple-set more appropriate.

From a practical point of view, this technique has the following advantages:

1. ease of implementation,

2. ease of load-balancing among the processors, and

3. regular memory accesses and good use of hardware caching-mechanisms.

However, as the algorithms become more complex, vertices, edges, and faces 

are no longer sufficient attributes for the tuple-sets, and more complex tuple-sets 

which are necessary to solve the problem have to be identified. The arity, the 

attributes themselves, and the cardinality of the tuple-set are dependent on the 

problem and the cost of inter-processor communication on the parallel machine.
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Problems with robustness and the presence of special cases can increase the arity 

of the tuple-set.

The identification and use of tuple-sets and data-parallelism in our algorithms 

are demonstrated in Chapters 3-6.

2.2 The Uniform Grid Technique

The uniform grid technique [28] (UGT) is a spatial subdivision scheme that 

divides the extent of a geometric scene uniformly into many smaller subregions. It 

was first used to develop an expected linear time sequential object-space hidden- 

surface algorithm [29] and sequential polyhedron intersection and union [30]. Other 

applications of this technique are given in [6]. In this thesis, we will demonstrate 

its use for developing parallel geometric algorithms.

The technique exploits the limited spatial extent of individual geometric en

tities while performing computations on them. Since geometric algorithms deal 

with large databases, the cardinality of the tuple-set on which the algorithm has 

to operate plays an important role in its efficiency. The uniform grid technique is 

used to reduce the cardinality of the tuple-sets in the average case.

This technique is also analogous to the divide-and-conquer technique, because 

problems of the same type but of smaller size are generated for each sub-region. 

The results for these sub-problems are then merged. The complexity of merging 

these results to obtain the global solution depends on the problem. The specific 

use of the uniform grid for the generation of sub-tasks is presented in the following 

chapters.

The uniform grid is also useful while searching for geometric entities in par

ticular regions of a scene and hence it may be considered as an indexing scheme 

for locating objects. It improves the average-case query time for the point location 

problem too.
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Data structures similar to the uniform grid, known as buckets in [9], have been 

used for a variety of problems in computational geometry. According to Asano [9], 

the popularity of bucketing schemes in computational geometry is due to the fact 

that theoretically better algorithms are often outperformed by more naive meth

ods in many practical situations. Pullar [62] has experimentally shown that the 

sequential version of the uniform grid technique for determining the intersections 

between a set of segments lying in the plane is faster than the theoretically better 

plane-sweep technique for a variety of data sets. The overhead of maintaining the 

complicated data structure for the plane-sweep technique is cited as the reason for 

its inefficiency. As will be argued in the following section, in the parallel domain 

the plane-sweep technique is even less attractive when compared to the uniform 

grid.

2.2.1 Advantages of the Uniform Grid Technique

It is the following properties of the UGT that make it a useful and practical 

technique for parallel processing:

1. The reduction of the cardinality of tuple-sets, using uniform partitioning of 

the region under consideration, is simple and fast. The overhead for main

taining the uniform grid data structure is reasonable.

2. Some optimal geometric techniques such as the plane-sweep technique, used 

for solving many geometric problems, impose a temporal ordering of compu

tation on the objects. The UGT does not impose one when none is strictly 

necessary. For example, the computation within the grid cells can be done 

in any order. Therefore, the uniform grid technique is much simpler to par

allelize.
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3. The uniformity of spatial partitioning makes it easy to map the sub-tasks 

onto the processors. A predetermined work partitioning scheme can be used. 

When more sophisticated schemes such as quadtrees and octrees are used [53, 

69], the task of distributing the sub-tasks among the processors becomes 

more complicated. However, such schemes may achieve a greater cardinality 

reduction.

4. Unlike hierarchical and adaptive spatial partitioning schemes, the UGT is a 

single-level partitioning scheme. The data structure for the UGT exploits the 

large memories of modern machines and avoids indirect references through 

pointers to locate objects. This helps in avoiding log factors (due to tree 

searches) in the complexity of the algorithm. In a parallel processing sce

nario, hierarchical schemes which use a tree data structure will introduce bus 

congestion because the nodes have to be accessed through a common root.

5. The absence of pointers in the data structure for the UGT and the con

tiguous location of the tuples increase the locality of memory references and 

exploit the hardware caching-mechanisms. For algorithms in which objects 

in adjacent cells in the spatial partitioning interact, it is useful to transform 

adjacency in space to adjacency in the memory of the machine, in order to 

improve the memory access patterns. The data structure for the UGT pre

serves such adjacency. This is important in the context of shared-memory 

parallel machines because improper use of caching-mechanisms causes severe 

degradation of performance [25].
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2.2.2 The Limitations of the Uniform Grid Technique

Though the uniform grid has many advantages, it has some important limi

tations:

1. In worst-case situations, when all geometric entities are concentrated in a few 

grid cells, there is no appreciable reduction in the cardinality of the tuple-set.

2. Uneven spatial densities of the objects reduce the efficiency of the uniform 

grid technique. However, experiments with the sequential segment inter

section algorithm [57] have shown that this is not a serious problem. In the 

context of parallel computation, this may lead to problems in load-balancing. 

As shown in Chapters 3-6, the cells have to be assigned to the processors so 

that the workload is evenly distributed. One solution is to distribute con

tiguous cells from dense regions to different processors. In such situations, 

load-balancing and locality of memory references for proper use of caching

mechanisms are conflicting goals.

3. In some applications where separate data structures are used for each grid 

cell, the memory requirements of the uniform grid technique may be greater 

than that of other schemes. However, with the decreasing cost of memory, 

this may not be a serious disadvantage.

2.3 Sorting of Tuple-Sets

Many phases of our algorithms operate on elements of a particular tuple

set and generate the elements of another tuple-set. Before the next phase of the 

algorithm can proceed, the elements of the new tuple-set have to be sorted by one 

of their attributes. For example, in our edge intersection algorithm, the first phase 

uses the set of (edge) tuples, determines the cells through which the edges pass, 

and generates (cell, edge) tuples. The next phase determines all the intersections 
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by comparing the edges in each cell pairwise. Before this phase can proceed, the 

(cell, edge) tuples have to be sorted by the cell so that all (cell, edge) tuples 

for a particular cell are in contiguous locations. More examples can be found in 

Chapters 3 to 6. Since this operation is frequently used in our algorithms, an 

efficient and implementable parallel sorting scheme must be used.

Ajtai et al. [4] (AKS) and Cole [24] have developed optimal parallel comparison

based sorting algorithms that sort n elements in O(log n) time using n processors. 

These algorithms are extremely complicated and impractical. Leighton [50] points 

out that the constant of proportionality for the AKS algorithm is immense and 

that it would be slower than other parallel sorting algorithms unless n > 10100. 

Cole’s algorithm is believed to have a more reasonable constant. However, Blel- 

loch [13] estimates that its implementation on the Connection Machine would be 

a factor of 4, and possibly a factor of 10, slower than the split-radix sort [13] and 

Batcher’s bitonic sort [12].

The salient feature of our algorithms is that they very rarely require a parallel 

comparison sort. This is an advantage because a bucket sort is faster than a 

comparison sort for sorting records with integer keys that fall within a known range. 

Furthermore, in a practical situation, the bucket sort shows a better speedup than 

the comparison sort.

Parallel bucket sort and quicksort algorithms have been implemented for 

sorting the elements of tuple-sets.

2.3.1 Parallel Bucket Sort

This algorithm is the parallelization of the sequential bucket sort [2]. In order 

to handle uneven distributions of keys, an adaptive two-level bucketing scheme for 

sorting is used. At the first level, the complete range of keys is equally divided 

into buckets. At the second level, the buckets are adaptively divided into bins 
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depending on the number of elements in them. The range for each bin depends on 

the number of bins in the bucket to which it belongs. Though our technique has 

two levels of hierarchy, no pointers are used in the data structure, i.e., a contiguous 

set of memory locations are used. Hence, memory accesses are more regular.

In the first pass, the algorithm determines the bucket densities and the ranges 

for the bins in each bucket. Cumulative bucket frequencies are also determined 

for efficient parallelization of the last phase of the algorithm. This step is done in 

parallel by distributing the elements among the processors. Collisions in access

ing the bucket data structure are resolved by using a suitable collision-resolving 

mechanism, such as atomic locks and semaphores.

In the second pass, the elements are inserted into the bins to which they 

belong. Collisions in accessing bins are resolved by the use of collision-resolving 

mechanisms. After all the elements have been inserted in the appropriate bins, each 

of the bins is sorted with an insertion sort. The bins can be sorted in any order 

and hence this step is parallelized by distributing the bins among the processors. 

The sorted elements in the bins are then copied back into a linear list. Cumulative 

bucket frequencies help determine the index in the list where the contents of the 

bins of each of the buckets have to be copied. The above step is done in parallel by 

distributing the buckets among the processors. There are no collisions in accessing 

the list in this phase of the algorithm.

Assuming that the adaptive subdivision of the range into buckets and bins 

limits the maximum number of elements in any particular bin, the complexity of 

this algorithm is linear in the number of elements.

Noga [59] has independently presented a similar bucket sorting algorithm 

called the double distributive partitioning technique. His technique makes use of 

sampling to estimate the densities in the buckets and bins.
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2.3.2 Parallel Quicksort

This algorithm is the parallelization of the sequential quicksort algorithm [2]. 

The main idea in the parallelization is that once a pivot element has been located, 

the list of elements on either side of the pivot can be sorted in parallel. This step 

is applied recursively till it becomes impractical to create and manage small tasks. 

This is appropriate as we have a limited number of processors. The records to be 

sorted are entered into a global task queue. Each processor takes a block of records 

and either sorts it or subdivides it into simpler tasks and enters it into the global 

task queue. Thus this step uses dynamic scheduling to distribute the work among 

the processors. Quinn [64] provides a more detailed analysis of this technique and 

the upper bound of its speedup. For example, the best speedup we could expect 

with n = 1028 and p = 8 is 3.375, where n and p are the number of elements and 

processors, respectively.

2.3.3 Comparison of the Two Sorts

The parallel bucket sort obtains a much higher speedup than the parallel 

quicksort. The parallel quicksort, however, is an in-place sort and hence requires 

lesser memory than the parallel bucket sort. For large data sets, the bucket sort is 

faster than the quicksort by at least a factor of three. For small data sets (less than 

500 elements for our implementation), the overhead of determining the densities of 

the bins makes the bucket sort less attractive. In cases where the elements to be 

sorted have to be compared explicitly, i.e., pair by pair, they cannot be assigned 

to buckets, the quicksort has to be used. Otherwise, the bucket sort can be used.
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2.4 Practical Issues for using the Framework

2.4.1 SIMD vs MIMD

Since similar operations are performed on all the tuples, most of our algo

rithms can be implemented on SIMD (Single Instruction Multiple Data) or MIMD 

(Multiple Instruction Multiple Data) parallel machines (see [64] for a taxonomy 

of parallel machines). Though the same operation is performed on the tuples, the 

complexity of the operation is data dependent. For example, consider the case 

where each processor is assigned an edge and has to determine the cells of the grid 

through which its edge passes. The complexity of this operation is dependent on 

the length of the edge. During each step, processors which deal with short edges 

have to be idle till the processor with the longest edge finishes. In the MIMD case, 

such differences are easier to average out over all the elements of the tuple-set. 

Hence, load-balancing is much more difficult on SIMD machines than on MIMD 

machines. Branching and random addressing are other reasons for poor processor 

utilization in SIMD machines. The small amount of memory available in each of 

the processors of SIMD machines is another disadvantage compared to MIMD ma

chines. As a general rule, as algorithms become more complex, the MIMD model 

becomes more attractive. Similar experience by Fuchs et al. with the Pixel-Planes 4 

machine [36] has resulted in incorporating these ideas in the development of the 

newer Pixel-Planes 5 machine [33]. As a consequence, all the algorithms developed 

in this thesis have been implemented on MIMD machines.

2.4.2 Pipelining vs Parallelism

Parallelization by pipelining is useful in cases where a particular phase of 

the algorithm can start before the preceding phase ends. Such situations arise 

when geometric entities are handled independently of each other as is the case in
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some rendering applications in computer graphics. On the other hand, our geomet

ric applications deal with the interaction between objects. As a consequence, in 

most cases all the elements of a particular tuple-set have to be determined before 

the algorithm can proceed with the generation of elements of the next tuple-set. 

Therefore, we have found it difficult to make extensive use of pipelining. Only the 

final stages of some of our algorithms, e.g., the polygon combination algorithm in 

Chapter 4, support pipelined parallelism.

2.4.3 Shared-Memory vs Distributed-Memory Machines

When algorithms that perform many complicated calculations on the same 

data are implemented on a distributed-memory machine, it is sufficient to trans

fer elements of the geometric database to the processors at the beginning of the 

algorithm. Hence, there is only a minimal need for inter-processor communication 

during the rest of the algorithm. Many image-processing algorithms fall under this 

category.

However, many geometric problems do not appear to belong to this class. 

Algorithms which use our technique perform calculations on elements of different 

tuple-sets. In a distributed-memory machine this implies that the tuples have to 

be transferred between the processors as the algorithm proceeds from one data- 

parallel phase to another. The sorting of tuples and redistribution of the tuples 

among the processors translates to all-to-all personalized communication among 

the processors. The inter-processor communication schemes available in commer

cial distributed-memory machines are currently slow and do not meet the require

ments for the applications considered in this thesis.

Since inter-processor communication on distributed-memory machines is slow, 

it is advantageous to store complete entity descriptions in the tuples. For example, 

while it may be reasonably efficient for an attribute of a tuple-set to be a pointer to
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a face in the shared-memory model, it is more advantageous to copy the complete 

description of the face in the tuple in the distributed-memory model. This causes 

the size of attributes of the tuple-sets to increase and this in turn increases the 

volume of inter-processor communication necessary.

Intuitively, the architecture of shared-memory machines bears a closer resem

blance to sequential machines than distributed-memory machines do. Our experi

ence also confirms that shared-memory machines are easier to program. Therefore, 

it is advantageous to implement the algorithms first on shared-memory machines 

to study their performance. On the other hand, these models do not support mas

sive parallelism because with current technology the common bus used for inter

processor communication tends to saturate performance (speedup) after about 64 

processors are introduced. Even with improved technology, this number is not ex

pected to increase by orders of magnitude. Hence, distributed-memory machines 

will be more prevalent in the future and there is a need to study them.

Parallel machines using a rectangular mesh of buses instead of a single bus 

are a plausible answer to the above problems [10]. Usually, algorithms developed 

for PRAM models of computation are made architecture-specific by emulating 

shared-memory machines on these architectures [65], This is in accordance with 

the objective of eventually making parallel algorithms architecture-independent 

and portable. An approach taken by a few researchers is to develop software en

vironments for distributed-memory machines which make the distinction between 

the two models transparent to the programmer [72]. However, this research is in 

its inception and currently it is necessary to know the underlying architecture of 

the machine to obtain satisfactory performance.

Taking the above factors into consideration, we have implemented most of our 

algorithms on shared-memory machines. For completeness, we have implemented 
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the segment-intersection algorithm on a distributed-memory machine. The exper

imental results from Chapter 7 agree with the arguments put forth here in favor 

of shared-memory machines.

2.4.4 Topology and Geometry

It is known that the relative importance of geometric and topological issues for 

geometric algorithms may vary with the applications for which they are intended 

to be used. For example, in certain applications such as mass-property determina

tion, interference detection, and viewing, complete topological specification is not 

essential.

If topological and geometric aspects are equally important, it appears that 

the geometric aspects have to be parallelized by breaking the topological relations 

across some geometric boundary. Our algorithm for determining the Boolean com

bination of polyhedra (Chapter 5) addresses this issue in detail. Since geometric 

aspects have a higher degree of data-parallelism, they are inherently more eas

ily parallelizable than topological aspects. Topological aspects can exploit data- 

parallelism only in some cases. When data-parallelism cannot be used, efficient 

parallel algorithms for sorting and graph traversal are vital for parallelizing the 

topological aspects. As discussed in Section 2.3, the theoretically optimal parallel 

sorting algorithms are currently not practical. Though considerable research has 

been done on developing parallel algorithms for manipulation of graphs, the results 

are far from encouraging. For example, Reif [66] conjectures that the depth-first 

search algorithm is inherently sequential.

Algorithms that maintain complete topological relations in the intermediate 

stages of the algorithm do so by the use of Euler operators or their equivalents. 

Intuitively, it appears that these algorithms will be inherently sequential, because 

every Euler operator changes the description of the geometric model. In order to 
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guarantee consistency in the model, the Euler operators have to be implemented in 

critical sections. In our parallel algorithm, the topological relations are deduced in 

a batch mode from geometric results and appropriate additional information (see 

Chapter 5) derived in the geometric phase of the algorithm. This strategy allows 

us to use data-parallelism for parallelization.

This approach is practical and attractive in the absence of special cases due 

to coincident geometric entities, and problems due to numerical errors. However, 

when they are present, one consistent way to solve these problems is to make use 

topological information to avoid possible contradictory decisions arrived at by the 

use of geometry alone. For example, if an edge of a polyhedron lies on a face of 

another polyhedron, all the faces adjacent to this edge have to reach the consistent 

decision that they are incident on the face of the other polyhedron. One way to 

do this is to check for consistency in decisions across processors that are involved 

in this computation. This implies additional inter-processor communication to 

resolve ambiguous decisions. Another approach would be to detect the special 

cases and handle them sequentially by an algorithm which uses topology to make 

consistent geometric decisions. This strategy ensures that the large number of 

unambiguous cases are handled rapidly in parallel while the few special cases are 

handled sequentially. This approach is reasonable as long as there are only a few 

special cases in any given instance of the problem.

2.5 Two Commercial Parallel Computers

The system configuration, software development environment and the advan

tages and disadvantages of the Sequent Balance 21000 and the Intel iPSCI parallel 

computers are now discussed.
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2.5.1 The Sequent Parallel Computer

The Sequent Balance 21000 system is a multiprocessor that incorporates mul

tiple identical processors and a common memory. It can include 4 to 30 processors. 

It can be configured with 4 to 28 Mbytes of memory and provide 16 Mbytes of 

virtual address space per process. In addition, each processor has 8 Kbytes of local 

RAM and 8 Kbytes of cache RAM so that accesses to the system memory are mini

mized. All the processors access the system memory through a common high-speed 

bus. Communication between processors is through the shared memory. Process 

synchronization and avoidance of memory access conflicts are achieved by using 

semaphores and locks.

The system allows both function partitioning and data partitioning. Func

tion partitioning refers to the splitting of the tasks to be performed among the 

processors so that every processor is assigned a separate task. This technique is 

useful for applications which either use pipelining or need completely independent 

processes. Function partitioning was not found to be useful in the parallelization 

of our algorithms.

Microtasking is one of the data partitioning methods available. It is a shared- 

memory parallel programming model that has a master thread of execution, and 

zero or more slave threads. The master thread runs the sequential parts of the 

application, and at appropriate points, causes all the slaves to work with it in 

parallel. Microtasking programs usually create multiple independent processes to 

execute loop iterations in parallel. The microtasking support routines provided 

are suited to data partitioning in a homogeneous application where all processes 

perform similar work.

The system allows both static and dynamic scheduling in programs using 

data partitioning. In static scheduling, the scheduling of tasks is known a priori 

before the program execution. In dynamic scheduling, the scheduling of tasks is 
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determined at execution time. Our algorithms use both forms of scheduling.

The main advantage of the Sequent Balance parallel machine is that it is 

simpler to program than other parallel machines. Results in Chapters 3 to 5 

indicate that it is possible to obtain close to linear speedup for problems in which 

a high degree of parallelism can be identified. Its main disadvantages are the 

following:

1. Process creation is expensive. This leads to sub-linear speedups for small 

problem sizes.

2. The common high-speed bus is used by all processors. This slows down the 

accesses to the shared-memory as the number of processors increases.

3. The number of processors available is small (16 in the one we used).

4. The grain of parallelism available is limited. For example, the microtask fork 

utility can only place a single process on a processor. In addition, microtask 

forks cannot be nested.

2.5.2 The Hypercube Parallel Computer

The hypercube computer is a MIMD, coarse grained, message-passing parallel 

computer. An n-cube has 2n node processors. Commercial hypercubes, such as 

the Intel iPSC and the NCUBE, have up to 1024 node processors. Each node 

processor has 512 KBytes of memory of which about 280 KBytes are available to 

the user. In addition to these processors, there is a central processor called the 

host which is used as a controller for the node processors and also serves as an I/O 

processor. Separate programs need to be written for the host and for the nodes.

The node processors are connected by a hypercube (an n-dimensional cube) 

interconnection network which is used for exchanging information between them. 

Software support facilities exist to communicate messages between any two node



21

processors and between a node and the host. The host and the nodes can com

municate directly to each other. This speeds up the broadcasting of programs and 

data from the host to the nodes.

The hypercube connection is very versatile. The network is completely sym

metric with respect to all its vertices and edges. It has good fault-tolerance prop

erties because there are n different paths between any two nodes on an n-cube. 

Many other network topologies such as a ring, 2D mesh, 3D mesh, and binary tree 

can be embedded on a hypercube. Since many algorithms have been developed 

for these topologies, the hypercube can be used to simulate these topologies to 

implement and verify these algorithms.

The diameter (maximum distance between any two nodes in a graph) of this 

network is log n. This is important for developing efficient parallel algorithms and 

for efficient communication between any two random processors in the network. 

An efficient parallel algorithm is one which takes O(log^ n) time with a polynomial 

number of processors, where c is a constant. For example, sorting n numbers on a 

log n cube takes O(log1 2 n) time.

1. The lack of a debugging environment makes it very difficult to develop any 

complex application.

2. The user has the additional burden of having to route messages. This prob

lem can be alleviated by providing the user with a standard set of utilities 

for commonly encountered communication patterns.

While the theoretical properties of the hypercube network are very good, 

commercially available hypercube computers have many shortcomings, some of 

which are expected to disappear as technology improves. Some of the shortcomings 

of the Intel iPSCl hypercube which is used to implement the parallel segment 

intersection algorithm in Chapter 6 are as follows:
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3. The size of the messages is restricted to 16 KBytes. This complicates the 

message-passing algorithms when larger messages have to be sent. The 

message-passing mechanism sends 1 KByte even if only one byte has to be 

sent. This makes short messages uneconomical.

4. A long start-up time to initialize the nodes and a long transit time for mes

sages make the hypercube very slow for solving problems of small sizes. These 

factors essentially limit the speed of computation on the hypercube. Better 

performance can be achieved by using the more sophisticated routing algo

rithms discussed in [43].

5. The sizes of the arrays are restricted to 64 KBytes. This puts a severe 

restriction on the amount of data that can be handled. This is contradic

tory because parallel computers are intended for efficient handling of large 

databases.

2.5.3 Practical Difficulties in Using Parallel Machines

The poor software development environments on most existing parallel ma

chines make the task of implementing a parallel algorithm formidable. Deficiencies 

include poor error messages from compilers and poor debugging facilities to track 

program execution. Improved compiler messages about conflicts in using shared 

variables, race conditions, process synchronization, etc., would reduce program

mer time and fatigue. Debugging facilities also have to be enhanced to help detect 

the above-mentioned problems. Lastly, since geometric applications often involve 

complex data structures with pointers, graphical debugging facilities will be of 

immense value to speed up the parallel software development process.

The small amount of memory available on the machines and the large sizes 

of the geometric databases require the user to design data structures carefully. In 

some cases the sizes of the arrays have to be changed depending on the number 
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of processors used, and the program has to be recompiled. This time-consuming 

process makes measurement of algorithm performance more tedious.

On most message-passing distributed-memory parallel machines, the software 

support for communicating between the processors is inadequate. Much time is 

spent in correcting errors which arise from improper synchronization in the message 

passing protocol.

The scarcity of parallel machines and the immense interest in them results 

in high demand. The poor support facilities cause the interested user to spend 

more time on debugging than on useful software development. Finally, since the 

hardware and system software of parallel machines are complex and fewer people 

understand it, system downtime is higher.

Fortunately, many of these problems are now being addressed; some require 

further research.

2.6 Summary

A framework for developing parallel geometric algorithms was proposed. The 

practical advantages of our framework were identified and the suitability of differ

ent models of parallel computation for our algorithms were examined. A brief 

description of the parallel computers used for the implementation of our algo

rithms was also provided. A short description of the practical problems of using 

these machines is also given.

The advantage of this framework is that for many problems its use results in 

an algorithm whose complexity is linear in the size of the tuple-sets generated in 

the course of the algorithm. In the average-case, the size of the tuple-sets is linear 

in the sizes of the input and output of the algorithm.

The disadvantage of these techniques is that the data structures and the 

representation schemes require more memory than the conventional representation 
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schemes used on sequential computers. This is the price that has to be paid for 

incorporating parallelism. However, with the cost of memory is going down, this 

disadvantage may soon be outweighed.

The following chapters describe the algorithms developed using the ideas 

presented in this chapter. They show that these ideas can be used to develop 

parallel algorithms for a variety of applications. These algorithms are sufficiently 

simple for implementation on general-purpose parallel machines.



CHAPTER 3
PARALLEL CONVEX HULL DETERMINATION IN THE PLANE

We now illustrate the use of the framework presented in the previous chapter for 

developing a parallel algorithm for the determination of the convex hull of a set 

of points in the plane. As will be shown in the algorithm, this problem has both 

geometric and topological aspects. It is the simplest of the problems for which we 

a provide parallel algorithm.

3.1 Introduction

The convex hull is a general construct that is used in many geometric appli

cations. For example, it is useful in obtaining a triangulation of a set of points, 

topological feature recognition, shape decomposition in pattern recognition, and 

testing linear separability [61]. The convex hull algorithm is also a benchmark al

gorithm in computational geometry as it is used as a preprocessing step in many 

geometric problems such as determination of the diameter of a polygon [61].

The following definitions introduce the notion of the convex hull.

Definition 3.1 Given a set of n distinct points S = {pi,p2, • • • ,Pn}, the set of 

points

p = «îpi f a2p2 f aaPs 4------ V anpn

such that
j=n

Qj € ft, aj > o, 52 Oj = 1

3=1

is the convex set generated by pi,p2, " • ,pn, and p is a convex combination of

Pl ) p2 ? ' ' ) Pn -

25
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Definition 3.2 Given an arbitrary set of points S = {pi,P2,“ • iPn}, the convex 

hull conv(S) of S is the smallest convex set containing S.

Thus in 2-D, the convex hull is the smallest convex polygon containing the 

point set S. Most solutions to this problem report the edges of the convex hull in 

order.

3.2 Preliminaries

The problem of developing a parallel convex hull algorithm has been studied 

by a number of researchers, and many parallel algorithms have been developed. 

However, most of these algorithms are not easy to implement. This section surveys 

some of the existing parallel algorithms for determining convex hulls. Sequential 

algorithms for this problem are given in [61].

In one of the earliest works in parallel computational geometry, Chow [21] 

describes a O(log2 n) algorithm using O(n) processors for a Concurrent-Read

Exclusive-Write (CREW) Parallel-Random-Access-Memory (PRAM) model of com

putation. Aki [5] describes a constant-time parallel convex hull algorithm using 

both O(n3) or O(n4) processors and O(n3) space. Even with such a large number 

of processors, it just identifies the points which lie on the convex hull and does 

not order them. Chazelle [19] shows how to solve the problem on a linear array of 

n elements in a systolic fashion in O(n) time, which is optimal for this model of 

computation. The processor x time = P xT product for this computation is n2, 

which is worse than the sequential bound of n log n, and hence this does not appear 

to be a good model for determining convex hulls. All of the above algorithms are 

sub-optimal.

Optimal parallel algorithms, using O(n) processors and achieving the time 

bound of O(logn), for determining the convex hull on a CREW PRAM model 

of computation have been independently developed by Aggarwal et al. [1] and
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Goodrich [37], Both algorithms have a preliminary sorting step and use either 

the AKS [4] or Cole’s [24] optimal parallel sorting algorithm. They then use the 

Vn divide-and-conquer technique to merge the partial results. As mentioned earlier 

in Section 2.3, the parallel sorting algorithms used in the above algorithms are not 

practical from the point of view of implementation.

Goodrich [37, 38] also discusses the determination of the convex hull of a 

sorted point set in parallel. His CREW PRAM algorithm uses a hull tree data 

structure and the y/n divide-and-conquer technique, and runs in O(logn) time 

using O(n/log n) processors which is optimal. However, no results from imple

mentation are given.

Miller and Stout [55] provide parallel convex hull algorithms for hypercubes, 

meshes, pyramids, etc., and also for the PRAM model of computation. Most of 

their algorithms are optimal for either that architecture or model of computation.

The above algorithms represent some of the interesting theoretical advances 

made in parallel computational geometry. They have resulted in the development 

of optimal algorithms on abstract models of parallel computation. However, there 

are hardly any accompanying experimental results for these algorithms. This in

dicates that they are not easy to implement on parallel machines available today. 

The scant experimental results for these algorithms make it difficult to compare 

them with the more practical algorithms that have been implemented.

The following are some attempts to implement parallel convex hull algo

rithms. Evans and Mai [26] discuss two parallel implementations for this problem. 

Their first algorithm uses a preliminary sequential sorting step followed by a par

allel divide-and-conquer step. Their second algorithm is a parallel version of the 

quickhull technique and is based on rejecting points inside the convex hull. Some of 

their strategies for parallelization are not scalable with the number of processors. 

They mention that the parallel control overhead of their second algorithm is very 
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high and also report problems with load-balancing. They have implemented their 

algorithm on very small data sets (up to 2048 points) using a 4-processor machine. 

Their implementations have significant sequential sections, and since the fraction 

of sequential computation which can be tolerated in a parallel algorithm decreases 

as the number of processors increases (Amdahl’s Law [8]), it is not clear how well 

their algorithm would perform on a machine with more processors.

Blelloch and Little [14] have implemented some algorithms on an n-processor 

Connection Machine. A modified version of the y/n divide-and-conquer algorithm, 

described by Goodrich [37, 38] and Aggarwal et al. [1], has an asymptotic com

plexity of O(log n) using O(n) processors, but has a large constant. According to 

them it is not the most practical algorithm. Their parallel version of Graham’s 

scan requires O(log2 n) router cycles for n points. The Jarvis march requires 0(A) 

time for h hull points but has a small constant; the quickhull technique runs in 

O(log A) time for A hull points for well distributed hull points, and has a worst 

case running time of 0(A). In one example consisting of 1000 points, their Graham 

scan implementation took 150 milliseconds (ms) and the Jarvis march took 12 ms 

on a 64K processor Connection Machine. Only results on larger data sets would 

enable us to compare their results with those in Section 3.3.

Cohen et al. [23] have implemented parallel versions of the quickhull tech

nique on the Intel iPSCl hypercube machine. Their results show close to optimal 

speedups for each of the iterations of the quickhull. They give the time taken for 

each iteration of the quickhull but do not give the total time taken by the con

vex hull algorithm. Also, they do not show the fraction of the total time spent 

in communication. It is not clear to us whether their timings include the time 

spent on communication. The absence of such information makes it difficult to 

compare their results with ours. However, even after accounting for differences in 

hardware and architecture, their results still seem to indicate that their algorithm 
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is considerably slower than the algorithm presented in this chapter, for the same 

data sets.

The algorithm presented in this chapter has been implemented on an actual 

parallel machine and has been tested on large data sets and on different point 

distributions. Its minimal reliance on parallel sorting makes it more practical. 

A major advantage of our technique when compared to the parallelization of the 

quickhull technique is that the preprocessing phase of our algorithm can be im

plemented more easily in hardware. Another advantage due to the regularity and 

simplicity of our approach is that load-balancing and resource allocation are much 

easier in our algorithm than in the quickhull technique. Finally, it is faster to 

determine the grid cell to which a point belongs rather than to check whether it 

is inside a quadrilateral. The algorithm is also robust and does not require points 

to have distinct ^-coordinates, unlike some of the existing algorithms. Thus our 

algorithm is practical in the sense that it is both implementable and robust.

3.3 The Algorithm

We are given a set of n points, S = {pi,pz, ' ‘ • ,Pn} in the plane. We are 

also given a commercially available tightly coupled parallel machine containing m 

processors and adequate shared-memory. Note that m « n, and so our model is 

equivalent to a CREW PRAM with a small number of processors.

Our parallel algorithm is based on the fact that optimal parallel comparison 

sort algorithms are currently impractical, and that for speed and efficiency, an 

implementable parallel convex hull algorithm should have minimal reliance on a 

comparison-based sort. The main steps in our parallel algorithm are the following:

1. Fast rejection of interior points.

2. Computation of the convex hull of the remaining points.
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Quadrant 1
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Quadrant 3 Quadrant 4

Figure 3.1: The Four Quadrants for a Point. The point at the origin is 
inside the convex hull.

3.3.1 Rejection of Points Inside the Convex Hull

This step systematically eliminates points inside the convex hull. We use the 

simple observation that if we orient a set of axes about any point p, and make p, the 

origin of this coordinate system, and if each of the four quadrants in this coordinate 

system contains points from the input set, then p; is inside the convex hull (see 

Figure 3.1). This problem is related to the problem of determining dominances. A 

point pi dominates point pj in the third quadrant, denoted as p, dom pj, if pj lies 

in the third quadrant in a coordinate system of which pi is the origin. Dominances 

in other quadrants are defined in a similar manner. Thus, points which dominate 

points in all four quadrants are inside the convex hull. A point which is on the
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P1

P3
* P2

Figure 3.2: An Example Case for Interior Point Elimination

convex hull has the property that it does not dominate any other point in at least 

one quadrant, i.e., there is at least one empty quadrant. However, note that not 

all such points lie on the convex hull. Figure 3.2 shows an example case. In this 

example, no point dominates pi in the third quadrant, and p% is inside the convex 

hull, since it dominates points in all four quadrants. Point p3 is not on the convex 

hull though it does not dominate any point in the second quadrant.

Counting the number of points dominated by each of the points (2-D domi

nance problem), in each of the four quadrants to determine the interior points is 

naive, expensive, and unnecessary.

Instead of solving the 2-D dominance problem we cast a uniform grid of G x G 

square cells on the scene and eliminate clusters of points at once by performing 

the dominance computations only for the grid cells. Figure 3.3 shows the four
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Quadrant 2 Top Quadrant 1

Left Inside Right

Quadrant 3 Bottom Quadrant 4

Figure 3.3: The Different Regions for a Cell. Figure shows the regions to 
the right, left, top, and bottom of a cell. The four quadrants for a 
cell are also shown.

quadrants for a cell Ct j, (i increases from bottom to top and j increases from left 

to right in the grid), and the regions which are to the top, bottom, right, and left 

of it. The dominance relations for the cells are analogous to those for the points, 

e.g., if cells and both have some points in them and i > k and j > l then 

Cij dominates Ck,i in the third quadrant. The dominance value of a cell for a 

particular quadrant is 1 if Cg dominates a cell in that quadrant. We compute the 

dominance values for the cells and determine the interior cells. Interior cells are 

those cells that dominate other cells in all the four quadrants. Figure 3.4 shows 

an example case where a 10 x 10 grid has been used.
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Figure 3.4: Example Point Set for Convex Hull Determination

The main steps in computing the dominance values for the cells are as follows:

1. Determine the cells which contain points; m(C,j) is 1 if there is at least one 

point in it. To ensure that each point is stored in exactly one cell, only the 

bottom and left boundaries of a cell belong to the cell. A predetermined 

partitioning scheme is used to distribute the points among the m processors.
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2. Determine whether there are points which lie in the cells to the left, right, 

top, and bottom of each cell. For example, right(Cij) is 1 if there is at least 

one point in all the cells in that row which are to the right of C^. The 

recurrence equations are as follows (V is the Boolean OR operator).

right^Ci^ = right(Ciij+1) V m(Clj+1)

= leftÇC^Vin^^ 

top{ci,i) = top(Ci+ij) V £n(Ci+u) 

bot^Cij) = botfCi-u) V

This evaluation is done in parallel by distributing the rows and columns of 

the grid among the processors. Further, each of these four relations can be 

determined simultaneously in parallel.

3. Compute the dominance value for each interior cell C.j, using the following 
recurrence equations.

domXCij) = dom1(C,-+1j+1)Vr»sM(Q+1^

dom2(Ci'j) = dom^Cv+ij-i) V left{C^ij-i) V top(C,+ij-i) V zn(C,'+ij_i)

dom4(Citi) = dom^C.'-u+i) V rz5ti(C,_1,j+1) V 6o/(C1_1J+1) V 2n(Ct_1J+i)

The above equations need minor modification for border cells. An examina

tion of the equations reveals that the dominance value of a cell depends on 

quantities that have been computed previously, i.e., it is a recurrence equa

tion. The only dependence of the dominance value of a cell with that of the 

dominance value of other cells occurs in a diagonal fashion. Hence this step 

is done in parallel by scanning the grid of cells in a diagonal fashion by inter

lacing the diagonals among the processors. Further, each of these 4 sets of 

dominance values can be computed in parallel. Fig 3.5 shows how the com

putation of dom3, the dominance value for the third quadrant, is done. The 
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identifier of the processor assigned to a diagonal is indicated at the starting 

end of the diagonal. Section 3.5 shows that this method distributes the load 

fairly evenly among the processors.

4. Eliminate points in all the interior cells. Gather all the points in the cells 

that are not interior cells. This step is parallelized by using a technique which 

is similar to parallel array contraction [47]. Figure 3.6 shows the points that 

remain after the above step for the example depicted in Figure 3.4.

3.3.2 Parallel CH Determination of Remaining Points

Our parallelization of this phase is not optimal and so any one of the optimal 

parallel convex hull algorithms mentioned in the literature review could be used 

(when they become practical) at this stage to determine the convex hull of the 

remaining points.

Allison and Noga [7] have determined that in the sequential case, the Graham 

scan outperforms the Jarvis march and quickhull techniques when the points are in 

an annulus. Since the points which remain at this stage are in the boundary cells, 

we use a parallel version of the Graham scan technique. The parallel scheme is 

iterative and can in the worst case exhibit poorer performance than the sequential 

Graham scan. Our experimental results indicate that this does not happen for 

most commonly encountered data sets, and that this step takes a small fraction of 

the total time. Hence it does not affect the efficiency of the complete algorithm 

drastically.

The points {p,} which remain after the point rejection step are sorted angu

larly around a pivot Ip, which is inside the convex hull, to form a star polygon. 

The angular displacement of a point is the counter-clockwise angle between the 

horizontal axis and the line joining the pivot and the point. For reasons of numer

ical stability we never determine the angles by invoking a trigonometric function.
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pO

pO

pO

pO

P1

Figure 3.5: Parallel Dominance Computation (third quadrant) for 
Cells. Figure shows scanning of the grid in a diagonal fashion 
to determine dominance values in the third quadrant. Processors 
assigned to the diagonals are shown at their leading end.
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Figure 3.6: Points Surviving Preprocessing Phase for Example Point 
Set

Instead we compare the relative positions of two points by using vector algebra and 

simple arithmetic comparisons. Preliminary experiments showed that computing 

angles and sorting was faster than the above method but was less robust. We have 

sacrificed speed and overall speedup for robustness in this case. The list is pruned 

so that if two or more points have the same angular displacement about the pivot, 

only the farthest among these points is retained. Figure 3.7 shows an example.

The angularly sorted list of points (stored in a shared array) is distributed 

equally among the m processors so that each processor gets a chain of the star 

polygon formed by the above step. If very few points are left after the preprocessing 

phase, the number of processors is adjusted so that each processor gets a chain
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P2

Pivot Ip

p1 is eliminated

Figure 3.7: Elimination of Radially Closer Points. Ip, and p2 are 
collinear. Point p\ is eliminated and point p2 is retained

which has at least 3 points. Each processor then sequentially converts its simple 

chain into a convex chain. The first three points in the chain are labeled as pi, 

p2, and pa respectively. If ^p2ps is reflex, then p2 cannot be on the convex hull, 

and it is eliminated and p2 and pa are advanced along the chain. If Zpip2pa is not 

reflex, all three points pi, p2, and pa are advanced along the chain. This procedure 

is repeated till the last point in the processor’s chain becomes the current pa. 

Figure 3.8 shows the surviving points at the start and end of the first iteration for an 

example case using 3 processors (Ip is the pivot around which the candidate points 

have been sorted). It also shows the assignment of the chains to the processors. 

Every processor also checks whether the joints between its chain and those of its 

successor and predecessor are convex. If this is not the case, the points causing 

the concavities are eliminated. Figure 3.9 shows an example. This check is crucial 

to avoid a possible false termination of the algorithm. Once every processor has
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pO

pO

Pivot ip Pivot Ip

Start of iteration 1 End of interation 1

Figure 3.8: Example Case for Parallel Graham Scan. The three proces
sors used are pO, pl, and p2. The processors assigned to points are 
shown beside them. Ip is the pivot about which points are sorted.

determined the convex hull of the set of points assigned to it, the points which 

have not been eliminated are contracted into the original array used at the start of 

the iteration. The index in the array at which each processor has to start writing 

its points is determined by a parallel prefix computation [47]. The algorithm 

terminates when the number of points remaining in two consecutive iterations is 

the same. The points which still remain at the end of this stage form the convex 

hull of the given set of points.

3.3.3 Location of a Pivot

The centroid of the triangle formed by any three distinct non-collinear points 

pa, Pb, and pc from the set S can be used as the pivot Ip, the point about which the 

candidate points have to be sorted. Ip will definitely be inside conv (S) because
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Successor chain

Predecessor chain

F

Figure 3.9: Ensuring Convexity at Joints between Convex Chains. To 
retain B and E for next iteration, LABC and LDEF should be less 
than or equal to 180°.

it lies inside the triangle pa?6Pc- Even with one processor this step takes constant 

time in most practical cases. Note that it is possible for Ip, chosen in the above 

manner, to be coincident with one of the points surviving the preprocessing phase. 

Such cases are identified during sorting and since such points lie inside the convex 

hull they can be eliminated.

3.3.4 Parallel Sorting Around the Pivot

We use the parallel quicksort algorithm for this step. As already mentioned, 

this is not an optimal algorithm but is practical. Since almost 90-95% of the 

points are eliminated in the preprocessing phase in our test sets , the sorting 

step accounts for a much smaller fraction of the total time than would be the 

case without preprocessing. We expect this to be the case for most commonly 



41

encountered distributions. The distributions for which our preprocessing phase 

would not be very effective are discussed in the conclusion.

When the sorting time constitutes a larger fraction of the total time, and 

when a larger number of processors are available, the overall speedup will be criti

cally reduced if a poor parallel sorting algorithm is used. In such cases, the parallel 

bucket sort could be used. However, since it is not a comparison sort, we would 

have to use trigonometric functions to determine the angular displacements of the 

points and it could lead to numerical problems.

3.4 Proof of Correctness

Lemma 3.1 The points eliminated in the point-rejection step lie inside the convex 

hull.

Proof: Obvious.

Lemma 3.2 The parallel Graham scan can terminate when the number of points 

in two consecutive iterations is the same. The points which remain at this stage 

form the convex hull of the set {pj.

Proof: At the end of every iteration of the parallel Graham scan, all the chains 

assigned to the processors are convex. In addition to this, since a processor looks 

at the joints between its chain and those of its predecessor and successor, if the 

number of points in two consecutive iterations remains the same, all the joints 

between the chains belonging to consecutive processors are convex. Since the 

concatenation of convex chains, such that the joint between them is convex, yields 

a longer convex chain, the resulting polygon is the convex hull.

Using Lemma 3.1 and Lemma 3.2 it is clear that the algorithm correctly 

computes the convex hull of the given set of points.
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Corollary 3.1 The maximum number of iterations of the parallel Graham scan 

is (nr — h + 1), where h is the number of points on the convex hull, and nT is the 

number of points in the first iteration of the parallel Graham scan.

Proof: From Lemma 3.2 it follows that the number of points reduces by at least 

one for each iteration. Since (nr — A) points have to be removed, (nr — h} is 

the maximum number of iterations required to converge to the convex hull. One 

additional iteration is needed to detect the convergence.

3.5 Analysis of the Algorithm

Throughout this section we assume that there are n points in the original 

data set. m represents the number of processors and G refers to the grid resolu

tion. Unless stated otherwise, m « G2. Since m is usually small on a commercial 

shared-memory machine, log m can be ignored when compared to G2 while evalu

ating complexities.

3.5.1 The Preprocessing Phase

• Assigning points to cells:

The time taken for this step depends on the distribution of the data. If a cell 

is currently empty and if two or more processors simultaneously deal with 

points falling in the same cell, there would be a collision in writing into the 

cell. Once a cell is marked as not-empty there are no further write-collisions 

for that cell. When points are chosen randomly from a uniform distribution, 

the probability of the above collisions is very small, and diminishes as G 

increases. Hence, we expect this step to show close to optimal speedup, and 

the expected time for it is Ti = d{n/m).
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• Computing Booleans for left(Cij), right(Cij), top(Cij) and boi{C{f) :

A total of G2 computations have to be done to determine each of the above 

quantities for all the G2 grid cells. Assuming that G is a multiple of m, each 

processor gets G/m rows (or columns). The computations for each row or 

column are performed sequentially. Hence it takes 7*2 = G2/m time for this 

step. The work done in this phase, i.e., the PxT product, is m x G2/m = G2 

which is equal to the total number of grid cells. This method distributes the 

load fairly evenly among the m processors even when G is not a multiple of 

m.

• Dominance computation'.

A total of G + 2 23^/ i = G2 computations (see Figure 3.5) need to be 

performed for each of the four dominance relations. As shown below, these 

can be done in T3 = G2/m time when G is a multiple of m. For sim

plicity of exposition, consider the computation of dom3 for the case where 

G = k x m. For the diagonals in the upper left triangle (excluding the 

leading diagonal) of the grid cells, the z'th processor (z / (m — 1)) has to 

perform WP computations,

WP = ^((z + 1)] 4- [(z + 1) + m] + [(z 4-1) 4- 2m] f - - - f [(z 4-1) + lim]

= 1) +
j=0

= (z 4- l)(/i 4-1)4- m(Z^ 4- Zi)/2,

where li is the largest integer such that (z 4-1) + km < G. This implies that 

Zi = |fkm — (z 4- l))/mj = k — 1. Similarly, in the lower right triangle, the 

z'th processor has to perform Wp computations,

Wp = ^^[(G — 1 — z)] 4- [(G — 1 — z) — m] 4- • • • 4- [(G — 1 — z) — Z2m]

= ^[(G - 1 - z) - 3m\
3=0
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— (G — 1 — z)(/2 + 1) — 771(^2 + ^)/2,

where Z2 is the largest integer such that (G - 1 - i) — l2m > 0. This implies 

that Z2 = [(km — (Z 4- l))/mj = A — 1. The total work done by the % th 

processor is

Wi = wy -VWp

— (Z + 1)A: + m(k2 — t)/2 + (G — 1 — Z)Æ — m(k2 — k)

= kG = G2/m

Since all the processors except the (m — l)th processor have been covered 

by the above proof, the (m - 1 )th processor has to perform only G2/m 

computations. Hence the load is distributed evenly among the processors 

when G is a multiple of m. If this is not the case there is a slight imbalance.

• Gathering surviving points:

One parallel pass through the n points is sufficient to determine the surviv

ing points. This takes T\ = n/m time when local buffers are used in each 

processor to minimize collisions while writing into global lists.

Therefore Tpreproc — T"i 4- T2 + T3 + T4 = Ô[(n -V G2^/m) time. Choosing 

G n, Tpreproc =

3.5.2 Radial Sorting Phase

For uniform distributions, the number of points remaining at this stage is 

proportional to the number of boundary cells. If the density of points in the 

boundary cells is Me and the expected number of boundary cells is nb = c^G, then 

the number of points is nr = Me x nb = Mc x G. For uniform distributions, 

Me = a2n/G2 and hence nr = aia2n/G. and a2 are parameters that depend on 

the distribution. For exponential and multi-cluster distributions nr is even smaller.
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Even if sequential sorting is used, the time for this step is O(nr log nr), and since 

nr << n, this is not a serious shortcoming. However, it is obvious that as soon as 

a better practical parallel sorting algorithm becomes available, the performance of 

our algorithm will improve automatically.

3.5.3 Parallel Graham Scan Phase

Each iteration of the parallel Graham scan takes n./m time when there are 

ni points in the 2th iteration. So if there are k iterations, this step takes n,/m 

time.

Experimental results show that the algorithm usually takes less than 5 iter

ations for data sets containing up to 200,000 points. However it is not difficult to 

construct an input set which will take 0(nr) iterations. Figure 3.10 shows such a 

case. In this case only one point is eliminated in every iteration and the convex 

hull of the set {p,} is the convex hull of the chain allocated to one processor in the 

last iteration of the algorithm. The work done by all the other processors in all 

the previous iterations is wasted. We did not encounter any pathological cases for 

the point distributions we considered. In all the cases we tried, the time taken by 

a multiprocessor algorithm was always less than the time taken by a uniprocessor 

algorithm. Immunity to such pathological cases can be increased by randomly 

varying the point in the star polygon from which chains of equal length are al

located to the processors in successive iterations. It will ensure that a processor 

receives considerably different chains in consecutive iterations and will make the 

algorithm more immune to pathological cases. One could also randomly vary the 

number of processors used in each iteration. It would also increase the probability 

of forming radically distinct convex chains in consecutive iterations and thereby 

make the algorithm less susceptible to pathological cases.
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Pivot Ip

Dense concentration of points along curve

Figure 3.10: Pathological Case for the Parallel Graham Scan. Point den
sity along curved section is high. Work done by processors handling 
points in this section is wasted.

3.5.4 Space Complexity

It is clear from the description of the algorithm that the space requirement

is 0(n + G2). Since G, the grid resolution, is chosen such that G2 < n, the space 

requirement is 6(n).
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3.6 Implementation and Results

The above algorithm was implemented on a 16-processor Sequent Balance 

21000 machine. Shared data structures were used to store the points and cells.

Since the performance of the algorithm is data dependent, it has been tested 

on uniform distributions of points within a unit square, a unit circle, and an 

annulus. These data sets have been chosen because they differ in the standard 

deviation of the number of points per cell and the expected number of points on 

the convex hull. Therefore, the algorithm is expected to spend different fractions 

of time in the preprocessing and postprocessing phases. Tables 3.1 and 3.2 verify 

this claim.

Data sets with up to 200,000 points have been used to evaluate the perfor

mance of our algorithm. For 200,000 points from a circle, square, and annulus, 

it took 8.7, 12.5, and 13.88 seconds, respectively. These results indicate that if 

the speed of the individual processors increases, interactive performance can be 

achieved. Tables 3.1 and 3.2 give more details of our experiments.

Figure 3.11 shows the variation of the time taken, as a function of the input 

size for the three distributions. For data sets containing up to 150,000 points, the 

growth rate is close to linear. This result agrees with the complexity analysis of 

the algorithm. For larger data sets, deviation from linear growth is observed. The 

causes for it are examined later.

Figures 3.12, 3.13, and 3.14 show the speedup achieved for the three types 

of data. Each type of data has been tested with sets containing 100,000 points 

and 200,000 points. For 100,000 points, the average speedup achieved for the 

preprocessing phase is about 12.5 with 15 processors. The corresponding figure 

for the 200,000 point case is 9. This drop in speedup is not predicted by the 

complexity analysis and demonstrates the effect of practical issues. An increase in 

the number of cache misses, and in collisions in accessing the cells, are probable
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Dotted lines : Uniform distribution within an annulus (Rl = 0.3, R2 = 0.45)
Dashed lines : Uniform distribution within a square (L = 0.9)
Solid lines : Uniform distribution within a circle (R = 0.45) 
Grid Size : 120 x 120

Time 
(secs.)

10 15
Data size (in 10000) 

Preprocessing Phase

12

15

Time 
(secs.)

A

V

•W"" 8g-*

10 15

Data size (in 10000) 

Complete Algorithm

20

20

Figure 3.11: Timing Behavior of Algorithm with Data Size
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Distribution : Points chosen randomly and uniformly from a circle (R = 0.45) 
Grid Size : 120 x 120
Dashed lines : Preprocessing phase
Solid lines : Complete algorithm
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Figure 3.12: Timing and Speedup for Points in a Unit Circle
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Distribution : Points chosen randomly and uniformly from a square (L = 0.9)
Grid Size : 120 X 120
Dashed lines : Preprocessing phase
Solid lines : Complete algorithm
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Figure 3.13: Timing and Speedup for Points in a Unit Square
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Distribution : Points chosen from an annulus (Rl = 0.30, R2 = 0.45)
Grid Size : 120 x 120
Dashed lines : Preprocessing phase
Solid lines : Complete algorithm
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Figure 3.14: Timing and Speedup for Points in an Annulus
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Table 3.1: Complexity of Individual Steps (100,000 Points)

Operation Time %
l proc time

Time %
15 procs time

Speedup

100000 points in a circle (R=0.45), Grid size = 120 
____________451 cells and 1666 points after preprocessing
Putting points in grid 
Dominance computation 
Pruning cells
Candidate determination
Vector determination
Radial Sorting 
Eliminate duplicates 
Hull Determination

14.37 40.33
7.89 22.14
1.67 4.69
7.46 20.94
0.19 0.53
3.35 9.40
0.07 0.20
0.63 1.77

1.50 35.80
0.54 12.89
0.12 2.86
0.50 11.93
0.10 2.39
1.25 29.83
0.07 1.67
0.11 2.63

9.58
14.61
13.92
14.92
1.90
2.68 

Sequential
5.73

Complete algorithm 35.63 100.00 4.19 100.00 8.50

100000 Points in a square (L=0.9), Grid size = 105 
___ _________416 cells and 3973 points after preprocessing
Putting points in grid 
Dominance computation 
Pruning cells
Candidate determination 
Vector determination 
Radial Sorting 
Eliminate duplicates 
Hull Determination

14.47 36.70
5.55 14.08
1.38 3.50
7.52 19.07
0.44 1.12
8.55 21.68
0.16 0.41
1.36 3.45

1.50 27.32
0.38 6.92
0.10 1.82
0.52 9.47
0.13 2.37
2.55 46.45
0.16 2.91
0.15 2.73

9.65
14.61
13.80
14.46
3.38
1.84

Sequential
9.07

Complete algorithm 39.43 100.01 5.49 99.99 7.18

100000 Points in an annulus (Rl=0.3, R2=0.45), Grid size 
________ 428 cells and 4619 points after preprocessing

= 120

Putting points in grid 
Dominance computation 
Pruning cells
Candidate determination 
Vector determination 
Radial Sorting 
Eliminate duplicates 
Hull Determination

13.77 30.83
8.16 18.27
1.65 3.69
7.54 16.88
0.53 1.19

11.12 24.89
0.19 0.43
1.71 3.83

1.45 23.09
0.56 8.92
0.11 1.75
0.52 8.28
0.23 3.66
3.02 48.09
0.19 3.03
0.20 3.18

9.50 
14.57
15.00
14.50 
0.72 
3.68 

Sequential
8.55

Complete algorithm 44.67 100.01 6.28 100.00 7.11
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Table 3.2: Complexity of Individual Steps (200,000 Points)

Operation Time
1 proc

% 
time

Time
15 procs

% 
time

Speedup

200000 points in a circle (R=0.45), Grid size = 120
451 cells and 2937 points after preprocessing

Putting points in grid 29.00 45.83 4.31 49.54 6.73
Dominance computation 7.91 12.50 0.56 6.44 14.13
Pruning cells 1.67 2.64 0.11 1.26 15.11
Candidate determination 16.50 26.07 1.10 12.64 15.00
Vector determination 0.55 0.87 0.39 4.48 1.41
Radial Sorting 6.36 10.05 1.75 20.11 3.63
Eliminate duplicates 0.12 0.19 0.12 1.38 Sequential
Hull Determination 1.17 1.85 0.36 4.14 3.25
Complete algorithm 63.28 100.00 8.70 99.99 7.27

200000 Points in a square (L=0,9), Grid size = 105
416 cells and 7573 points after preprocessing

Putting points in grid 29.14 38.73 4.28 35.08 6.81
Dominance computation 5.55 7.38 0.39 3.20 14.23
Pruning cells 1.38 1.83 0.10 0.82 13.80
Candidate determination 16.38 21.77 1.11 9.10 14.76
Vector determination 0.94 1.25 1.16 9.51 0.81
Radial Sorting 18.86 25.07 3.93 32.21 4.80
Eliminate duplicates 0.31 0.41 0.31 2.54 Sequential
Hull Determination 2.67 3.55 0.92 7.54 2.90
Complete algorithm 75.23 99.99 12.20 100.00 6.17

200000 Points in an annulus (Rl=0.3, R2=0.45), Grid size = 120
428 cells and 8601 points after preprocessing

Putting points in grid 28.42 35.16 4.30 30.98 6.61
Dominance computation 8.22 10.17 0.61 4.39 13.48
Pruning cells 1.64 2.03 0.12 0.86 13.67
Candidate determination 16.40 20.29 1.12 8.07 14.64
Vector determination 1.03 1.27 1.39 10.01 0.74
Radial Sorting 21.58 26.70 4.92 35.45 4.39
Eliminate duplicates 0.35 0.43 0.35 2.52 Sequential
Hull Determination 3.19 3.95 1.07 7.71 2.98
Complete algorithm 80.83 100.00 13.88 99.99 5.82
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causes for the decrease in speedup (with constant G) with an increase in data size. 

The kinks in the graph for overall speedup are due to the unpredictable variation 

of time taken by the parallel quicksort.

Tables 3.1 and 3.2 show the times spent and the corresponding speedups 

achieved, by the various phases of the algorithm, for each of the distributions. 

Just as our complexity analysis predicts, all steps in the preprocessing phase show 

good speedup. Though the preprocessing phase eliminates 95% of the points for 

these examples, the sorting phase accounts for about 10-25% of the time in the 

sequential case. Moreover, it shows speedup of only 2.5 to 4.5. This gives an 

indication of the speedup that would be achieved by algorithms that sort all the 

points in the data set in a preprocessing phase. It also explains the deviation 

from linear speedup for the complete algorithm. The effects of non-linearity (as 

the number of processors increases) in speedup and time, due to sorting, can be 

reduced by using a finer grid. It would make the sequential algorithm spend more 

time in the preprocessing phase which shows good speedup, and less time in the 

sorting phase which shows a poor speedup. Tests also show that the sorting time 

can be cut to approximately a fourth of the present time by resorting to angle 

computations using inverse trigonometric functions. However, as stated earlier, 

robustness has been given priority over speed. The parallel Graham scan phase 

shows speedups ranging from 3 to 9, but this phase takes less than 5% of the total 

sequential time and hence it does not critically affect the overall performance.

Figure 3.11 shows that the times taken for the different distributions are 

within a factor of 1.6. From the description of the algorithm and the analysis of 

experimental results, it is clear that our algorithm would exhibit similar perfor

mance for many other distributions. Distributions in which points are distributed 

along a contour however, will be bad data sets for our algorithm.



55

3.7 Conclusion

The convex hull algorithm presented combined the use of the uniform grid, 

a parallel sort, and simple data partitioning for parallelization.

The uniform grid was used effectively (speedups more than 9 with 15 pro

cessors) to transform in parallel the domain of points into the domain of candi

date points. This phase linearizes the complexity of the algorithm by eliminating 

most of the interior points for many commonly encountered distributions in lin

ear time. The simplicity and regularity of this technique are the main reasons 

for its efficiency. This property also makes this phase well suited for hardware 

implementation.

The parallel quicksort was used to transform the domain of candidate points 

to that of chains. The parallel bucket sort was not used in order to maintain 

robustness by avoiding use of inverse trigonometric functions. Poor performance of 

the parallel quicksort algorithm limited the overall speedup of our algorithm. The 

availability of a faster and more easily implementable comparison-based parallel 

sort in future would immediately improve the overall performance of our algorithm. 

The parallel Graham scan phase of the algorithm is heuristic and not optimal; 

however, pathological cases for this phase are not expected to occur for most 

commonly encountered data sets.

Results from implementation reveal that simple data partitioning by dis

tributing points, cells, rows, columns, diagonals, and chains to the processors lead 

to fairly even load-balancing for this problem.

The following chapters show further use of this technique for solving more 

complicated problems.



CHAPTER 4
PARALLEL POLYGON COMBINATION

The use of the framework presented in Chapter 2 in the development of a parallel 

algorithm for the polygon combination problem is demonstrated. The parallel 

polygon combination problem is intrinsically more complex than the convex hull 

problem. It also deals with more complex geometric entities, i.e., faces instead of 

points. Our algorithm concentrates only on the parallelization of the geometric 

issues of the problem. In this algorithm we also observe the effect of special cases 

due to incidence.

4.1 Introduction

In the context of geometric applications, a Boolean operation refers to a set 

operation on geometric objects. The objects are represented as r-sets [67], and the 

set operators such as the union, intersection and difference, are regularized [67] 

operators, which remove dangling edges and faces. Regularized set operators and 

r-sets form a Boolean algebra.

The problem of polygon combination in the context of this chapter is as 

follows: Given the boundary of two polygons, we need to determine the boundaries 

of the various regularized Boolean combinations of the two polygons such as the 

intersection, union and difference. The term boundary is elaborated in the following 

section. Figures 4.4 to 4.7 illustrate the problem.

Boolean combinations of polygons are used in the boundary evaluation of 

objects defined in the Constructive Solid Geometry (CSG) representation scheme. 

They are also used for clipping polygons and computing visible surfaces in com

puter graphics and for computing the areas of overlapping layers of circuit elements 

in VLSI. Currently there is no literature on parallel algorithms for this problem.

56
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4.2 Assumptions

We are given the edges of the polygons, Pa and Pp, in a random fashion. 

The edges are oriented such that the interior of the polygon lies to their right. The 

polygons can have holes and can have more than one disjoint component. The 

format of the result of our algorithm is the same as that of the input. Section 4.4 

discusses how the contours of the resulting polygon can be determined. The con

tours are not necessary for a variety of applications such as viewing, interference 

detection, and calculation of mass properties.

We assume that all vertices in the polygons are separated by a minimum 

distance of e. During the intermediate stages of the algorithm, vertices closer 

than e are treated as coincident. Collinear edges whose vertices can be treated as 

coincident are in turn treated as coincident. This treatment does not solve the 

fundamental problem of numerical errors, but is practical.

4.3 The Algorithm

The main steps in our CREW PRAM parallel algorithm are as follows:

1. Compute the points of intersection between the edges of the two polygons.

2. Use the intersections computed above to partition the edges of the polygons 

into sub-edges whose classification, i.e., whether they are inside, outside, or 

on, with respect to the other polygon, is constant. Whenever possible, clas

sify the sub-edges by an analysis of the local neighborhood of the intersection. 

If the sub-edge lies on the other polygon, its relative orientation with respect 

to the other polygon is also determined. Table 4.1 shows all the possible 

classifications for a boundary element.
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3. Classify the edges of each polygon that do not intersect the other polygon, 

and the unclassified sub-edges, with respect to the other polygon, by using 

a point-with-respect-to-polygon test.

4. Determine which sub-edges or edges need to be included to obtain the bound

ary of the desired Boolean combination. A salient feature of our algorithm 

is that the edges of all Boolean combinations can be determined by using a 

single table.

4.3.1 Parallel Computation of the Points of Intersection

The uniform grid technique is used for computing the points of intersection 

in parallel and is described below:

1. Partition the 2-D region of interest into G x G uniform square cells. The 

fineness of the grid G, is a function of the length of the edges in the input 

polygons. Usually G = cL~1 is a good heuristic, where L is the average length 

of the edges and c is a tuning constant. The left and bottom boundaries of a 

cell belong to it, whereas the top and right boundaries do not. Appropriate 

adjustments are made while dealing with the peripheral (border) cells.

2. Insert the edges of the polygon into the cells of the grid, i.e., determine the 

(cell, edge) tuples. The cells which an edge passes through are determined 

by using a variant of the Bresenham line drawing algorithm [16]. If an edge 

passes through a grid corner, it is entered in all four cells adjacent to the 

corner (see following discussion).

This step can be executed in parallel because the computation is mutually 

independent with respect to the edges. A predetermined partitioning scheme 

is used to distribute the edges among the processors. The only contention 

for resources that occurs in this step is when more than one processor wants 
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to write into the same cell’s edge list. This problem is solved by using atomic 

locks to lock the cell data structure whenever it is updated.

3. For each cell C,, use the (cell, edge) tuples to determine the relevant inter

sections among the edges passing through it. Note that a pair of edges have 

to be tested for intersection only if they belong to different polygons. In 

order to avoid multiple reporting of the same intersection between a pair of 

edges going through many adjacent cells, the intersection is reported only if 

the point of intersection belongs to the cell in which the pair is tested. This 

strategy does not work in the polyhedron combination algorithm in Chap

ter 5. Intersections that fall on the cell boundaries are handled correctly 

because no boundary belongs to more than one cell.

If two edges intersect at a grid corner, they must be tested for intersection 

in all four grids cells incident at this grid corner. If they are tested in only 

one of the four cells, there is a possibility of missing the intersection because 

the computed point of intersection may lie in one of the other three cells, 

due to limited numerical accuracies on the computer. However, when the 

edges are checked for intersection in all four cells, only one of the cells will 

report the intersection because the point of intersection is unique. Moreover, 

a point-in-cell test can be devised such that a point belongs to only one cell. 

If there were no problems with limited numerical accuracies, an edge passing 

through a grid corner need be entered consistently in only one of the four 

cells. Therefore, we observe that the cardinality of the set of (cell, edge) 

tuples can increase due to limited numerical accuracies.

In order to handle cases of collinearity and incidence (see Figure 4.1), over

lapping collinear edges and edges which touch each other at a vertex, are 

not considered to intersect. However, if a vertex of one edge lies in the 
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interior of the other edge, the two edges are considered to intersect. This 

takes care of the special cases of overlapping collinear edges, and vertices 

lying on edges or other vertices. An intersection due to incidence is called 

an improper intersection and an intersection due to crossing edges is called 

a proper intersection.

For every pair of edges a of Pa, and e, of that intersect at the point 

(x,y), two tuples, {ei,e^x,y,type.of.xsect) and (ej,ei,x,y,typejofjxsect) 

are created. The type of intersection, i.e., whether it is due to a vertex 

incidence or a proper crossing of edges, is also recorded in the tuple. Note 

that the presence of special cases has increased the arity of the tuple-set.

This step is executed in parallel by distributing the grid cells among the 

processors because the computation is mutually independent with respect 

to the cells. To achieve better load-balancing in cases where certain regions 

contain a significant number number of edges, adjacent cells are given to 

different processors.

4. The set of (e,-, ej,x, y ^typejof -xsect) tuples is now sorted by the first edge, 

e,-, of the tuple so that all the points of intersection along each edge are in 

consecutive locations. The parallel bucket sort or quicksort may be used for 

this purpose.

4.3.2 Formation and Classification of Sub-edges in Parallel

This step is parallelized by distributing the (ei,ej,x,y,iype_of jxsect) tuples 

among the processors so that each processor is responsible for a few edges. Each 

edge is divided into sub-edges with constant classification in the following manner:

1. The elements of the set of (e,, e^ x, y, type^f jxsect} tuples corresponding to 

intersections along the edge, e,', to be partitioned and classified, are converted 
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to a set of {&j,x,y,typejof jesect} tuples. The vertices of the edge being 

partitioned are also entered into this set of tuples as they each form a vertex 

of a sub-edge. The set of (ej, x, y, type jof jcsect) tuples is sorted by either the 

x or the y coordinate of the point of intersection, depending on the slope of 

the edge, to increase numerical stability of the sort. Intersection points which 

are within a distance of e are coalesced. If any of these intersection points 

is within a distance of e from the vertices of the edge, they are coalesced 

with the vertex. Figure 4.1 shows how the previous steps take care to create 

sub-edges of non-zero length.

2. Consecutive elements from the sorted set of (ej^x^y^type-ofjxsect) tuples 

that are separated by a distance greater than e define the vertices of the 

sub-edges into which the edge is to be partitioned. The sub-edge is oriented 

in the same direction as the original edge of which it is a part. If at least 

one of the vertices of the sub-edge was the result of a proper intersection it 

is referred to as a proper sub-edge. The other sub-edges are referred to as 

improper sub-edges.

3. All proper sub-edges are classified at this stage by an analysis of the 

(ej, x, y, typejof jxsect) tuples responsible for causing them. Figure 4.2 shows 

how the orientation of the edges is used for this purpose. The information 

encoded in type.of _xsect is used to determine whether the sub-edge is a 

proper sub-edge or not. The classification of improper sub-edges is described 

in the following section.

4.3.3 Classification of Unpartitioned Edges and Improper Sub-Edges

Unpartitioned edges and improper sub-edges of partitioned edges are classi

fied by using a point-with-respect-to-polygon test. Note that we cannot propagate 

the classifications from one unpartitioned edge to another along the boundaries of
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All improper intersections: no classification possible

Figure 4.1: Special Cases Occurring in Polygon Combination. Edges 
incident on other edges create duplicate intersections.
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Interior of the polygon Is to the right of the edge

Edge of Polygon A

Edge of Polygon B

A out B

B in A

B out A

A in B

Proper intersection

Polygon A

Improper Intersection

Figure 4.2: Classification of Sub-Edges at a Proper Intersection Ver
tex. Sub-edges that are to the left of the edges causing them are 
outside the other polygon.

Polygon B
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the polygons as we do not know the contours of the polygons. The point-with- 

respect-to-polygon test is done by passing a horizontal ray from the midpoint of 

the sub-edge to be classified to the right extremity of the scene boundary, to deter

mine the first edge of the other polygon it intersects. The advantage of using the 

uniform grid technique is that only those edges of the polygon in the cells which 

the ray passes through are involved in this computation. A horizontal ray is used 

as opposed to a vertical ray because the grid cells are stored such that contiguous 

cells of the grid in the horizontal direction are in contiguous memory locations of 

the machine. The ray-shooting procedure ends at the first cell in which the ray in

tersects an edge or edges of the other polygon. In this cell, determine the first edge 

of the other polygon to intersect the ray. Check whether the point to be classified 

lies to the right, left, or on this edge and classify the sub-edge appropriately. If 

the ray does not intersect or lie on any edge, the point to be classified lies outside 

the other polygon. Figure 4.3 shows an example.

This step is done in parallel by distributing among the processors, the edges 

and sub-edges that are yet to be classified.
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P 2

P1

P3

Figure 4.3: Point Classification w.r.t. Polygons using the Uniform
Grid. Points Pi and P3 are outside the polygon. Pg is inside. 
Note that the ray stops at the appropriate cell.
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Table 4.1: Segments to be Included in Various Polygon Combinations
Elements to include PaUPp Pa^Pp Pa-Pp
Element of Pa inside Pp
Element of Pa outside Pp +

+
f

Element of Pp inside Pa
Element of Pp outside Pa +

+ —

Element of Pa on Pp, in same direction 
Element of Pp on Pa, in same direction 
Element of Pa on Pp, in opp. direction 
Element of Pp on Pa, in opp. direction

+ +
+

Table for other combinations are similar

4.3.4 Selecting the Appropriate Sub-Edges

Table 4.1 shows the elements to be included to obtain the boundary of each 

of the commonly encountered regularized Boolean operations. To use the table, 

select the operation desired, and then read down that column. For each row below 

with a or read to the left to find the type of element to include. A 

means that the element is to be used with its direction reversed and a means 

that the element is to be used in the same direction as reported. For example, if 

the elements for Pa U Pp are needed, all elements of Pa which are outside Pp, all 

elements of Pp which are outside Pa, and all elements of Pa which are on Pp and 

have the same orientation, i.e., the interiors of both polygons lie to the same side 

of this element, are included in the result.

A look at the elements chosen for Pa U Pp and Pp U Pa reveals that the ta

ble is asymmetric with respect to Pa and Pp. The asymmetry is introduced to 

avoid duplicate edges in the final object which would appear otherwise, due to 

overlapping collinear sub-edges.
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4.4 Topological Aspects

The above algorithm and its implementation do not deal with determination 

of the contours in the resulting polygon. We now propose an approach for this 

aspect.

The edges in the result are sorted by the coordinates of their vertices. Con

secutive elements in the sorted list can then be used to determine the edges incident 

at the vertices. This phase can be parallelized by using the parallel bucket sort 

and data partitioning.

The edges in the contours and the complete hierarchical organization of con

tours can be derived as shown in Section 5.4.5.1. This process appears to be 

sequential.

4.5 Implementation and Results

The algorithm was implemented on a 16-processor Sequent Balance 21000 

parallel machine. Shared global arrays were used to store the edges, sub-edges, list 

of intersections, and the lists of (cell, edge) tuples. We did not use a parallel sorting 

algorithm to sort the (ei,ej,x,y,typejof-xsect) tuples in our implementation, as 

sorting was not an intensive component of the algorithm.

The algorithm was tested on a variety of data sets. Figures 4.4 and 4.5 

show two different types of data sets used. In the first example, the edges of the 

polygon were generated using a random number generator, with the restriction that 

a polygon should not intersect with itself. In the second example, each polygon 

consists of a set of squares. These polygons have been chosen because they differ 

in shapes and standard deviation of the edge lengths, and are thus expected to 

spend different fractions of time in the various phases of the algorithm. In the 

first example, the two polygons have 12,000 and 6,800 edges respectively, and in 

the second example, both polygons have 7,200 edges each. Due to the limited 
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resolution of the hard copy devices, the figures show data sets which are smaller 

than the ones actually used. Figures 4.6 and 4.7 show the results of our algorithm 

for the data sets shown in Figures 4.4 and 4.5, respectively.

Figures 4.8 and 4.9 show the times taken by the various phases and the 

speedup of the algorithm as a function of the number of processors for both data 

sets discussed. The figures show that close to linear speedup was achieved in both 

cases. This indicates that the total time taken by the algorithm would continue 

to decrease as more processors are added, till other factors such as bus capacity 

and inherently sequential sections begin to dominate. A speedup of 13.50 and 

10.31 with 15 processors was achieved for the first and second examples, respec

tively. Using 15 processors, computing all the Boolean combinations for the first 

example took 177.19 seconds, using a 97 x 97 grid. For the second example, the 

corresponding time was 18.03 seconds, using a 100 x 100 grid.

Table 4.2 shows the fraction of time taken, and the corresponding speedups 

achieved, for each phase of our algorithm for both the examples. Table 4.3 shows 

the time taken for the various phases of the algorithm as a function of the number of 

processors and the grid resolution G, for the first example. This study is expected 

to be useful in estimating the performance of the algorithm when more processors 

are used, and on machines with different architectures. The following conclusions 

can be drawn by examining Tables 4.2 and 4.3.

1. The overall parallel efficiency (100 x 7i/(P x Tp)) of the algorithm is more 

than 80% for the first example and about 70% for the second example. For 

the first example, the parallel efficiency corresponding to the case which takes 

the minimum time for the algorithm is about 85%.
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Figure 4.4: Data Set: Randomly Generated Edges
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Figure 4.5: Data Set: Uniform Set of Squares
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Figure 4.6: Results: Union of Randomly Generated Polygons
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Figure 4.7: Results: Union of Sets of Uniform Squares
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Figure 4.8: Timing and Speedup: Randomly Generated Polygons



74

400

Time 
(secs.) 200 -

100

300

b 9 12 15
Number of Processors

(a)

15

Speedup

10

156 9 12
Number of Processors

(b)

Figure 4.9: Timing and Speedup: Uniform Squares
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Table 4.2: Complexity of Individual Phases of the Polygon Combination

Operation Time
1 proc

% 
time

Time
15 procs

% 
time

Speedup

Random Polygon Example, Grid Size = 97
Putting edges in the grid 39.82 1.66 8.48 4.79 4.70
Intersecting the edges 2101.27 87.83 141.34 79.77 14.87
Sorting the intersections 4.38 0.18 4.04 2.28 Sequential
Forming sub-edges 32.86 1.37 4.85 2.74 6.78
Classifying uncut edges 214.13 8.96 18.57 10.48 11.53
Complete polygon combination 2392.46 100.00 177.19 100.00 13.50

Square Example, Grid Size = 20
Putting edges in the grid 7.96 2.25 4.64 13.52 1.72
Intersecting the edges 143.14 40.44 10.93 31.84 13.10
Sorting the intersections 2.48 0.70 2.48 7.22 Sequential
Forming sub-edges 23.06 6.52 3.28 9.55 7.03
Classifying uncut edges 177.30 50.09 13.00 37.87 13.64
Complete polygon combination 353.94 100.00 34.33 100.00 10.31

2. The intersection and the edge classification phases account for a large fraction 

of the total time of the algorithm. Both these phases show very good speedup 

(more than 10) and this is the reason for a respectable overall result. Thus, 

our framework is successful in parallelizing the main phases of algorithm and 

in obtaining reasonable performance.

3. The performance of the phase which determines the (cell, edge) tuples tends 

to saturate as the number of processors is increased. The benefit accrued 

by using more processors is negated by the overhead of the locking routines 

used to resolve collisions in accessing the shared cell data structure. As 

shown later in the polyhedron combination algorithm (Section 5.4.5), better 

speedup for this phase is achievable by using temporary local buffers, which 

are later copied into the shared cell-entity list, and then sorting the cell-entity 

list by the cell number with a parallel bucket sort.
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Table 4.3: Variation of Time with Processors and Grid Resolution
Speedup = one proc.)/TP(P procs.). Parallel Efficiency = 100 x ^/(P x 7»

# 
Procs

Cast 
Grid

Intersect 
Edges

Sort 
Intersections

Form 
Sub-edges

Classification 
Time

Total 
Time

Speed 
up

Parallel 
Efficiency

Grid Size = 60

1 28.32 2171.41 4.45 33.25 340.94 2578.37 1.00 100.002 15.05 1093.17 4.39 18.31 222.79 1353.71 1.90 95.233 10.86 776.46 4.44 12.34 146.31 950.41 2.71 90.434 8.71 550.99 4.21 9.67 110.78 684.36 3.77 94.195 7.53 447.69 4.15 8.06 89.51 556.94 4.63 92.596 6.94 384.98 4.16 7.10 72.75 475.93 5.42 90.297 6.47 313.85 4.18 6.19 62.12 392.81 6.56 93.778 6.28 275.70 4.23 5.64 55.54 347.39 7.42 92.789 6.16 258.10 4.19 5.46 49.09 323.00 7.98 88.7010 6.12 232.83 4.16 5.21 44.05 292.37 8.82 88.1911 6.15 199.40 4.13 4.84 40.91 255.43 10.09 91.7712 6.21 193.79 4.17 4.76 37.25 246.18 10.47 87.2813 6.28 173.74 4.18 4.77 35.05 224.02 11.51 88.5414 6.44 157.78 4.19 4.67 33.27 206.35 12.50 89.2515 6.64 148.16 4.15 4.76 29.80 193.51 13.32 88.83

Grid Size = 80

1 34.60 2146.96 4.44 32.88 258.69 2477.57 1.00 100.002 18.47 1070.25 4.42 18.04 165.05 1276.23 1.94 97.073 13.28 717.01 4.26 12.26 109.78 856.59 2.89 96.414 10.60 566.61 4.13 9.57 82.55 673.46 3.68 91.975 9.14 478.04 4.08 7.94 67.42 566.62 4.37 87.456 8.36 360.17 4.06 7.10 55.73 435.42 5.69 94.837 7.70 307.78 4.08 6.29 47.26 373.11 6.64 94.868 7.41 294.87 4.08 5.80 41.00 353.16 7.02 87.699 7.21 239.71 4.07 5.54 37.42 293.95 8.43 93.6510 7.10 247.11 4.07 5.24 33.00 296.52 8.36 83.5511 7.08 196.57 4.09 5.19 30.36 243.29 10.18 92.5812 7.10 188.60 4.10 5.20 27.57 232.57 10.65 88.7813 7.14 166.94 4.09 5.19 25.45 208.81 11.87 91.2714 7.24 154.97 4.06 4.97 24.11 195.35 12.68 90.5915 7.42 159.21 4.11 5.00 22.27 198.01 12.51 83.42

____________________ _ Grid Size = 100

1 40.82 2121.41 4.35 32.84 214.60 2414.02 1.00 100.002 22.36 1065.00 4.35 18.05 133.46 1243.22 1.94 97.493 16.19 708.56 4.27 12.30 90.03 831.35 2.90 97.194 12.96 543.30 4.15 9.37 67.40 637.18 3.79 95.115 11.18 452.74 4.14 7.92 54.55 530.53 4.55 91.386 10.23 354.66 4.17 6.81 45.33 421.20 5.73 95.927 9.42 305.27 4.03 6.25 38.51 363.48 6.64 95.278 9.01 270.67 4.05 5.79 34.93 324.45 7.44 93.399 8.73 237.84 4.08 5.48 29.84 285.97 8.44 94.1810 8.54 226.21 4.04 5.28 26.55 270.62 8.92 89.5711 8.48 194.07 4.06 4.92 25.03 236.56 10.20 93.1512 8.46 181.44 4.09 4.97 22.19 221.15 10.92 91.3413 8.46 164.64 4.03 4.91 20.87 202.91 11.90 91.8914 8.53 152.61 4.03 4.65 20.02 189.84 12.72 91.2115 8.71 151.82 4.10 4.83 18.42 187.88 12.85 86.01



77

4. When just one processor is used, the sorting phase which transforms the al

gorithm from the domain of edges to the domain of sub-edges takes only a 

small fraction (less than 1%) of the total time. Hence the use of a sequential 

sorting algorithm for this phase does not degrade the performance signifi

cantly when 15 processors are used. However, as the number of processors 

increases, even small sequential sections (such as 1%) in the algorithm limit 

the maximum parallel efficiency achievable, and the use of a parallel sorting 

algorithm will be mandatory. To improve the performance, the polyhedron 

combination algorithm (Section 5.4.5) makes extensive use of parallel sorting 

schemes for the domain transformation steps.

5. The time taken by the grid, intersection, and classification phases varies with 

the grid size. The optimal grid size depends on the exact nature of the de

pendence of each of these phases on the grid resolution. In the sequential 

algorithm for segment intersection, the opposing nature of this dependence 

for the grid and intersection phases was the reason for the relative insensi

tivity of the total time as a function of the grid size [57]. A similar behavior 

is observed in the parallel polygon combination algorithm. In addition, since 

the various phases of the algorithm yield different speedup curves, the grid 

size which minimizes the total time can differ with the number of processors 

used. Table 4.3 shows that when either 5, 8, or 15 processors are used, the 

60 x 60 grid is faster than the 80 x 80 grid. On the remaining occasions, the 

80 x 80 grid is faster.

We expect the current implementation of our algorithm to show comparable 

results on other types of data sets if the sequential algorithm spends large fractions 

of time in the intersection and classification phases.
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4.6 Conclusions

A parallel Boolean combination algorithm for polygons was presented. The 

algorithm combined the use of the uniform grid technique, a sort, and data parti

tioning for parallelization.

The uniform grid technique generated sub-tasks that could be done in par

allel, reduced the number of comparisons for determining the intersections, and 

reduced the time for classifying points with respect to a polygon.

The sorting phase enabled the transformation from the domain of 

(ei,ej,x,y,typejof^xsect) tuples to the domain of sub-edges. We did not use a 

parallel sorting algorithm for this purpose in the implementation because sorting 

did not form a significant part of the complete algorithm.

The implementation revealed that the determination of the intersections be

tween the edges of the polygons and the classification of the edges in the resulting 

polygon were the most time-consuming phases of the geometric aspects of the 

Boolean operation algorithm for polygons. The good speedup (more than 10 with 

15 processors) achieved indicates that the simple data partitioning scheme which 

distributed the edges, cells, and the sub-edges among the processors did not cause 

any noticeable load-balancing problems for the examples investigated.

As we show in the next chapter, the Boolean combination algorithm for 

polyhedra makes more extensive use of this paradigm.



CHAPTER 5 
PARALLEL POLYHEDRON COMBINATION

The framework presented in Chapter 2 is now utilized for developing a parallel 

algorithm for polyhedron combination. This problem is more complex than the 

ones encountered so far. It involves several important geometric and topological 

issues.

5.1 Introduction

The problem of polyhedron combination in the context of this chapter is 

as follows: Given the boundaries of two polyhedra, we need to determine the 

boundaries of the various regularized Boolean combinations of the two polyhedra 

such as the intersection, union and difference. The term boundary, as used in 

this chapter, and the restrictions of our algorithm are elaborated in Sections 5.4.1 

and 5.3.1, respectively.

Polyhedral Boolean operations are used to define objects in the Construc

tive Solid Geometry (CSG) representation scheme, detect spatial interferences 

and collisions, model manufacturing processes such as milling and drilling, model 

integrated-circuit fabrication processes, and for path planning in robotics.

Thus, it is clear that Boolean operations on polyhedra are useful in diverse 

areas. A parallel algorithm for this problem would be useful to all these areas.

The following sections provide a review of existing sequential Boolean op

eration algorithms, present a parallel algorithm for the problem, and discuss the 

implementation and results on a shared-memory parallel machine.

79



80

5.2 Literature Review

Though many independent sequential algorithms have been developed for 

this problem, most are minor variations of the major approaches. Requicha and 

Voelcker [67] present an excellent overview of the various techniques used for per

forming the Boolean operations. The following are some of the more recently 

developed algorithms which are representative of the different approaches to the 

problem.

Segal and Sequin [71] consider the problem of partitioning polyhedral objects 

into nonintersecting parts. Face-face intersection forms the core of their algorithm. 

Bounding boxes are used to reduce the number of comparisons. In a similar algo

rithm, Laidlaw and Trumbore [49] present a detailed case-by-case analysis of the 

special cases. Their method is applicable only to polyhedral objects with convex 

faces. One drawback is that this domain is not closed under Boolean operations, 

and hence faces have to be fragmented in order to make the domain of the result 

the same as that of the input.

Thibault and Naylor [74] use binary space partitioning (BSP) trees to perform 

set operations on polyhedra. They consider the problem of generating BSP trees 

for polyhedra and for polyhedral objects defined in CSG. One problem with this 

method is the possible excessive fragmentation of faces by the halfplanes. Another 

disadvantage is that their algorithm depends on sequential insertion of hyperplanes 

into the BSP tree, and is thus hard to parallelize.

Carlbom [18] presents an algorithm for set operations on planar polyhedral 

manifold objects. A cellular space subdivision scheme and the poly tree data struc

ture are used to efficiently search for intersections. The cells are subdivided till they 

become simple, i.e., contain only an edge or vertex or face of the object. Objects are 

clipped against the boundaries of the cells. This is not desirable because clipping 
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against the cell boundaries is expensive. Clipping could also lead to numerical 

precision problems when the solutions from the various cells have to be merged at 

the boundaries of the cells.

Yamaguchi and Tokieda’s approach [79, 80] triangulates the potentially in

tersecting faces. The basis for their method is that Boolean operations on triangles 

are easy to perform. They propose a 4 x 4 determinant processor to handle the 

geometric queries encountered in this problem. A series of triangulation and de

triangulation of faces is done in the course of the algorithm, and hence the mapping 

of data on to the triangle processors, such that the load is evenly balanced, is not 

trivial.

Putnam and Subrahmanyam [63] consider Boolean operations on n-dimensional 

objects. Their representation treats all entities as objects and makes no conceptual 

distinction between faces, edges, and vertices. Their algorithm is recursive, the re

cursion being on the dimension of the objects dealt with at every stage. Their 

algorithm seems extremely well-suited to object-oriented programming.

We are not aware of any implementations of the last three algorithms and 

hence it is difficult to comment on their performance.

Mantyla [52] describes a topological approach to the set operation problem, 

which maintains all topological relations throughout the algorithm. This makes 

it possible to make consistent decisions while handling special cases when the 

arithmetic on the computer is not precise enough to make reliable and consistent 

decisions by the use of geometry alone. However, it also makes the algorithm very 

difficult to parallelize.

Hoffman, Hop croft, and Karasick [44] describe an algorithm for performing 

regularized set operations on polyhedral solids. They use symbolic reasoning as 

a supplemental step that compensates for possible numerical uncertainty in order 

to make their algorithm robust. A more detailed description is given by Karasick 
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in [46].

All the above algorithms are sequential, although some of them could be 

parallelized. The authors are not aware of any parallel object-space algorithm for 

this problem. The parallel algorithm developed in this chapter is a parallelization of 

the sequential algorithm presented by Franklin [30]. Also, the algorithm presented 

here discusses the topological aspect of the Boolean operation algorithm in much 

greater detail than [30].

5.3 Important Algorithmic Issues

The Boolean operation algorithm has to deal with two issues, geometry and 

topology. The geometric aspect deals with obtaining all the intersections between 

the two objects. The topological aspect deals with maintaining the connectivity 

relations in the result. The maintenance of complete topology for the result of 

the Boolean combination is of prime importance in some applications. It is not 

necessary in many applications such as interference detection, and determination 

of visible surfaces and mass properties.

Many algorithms just deal with the geometric aspect. Some algorithms like 

the one presented here, treat these aspects in separate phases. The pros and cons 

of this approach will now be examined from the point of view of parallel processing.

Two fundamental and important problems arise in the polyhedron combina

tion problem which can cause these algorithms to fail in some cases. The first one 

is due to the occurrence of special cases. The second one is due to the limited

precision arithmetic available on computers. In practical situations both problems 

occur in conjunction.

When consistent topological results are needed, the two aspects cannot be 

dealt with in isolation because special cases such as vertices lying on edges or 

faces, or edges lying on edges or faces, may produce duplicate intersections in the 
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geometric phase. These cases have to be identified and appropriate action has to 

be taken to have a valid topological result.

By the above reasoning, it can be concluded that the processing of a special 

case requires confirmation of independently made geometric decisions, and is not 

an inherently parallel task.

In some special cases, due to limited numerical accuracies on computers, two 

independent and contradictory geometric decisions may have to be coerced into one 

because of topological considerations. These problems are extremely complicated 

issues in themselves. It is a separate research topic and an investigation of these 

issues is beyond the scope of this thesis. However, the following observations are 

worth noting.

The first observation is that though numerical problems often cause geometric 

programs to fail, they manifest themselves only in special situations. The second 

observation is that in most practical situations, there are only a few instances of 

these special cases in any single problem of polyhedron combination. Therefore, 

the algorithm will spend most of its time in processing the normal cases. The third 

observation is that general solutions to these problems are slow and should be used 

only when necessary.

The above issues are important both from theoretical and practical points of 

view. However, even a sequential solution to these problems that is complete and 

convincing has eluded researchers thus far.

5.3.1 Objective and Scope of the Algorithm

Taking the above considerations into account, our objective is to provide a 

parallel algorithm which handles normal cases rapidly. The scope of our parallel 

algorithm does not include treatment of problems caused by numerical errors. Our 

algorithm can be used in conjunction with provably robust sequential algorithms to 
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develop a correct and fast solution to the complete problem. Thus even a parallel 

algorithm that handles normal cases and just detects the special cases as opposed to 

providing a parallel solution to the complete Boolean operation problem is useful. 

For the purpose of detection of special cases, more conservative tolerances can be 

used, so that the detection strategy is robust. Each of the cases detected above can 

then treated by a robust sequential algorithm. The doubtful cases may of course 

be distributed among the processors.

Even in the hypothetical situation where perfect arithmetic is available, spe

cial cases due to coincident geometric entities require separate treatment for gen

erating a valid result. These issues are examined in Section 5.5. In order to create 

such an environment, our algorithm assumes that perfect arithmetic can be sim

ulated by resorting to use of e’s. (features separated by distances less than e are 

considered to be coincident). We exclude cases where this assumption will be 

violated.

The disadvantage of attempting to maintain complete topology in the inter

mediate phases of the algorithm by using Euler operators or their equivalents is 

that it will make the algorithm sequential because the Euler operators appear to 

be inherently sequential. This is our rationale for separating the geometric and 

topological aspects of the algorithm into distinct phases. Thus, our algorithm de

termines the topology of the resulting object in a batch mode. The ordering of the 

edges in the faces of the resulting object is determined only when all the intersec

tions in the face of the original object are available. The faces that are incident at 

each edge of the resulting object are determined when all the faces in the resulting 

object are known. We do not maintain complete topology in non-manifold situa

tions. It is not necessary in many applications such as interference detection, and 

determination of visible surfaces and mass properties.
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To maintain clarity in the main algorithm, our treatment of special cases 

(assuming no arithmetic errors) arising due to coincident geometric entities, is 

presented in Section 5.5,

5.3.2 Assumptions about Polyhedra

At this point we would like to point out that by placing the complete object 

within a single grid cell, it is trivial to generate an input set on which the uniform 

grid technique will fail to reduce the number of face-face comparisons. Hence we 

assume that the distribution of the faces of the object is more or less uniform 

throughout the space. We also assume that the data sets we handle are reasonably 

complicated, so as to justify parallelization. Typically, each object will contain 

hundreds of faces. In such a scenario, most individual faces will be small compared 

to the spatial extent of the scene, and it will be beneficial to use the uniform grid.

5.4 The Algorithm

5.4.1 Polyhedron Representation Scheme

The polyhedral objects used in our algorithm are represented by a list of 

faces. The faces are represented as a list of contours. If a face has holes, the 

outermost contour is specified first. Each contour consists of an ordered list of 

edges. The orientation of the edges in the contour is such that the interior of the 

face lies to the left of the edges. An edge can be adjacent to only two faces. Every 

edge in the face knows the other face adjacent to it. The face also has a normal 

vector which points towards the exterior of the object. The normals to the faces 

incident at an edge of the polyhedron are different, i.e., there is discontinuity of the 

normal at an edge. The objects themselves may be composed of multiple shells.
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5.4.2 Notation

Some of the terms used in the algorithm are defined here.

1. The two polyhedra are referred to as Pa and Pb respectively.

2. F refers to the faces of the polyhedra. Fa represents a face of polyhedron Pa.

3. CS refers to a coordinate system. A 2-D coordinate system on a face Fa, of 

Pa, is represented by CS^F^.

4. WCS refers to the world coordinate system used to define the objects. A 

transformation from coordinate system CS(1) to CS(2) is represented as 

T(CS(1) -+ CS(2)) .

5.4.3 Overview of the Algorithm

The parallel Boolean combination algorithm is divided into a set of data- 

parallel phases. These phases work with a series of tuple-sets. It first uses the 

uniform grid technique to reduce the number of pairs of faces which have to be 

tested for intersections. It then finds the intersections between these pairs of faces. 

The intersections are then organized and the faces of the original polyhedra are split 

into sub-faces. Depending on the Boolean operation being performed, appropriate 

sub-faces are selected to create the desired object. The parallelization is explained 

in the following sections.

5.4.4 Tuple-Sets used by the Algorithm

The following are some of the tuple-sets which the algorithm generates. The 

generation of these tuples is discussed in the following section:

1. The set of (cell, face) tuples. Cell refers to the label of the grid cell, and 

face refers to the label of the face.
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2. The set of (face, face) tuples. It is a list of labels of potentially intersecting 

pairs of faces of the two polyhedra.

3. The set of (face, cut-line, other-face) tuples. A cut-line (see Figure 5.2) is a 

line in the plane of the face across part (or all) of it. The cut-lines are used 

to subdivide the face into sub-faces. The other-face is the face of the other 

object that intersected this face to create the cut-line.

4. The set of (face, edge, cut-point) tuples. Edge is an edge of the face which 

the cut-line intersects. A cut-point (see Figure 5.2) is the point on the edge 

where a cut-line meets it. The cut-points are used to split the edges of the 

faces.

5. The set of (segment, segment-type, origin) tuples. Segment could be a cut

line in the face, a complete edge of the face or a split edge of the face. 

Segment-type refers to the type of the segment. Origin has details about the 

exact origin of the segment, i.e., which edge, sub-edge or cut-line it came 

from.

6. The planar graph Gpag domain. It is used to manipulate a planar straight

line graph to determine the sub-faces of the faces. As Figure 5.3 shows, a 

sub-face is a part of a face.

7. The set of (sub-face) tuples. The set of faces of the polyhedra resulting from 

the Boolean operations are subsets of the union of this set of sub-faces and 

the set of original faces of the object. Every sub-face knows the polyhedron 

it came from, and the origin and other details of its edges.

8. The set of (edge, sub-face) tuples. Edge stores the identifier of the edge, its 

type, i.e., whether it is an uncut edge of a face, cut-line on a face, or a split 
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edge of a face, and has details about its origin and the actual coordinates. 

Sub-face is the identifier of the sub-face to which the edge belongs.

5.4.5 Detailed Algorithm

1. Establish a 2-D coordinate system, CS(Ff), for each face-plane F,. This will 

be used later for referring to the points on the plane and for routines such as 

point-in-polygon testing. For efficient computation in later stages, transfor

mation matrices T(CS(WCS) —» CS(F^ and their inverses are determined 

for converting between 3-D and 2-D and vice-versa. In subsequent sections, 

this step is referred to as the domain transformation step.

The face-normals are also calculated at this point, if they are not already 

given.

2. Calculate an efficient grid resolution G for the grid to be cast over the polyhe- 

dra. The surface area of the cross-section of a grid cell should be comparable 

to the average area of the faces in the polyhedra, so that the average face 

goes through only a few cells.

3. For each face in either polyhedron, determine the cells it passes through, and 

add the elements to the appropriate set of (cell, face) tuples. A face is entered 

in every cell cut by the portion of the plane of the face contained within the 

bounding box of the face. We do not use an extension of the Bresenham line 

algorithm [16] for this step because, for complex faces it appears to be more 

complicated than our method.

The above three steps are done in parallel by distributing the faces equally 

among the processors. The fairness of the distribution of load among the 

processors depends on the complexity of the faces.
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Fa's intersection

Fb's intersection

Cut-linesCommon line of intersection Lab

Figure 5.1: The Intersection of Two Faces Fa and Ft



90

Cut-point

Uncut edge Cut-line

Figure 5.2: Cut-Lines and Cut-Points of Faces Fa and F^. Each face has 
two cut-lines due to mutual intersection. Fa has one cut-point and 
Fb has three cut-points.

4. Use the parallel bucket sort discussed in Section 2.3.1 to sort the two sets of 

(cell, face) tuples by cell number, so that all faces passing through the same 

cell are in consecutive locations of the set of (cell, face) tuples.

5. Using the two sorted lists of (cell, face) tuples form the list of (face, face) 

tuples of potentially intersecting faces. This step is done in parallel by dis

tributing the (cell, face) tuples among the processors, such that each proces

sor deals with a few cells. This list of (face, face) tuples can have duplicates, 

because the same pair of faces may go through more than one cell. Since it 

is expensive to intersect pairs of faces and to detect multiple intersections 

between the same pair of faces, computed in different cells potentially by
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Sub-lace 1

Sub-face 2
Sub-face 3

Figure 5.3: Sub-Faces of Face Fb

different processors, at a later stage, this list is pruned at this point to elim

inate duplicates. The list is pruned in parallel by converting the linear list 

into a hash table. Duplicate entries are removed by checking for a previous 

entry at the time of insertion into the hash table. This step is parallelized 

by distributing the (face, face) tuples among the processors. Write conflicts 

are resolved by the use of locks. The hash table is then reinverted in parallel, 

by distributing the buckets among the processors, into a linear list which 

contains no duplicates.

Alternatively, the set of (face, face) tuples can first be sorted by the face 

in parallel, and the duplicates can then be removed by scanning the sorted 

list. The implementation shows that there is very little difference between 

the time taken by these two methods.
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6. For each tuple (Fa, Fj) in the set of (face, face) tuples, determine whether Fa 

and F), intersect. If they do, determine the cut-lines and the cut-points. Fig

ure 5.1 illustrated the determination of cut-lines and cut-points. Figure 5.2 

shows the cut-lines for Fa and Fb, Since this is the most important step in 

the whole algorithm, where the final geometry is determined, it is given in 

considerable detail.

(i) Calculate the line of intersection Lab between the planes of the faces Fa 

and Fb, We assume that the faces are not coplanar. See Section 5.5.3 

for handling of coplanar faces.

(ii) Establish a 1-D coordinate system CS(Lab) on Lab, and calculate the 

matrices T(CS(Za&) —» CS(Faf) and T(CS(Lab) —» CS(Fbf) to switch 

between it and the 2-D coordinate systems on the planes of Fa and Fb.

(iii) For both faces, determine the parts of the line Lab that fall within them. 

This step involves intersecting Lab with all the edges of the face.

(iv) Convert the two included ranges of Lab. back to its 1-D coordinate sys

tem, CS(Lab).

(v) Intersect the ranges of the two faces to get the common range. If the 

common range is empty, the two faces do not intersect. In this case 

the algorithm proceeds with the next (face, face) tuple. If the faces do 

intersect, mark them as cut. Note that we have reduced the dimension 

of the problem from 3-D to 2-D, and it makes this step faster.

(vi) Convert the common range back to the coordinate system of each face. 

Each interval is a cut-line of the face. Each cut-line, and the pair of faces, 

are added to the set of (face, cut-line, other-face) tuples. Each cut-line is 
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oriented in the plane of the face such that the outward normal of the 

other-face causing it is to its right, so that sub-face classification can be 

done by a simple inspection of the cut-line.

(vii) Each endpoint of an interval of a common range is on an edge of ei

ther Fa or Fb. (or both if the edges intersect). The face, edge, and the 

endpoint are added to the set of (face, edge, cut-point) tuples.

(viii) Process the next (face, face) tuple.

Step 6 is done in parallel, by distributing the elements of the set of (face, face) 

tuples equally among the processors. Write conflicts into the sets of (face, 

cut-line, other-face) and (face, edge, cut-point) tuples are resolved by the use 

of locks. In order to minimize the probability of many processors queuing on 

the same lock, processors maintain short local lists and update the global list 

when their local lists get filled up.

7. Sort in parallel, using a bucket sort, the set of (face, cut-line, other-face) 

tuples by face number, so that all the cut-lines for a face are in consecutive 

locations of the set of (face, cut-line, other-face) tuples.

8. Sort in parallel, using a bucket sort, the set of (face, edge, cut-point) tuples by 

face (major key) and edge (minor key) so that all the cut-points of every edge 

in each face are in consecutive locations of the set of (face, edge, cut-point) 

tuples.

9. For each face F, in the list of faces intersected by the other object, do the 

following to determine the sub-faces into which it should be partitioned. 

Figure 5.3 shows the sub-faces for the face Fb. shown in Figure 5.1.

(i) For each edge E of F, determine the cut-points on it from the set 

of (face, edge, cut-point) tuples, sort them along E, and use them to 
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partition E into segments. Add information about these segments to the 

set of (segment, segment-type, origin) tuples for the current processor.

(ii) From the set of (face, cut-line, other-face) tuples, determine the cut

lines on F and add them to the set of (segment, segment-type, origin) 

tuples for the current processor.

(iii) Add all edges of F which were not split by the intersection process to the 

set of (segment, segment-type, origin) tuples for the current processor.

(iv) Order the set of (segment, segment-type, origin) tuples to define a planar 

graph in the plane of F. Its regions are the sub-faces of F. Determine 

the vertices and edges in order around the perimeter of each sub-face. 

This step is done by a generalized sub-face reconstruction algorithm 

discussed in Section 5.4.5.1.

(v) Determine whether each sub-face is inside or outside the other polyhe

dron, by inspecting a cut-line in the sub-face. Though holes in faces are 

treated as sub-faces of the original face, no cut-line will be found in any 

contour whose interior is a hole, and hence in these cases the sub-faces 

will rightly not be classified at all.

(vi) For each sub-face, add an appropriate element to the set of (sub-face) 

tuples.

Step 9 is done concurrently by distributing the faces among the processors. 

At the start of this step, each processor also determines the (face, edge, cut

point) and (face, cut-line, other-face) tuples for the faces it is responsible for, 

by a binary search followed by a sequential pass through the respective lists. 

Each processor has its own data structures to manipulate the planar graph, 

and hence this step has no write conflicts.
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10. Use a depth-first traversal to propagate the sub-face classification across the 

edges to the uncut faces of the solid.

The above step is done in parallel by distributing the sub-faces equally among 

the processors. Each processor starts a depth-first traversal.

11. The classification of faces in shells which do not intersect at all is determined 

by performing a point-in-polyhedron test. An efficient point-in-polyhedron 

procedure is discussed in a following section.

The above step is done in parallel by distributing the unclassified faces equally 

among the processors.

12. With the union of the set of sub-faces determined by all the processors, the 

faces to be included in any of the Boolean combinations of the polyhedra Pa 

and Pb can be determined using Table 5.1.

13. For each edge from each of the contours in the resulting object, enter its 

sub-face label into the set of (edge, sub-face) tuples. Edge contains identifier 

information and details about the origin of the edge, i.e., whether it was due 

to a cut-line, a split edge of a face, or a whole edge of a face in the original 

object.

The edges of the contours in the resulting object are equally distributed among 

the processors. Write conflicts are resolved by the use of locks.

14. Sort the (edge, sub-face) tuples by the identifier of the edge, using a parallel 

bucket sort. Identify groups of split-edges whose origin information is the 

same. Sort them by coordinates of the vertices of the edges. This process 

ensures that consecutive pairs of (edge, sub-face) tuples refer to the same 

edge element in space, though they may have resulted from different sub-faces 

and may have been determined by different processors.
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15. Consecutive pairs of tuples of the set of (edge, sub-face) tuples now have the 

face-around-edge adjacency information.

The edges of the contours in the resulting object are equally distributed among 

the processors.

5.4.5.1 Reconstructing the Topology of Sub-Faces

The algorithm presented here is an extension of the one given by Franklin and 

Akman [32]. The main enhancement here is that graphs with multiple components 

are also handled.

An adjacency list representation of the graph, for the segments in the plane 

of the face whose sub-faces have to be determined, is created. This step is done 

by sorting the segments by the coordinates of their vertices and grouping them by 

combining vertices which are closer than a predetermined e. The adjacency list 

of each vertex is arranged such that the edges incident on it are in a clockwise 

order. A depth-first search is then performed to identify the different connected 

components in the graph.

The contours in each connected component are determined by traversing the 

graph in the following manner. A starting vertex is chosen for the first contour in 

each component. The starting vertex is made the current vertex. The first unused 

edge in the adjacency list of the current vertex is made the current edge. The other 

vertex of the current edge is made the next vertex in the contour. The current edge 

is now marked as used, and the other vertex is made the current vertex. The first 

unused edge in the adjacency list of the current vertex which follows the current 

edge (in a circularly wrapped fashion) is made the new current edge. This process 

is repeated till the contour closes itself by returning to the starting vertex. The 

remaining contours are determined in a similar fashion. A simple inspection shows 

that since the edges around a vertex were arranged in a clockwise fashion, all the 
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contours will be oriented in an counter-clockwise fashion except the outermost 

contour of each component which will be clockwise. The outermost contour of 

every connected component is marked with a special tag, in order to efficiently 

find the hierarchical nesting of the components which is needed to determine the 

contours for multiply connected sub-faces. In order to form a nested hierarchy of 

the connected components, the connected components are sorted by the area of 

the outermost contour in the component. Then for each component, starting with 

the smallest component, the algorithm finds the next smallest component which 

contains it. In each pass of this phase, at least one component will be position in 

its final place in the hierarchy. Bounding boxes for the components are used as a 

preliminary check to avoid rigorous component containment checks when they are 

not necessary. A component containment is detected conclusively by determining 

the location of a point on one component with respect to the outermost contour 

of the other component. If the point is contained in the outermost contour of the 

component, the remaining contours in the component are tested in order to place 

the contained component in the appropriate contour of the containing component. 

A point-in-contour test is similar to the point-in-polyhedron test discussed in the 

next section. Note that since we are dealing with disjoint connected components, 

no point to be classified lies on the boundary of the contour to be classified against. 

This feature makes the point-in-contour procedure simpler.

Every contour in each connected component, which does not enclose another 

connected component, is a simple sub-face of the original face. If a contour encloses 

components, then the outermost contour of each of the contained components 

becomes an inner contour for the sub-face. The sub-faces are then classified by a 

simple inspection of the cut-lines in their contours.
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5.4.5.2 An Efficient Point w.r.t Polyhedron Procedure

The uniform grid is used to perform the point-with-respect-to-polyhedron 

test efficiently. In order to classify a point, shoot a semi-infinite ray in the positive 

z direction. The z direction is chosen as opposed to other directions because 

grid cells that are neighbors in this direction are stored in contiguous memory 

locations of the parallel machine. Determine the faces of the polyhedron which 

pass through the cells traversed by the ray. For each of these faces, the point of 

intersection between the ray and the plane of the face is checked for inclusion in 

the face. If the point of intersection lies in the face, the intersection is counted. If 

the total number of such intersections is odd, the point is inside the polyhedron. 

When the point of intersection between the face and the ray lies on the boundary 

of a face (edge or vertex), we consistently shift the ray by an infinitesimal amount, 

symbolically, in the negative x and y directions, so as to classify the point of 

intersection as either inside or outside the face. Note that the point-with-respect- 

to-polyhedron test does not have to handle the point-on-polyhedron case because 

it does not arise in our algorithm.

5.5 Treatment of Special Cases

The following section discusses the implication of some of the special cases 

encountered due to coincident geometric entities, to our algorithm. Our approach 

to handle the special cases determines the right geometry and part of the topol

ogy, but does not attempt to represent the complete topology of non-manifold 

situations. In this discussion we do not allow cases where the use of e’s leads to 

inconsistent decisions.
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Face A

Face B

Face A

Face B

No cut-lines for faces A and B

No cut-points for any edges Two cut-lines for faces A and B

Figure 5.4: Special Case: Vertex Lying on an Edge or a Face

5.5.1 Vertices Lying on Faces or Edges

Suppose that a vertex of a face of one polyhedron lies either on the edges 

or a face of the other polyhedron. Consider the step where a face containing this 

vertex is compared with the face on which it lies. The two edges of the face that 

are incident on this vertex will introduce duplicate points of intersection.

In order to handle this case, the step which determines cut-lines due to 

the intersection of two faces needs modification. Multiple vertices on Lab which 

are coincident are either coalesced or eliminated. Since the complete topology 

(ordering of edges) and the geometry (coordinates of edges) of the face are available 

at the time of intersection in the processor handling it, these decisions can be made 

by examining the edges around the vertex. Figure 5.4 shows two examples. In one 

case the two vertices are eliminated and in the other case they are coalesced. 

Isolated vertices in the interior of the faces are eliminated.
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5.5.2 Edges Lying on Faces or Edges

We now describe the manner in which the algorithm handles the case where 

an edge of one polyhedron lies on an edge or face of the other polyhedron. The 

important issues that need to be re-examined with this special case are the follow

ing:

1. Topology in non-manifold situations.

2. Merging or elimination of duplicate cut-lines.

3. Propagation of sub-face classifications.

Recall that our polyhedron representation scheme does not allow more than 

two faces to be incident at an edge. Therefore in this case, the algorithm does not 

attempt recovery of the face-around-edge information in the non-manifold situa

tions. In order to be able to maintain this information, a more complex polyhedron 

representation scheme such as the radial-edge [76] or star-edge data structure [46] 

has to be used. Our strategy still obtains the topology of the faces (the edges in 

the face are reported in order) in the resulting polyhedron and the faces-around- 

edge adjacency in all the other manifold regions of the polyhedron. This result is 

sufficient for determination of mass properties and for generating pictures.

Our algorithm breaks the topology of the polyhedra at the face-level and uses 

face-face intersection as the basic intersection operation. Therefore, when an edge 

that is common to two faces of one polyhedron lies on a face or edge of the other 

polyhedron, each face-face intersection test among the above faces will produce 

one cut-line. These cut-lines occupy the same physical location, but are duplicated 

because of the independent face-face intersection tests. The issue of either merging 

or eliminating duplicate cut-lines is resolved in the sub-face formation algorithm 

(Section 5.4.5.1).
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Merge cut II nee between same vertices 

Delete cut-lines if they ere isolated

Figure 5.5: Special Case: Edge Lying on a Face

When an edge of one object lies on the face of the other object, the two 

cut-lines produced by the two faces adjacent to the edge are first combined into 

one. Then the sub-face formation algorithm removes isolated cut-lines. Figure 5.5 

shows two examples. The net result of the above steps is that the two duplicate 

cut-lines are either coalesced or completely removed.

Similarly, when an edge of a face lies on an edge of the other face, duplicate 

elements between the same two vertices in the planar graph for the sub-face are 

combined. Figure 5.6 shows two examples.

The second modification is that the sub-face classification algorithm cannot 

derive valid sub-face classification from cut-lines that are created by edges lying on 

faces or edges. Recall from Section 4.3.2 that a similar strategy was used for the 

polygon combination problem to avoid erroneous classification of sub-edges when 

vertices were incident on edges. This constraint is enforced by the following strat

egy. The (face, cut-line, other-face) tuples generated by the face-face intersection
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edge A

Duplicate edge elements

Figure 5.6: Special Case: Edges Lying on Edges

process are replaced by (face, cut-line, other-face, type) tuples. Type refers to the 

type of cut-line, i.e., whether it was caused by a penetration of the face or by an 

edge of one face lying on the other. The classification algorithm does not allow 

classifications to be inferred from cut-lines caused by edges of one polyhedron lying 

on faces or edges of the other polyhedron.

5.5.3 Faces Lying on Faces

The intersection process does not change due to the presence of coplanar 

faces; however, when two faces are coplanar, the fact is recorded. The faces that 

are transverse to the coplanar faces generate all the necessary cut-lines to partition 

the coplanar faces into sub-faces. This is because the normal to the polyhedron 

changes at an edge. The following issues have to be resolved in order to handle 

this special case:
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1. The classification of sub-faces of faces that have been determined to be copla

nar with other faces cannot be done by an inspection of a cut-line in its 

contour.

2. Duplicate contours which represent the same area in the plane of the coplanar 

faces have to be avoided in the resulting polyhedron.

Sub-faces of faces that are coplanar to other faces are classified by either 

just a point-with-respect-to-polygon test, or a point-with-respect-to-polygon test 

followed by a point with-respect-to-polyhedron test, depending on whether the 

coplanar contours overlap or not. The point-with-respect-to-polygon test is suf

ficient to detect whether the coplanar contours overlap. If the coplanar contours 

do not overlap, a point-with-respect-to polyhedron test is sufficient to classify the 

contour. It should be noted that the contours that are coplanar either overlap 

completely or are completely disjoint. Also, the point-with-respect-to-polyhedron 

test does not have to handle the point-on-polyhedron case.

When no face-around-edge topology is required, duplicate contours are avoided 

by simply making Table 5.1 asymmetric with respect to the two polyhedra. When 

complete face-around-edge topology is necessary, a contour-similarity test is needed 

to match the duplicate contours. This problem is different from the graph iso

morphism problem because the geometry of the contours is also available. The 

information from these duplicate contours is then used in conjunction to derive 

the face-around-edge topology. An edge in a contour and its mate in the duplicate 

contour have the property that if one of them is a cut-line, the other is due to an 

edge or a split-edge. Edges in the contour that are due to cut-lines have the infor

mation about the other-face that created them in the intersection process. Edges 

that are due to split-edges of the faces do not have this information. Figure 5.7 

illustrates the above discussion.
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Object A

Face of A
Face of B
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B c

e

Figure 5.7: Handling Duplicate Coplanar Contours. Two cubes touch 
each other. This causes two overlapping contours, one in a face of 
A and one in a face of B. Information from these contours is used in 
conjunction to determine face-around-edge connectivity, e indicates 
a split-edge and c indicates a cut-line.
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Table 5.1: Sub-Faces to be Included in Various Polyhedron Combina
tions

Elements to include pa-p&
Element of Pa inside Pg
Element of Pa outside Pg +

+
+

Element of Pg inside Pa
Element of Pg outside Pa +

+ —

Element of Pa on Pg, in same direction 
Element of Pg on Pa, in same direction 
Element of Pa on Pg, in opp. direction 
Element of Pg on Pa, in opp. direction

+ +

+

Table for other combinations are similar

5.5.4 Summary of the Impact of Special Cases

To summarize, special cases due coincident geometric entities have the fol

lowing effects on the algorithm:

1. The arity of the tuple-sets increases. This implies that the space requirement 

increases.

2. Duplicates must be detected and handled appropriately.

3. The algorithm has a greater reliance on explicit point classification tests to 

guarantee correctness. The ability to to infer classifications implicitly and to 

propagate classifications diminishes.

4. The maintenance of flags to indicate special case situations, as shown in the 

previous discussion, ensures that the speed of the algorithm is not affected 

drastically for the non-special cases.
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5.6 Analysis of the Algorithm

The complexity of geometric algorithms such as the Boolean combination 

algorithm is not easily analyzable. The worst-case analysis often gives pessimistic 

results, and the average-case analysis is hard to do, which is confirmed by the 

dearth of any such analysis in the literature. In fact there is little consensus on 

what an average case is. We define an average case as an input set which satisfies 

the assumptions outlined in the Section 5.3.2. An attempt is made in this section 

to provide an approximate expected-case analysis for the shared-memory version 

of the algorithm. Output-sensitive variables are defined to derive the complexity 

of the algorithm in terms of the size of the output.

In this section p refers to the number of processors used and G refers to the 

grid size. Note that p is small compared to the number of faces in the objects. So 

long as a word of memory is cheaper than a processor, p will be much less than 

the problem size in most cases, nj is the total number of faces in both the objects. 

E refers to the edges of the polyhedra. Ea represents an edge of polyhedron Pa. 

ne is the total number of edges in the two objects. Every edge is counted once for 

each face it belongs to. ne is the average number of edges per face of the object.

5.6.1 Domain Transformation of Faces

In order to transform the coordinates of the edges from the WCS to the local 

coordinate system of the face, it takes 6(e) time where e is the number of edges 

in the face. In the average case, each processor handles nj/p faces. Hence, this 

step takes 6(nyne/p) time, assuming that in the average-case the load is evenly 

distributed among the processors.
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5.6.2 Putting Faces into the Grid

The determination of the bounding box for the face takes 0(e) time, where 

e is the number of edges in the face. The number of cells through which the face 

goes depends on the grid size G and the area of intersection of the plane of the face 

and the bounding box. If the average area of the intersection is Ab., then each face 

goes into Ab x G2 cells. If the volume of the bounding box of the face is %, then 

this step requires % x G3 point against face tests. It is usually a small constant 

since the bounding boxes for the faces are comparable to the size of the grid cell. 

Thus this step takes O(ne) time per face on the average. Since each processor deals 

with nj/p faces, this step takes O(n/ne/p) = O(ne/p) time with our assumption 

about the average size of the faces. We assume that in the average-case the load 

is evenly distributed among the processors.

5.6.3 Computing Face-Face Pairs

The number of tentative face-face pairs generated depends on the interaction 

between the two objects and the grid size G. Let nc/i and nc/2 denote the number 

of cell-face pairs for the first and second object respectively. It takes 0(nc/i + 

nc/2)/p) time to sort these pairs by the cell number by using an efficient parallel 

radix sort as given in [48]. The computation of the face-face pairs takes 0((nc/i 

+ ^c/2 + n//b)/p) time in the average-case as the two cell-face lists have to be 

scanned and the face-face pairs have to be stored. If is the number of such 

pairs before duplicates are removed, and n/j the number of pairs after pruning, 

the pruning step takes + "//)/?) time, ignoring collisions in accessing the 

hash table while making entries.
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5.6.4 Computing the Face-Face Intersections

The preliminary test for checking whether two faces intersect involves the 

testing of the edges of each face with the plane of the other and takes 5(e) time, 

where e is the number of edges in the face. The conclusive check involves a 1-D 

intersection and merging step of the common ranges of intersection which can take 

O(e log e) time (to sort the coordinates of the common ranges of intersection) as 

there will be at most 0(e) such ranges. However, in most cases it takes only 0(1) 

time as there are only a small constant number of cut-lines between any two faces.

Assuming ne edges for each face, the above step can take O((n///p)ne logne) 

time and takes O(nen/y/p) time in most practically encountered cases.

5.6.5 Sub-Face Topology Reconstruction

Let e be the number of edges and n be the number of vertices in the planar 

graph under consideration. Note that n < e for the planar graphs considered 

here as we do not encounter trees. Let nc and be the number of contours 

and connected components, respectively, in the planar graph of the face to be 

partitioned into sub-faces. In the following analysis we assume that only two faces 

are adjacent to an edge. Let v, refer to the ith vertex and let deg(yi) be its degree.

Lemma 5.1 The maximum degree of a vertex in the above planar graphs is J.

Proof: The degree of every vertex in the original face of the object is 2. Any new 

vertices formed by the intersection of the other object with this face have a degree 

of 2, 3 or 4. New vertices formed by the cut-lines on this face which do not intersect 

any of its edges and which are not caused by edges lying on it have a degree of 

2, because only 2 faces are adjacent to any edge in the objects we consider. The 

degree is 3 if a face of the other object intersects an edge of this face. The degree 

is 4 if an edge of the other object (and hence two faces) intersect an edge of this 

face. If an edge of a face lies on another face, the degree can be 2 or 4.
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When non-manifold conditions are allowed in the input polyhedra, the max

imum degree in the planar graphs depends on the number of faces that can be 

incident on a single edge.

The following is the time taken to create a planar graph, given the edges and 

the cut-lines for the face:

1. Sorting the vertices of the e edges in the graph takes O(e log e) time.

2. Identifying the vertices takes 9(e) time as it needs one pass down the sorted 

list of the vertices of the edges.

3. In order to form the adjacency list representation of the graph, it is necessary 

to identify the labels of the other vertex of the edges incident at each of its 

vertices. This process takes log n £"_0 ^(v.) = O(elogn) time, as it 

takes log n time to search for the label of a vertex, given its coordinates.

4. It takes £”=0 deg(v{) log(dey(v,)) to manipulate the adjacency lists so that the 

vertices around a vertex are ordered in a clockwise manner. If it is assumed 

that the degree of each of the vertices is equal to the the average degree of 

a vertex, which is 2e/n, this step takes O(elog(e/n)) time. In an average 

graph, e is comparable to n, and this step takes 0(e) time. Even otherwise, 

the upper bound on the degree of the vertices of these graphs suggests the 

same order of complexity.

5. Finding the connected components of the graph takes O(n + e) time as it is 

equivalent to a depth-first search.

The complexity of the traversal of the graph created above, to determine all 

its sub-faces, is given below.

1. During the traversal of the graph to identify its contours, each vertex in the 

graph is visited deg(v() times. It takes deg(vi) time at each visit to a vertex 
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to search for the next vertex in the contour from the adjacency list for v,. 

Hence this step takes deg(v{) x deg^v^ time. Since the average degree 

of a vertex is 2e/n, this step takes O(e2/n) time. In an average graph e is 

comparable to n and hence the above step takes only O(e) time, which is 

optimal because all the edges have to be visited to identify all the contours.

2. The maximum nesting depth for the connected components for the graph is 

ncc. The bounding boxes for all the connected components can be determined 

in O(n) time, as each vertex knows the component it belongs to. Sorting the 

bounding boxes by area takes O(ncc log ncc) time. A total of n^/2 bounding 

box checks have to be done in the worst case. However, nec such checks 

is a more reasonable estimate for practical cases. If the bounding boxes of 

two components overlap, then determining whether a component is contained 

inside a second component is equivalent to determining whether a point from 

the first component is in the second component. This takes O(ec) time, where 

ec is the number of edges in the component, as all the edges of the component 

are visited. Thus, deriving the complete hierarchy information can take 

O(n2cec) time in the worst case, where all the components are disjoint and all 

the bounding box tests fail and the point in component procedure is invoked 

for each failure of the bounding box test. A synthetic example where this 

case can occur is shown in Figure 5.8. We have not observed such cases in 

our test examples. It is more likely that there are ncc point in polygon tests 

in the average-case. Thus, this step takes O(nccec) time.

Hence, in the average-case, the complete sub-face topology reconstruction 

algorithm takes O(eloge + n + n^ec f log ncc)) time. In most cases ncc = 1 or 

2 and this step takes O(eloge) time. Each processor has to handle njfx/p such 

graphs, where n/y, is the number of faces that actually intersect.
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Disjoint connected components

Figure 5.8: A Bad Case for the Sub-Face Algorithm. Though the con
nected components are disjoint, their bounding boxes overlap.

Therefore, this step takes O(n//Z x eavg log eavg/p) time, where eavg is the 

average number of edges in a graph.

5.6.6 Determining Face Adjacency around Edges

If the resulting object has noe edges, S(noe) (edge, sub-face) tuples are created. 

In the average-case each processor handles O(noe/p) of these tuples. Hence, this 

step takes O(noe/p) time.

5.6.7 Parallel Sorting

The algorithm requires parallel sorting for sorting the (cell, face), (face, cut

line, other-face), (face, edge, cut-point), and (edge, sub-face) tuples. If nj, n^, 

and noc, denote the total numbers of the above tuples respectively, this takes
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°((ncji + nc/2 + ^c/ + Ticp + 7iOe) x (l/p + ûp)) time where ap accounts for collisions 

in accessing the buckets. Our experiments indicate that in most cases a is quite 
small.

5.6.8 Total Complexity

Thus the complexity of the complete Boolean operation algorithm is 

O((ne + nc/1 + nc/2 + nfJb. + ncl + ncp + noe f nenff f nffxeavg log e^/p). Note 

that some of the parameters depend on the size of the input, some on the size of 

the output, and some on the grid resolution G.

5.7 Implementation and Results

The algorithm was implemented on the Sequent B21000 parallel machine 

with 16 processors. Our implementation differs in the following aspects from the 

algorithm presented:

1. The grid size to use is not determined by the program.

2. Face adjacencies across the edges of the resulting object are not determined.

3. Overlapping coplanar faces are not handled.

Figures 5.9, 5.10 and 5.11 show some of the data sets used to analyze the 

performance of the algorithm. In addition to this, two sets of 216 uniform cubes 

each were used, as the Boolean operation on cubes is useful in domain decompo

sition and VLSI problems. Figures 5.12, 5.13 and 5.14 show some of the results of 

the algorithm.

Figures 5.15 to 5.19 show the time taken and the speedup achieved for each 

phase of the algorithm for the set of cubes. A 6 x 6 x 6 uniform grid was used 

for this example. Each of the objects had 1296 faces and 5184 edges. Computing



113

Figure 5.9: Data Set: Polyhedral Approximation of a Split Torus
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Figure 5.10: Data Set: Polyhedral Approximation of a Compass
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Figure 5.11: Data Set: Polyhedral Approximation of a Mechanical Part
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Figure 5.12: Results: Union of Compass and Split Torus



117

Figure 5.13: Results: Compass Subtracted from the Torus
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Figure 5.14: Results: Union of a Mechanical Part and Compass
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12

Number of Processors

Figure 5.15: Cubes Example: Speedup for Domain Transformation of 
Faces

all the Boolean combinations for this example took only 17.55 seconds. A total of 

3600 (cell, face) tuples were generated and 13824 (face, face) tuples were isolated 

for determining potential intersections, of which 1296 actually intersect. Thus the 

uniform grid reduced the number of face-face intersection comparisons to about 

0.8% of the 1296 X 1296 comparisons for a brute-force algorithm. A study of 

Figures 5.15 to 5.19 and Table 5.2 shows that most phases of the algorithm show 

almost linear speedup. The overall parallel efficiency is about 77%, corresponding 

to a speedup of 11.54 while using 15 processors. The graphs show that speedups 

in excess of 13 while using 15 processors have been obtained.

Lest objections be raised against the nature of the objects used in the pre

vious example, we tested our algorithm with two commonly encountered objects 

(see Figures 5.9 and 5.10) from computer-aided design. Figures 5.20 to 5.24 and 

Table 5.3 show a behavior that is similar to that for the previous example. Here
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Figure 5.16: Cubes Example: Speedup for putting Faces into Grid Cells
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Figure 5.17: Cubes example: Speedup for intersecting Faces
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Figure 5.18: Cubes Example: Speedup for forming Sub-Faces
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Figure 5.19: Cubes Example: Speedup for Complete Polyhedral Inter
section
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Figure 5.20: Compass and Torus: Speedup for Domain Transformation 
of Faces

one object has 1030 faces and the other object has 696 faces. Computing all the 

Boolean combinations for this example took only 8.88 seconds. A 12 x 12 x 12 

uniform grid was used in this case. A total of 7239 (face, face) tuples (1.01% of 

what a brute force algorithm would test) were tested for intersections, of which 

only 214 actually intersect. The sorting of cut-lines and cut-points in this example 

did not show good speedup because of their small number (less than 500). As in 

the previous example, the pruning of (face, face) tuples to eliminate duplicates 

shows a poor speedup. As a consequence, the overall speedup for this example was 

9.18, though the other steps showed significantly higher speedups.
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Figure 5.21: Compass and Torus: Speedup for putting Faces into Grid 
Cells
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Figure 5.22: Compass and Torus: Speedup for Intersecting Faces
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Figure 5.24: Compass and Torus: Speedup for Complete Polyhedral In
tersection
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Tables 5.2 and 5.3 show the speedup for the various phases of the algorithm 

and gives the time taken for each step as a fraction of the total time for the 

algorithm for the two examples discussed above. It shows that the domain trans

formation, face-face intersection, and the sub-face topology reconstruction phases 

account for more than 85% (75%) of the total sequential time and 72% (56%) of 

the total parallel time for the first (second) example. These phases show very good 

speedup, i.e., more than 12 (9.5) with 15 processors for the first (second) exam

ple. Figures 5.15 to 5.19 and Figures 5.20 to 5.24 show that the speedup for these 

phases is almost linear. This means that the time taken by these important and 

time-consuming phases will further reduce as the number of processors increase. 

Hence it is worthwhile to use a bigger parallel machine for this problem. Other 

phases such as the determination of (cell, face) tuples which account for about 10% 

of the total time, show speedups of 10 or more with 15 processors. The parallel 

sorting phases yield sub-linear speedup. The actual speedups range from 7 to 9 

with 15 processors when there are more than 500 elements to sort. The step which 

prunes the (face, face) tuples shows an extremely poor speedup of about 3. This 

is probably due to frequent collisions in accessing the hash table. Fortunately, 

the phases which show poor speedup account for only a small fraction of the to

tal time for the algorithm. The overall speedup is less than ideal due to a small 

fraction of inherent sequential computation in the algorithm. Slight imbalances in 

the distribution of work to the processors, due to the variation in the complexity 

of the individual faces of the objects, is another cause for deviation from the ideal 

speedup.

Counters and timers were introduced in the implementation to monitor the 

sizes of data structures that were not exactly predictable in advance. Examples 

include the numbers of (face, face) tuples and (cell, face) tuples. Table 5.4 shows 

the statistics gathered for the two examples. This information allowed us to gain
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an intuitive understanding of the internal behavior of the algorithm and to verify 

our theoretical analysis given in Section 5.6. Tables 5.2, 5.3, and Table 5.4 to

gether show the linear variation of time with the cardinality of the tuple-sets. This 

result and the linear speedups conform closely with our theoretical prediction. A 

more detailed comparison between experiment and approximate theory is given in 

Table 5.5.

We define an agreement factor which is an indication of the correlation be

tween the theoretical analysis and the experimental observation.

Agreement factor — °f tuple-set example 1 % time for example 2
cardinality of tuple-set example 2 time for example 1

An agreement factor close to unity indicates that the theoretical prediction 

and experimental results agree. Table 5.5 shows that when one processor is used, 

the agreement factor is very close to unity. Thus, the complexity of the polyhedron 

combination algorithm is indeed linear in the sizes of the tuple-sets on which it 

operates. When multiple processors are used, an agreement factor value close to 

unity, also indicates that the workload is evenly balanced, ^^ith 15 processors, 

the agreement factor for the sorting phases is not good when there are less than 

500 elements to sort, because the parallel bucket sort shows poor speedups in such 

cases. Moreover, the agreement factor can be used to roughly estimate the time 

that would be taken for other data sets without executing the program, provided 

the appropriate parameters can be estimated.

The experiments show that there is very little variation in the speedup of 

the algorithm, as the number of grid cells is varied by a factor of 8 on either 

side of the optimal grid size. The total time taken by the algorithm varies only 

by 10 to 15% for the above variation in the grid size. The time taken for the 

determination of the (cell, face) tuples and the number of (face, face) tuples are 

two important quantities that depend on the number of grid cells. Most other



127

Table 5.2: Timing Statistics: Cubes Example. Shows the time taken 
by the important phases in the polyhedron combination algorithm. 
Times taken by one processor and by 15 processors are shown, both 
as actual values and percentages.

Operation
step of algorithm in ( )

Time 
p=l

% age 
time

Time 
p=15

% age 
time

Speedup

Domain transformation of faces (1) 18.53 9.15 1.35 7.69 13.73
Putting faces in the grid (3) 10.00 4.94 0.98 5.58 10.20
Sorting the (cell, face) tuples (4) 3.36 1.66 0.34 1.94 9.88
Pruning the (face, face) tuples (5) 4.67 2.31 1.51 8.60 3.09
Forming (face, face) tuples (5) 0.71 0.35 0.72 4.10 seq
Intersecting the (face, face) tuples(6) 54.54 26.92 4.39 25.01 12.42
Sorting cut-lines (7) 4.86 2.40 0.65 3.70 7.48
Sorting cut-points (8) 3.58 1.77 0.52 2.96 6.89
Forming sub-faces for object 1 (9) 51.90 25.62 3.61 20.57 14.38
Forming sub-faces for object 2 (9) 49.38 24.37 3.41 19.43 14.48
Propagating face classif. for object 1 (10) 0.52 0.26 0.04 0.23 13.00
Propagating face classif. for object 2 (10) 0.46 0.23 0.03 0.17 15.33
Classif. uncut shells for object 1 (11) 0.04 0.02 0.00 0.00 N. A.
Classif. uncut shells for object 2 (11) 0.03 0.01 0.00 0.00 N. A.

Complete Boolean combination 202.58 100.1 17.55 99.98 11.54

phases of the algorithm, such as the sub-face formation step, have no dependence 

on the uniform grid. The relative insensitivity of the total time with the grid size 

can be explained by the complementary nature of the dependence of the phases that 

depend on the number of grid cells. On the one hand, the cost of determining the 

(cell, face) tuples increases with the number of grid cells, as a face is likely to pass 

through more cells. On the other hand, the number of (face, face) tuples tested for 

intersections reduces as the number of grid cells increase. Since both these phases 

show comparable speedup, the overall speedup does not vary significantly with the 

grid size.
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Table 5.3: Timing Statistics: Compass and Torus. Shows the time taken 
by the important phases in the polyhedron combination algorithm. 
Times taken by one processor and by 15 processors are shown, both 
as actual values and percentages.

Operation 
step of algorithm in ( )

Time 
p=l

% age 
time

Time 
p=15

% age 
time

Speedup

Domain transformation of faces (1) 13.11 16.08 1.02 11.49 12.85
Putting faces in the grid (3) 9.59 11.76 0.88 9.91 10.90
Sorting the (cell, face) tuples (4) 4.48 5.49 0.63 7.11 7.11
Pruning the (face, face) tuples (5) 3.23 3.96 1.29 14.53 2.50
Forming (face, face) tuples (5) 0.51 0.63 0.50 5.63 seq
Intersecting the (face, face) tuples(6) 30.12 36.94 2.28 25.68 13.21
Sorting cut-lines (7) 0.88 1.08 0.22 2.48 4.00
Sorting cut-points (8) 0.62 0.76 0.19 2.14 3.26
Forming sub-faces for object 1 (9) 10.99 13.48 0.92 10.36 11.95
Forming sub-faces for object 2 (9) 7.37 9.04 0.77 8.67 9.57
Propagating face classif. for object 1 (10) 0.21 0.26 0.04 0.45 5.25
Propagating face classif. for object 2 (10) 0.34 0.42 0.03 0.34 11.33
Classif. uncut shells for object 1 (11) 0.13 0.16 0.10 1.13 1.3
Classif. uncut shells for object 2 (11) 0.03 0.04 0.01 0.11 3.0

Complete Boolean combination 81.53 100.1 8.88 100.01 9.18
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Table 5.4: Size of Data Structures: Both Examples

Entities Cubes and 
Cubes

Compass and 
Torus

Processors 15 15
Grid size 6 12
Faces in object 1 1296 696
Edges in object 1 5184 2920
Faces in object 2 1296 1030
Edges in object 2 5184 4240
Face-face pairs before pruning 13824 9210
Face-face pairs after pruning 13824 7239
Cut lines for object 1 1296 214
Cut lines for object 2 1296 214
Cut points for object 1 1296 268
Cut points for object 2 1296 160
Cell-face pairs for object 1 2304 2082
Cell-face pairs for object 2 1296 2654
Cell-face pairs 3600 4736
Face-face pairs which actually intersect 1296 214
New segments for object 1 10368 2196
New segments for object 2 10368 1380
New sub-faces for object 1 1296 268
New sub-faces for object 2 1296 159
New contours for object 2 1944 402
New contours for object 2 1944 238
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Table 5.5: Polyhedron Combination Algorithm: Analysis vs Experi
ments. Shows the agreement between the approximate theoretical 
analysis and the experimental results. Agreement factors close to 
unity indicate good agreement. The tuple-set used for estimation 
correspond to the ones indicated in the analysis. They are also 
indicated in parenthesis beside the operation for some of them.

AgreementFactor = A.F. = of tuple-set example 1 * time for example 2
cardinality of tuple-set example 2 time for example 1

For example 1 G = 12, for example 2 G = 12

Operation A. F. 
p=l

A. F. 
p=15

Domain transformation of faces (edges) 1.02 1.10
Putting faces in the grid (edges) 1.39 1.30
Sorting the (cell, face) tuples 1.01 1.41
Pruning the (face, face) tuples 1.16 1.44
Forming (face, face) tuples 0.90 0.90
Intersecting the (face, face) tuples 1.02 0.96
Sorting cut-lines 1.10 2.05
Sorting cut-points 1.05 2.21
Forming sub-faces for object 1 1.18 1.43
Forming sub-faces for object 2 0.83 | 1.26
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Table 5.6: Timing results for Karasick’s Algorithm. Timing data for 
sphere approximation. Each row describes the time and representa
tion output size at each iteration. Note that these times are elapsed 
time as opposed to computation time.

Vertices Edges Faces Time
16 24 10 5
20 36 18 10
52 84 34 21
88 144 58 55

130 226 98 71
246 406 162 128
412 676 266 242
644 1076 434 434

1070 1778 710 771
1840 2988 1150 1536
3016 4880 1866 3306
5204 8236 3034 6751

For completeness, Table 5.6, which shows the performance of Karasick’s in

tersection algorithm, is included from [46]. Readers are however advised to be 

cautious in comparing raw computation times since the algorithms and machines 

on which they were implemented are not exactly identical.

5.8 Conclusion

A practical parallel algorithm for performing Boolean operations on two poly

hedral objects was presented. The algorithm was implemented on an actual parallel 

machine and the results from implementation were discussed.

Like the earlier algorithms, this too combined the use of the uniform grid, a 

parallel sort, and the technique of data partitioning for parallelization.

The uniform grid technique generated sub-tasks which could be solved in 

parallel, reduced the number of comparisons for determining the intersections be

tween the faces, and reduced the query time for classifying points with respect to 
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a polyhedron.

The parallel bucket sort was used extensively to transform from the domain 

of one tuple-set to another. The sub-linear speedup achieved by phases which 

depended on sorting limited the overall speedup of the algorithm.

Most phases of the algorithm relied on data-parallelism. Speedups in excess 

of 10 with 15 processors indicate that the simple data partitioning scheme which 

distributed the faces, edges, cells, and the sub-edges, etc., among the processors, 

did not cause any noticeable load-balancing problems for the examples investigated.

The experimental results for the 15-processor case agree within a factor of 

1.5 with our approximate theoretical analysis. This shows that the expected com

plexity of our parallel algorithm is linear in the sizes of the tuple-sets generated in 

the course of the algorithm.



CHAPTER 6
PARALLEL SEGMENT INTERSECTION ON A HYPERCUBE 

COMPUTER

6.1 Introduction

A parallel algorithm, based on the framework presented in Chapter 2, for de

termining all the intersections between line segments lying in the plane is described. 

This problem occurs in many geometric applications such as interference detection, 

visible surface determination, and Boolean operations of polygons. The sequential 

algorithm [6] is given first and its parallelization is presented next. This comple

ments both the optimal sequential algorithm of Chazelle and Edelsbrunner [20], 

which seems hard to parallelize, and the parallel algorithm of Goodrich [39], which 

seems difficult to implement. In contrast to the polyhedron combination problem, 

this problem has no topological aspects.

The algorithms discussed in Chapters 3-5 were implemented on a tightly 

coupled shared-memory parallel machine. In order to test our framework for a 

different class of parallel machines, this algorithm has been implemented on the 

Intel iPSCl hypercube distributed-memory machine. The main purpose of our 

implementation is to gain an insight into the communication requirements and the 

relative complexities of the various phases of the algorithm.

6.2 The Sequential Algorithm

This algorithm is the same as the one used in the preliminary phases of the 

polygon combination algorithm (Section 4.3). It is recalled here for convenience.

1. For each edge, determine which cells it passes through and create the appro

priate (cell, edge) tuples.
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2. Sort the list of (cell, edge) tuples by the cell number so that all the edges 

passing through the same cell are in consecutive locations.

3. For each cell, compare all the edges in it, pair by pair, to test for intersections.

6.3 Parallelization of the Sequential Algorithm

The key idea in parallelizing the sequential algorithm is that, computation 

of the cells through which the edges pass and of the intersections in the cells, can 

each be done concurrently.

The task of determining the (cell, edge) tuples is parallelized by letting the 

host-processor broadcast the edges to the node-processors which then compute, in 

parallel, the cells through which its edges pass. Note that in a distributed-memory 

machine the complete description of the edge is duplicated before broadcasting, 

unlike in a shared-memory machine where indices into the shared array of edges 

were sufficient. At the end of the above step, the (cell, edge) tuples of the edges 

handled by a processor are stored in its local memory.

Before the computation of intersections within the cells can proceed, all the 

(cell, edge) tuples that belong to a cell have to be gathered in the processor respon

sible for it. Potentially, every processor has to communicate with every other pro

cessor and this requires an all-to-all personalized (global) communication scheme. 

A simple (though sub-optimal) way to perform such an information exchange is to 

reduce the operation to an all-to-all (not personalized) communication operation. 

This type of communication can be done by embedding a ring in the hypercube 

network (using a Gray code labeling for the processors) and by circulating the 

(cell, edge) tuples around it. In the first iteration every processor sends the (cell, 

edge) tuples it computed, to the next processor in the ring. In the next n — 2 

iterations, the processors send the message they received in the last iteration, to 

the next processor in the ring. Communication and computation are overlapped.
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While the message is on it way to the next processor, every processor processes the 

buffer it just sent out, to check whether any relevant (cell, edge) tuples are present 

in the buffer. If so, it stores them in its list of tuples. In order to speed up this 

retrieval step, the (cell, edge) tuples computed by each processor are first sorted 

by the cell number before the communication process begins. This ensures that 

the tuples for each processor are stored contiguously in the message buffers. After 

n — 1 such iterations, every processor would have communicated with all the other 

processors and will therefore have all the (cell, edge) tuples it needs for computing 

the intersections.

Next, the cells are evenly distributed among the node-processors, and the 

computation of intersections within the cells is done concurrently. For reasons 

of implementational simplicity in the communication mechanism, every node

processor gets a set of cells with consecutive labels. This implies that a processor 

gets cells that occupy contiguous regions in the scene. Finally, each processor sends 

its results to the host-processor.

Note that the task of avoiding duplicate intersections between the same pair 

of edges involves no inter-processor communication. This is because the unique 

point of intersection belongs to the cell of only one processor. A similar version 

of this argument did not hold true for avoiding duplicate intersections between 

the same pair of faces in the polyhedron algorithm. In that case, explicit inter

processor communication was necessary to avoid duplicate intersections.

6.4 Implementation and Results

The above algorithm was implemented and tested on three different data 

sets. The first data set was randomly generated. The second data set was a set of 

edges representing the state boundaries of the U.S.A. To generated the third data 

set, the map of the U.S.A, was shifted by 10% and was overlaid on it. Figure 6.1 
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shows a plot of two of the data sets.

Figures 6.2 and 6.3 show the times taken by the main phases of the algo

rithm for various grid resolutions for the data sets shown in 6.1. The dotted lines 

represent the timings for the case where 32 processors were used. The solid lines 

represent the timings when 16 processors were used. The x-axis is stretched by 

a factor of two for the 16 processor case, so that comparisons between the 16- 

processor and the 32-processor cases can be made more easily. Thus a point (xty) 

on a dotted line in the graph indicates that the processor whose id was x took y 

seconds for that stage of the algorithm. A similar interpretation holds for the solid 

lines. A closer study of the graphs in Figures 6.2 and 6.3 reveals the following:

1. The time taken to determine the (cell, edge) tuples varies inversely with the 

number of processors used. The time spent in this step with 32 processors is 

about half the time spent when 16 processors are used. This behavior holds 

true for both random and real edges.

2. The work of determining the (cell, edge) tuples is distributed evenly among 

the processors. This is shown by the fairly horizontal shape of the graphs 

for the grid time. This is the case even though the lengths of the edges 

vary considerably. The reason for this is that though the individual edge 

lengths vary considerably, the sum of the lengths of the edges processed by 

the processors is quite uniform. If this is not the case, more sophisticated 

schemes for distribution of edges among the processors have to be used for 

this step. However, it does not appear to be necessary while processing real 

scenes.

3. The intersection time decreases as the number of cells increases. This is 

true for both random edges and real edges. In the case of real edges, a few 

contiguous cells have a large number of edges at all grid resolutions. The
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(a) Random edges

(b) Overlay of the maps of the U.S.A.

Figure 6.1: Data Sets Used for Testing the Algorithm
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Number of edges: 3800, Number of intersections: 16823 
Dotted Lines: 32 Processors, Solid Lines: 16 Processors
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Number of edges: 1830, Number of intersections: 2344 
Dotted Lines: 32 Processors, Solid Lines: 16 Processors
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naive work subdivision scheme allocates contiguous dense cells to the same 

processor. Thus, the time taken by the processor responsible for this dense 

region dominates the computation. For random edges, the naive allocation 

of cells to the processors is not a problem.

4. The intersection time scales inversely with the number of processors when 

the data is random. The time taken by 16 processors is approximately twice 

the time taken by 32 processors. For certain grid sizes, when real data is 

used, the intersection time does not change much when 32 processors are 

used instead of 16. This behavior is caused by the naive allocation of cells 

to the processors. A solution to this problem is suggested in the following 

section.

5. The communication (message) time becomes significant (compared with the 

total time) when the number of cells increases and also when the number of 

edges is small. In the former case, it is due to the rapid rise in the num

ber of (cell, edge) tuples, whereas in the latter case, the actual intersection 

computation takes very little time (% 5%) compared to the communication 

time. In the first case a coarser grid resolution will give better results. In the 

second case it is not worthwhile to use many processors to solve the problem. 

The main observation is that while in the sequential algorithm the time taken 

is insensitive to the actual grid size over a wide range, in the parallel algo

rithm the number of cells has to be reasonably small so that the computation 

to communication ratio is high.

6. The communication time goes up as the number of processors increases. 

This is because of the larger size of the network. However, even with static, 

non-randomized, allocation of work to the processors, and a simple commu

nication scheme, in all but one of the cases, communication time is less than
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half the total time.

7. As the grid became finer, the slowest processor took less than twice the av

erage processor time. This shows that the load is reasonably well distributed 

among the processors.

6.5 Suggestions for Improving Performance

The main purpose of our study was to determine the relative complexities 

of the various phases of the algorithm. In order to simplify the implementation of 

the algorithm, certain compromises were made which degraded the performance of 

the algorithm. The following are some simple ways to improve the performance of 

the algorithm:

1. The distribution of cells to the processors has to ensure that a processor is 

not assigned contiguous cells from a very dense region.

2. The global communication scheme used in the implementation is not optimal. 

In that scheme, all (cell, edge) tuples travel a distance of (n — 1) nodes, 

even though the diameter of the hypercube network is only logn. More 

sophisticated communication schemes will alleviate this bottleneck.

3. A priori knowledge about the spatial extent of the edges can be used to 

distribute the edges to the processors which determine the (cell, edge) tuples. 

This scheme assumes a static assignment of cells to the processors. With this 

scheme, the need for global communication for reconfiguring the (cell, edge) 

tuples can be minimized. However, long edges which pass through many cells 

could require still global distribution.

4. Experiments indicate that the determination of the (cell, edge) tuples takes 

only a small fraction of the total time. Hence, it might be more efficient 
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to assign the task of determination and distribution of the (cell, edge) tu

ples, to the host processor. This obviates the need for all-to-all personalized 

communication and a host to node broadcasting scheme is sufficient.

6.6 Conclusion

This chapter demonstrated the mapping of the parallel segment intersection 

algorithm, based on the framework presented in Chapter 2, onto a distributed- 

memory machine.

The implementation revealed that the intersection and communication phases 

were relatively more important than the grid phase of the algorithm. The speedup 

of the algorithm was not measured because the amount of memory available on 

a single node-processor was not sufficient to test the algorithm on the complete 

database. Instead, the profile of the time taken by the processors and the load 

distribution among the processors were studied. Our results show that the slowest 

processor takes less than twice the average time taken by the algorithm. While this 

is a reasonable result, there is scope for substantial improvements, as was discussed 

in a separate section.

The communication cost for sorting of the (cell, edge) tuples was studied. 

The results from implementation confirm that these costs could become significant 

at finer grid resolutions. This factor could dictate the optimal grid resolution to 

use. The high startup cost of inter-processor communication makes the algorithm 

attractive only when the size of the edge database is sufficiently large.



CHAPTER 7 
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

This research has addressed the issue of using parallel processing to obtain 

faster performance for a set of geometric applications. A framework which com

bined the use of data partitioning, the uniform grid technique, and parallel sorting 

was presented. It was used to develop new parallel algorithms for the problems of 

determining the following:

1. the convex hull of a set of points in the plane,

2. the intersections between a set of segments in the plane,

3. the Boolean combinations of polygons, and

4. the Boolean combinations of polyhedra.

This thesis provided the first parallel algorithms for the last two of the above 

four problems. These problems differed in the dimensionality of the geometric 

entities dealt with, intrinsic complexity, and the balance between topological and 

geometric aspects. This demonstrated the generality of the framework. The im

plementation and results showed its practicality.

The simplicity and effectiveness of data partitioning for geometric algorithms 

was demonstrated. The tuple-sets necessary to solve the problems were identified. 

The attributes and arity of the tuple-sets depended on the problem. It was shown 

that special cases and problems due to numerical errors could increase the arity 

of a tuple-set. Problems with robustness could also increase the cardinality of 

tuple-sets.

143
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The practical advantages of the uniform grid technique in the context of 

parallel processing were identified. Its use in the generation of sub-tasks, which 

could be solved in parallel, reducing the number of comparisons between geometric 

entities and the cardinalities of tuple-sets, and for efficient point-with-respect-to- 

polygon (polyhedron) tests was presented. Its potential to linearize the cardinali

ties of the intermediate tuple-sets was also shown.

This thesis provided algorithms that were sufficiently simple to be imple

mented on real parallel machines. This is in contrast to existing parallel geometric 

algorithms which are more complicated and appear difficult to implement. Ta

ble 7.1 summarizes the results from implementation. Speedups of 9 or more have 

been obtained with 15 processors. Close to linear speedups were achieved for most 

algorithms. The notable exceptions to this were the sorting phases.

The complexity, the relative importance in terms of fraction of total time, and 

the speedup of each of the phases of our algorithms were studied. Our experiments 

show that phases that depend on comparison-based parallel sorting could become 

bottlenecks as the number of processors increases. By identifying the bottlenecks in 

the algorithm, we have determined the aspects of the algorithm whose performance 

needs to be improved by the use of standard performance optimization techniques. 

We also expect these results to be of value in estimating performance when the 

number of processors increases, and on other parallel machines. When processors 

with different cost and capabilities have to be used, such studies can be used to 

better optimize the use of the processors.

It was shown that, with our framework, the geometric aspects were more eas

ily parallelizable than topological aspects. Topological aspects could be parallelized 

efficiently only when data-parallelism was present. In the convex hull algorithm, 

the topological aspect depended on parallel sorting and showed a significantly 

poorer performance than the preprocessing phase. In the restricted version of
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the polyhedron combination algorithm, it was demonstrated that the computation 

could be restructured so that the topological aspect could exploit data-parallelism. 

When special cases and numerical problems exist, this approach can still be used as 

long as the special cases are detected in parallel by independent processors but are 

handled sequentially by an algorithm which uses topological information to make 

consistent geometric decisions.

Though the issue of robustness of algorithms in the presence of numerical 

errors was not central to this research, the convex hull algorithm demonstrated 

that emphasis on robustness can reduce the speedup.

The experience with Intel iPSCI machine reveals that, for complex problems 

considerable communication costs could be incurred. In the context of these ma

chines, it was shown that the optimal grid resolution could be dictated primarily 

by message-passing costs. Also, allocation of contiguous cells to the same processor 

leads to uneven distribution of workload.

7.2 Summary of Experimental Results

Since geometric applications need to process large data sets efficiently, our 

algorithms were tested on large data sets. For each problem, an attempt was made 

to test the algorithm with data sets with different geometric characteristics, to 

study the efficiency of our techniques under different circumstances. Table 7.1 

summarizes the results from implementation on the Sequent Balance 21000.

Our convex hull algorithm was experimentally shown to be faster than the 

parallel quickhull algorithm [23], for most commonly encountered point distribu

tions. We were not able to compare our results with those of optimal algorithms 

because no performance figures were available.

We are not aware of any prior algorithms or results for parallel polygon 

combination and parallel polyhedron combination in object-space and hence we
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Table 7.1: Algorithm Performance Summary. All algorithms were imple
mented on the Sequent Balance 21000. Timings shown are with 15 
processors.

______ Convex Hull Determination

Point Distribution Points Grid Size Time (secs) Speedup

In a unit circle 200,000 120 x 120 8.7 7.23

in a unit square 200,000 105 x 105 12.2 6.17

In an annulus 200,000 105 x 105 13.88 5.82

___________ Polygon Combination

Polygons Edges Grid Size Time (secs) Speedup

Randomly generated 12,000 and 6,800 97 X 97 177.19 13.50

Uniform squares 7,200 each 100 X 100 18.03 10.31

___________ Polyhedron Combination

Polyhedra Faces Grid Size Time (secs) Speedup

Uniform cubes 1296 each 6x6x6 17.55 11.54

Torus and Compass 1,030 and 696 12 x 12 x 12 8.88 9.18
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have no common basis to compare our results for these problems.

A preliminary study of the use of our framework for parallelization on a 

distributed-memory machine was conducted. The results indicate that if there 

was no communication overhead, the algorithm would have executed three times 

faster, which is a respectable performance. We recall that the work subdivision 

scheme and the communication mechanisms used were not optimal and hence there 

is room for further improvement.

The timing results mentioned in this thesis are with parallel hardware that 

is 4-5 years old, and whose combined performance is comparable to that of current 

sequential workstations. We expect that, with parallel machines built with the 

latest technology, our algorithms will achieve close to interactive performance on 

similar problems.

7.3 Recommendations for Future Work

The dominance counting problem is closely related to the preprocessing phase 

of our parallel convex hull algorithm. Whether our algorithm can be used for this 

problem has to be determined. The convex hull problem in higher dimensions 

occurs in many areas. Our preprocessing technique will have richer dividends in 

higher dimensions. Hence, its application in this context has to be considered.

The present work concentrated on Boolean operations on two objects. It 

would be of practical value to extend this work for boundary evaluation of CSG 

trees with polygons or polyhedra as primitives. Combining ideas with other strate

gies such as active zones [68] and restructuring of unbalanced CSG trees [40, 54] 

could lead to further improvements. This needs to be explored carefully. We have 

begun this work in [56] for the determination of the mass properties of polygonal 

CSG objects, without evaluating its boundary.

In order to demonstrate the basic ideas, our algorithms were restricted to
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straight lines and planar polyhedra. In a practical situation, curved surfaces are 

more useful. Can the ideas presented in this thesis significantly improve the overall 

performance of the geometric aspects in this domain? The parallelization of the 

topological aspects is an even more challenging task. A solution to these problems 

would be of great commercial value.

An in-depth treatment of the problems due to special cases and problems due 

to numerical errors was beyond the scope of this research. However, the synergy of 

robust computations with parallel processing is essential because robustness and 

speed are both equally important issues in a practical situation. Therefore, the 

integration of these ideas warrants investigation.

When the number of processors in the parallel machine increases while the 

size of the data set remains the same, the algorithms have to become more fine

grained in order to exploit all the processing power. Coarse-grained data-parallelism 

used in our work might not be sufficient. Some of the currently sequential steps, 

for e.g., the sub-face topology reconstruction step, have to be parallelized. Further 

research is called for in this area so that more massively parallel processors may 

be used to achieve further improvements in performance.

Distributed-memory machines are likely to be more prevalent in the future. 

Our investigation in this area was preliminary. Additional work is required to 

study the communication and load-balancing needs for geometric problems. In 

these machines, locality of memory references may be less crucial. Hence, the 

efficiency of spatial partitioning schemes other than the uniform grid has to be 

determined.

The problem of developing special-purpose parallel machines for graphics ap

plications is now fairly well understood. It has to be determined whether special

purpose parallel machines for a class of geometric problems, for e.g., intersection 
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detection, are practical. To do this, the common operations, memory access pat

terns, computation to communication ratio, etc., for this class of geometric al

gorithms, have to be determined. Our work provided preliminary results in this 

context. A more serious investigation is required to make this determination.

Just as boundary representations and CSG are used in solid modeling to 

meet different functionality requirements, we have to identify such dual schemes 

whose functionalities complement each other, in the context of parallel machines. 

The local topology [31, 56] representation scheme is one example of this strategy. 

For example, instead of defining objects in terms of ordered lists of vertices, edges, 

and faces, one could attempt to define objects in new tuple-sets. It is clear that 

such schemes could have a significant impact. However, much work remains to 

complete this exploration.
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