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ABSTRACT

Algebraic and geometric algorithms are presented to solve the general and 
some specific instances of the following problem which is known as 
FINDPATH in artificial intelligence:

"Given a set of polyhedra and two external points (source and 
goal), calculate the shortest path between these points under the 
Euclidean metric, constrained to avoid intersections with the given 
polyhedra."

The shortest path is a polygonal path connecting the source and the goal, pos
sibly bending at some edges of the given polyhedra while subtending equal 
entry and exit angles. The general problem can then be solved exactly using 
symbolic algebra and is based upon finding the real roots of a system of non
linear equations (stating the angular equality conditions) by elimination. If 
approximate solutions are acceptable this can also be done using numerical 
methods such as continuation, or using optimization methods to minimize a 
sum of square roots (expressing the length of the shortest path). In addition, 
two special cases are solved where there exists a single convex polyhedron, 
and the source and the goal are on its boundary or exterior. These solutions 
make use of planar developments of polyhedra and polyhedral visibility.

Two Voronoi-based locus methods are also introduced to solve FINDPATH. 
These methods use preprocessing to speed up subsequent searches for a shor
test path. The first method partitions the boundary of a convex polyhedron 
given only the source on it so that, for a later goal on the boundary, the shor
test path is found efficiently. It makes use of standard point location algo
rithms for a straight-edge planar subdivision once the partitioning is done. 
The second method, currently more of a descriptive nature than algorithmic, 
is based on W. R. Franklin's "Partitioning the Plane to Calculate Minimal 
Paths to any Goal around Obstructions" [Tech. Rep., ECSE Dept., Rensselaer 
Polytechnic Inst., Troy, NY, Nov. 1982], and for a given source, partitions the 
free space around polyhedra into regions (bounded by high-order surfaces) so 
that the shortest paths for all goals in a given region follow the same sequence 
of edges of the given polyhedra. This method makes use of a recent spatial 
point location algorithm for arbitrary algebraic varieties.

Finally, an overview of a workbench (called SP) which implements some of 
the above and thus allows experimentation with shortest paths is given.

vii



1. INTRODUCTION

This introductory chapter has five sections. In section 1.1 we give some prere
quisite material and summarize our notation. In section 1.2 we define the 
problem that is central to this thesis. Section 1.3 describes the motivation for 
solving this problem. Section 1.4 overviews the relevant work by other 
researchers. Section 1.5 outlines the remaining chapters of the thesis.

11 Prerequisites and Notation

For classical material on polyhedra. graphs, and algebra, we follow Grun- 
baum[41], Harary[43], and van der Waerden[113]. respectively. Standard 
references on computational geometry are still lacking but Sedgewick[99], 
Shamos[101], Mehlorn[73]. and Lee and Preparata[66] are useful. For concrete 
complexity, we follow Garey and Johnson[39]. Explanations of the terms and 
the concepts left undefined in this thesis can be found in these references and 
will not be repeated here.

With few exceptions, we shall be concerned with R 3. the 3-dimensional real 
Euclidean space, or 3-space in short. Points of R 3, as well as the correspond
ing vectors, will be denoted by lower case letters. d(u ,b ) will denote the 
Euclidean distance between the points a and b whereas d(a ) will denote the 
length of vector a . card4 will denote the cardinality of set A . The scalar 
product of vectors a .b t R 3 is denoted by <a .b > while a xb denotes their 
vector product. The affine hull of set A is denoted by afL4 whereas conw4 
denotes the convex hull. The interior, boundary, and closure of set A are 
respectively int/l , bdA . and cl.4 . For a polyhedral set A , the totality of the 
extreme points of A is the vertices of A and is denoted by vert/I . 1-faces of 
A are called the edges of A and are denoted by edge/1 . Maximal proper 
faces are the facets of A whose union is equal to bd,4 . (Departing from 
Grunbaum’s terminology, we shall use the more widespread term "face" 
instead of "facet.") To prevent potential confusions, we shall use the terms 
vertex, edge, and path exclusively for polygons and polyhedra. For graphs, 
we shall use the less common terms node, arc, and walk, respectively.

To estimate bounds, the standard notation (reviewed below to overcome the 
slight nuances in the literature) will be used. Let f (n) and g (n ) be func
tions of integer n ^0. Then f (n )= 0 (g (n )) implies that there exists c and 
n0 such that | / (n ) | <cg (n ) for n >n 0. f (n )=o (g (n )) implies that 
lim / (n )/ g(n) = 0. / (n ) = 0(g (n )) implies that there exists c ; and c 2 

n —► oo
(c ]C 2>0), and n 0 such that c xg (n )< / (n )< c 2g (n ) for n>n 0. 
/ (n)=D(g(n)) implies that g {n)= O (f (n)).

1
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1.2 Problem Statement

Let P = {Pp ' ‘ - ,Pn } be a prescribed set of disjoint polyhedra and s ,g c R3 
be distinct points which are not internal to any P, . The class of rectifiable 
curves which have endpoints s and g and which do not intersect any intP, 
will be denoted by C (s .g :P). For C in this class, 1(C) will denote the 
length of C under the Euclidean (L 2) metric. An interesting problem in com
putational geometry asks for the shortest one among these curves and will be 
the subject of this thesis:

FINDPATH
INSTANCE: Polyhedra P = {P p • - • ,Pn } such that P, pP, = 

and s ,g c R 3 such that s g and s ,g do not belong to 
intP, , .
QUESTION: Which Ct C (s ,g;P) has the shortest length?

The above version of FINDPATH is an optimization problem and in the 
sequel, when we refer to FINDPATH without any qualification we shall mean 
FINDPATH (optimization). The following defines the decision version of 
FINDPATH:

FINDPATH (decision)
INSTANCE: Same as in FINDPATH, and a positive integer k. 
QUESTION: Is there a Ct C(s ,9;P) such that 1 (C)£k?

We shall return to the interplay between these two versions of FINDPATH 
after the following theorem which must be intuitively clear:

THEOREM 1.1 There exists a C t C (s ,g :P ) such that for all
Ct C (s ,g ;P), 1(C )^1(C). Moreover, every such C is a polygonal path 
with its possible bend points belonging to some edges of some members of P. 
Proo/ . Our proof will follow a similar theorem of Chein and Steinberg[14] in 
2-space. Let C be any curve in C (s ,g ;P ). If any part of C lies outside 

• n
H = convP' where P' = {s ,g }U((JvertP, ). let i be the first point at which 

i
C leaves H, and y % be the point at which C first returns. Let F be the face 
of bdH which contains y, and let y be the last point where C enters H on 
F . Then C = C1C2C3C4. where Cp C2. C3. and C4 are respectively curves 
from s to x , from x to y H from y j to y , and from y to g , with C j lying 
inside H. C2 lying outside H. and C4 starting at intH (figure 1.1). Let C2' 
be the shorter polygonal path on bdP between x and y^, C3 be the line seg
ment y ly , and C’ = C }C 2' C C 4. (Here y xy is meaningful since F is con
vex.) Then 1(C3Z)^1(C3) and by the convexity of H, 1(C2')^1(C2); so 
1(C' )^1(C ). Furthermore C' does not intersect the members of P and thus
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to 
g

from 
s

Figure 1.1 Curves Cp C2. C3. and C4 of theorem 1.1.
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belongs to C(s,g\P). We shall therefore restrict our attention to curves C 

lying entirely within H .

Decompose i"to 3"simFlex^

cuts a face of this 3-simplex, so does C (figure 1.2).

obtain the required polygonal path C . □

it is noted that the polygonal path C found ” th“T“

all such paths will in general require exponential time in cardP.

THEOREM 1.2 There exists instances of FINDPATH where there are 6(2" )

2"7 2 g -to-g shortest paths. □

Now we return to the relationship between FINDPATH and FINDPATH
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Figure 1.2 A curve intersecting the 3-simplex of theorem 1.1.



6

Figure 1.3 The intersections of Pt with the triangle bt _]ô, 6, +1 
theorem 1.1 shown with dashed lines.

of
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Figure l.j The workspace of theorem 1.2 which gives rise to 2n ' 2 
s -to-g shortest paths.
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(decision). It may be thought that each of the optimization, evaluation (i.e., 
the one that asks only the length of the shortest path), and decision versions 
of FINDPATH, in this order, is not harder than the preceding ones. That is, 
if we are given the bend points of a shortest path then we can compute its 
length, and certainly compare this number with an integer. However, the cost 
of performing the latter operation deserves more attention. Consider the fol
lowing problem which we shall call:

FINDPATH (suboptimality)
INSTANCE: Same as in FINDPATH, and an s-to-g polygonal 
path C which is free of intersections with the given polyhedra, i.e., 
C c C (s ,g ;P ).
QUESTION: Is C suboptimal. i.e., is there a second obstacle
avoiding a -to-g polygonal path C't C (s ,g ;P) where 
1 {C K1(C)?

Clearly, FINDPATH (suboptimality) requires a way to compare the lengths of 
two paths. 1(C ) and 1(C ), which are basically a sum of square roots. The 
obvious method of repeated squaring to eliminate the square roots has 
exponential worst-case complexity. In fact, there is no known method to 
guarantee the correctness of this comparison with only a polynomial effort in 
the number of square roots, r , involved. Garey et al[38] cite the best known 
upper bound on the number of places of accuracy as O (m 2r ) where m is the 
number of digits in the original symbolic expression. (Nevertheless, Mignotte 
considers the following related problem in [74]. If a and b are given algebraic 
numbers and if we know the approximations a' and b' for them, can we 
decide whether a — bl That is, is there a "numerical" proof of a — b in con
trast to an algebraic proof which can be difficult in many cases? He proves 
that this is indeed possible showing that a numerical attack is feasible to sim
plify radicals.)

In view of this, one may be tempted to think that problems such as 
FINDPATH or GEOMETRIC TRAVELING SALESMAN[85] are intractable 
simply because of the evaluation issues stemming from the irrational square 
roots. In [85] Papadimitriou shows that this is not really so, at least for the 
GEOMETRIC TRAVELING SALESMAN problem. He defines a new dis
tance metric d' (x ,y ) = ceil(d(z ,y )) and shows that the problem remains NP- 
complete under this metric.

13 Motivation

Like many other problems in computational geometry (GEOMETRIC TRAV
ELING SALESMAN being a prime example) FINDPATH can be described in 
simple terms even to a novice whereas its solution seems to involve many 
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difficult problems. Aleksandrov[3], Courant and Robbins[17], Efimov[26], and 
Lyusternik[72] study some relevant problems such as planar developments of 
polyhedra but their arguments are frequently informal and nonconstructive.
Saaty[93] defines a specific instance of FINDPATH that we shall call BOUN
DARY FINDPATH (cf. section 3.1) and hints at the usefulness of polyhedral 
developments to solve it but does not attempt to formulate a solution. Jacob
son and Yocom[51, 52] and Jacobson[53] deal with interesting problems in the 
proximity of FINDPATH such as shortest paths within polygons or hyper
cubes, yet their approach is far from being algorithmic. Thus, while TRAV
ELING SALESMAN has received wide attention for a long time (cf. Lawler et 
al [54]), FINDPATH has essentially been overlooked until the last couple of 
years.

The recent creation of interest in FINDPATH owes to the advent of task
level (or model-based) robot programming systems such as the SHRDLU 
program of Winograd[114]. Although SHRDLU was essentially built to study 
natural language understanding, its geometric nature makes it a good candi
date to demonstrate our point. SHRDLU simulates a robot manipulator 
working in a blocks world , a workspace solely cluttered with simple objects 
such as cubes and pyramids. Users requesting a particular action state it in 
simple English. Thus, requests such as "Pick up a red block," or "Stack up 
both of the red blocks and either a green cube or a pyramid" call for goals to 
be achieved by SHRDLU. A geometric path planner designs and submits 
these plans to a manipulator controller which eventually simulates them. 
During the design, the path planner utilizes a geometric model of the 
workspace.

The path planner comprises three important functions. The function 
FINDSPACE tries to find a place for a given block so that it will be stable on 
its new support. If FINDSPACE cannot determine a suitable place, MAK
ESPACE intervenes to clear away some obstacles. Finally, FINDPATH 
moves a block to a given location while avoiding clashes with the other 
blocks. It is possible to reduce an "object" FINDPATH problem of this sort 
to a "point" FINDPATH problem, i.e., the version we shall study in this 
thesis. Lozano-Perez[71] cites an approach which is known as the configura
tion space (Cspace) method for the reduction. In simple terms, Cspace 
method maps an object movement problem to a point movement problem by 
simultaneously growing the obstacles in the workspace and shrinking the 
moved object to a reference point. The method gives exact results for move
ments consisting of only translations. An approximate scheme which allows 
rotations is also possible.
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1.4 Related Research on Motion Planning

Directly relevant work on 3-dimensional FINDPATH is quite recent. We 
shall review works by Franklin [29], Sharir and Schorr[102], O’Rourke et al[83], 
and Mitchell and Papadimitriou[75] in more detail in sections 4.2 and 4.3. On 
the other hand, there is a wealth of material on 2-dimensional FINDPATH 
and in the general area of what we shall call motion planning [2]. We shall, 
somewhat artificially, divide this material into three classes and review only 
the most important ones in each class:

14 1 More Practical Works

Howden presents a simple program[50] which determines in discrete 2-space if 
a sofa can be moved from a source to a goal inside a house. He calls this the 
SOFA PROBLEM. Eastman[21] defines the representational requirements for 
space planning problems. Boyse[8] considers the problem of interference 
detection among polyhedral objects. He discusses two types of interference 
checking: detection of intersections among stationary objects and detection of 
collisions among moving objects. The former check is crucial in the prelim
inary phase of FINDPATH where the disjointness of the obstacles must be 
guaranteed. Udupa[110] maintains the free space as a variable resolution 
description of the feasible positions of the reference point found via Cspace 
method. Safe paths are found by recursively introducing new goals into a 
linear path until the complete path is confined to the free space. Suss- 
man[105] and Pfister[87] work on heuristics for solving FINDSPACE; their 
work is in the spirit of Winograd’s.

Lozano-Perez and Wesley present an algorithm[70] for 2-dimensional 
FINDPATH where there are polygonal obstacles with forbidden interiors. 
Their algorithm uses the fact that the shortest path is a polygonal path whose 
bend points are some vertices of the given polygons. It first constructs a visi- 

n
bility graph ( Vgraph ) whose nodes consist of {s ,g (l_JvertP, ). An arc in 

i
Vgraph connects a pair of nodes corresponding to a pair of vertices visible to 
each other and carries a weight equal to the distance between these vertices. 
It is easy to search Vgraph using a shortest path algorithm for graphs (cf. 
Tarjan[107]) once it is available. Lee and Preparata mention a result of 
Lee[65] claiming that 2-dimensional FINDPATH with arbitrarily oriented dis
joint line segments is solvable in O (m2logm ) time where m is the number of 
segments. Special configurations of the segments make more efficient tech
niques available. Tompa gives several O (m ) algorithms [109] for the case of 
presorted vertical rays each extending either to +00 or -oc. Sharir and 
Schorr also have an O (m logm ) algorithm[102] if the obstructions are all 
vertical lines with several point apertures. Since Vgraph on m nodes where
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n
m = 5jcard(vertP, ) 

1

has in general H(m2) arcs, Lozano-Perez and Wesley's graph search has an 
Q(m2) lower bound even assuming that Vgraph is available. Lee and 
Preparata. in their quest for an o (m 2) time algorithm, propose two improve
ments. They show that there are O (m logm ) solutions[65] when the given 
segments form a simple polygon to which the source and the goal are internal, 
and when the given segments are disjoint and parallel.

A polygon in R 2 that can translate and rotate has three degrees of freedom 
whose legal values are constrained by the other obstacles in the workspace. In 
[71] Lozano-Perez considers these degrees of freedom to be three Cartesian 
coordinates of a point that must move while avoiding obstacles in R 3 and 
then uses an approximate 3-dimensional FINDPATH algorithm. His student 
Nguyen gives a heuristic algorithmes] for 2-dimensional FINDPATH. His 
algorithm is based on describing the free space as a network of ”linked cones." 
Cones capture the freeways and the bottlenecks between obstacles while the 
links capture the connectivity of the free space. In an earlier work [10] Brooks 
represents the free space as a union of overlapping cones and gives an algo
rithm which finds "good" paths for convex polygonal bodies. The paths are 
good in the sense that the distance of closest approach to an obstacle over the 
path is usually far from minimal over the class of homotopic paths. Brooks 
and Lozano-Perez[9] describe an implementation of 2-dimensional FINDPATH 
with rotation. Donald[19] presents a technique for hypothesizing a "channel 
volume" through the free space containing a class of collision-free paths. His 
channel volume starts out by surrounding the moving object at the source and 
grows toward the goal.

Although they use the L, (Manhattan or rectilinear) metric, two other algo
rithms for 2-dimensional FINDPATH are also important. In [61] Larson and 
Li give a Dijkstra-type algorithm for finding the minimum length path 
between the source and the goal in the presence of polygonal barriers.
Lipski[67] deals with n horizontal and vertical line segments in the plane. He 
gives an O [n log2» ) time algorithm (which can be improved to
O (n logn loglogn ) using more complicated data structures) to find, for a 
given source segment, the shortest paths to all other goal segments.

14 2 Complexity-theoretic Works

Donald[20] is a fine tutorial on the geometric complexity of motion. Reif, in a 
pioneering paper on the complexity of motion planning[92] treats the 
MOVER’S PROBLEM, another name for the SOFA PROBLEM. He approx
imates the sofa and the house as systems of linear inequalities which are 
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slightly perturbed by c . His algorithm gives an indeterminate answer if the 
sofa, shrunk by a factor of 1 — c , can be moved from the source to the goal but 
when grown by a factor of 1+t the move is impossible. He then extends the 
problem to allow the sofa to consist of multiple polygons linked together at 
several vertices and proves that this instance is PSP ACE-hard.

In a series of seminal papers, Schwartz and his students study the complexity 
of the PIANO MOVER’S PROBLEM, yet another name for the SOFA 
PROBLEM. In [95] Schwartz and Sharir give a topological analysis of the 
space of positions of a polygon moving in the plane in the presence of polygo
nal obstacles. In [96] they work with the manifold of allowable positions of a 
manipulator and reduce the motion planning problem to finding the con
nected components of an algebraic manifold. They partition this manifold 
into connected subregions of simple structure which they call "cells." Their 
technique makes use of Tarski’s decision method for elementary algebra and 
geometry[108] and its more efficient refinements introduced by Collins and his 
coworkers[16, 4, 5]. Their algorithm is polynomial in the number of edges of 
the obstacles but exponential in the number of degrees of freedom. Schwartz 
and Sharir[97] solve the following instance: given several 2-dimensional discs 
inside a polygon, find a continuous motion connecting two specified configura
tions of these objects during which they avoid collision with the polygonal 
edges and with each other. Their algorithm is polynomial in the number of 
edges of the polygon but exponential in the number of moving discs. This is 
expected since in [104] Spirakis and Yap proved the strong NP-hardness of 
moving many discs. Sharir and Ariel-Sheffi[103] treat the case of a "spider" 
with several arms. This is a 2-dimensional robot consisting of several arms all 
jointed at one common endpoint and free to rotate past each other. In [98] 
Schwartz and Sharir solve the motion planning problem for a line segment 
moving amidst polyhedra. A paper by O’Dunlaing et al[79] describes other 
approaches to motion planning using notions such as "retraction" which has 
interesting connections with differential topology (cf. Schwartz[94]).

Hopcroft and his associates worked on several motion planning problems. In 
[45] Hopcroft et al investigate the 2-dimensional SOFA PROBLEM in which 
the object is a manipulator with an arbitrary number of joints. They give two 
polynomial algorithms: one for moving the manipulator confined within a cir
cle from a given configuration to another, and the other for moving it from its 
initial position to a position in which its tip reaches a given point inside the 
circle. In a closely related work[46] they prove that a planar linkage can be 
constrained to stay inside a bounded region with a straight-edge boundary by 
only adding a polynomial number of new links to it. They also show that the 
question of whether a planar linkage in some initial configuration can be 
moved so that a designated joint reaches to a given point in the plane is 
PSPACE-hard. Hopcroft and Wilfong[47] deal with the motion of objects in 
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contact. In another paper[48] they study the motion planning for multiple 
objects where each object is a polygon with edges parallel to the axes of R2. 
They show that for a rectangular workspace this problem is in PSPACE. 
Since in [49] Hopcroft et al proved that this problem (which they called the 
WAREHOUSEMAN’S PROBLEM) is PSPACE-hard. the problem is 
PSP ACE-complete.

1.4.3 Voronoi-based Works

A detailed review of Voronoi diagrams is beyond the limits of this thesis. Sec
tion 4.1 summarizes some essential material and points out to major refer
ences.

O’Dunlaing and Yap[80] use the Voronoi method for planning the motion of a 
disc in a 2-dimensional region bounded by polygonal obstacles. They con
struct a Voronoi diagram using the obstacles. The diagram is a planar graph 
of straight and parabolic edges and is characterized as the set of points which 
are equidistant from at least two obstacles. Kirkpatrick [57] gives an
O (n logn ) time algorithm for this problem where n is the number of edges of 
the obstacles: a somewhat simpler but O (n log^n ) time algorithm is given by 
Lee and Drysdale[63]. If there is a continuous collision-free motion of the disc 
between the source and the goal positions of its center then O’Dunlaing and 
Yap show that there is another motion of the same sort during which the 
center of the disc moves entirely along the Voronoi diagram. In a descendant 
of this work, O’Dunlaing et al tackle the case of a moving line segment 
instead of a disc [81, 82]. They present an algorithm running in time slightly 
greater than O (n4ogn ) for constructing a skeleton representation of a gen
eralized Voronoi diagram. Theirs is a variant of Kirkpatrick s continuous 
skeletons [57],

1.5 Organization of the Thesis

After this introduction, the rest of the thesis is structured as follows. Chapter 
2 discusses the general solution of FINDPATH and several ways of speeding 
it. Chapter 3 deals with two special instances of FINDPATH, both in the 
presence of a single convex obstacle. Chapter 4 offers two Voronoi-based 
approaches to solve FINDPATH more efficiently after some preprocessing. 
Chapter 5 describes the features of SP, a workbench written to explore and to 
experiment with our shortest path algorithms. (Appendix summarizes the 
internals and the available functions of SP.) Finally, chapter 6 cites important 
open problems along with our conclusions.



2. SOLUTION OF THE GENERAL INSTANCE

This chapter has two sections. In section 2.1 we study FINDPATH in its full 
generality and give a simple yet very inefficient algorithm. Section 2.2 offers 
some methods to speed this algorithm up.

2 1 A Brute-force Algorithm

In this section we shall give an algorithm which, although very inefficiently, is 
able to solve FINDPATH. Throughout this thesis, we shall assume, without 
loss of generality, that sg itself is not the shortest path. This can be checked 
by applying standard line-polyhedron intersection detection algorithms.

We shall first solve the following problem which will be the main ingredient of 
our algorithm for FINDPATH:

OPTIMAL LINE VISIT
INSTANCE: Lines L ={L H ■ ■ • ,Ln} and points 8 ,g in R3. (Each 
line is specified by a pair of points.)
QUESTION: What is the s -to-g shortest path constrained to pass 
through the sequence of lines L^, • • • ,Ln in that order?

It is clear that the shortest path is also a polygonal path in this case. Let 
b ], • • • ,6n denote the bend points of the shortest path on L ,, • • • ,Ln , 
respectively. For notational ease, we shall take bQ=s and bn+i = g . The unit 
vectors along each Li will be denoted by u, : their direction can be arbitrary.

LEMMA 2.1 For n , the angle between the vectors 6, _ x 6, and- u, is 
equal to the angle between 6, 6, +1 and u, (figure 2.1).
Proof . This is well-known; Sharir and Schorr[102] give a proof. □

LEMMA 2.2 The solution of OPTIMAL LINE VISIT is unique.
Proof . Sharir and Schorr[102], □

With the aid of these lemmas, it is easy to formulate a solution for 
FINDPATH. From lemma 2.1, the bend points of the shortest path satisfy 
the following vector equation for all l i n :

<bt_xbt ,ut>/ d(bi_l,bl)=<bi b^x,u,>/ d(6, ,6, +1) (1)

Denoting the pair of points defining L, by f, and gt , we also have the fol
lowing vector equation for all l^z :

14



15

Figure 2.1 The angles q1 and a2 are equal if these bend points 
belong to a shortest path.
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*ï = f i +z> (2)

where xt is Lx’s parameter. Substituting the values of 6, found in (2) in (1) 
and using the fact that u, = /, g, / d(/, ,g, ), we obtain n nonlinear equations 
in n unknowns as follows:

Ql(Zl,%2)=0

Q 2(xvx2,x3) = O

Q, (x,_},x, ,xt +i) = 0 (3)

Qn_x^n-t^n-X^n ) = 0

Qn Un-Vzn ) = °

In (3) we note three properties. First, each equation is a quartic (after remov
ing the square roots caused by u, ’s) in at most three variables. Second, the 
polynomial Q{. K» <n is dependent only on three unknowns: xi_1, x, , xi+1. 
Third, both Q j and Qn have only two unknowns since b 0 and bn +1 are con
stant points. Since we have n independent equations in n unknowns in (3), 
we can solve this system to determine the real root (zj, • • • ,xn ) using the 
classical theory of elimination (cf. van der Waerden[113] and Collins[15] for a 
detailed description: Ku and Adler[60] and Moses [77] are good short exposi
tions). Once the x, ‘s are known, the bend points are easily computed using 
(2).

The idea of elimination is based on the polynomial resultants. We assume 
that the reader is familiar with the latter and omit several definitions and 
theorems. The crux of the elimination is the following:

THEOREM 2.1 Let F be an algebraically closed field. Let

m .
A (zi, • ' ’ ,xr ) = £X (*i-  ’ ' ‘ A-yVt' 

0
n .

B (x 1, • • ■ ,Xr )=£B, (Zj, • • • 

0

be members of field F [z f, • ■ • .xr ]. of positive degrees m and n in xr , and 
let C (zj, • • ■ ,zr_J be the resultant of A and B with respect to xr. (This 
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will be denoted by C =res(/l ,B ).) If (a p • • • ,ar ) is a common zero of A 
and B , then C (a • • • ,ar _j) = 0. Conversely, if C (a,, • • • ,ar _j) = 0, then 
at least one of the following holds:

Am (ap • • • ,«r_i)= • • • = A0(ap ■ • • ,a,_i) = 0, 

Bn (dj. • • ’ ,cr-1)= • • • = B 0(a j, • • • ,ar_i) = O, 

(dp • • • ,dr_j) = B„ (dp ■ ' ' ,ar_i) = 0, 

For some ar e F ,A (a p • • • ,ar ) = B (ap • ■ • ,ar ) = 0.

Proof . Collins[15]. □

Theorem 2.1 suggests the following method to calculate the solution of a sys
tem of n polynomial equations in n unknowns. Let A, (ip • • • ,xn ) = 0, 

be the given system. Let Bi (x p ■ • • ,xn _ 1) = res(AI ,An ), l^i — 1.
Note that the variable xn does not appear in Bt s. Now, let
Ct (zp • • • ,xn _2) = res(Bi ,Bn _ J, 1^/ -2. Neither xn nor xn_x appear in
Ct's. Continuing in this manner, one eventually obtains a polynomial 
Z1(r]) = 0. By theorem 2.1, if Aj (a p • • • ,an ) = 0 for l^i n , then 
Zj(a J = 0. Similarly, we can compute polynomials Z2, * ' * ,Zn such that 
Z2(a2) = O, • • • ,Zn (an ) = 0 whenever (a p • • • ,an ) is a zero of the original 
system 4 pO, • • • ,An =0. If Z, "s are all nonzero polynomials then there are 
only a finite number of n -tuples (a P • • • .an ) such that
Zx(a ]) = 0, • • • ,Zn(an) = 0. and every solution of the given system will be 
among these n -tuples. Thus it is sufficient to find the roots of these univari
ate polynomials and then determine which n -tuples are solutions of the initial 
system. Heindel[44] describes a system which employs Sturm's theorem[113] 
to calculate within any prespecified (yet unlimited) accuracy all the real zeros 
of a univariate integral polynomial, and this is exactly what we want since 
complex roots are not meaningful in our setting.

Although the above method is straightforward there are some problems that 
make it difficult to implement in a computer for large values of n . The fol
lowing theorem explains this:

THEOREM 2.2 Let R be a commutative ring with identity and let A and B 
be polynomials of positive degree over R . Then there exist polynomials S 
and T over R such that AS +BT =res(A .B ) and degS <degB , 
deg T < deg A . (degA denotes the degree of polynomial A .)
Proof . Collins [15]. □

This means that res (A ,B ) can have powers up to 2degA degS . Thus, in the 
above discussion the final univariate polynomials Zt may be in the worst-case 
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of order doubly-exponential in n . (There is certainly a similar growth in the 
size of the coefficients of the resultant, but we think that this is somewhat less 
important.) In appendix (c) we review Macsyma’s resultant function for elim
ination.

It is admitted by experts{55] that elimination is very inefficient for solving a 
system of nonlinear equations even for small n . Thus numerical methods 
may be desirable to solve (3). A classical method that is applicable is the 
Newton-Raphson method. Let J denote the n xn Jacobian matrix defined by 

=9 Qt / dz; . Then the (r +l)-st iteration of the Newton-Raphson method
is given as Xr +1 = Xr - Q (A’r )J-!(A'r ) where X = (xi ■ • • xn ), 
Q = ( Q j • • • Qn ). The convergence of the method is dependent on the initial 
estimate Ao. A typical feature of the method is that the number of correct 
significant digits roughly doubles at each iteration. In appendix (c) we review 
our Macsyma function olvang which implements this method.

We have seen that purely algebraic schemes, such as elimination, may lead to 
severe performance penalties. Use of local methods, such as Newton-Raphson, 
can be a hit-or-miss process. In this case, continuation methods provide the 
best known technique for computing solutions to polynomial systems. (It is 
noted however that continuation methods also run quite inefficiently. Mor- 
gan[76] states that the run time of his SYMPOL system which is based on 
continuation is proportional to the "total degree" (the product of the degrees 
of the individual equations) of the system under investigation.) A major 
advantage of the method is that it is not affected by the choice of initial esti
mates of solutions and thus is very reliable. Garcia and Zangwill[37] is the 
definitive source on the subject of continuation. Similarly, Garcia and 
Zangwill[36] treat the case of solving polynomial equations using this method. 
Here we give an overview of the latter.

We want to solve the polynomial system At (zj, • • • ,z„ ) = 0, n , or writ
ten compactly, A (z) = 0. We assume that we can solve G (z) = 0, a "simpli
fied" system to be specified below. We then form the homotopy:

H [x ,t}-tA (z ) + (!- / )G (z) where t e [0,1]

and generate a "flow" from the solutions of G (z ) = O to those of the original 
system by starting at all solutions for t = 0 and following the corresponding 
paths until t = 1. (The details of how this is done are not particularly 
illuminating and will be omitted here.) Let C], • • * ,cn be complex numbers 
and let p (k) stand for degAk . Then the Æ -th component of G will be 
defined as Gk = xk^p ck . The following theorem is very important:
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THEOREM 2.3 If for all xot C ” ( n-dimensional complex space) and toe [0,1] 
(a) A (zo) = O implies det DA (zo)^O, and (b) H (z0,( o) = O implies 
rankDH (z0,< o) = O then all solutions to A (z ) = 0 can be found by the process 
described above. [DH (resp. DA ) is the 2n x(2n +1) (resp. 2n x2n ) real 
matrix of partial derivatives of H (resp. A ). det A denotes the determinant 
of A whereas rank A denotes its rank.)
Proof . Garcia and Zangwill[36], □

One may inquire when the hypothesis of theorem 2.3 holds. The following 
result is thus relevant:

THEOREM 2.4 The set of all (c p )e C" for which part (b) of the 
hypothesis of theorem 2.3 does not hold has measure zero in Cn .
Proof . A sketch is given by Morgan[76]. □

The elegance of theorem 2.4 is that we can select c 15 • • • ,cn in random and 
reasonably expect them to satisfy the hypothesis of theorem 2.3, assuming 
that part (a) of it holds. The method may lead to some "bad" paths which 
diverge to infinity. Since theorem 2.3 guarantees that each solution will have 
a convergent path this is not a theoretical deficiency; yet it degrades the per

n
formance. That is, theorem 2.3 generates (1+p (i )) paths wheras the max-

1 
n

imum number of solutions is only p ( i ). We did not implement a continua- 
1

tion method in this thesis although we are convinced that it may be the best 
available approach to solve OPTIMAL LINE VISIT.

Until now, we summarized a way of solving OPTIMAL LINE VISIT based on 
the solution of a system of equations, either using purely algebraic techniques 
or numerical analysis. Another method is to apply optimization. Consider 
the objective function:

n 
D (xp ‘ • ,z„ )=5d(6,- ,6, +1)

o

This is the total length of an s -to-g path with bend points bt . To minimize 
D , we can use the formula Xr +i = XT — G (Xr )H~1 (Xr ) where G is the gra
dient vector (9D / 9z • • ■ dD / 9z„ ) and H is the n xn Hessian matrix 
defined by =9 2D / 9z, 9 z;. Like Newton-Raphson method, the success of
the optimization rests on the good selection of X 0. In appendix (c) we review 
our Macsyma function olvdis written to implement this method.

We shall now consider the following variant of OPTIMAL LINE VISIT:
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OPTIMAL EDGE VISIT
INSTANCE: Line segments E = {e ], • • • ,en } and points s ,g in 
R3. (Each line segment is specified by its endpoints.) 
QUESTION: What is the s -to-g shortest path constrained to pass 
through the sequence of line segments e p • • • ,e„ in that order?

OPTIMAL EDGE VISIT requires the bend points of the shortest path to 
belong to the line segments; hence direct application of OPTIMAL LINE 
VISIT to the lines defined by the given line segments will not in general pro
vide the right answer. Nevertheless, we shall show that OPTIMAL EDGE 
VISIT is solvable after 3" applications of OPTIMAL LINE VISIT to 
instances whose total individual size is n . Denote the line carrying ei by 
and apply OPTIMAL LINE VISIT to the obtained instance. If the bend 
points 6, of the computed path are such that b, e cle, , then we are
done. Otherwise, some bend points of the computed path are external to some 
segments. In this case, it must be clear that the shortest path through the 
given edges will bend at at least one endpoint of the given edges at which 
point it will not subtend equal entry and exit angles contrary to lemma 2.1.

Let the endpoints of edge e, be denoted by e(J and e12. Let combs be the set 
of all combinations of length n where each combination is obtained by select
ing one member from the following sets in that order:

{L ve n,e 12} 

{L 2’e 21ie 22}

V^n ’en 1 ’en 2}

A given member of combs defines at most n subproblems that should be sub
mitted to OPTIMAL LINE VISIT. The subproblems are simply obtained by 
isolating the parts of the given combination between consecutive pairs of end
points.

EXAMPLE Assuming that n = 7 we should solve 37 problems, one for each 
combination. For instance, one of the combinations is the following:
s ,L pe 21,Z 3,Z 4.e 52.L 6,e 71,p . For this one we must solve four subproblems as 
follows:

apply OPTIMAL LINE VISIT to instance s ,L t,e 2] 
apply OPTIMAL LINE VISIT to instance e 21,Z 3,£ 4,e 52 
apply OPTIMAL LINE VISIT to instance e52,£6,e 71 
apply OPTIMAL LINE VISIT (trivially) to instance e71 ,g □
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Note that if during the application of OPTIMAL LINE VISIT to a subprob
lem any of the found bend points turn out to be external to the given seg
ments then we can abort the whole computation for this combination since it 
will be accounted for in a future combination. Once we are through with a 
combination we add the lengths of the paths computed for the subproblems 
together to find the length of the shortest path for this combination. The 
combination which gives the shortest among the members of combs is chosen 
as the optimal one.

After these preparations, we are now ready to give our algorithm:

Algorithm FINDPATH
1. Let E = UedgeP, and EP =2£ — $ where 2E denotes the power set of E . 

i
Let C = $ and I = +00.
2. Do the following steps for each permutation of each T e EP :

2.1 Compute the shortest path C by applying OPTIMAL EDGE 
VISIT to the edges in T, and s and g .
2.2 If C intersects any P, then discard it and continue with step 
2. Otherwise, if 1(C )</ then replace C by C , let / =1(C ), 
and continue with step 2.

End

This algorithm gives one s -to-g shortest path (C ) and its length (/ ). To 
obtain all s -to-g shortest paths in case there are more than one, the following 
modifications can be made. Initialize a list cands = $ at step 1. When a path 
C is not discarded at step 2.2, let cands = cands C and skip the rest of the 
step. Finally, we add a third step which sorts cands in ascending order by 
path length and takes the initial portion of it containing the equal-length 
paths.

2.2 Efficiency Considerations

Assume temporarily that we have a black box which efficiently solves 
OPTIMAL EDGE VISIT numerically. Even in this case, FINDPATH would 
be extremely inefficient since it tries all permutations of edges to compute the 
shortest path. (We think here that testing a path against the obstacles for 
intersection detection is subsumed by the root finding, a reasonable assump
tion.) Since n !=\/27r n (n / e )n (1 + 0 (1/ n )), the execution time of 
FINDPATH would still be dominated by O (nn ). Currently, there is no algo
rithm which does provably better than this bound. In other words, the best 
known algorithm for FINDPATH is nothing but the naive "try all possibili
ties" approach.
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In fact, even the numerical solution of OPTIMAL LINE VISIT is nontrivial as 
we already remarked in section 2.1. We shall demonstrate that OPTIMAL 
LINE VISIT becomes intractable if we relax the requirement that the lines 
should be visited in the given order. To see that, assume the existence of a 
polynomial algorithm to solve unordered OPTIMAL LINE VISIT. We shall 
prove that one can use this as a subroutine to solve GEOMETRIC TRAVEL
ING SALESMAN in polynomial time, a contradiction in the light of the fact 
that the latter is strongly NP-complete both in the "path" and the "tour" 
versions[85]. (In the path version we are not supposed to come back to our 
starting city.)

For the proof, let the cities for GEOMETRIC TRAVELING SALESMAN 
(path) be the points c1: • • • ,cn in the plane. Consider the lines passing 
through c, ’s and perpendicular to the plane and denote them by Z p • • • ,Ln . 
Since we assumed that OPTIMAL LINE VISIT works in polynomial time, we 
are assured that for a given pair of cities which act as the source and the goal, 
we can find a source-to-goal shortest path in 3-space efficiently. (This path is 
obviously confined to the plane.) It starts at the source, visits some permuta
tion of L ,, • ' • ,Ln , and ends at the goal. Since the number of such pairs is 
only O (n2), we can try all of them and select the one which gives the shor
test path, which necessarily is the shortest salesman path in the plane. The 
contradiction follows.

Clearly, what we need to reduce the execution time of FINDPATH is a quick 
way of deciding which permutations of edges are simply useless. If we can do 
this then all such permutations can be discarded without ever applying 
OPTIMAL EDGE VISIT on them. In the following assume that all members 
of P are convex. Let e n • • • ,ek be a given sequence of edges. The first 
short-cut is obvious:

LEMMA 2.3 Let et, e, +1, : <k be two edges in the above sequence such
that e, ,e, +1c edgePy , for a P . Let F j and F 2 be the lowest indexed 
faces of Pj which hold e, and e, +1, respectively. If F F 2 then this sequence 
cannot contribute to the shortest path computation.
Proo/ . The convexity of Py guarantees that there is no way to go from e, to 
e, +i without intersecting intPy . □

The second short-cut is as follows:

LEMMA 2.4 An s -to-g shortest path cannot pass through any member of 
n

I^JvertP, . (Pi’s are still considered convex.)
1

Proo/ . If C is a shortest path on the boundary of a convex polyhedron 
Pke P, then Sharir and Schorr [102] prove that C cannot pass through a 
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vertex of Pk . We shall extend this to the case of several convex polyhedra. If 
the shortest path C in this case first lands on a face of a polyhedron Pk , then 
visits a vertex Vj of it, and then takes off then their proof is certainly applica
ble. Otherwise, the situation is shown in figure 2.2. Now consider two points 
on C : a in the t -neighborhood of u] but before it, and b in the t - 
neighborhood of Vj but after it. Obviously a and b cannot see each other. 
Let P' be a small subset of Pk including v} and its say, c f -neighborhood for 
a constant c , 0< c <1. It is possible to construct conv(P' |^j{a ,6 }) to com
pute a shorter path from a to b which avoids Vj. □

This may be extended to the case of arbitrary polyhedra. However, we must 
be careful about the vertices where lemma 2.4 holds in this case. Figure 2.3 
shows a nonconvex polyhedron with a "valley" which forces the s -to-g shor
test path to pass through vertices v ] and v2- It is seen that lemma 2.4 is 
correct only for convex vertices.

The importance of lemma 2.4 is that it eliminates the need to perform 
OPTIMAL EDGE VISIT totally in an exclusively convex environment. That 
is, if we perform a shortest path computation via OPTIMAL LINE VISIT on 
a sequence of edges in the presence of convex obstacles and find out that the 
path should pass through some vertices then we can immediately discard this 
sequence.

Returning to lemma 2.3, can we find additional short-cuts? One such way 
would be to eliminate a sequence which has two consecutive edges (belonging 
to different polyhedra) which cannot "see" each other:

DEFINITION Two edges e, and e 2 of a polyhedral scene P = {_P], ' ' ’ ,Pn } 
are visible to each other if there exists a point of e , visible to a point of e 2. 
Otherwise, they are invisible to each other. □

This definition suggests the following decision problem:

EDGE-TO-EDGE VISIBILITY
INSTANCE: As in the above definition.
QUESTION: Are e x and e 2 invisible to each other?

We are not aware of an algorithm to solve this problem. Let H be the con
vex hull (a tetrahedron) of the endpoints of the given line segments. Clearly. 
e ] and e 2 are invisible to each other if the object obtained by subtracting all 
polyhedra from H contains "walls" so as to block any line segment connecting 
a point of e j to a point of e 2. However, we do not know how one can detect 
this situation. An obvious probabilistic approach (which is vulnerable to an 
adversary) is to suitably choose point pairs (one of which belonging to e x and
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Figure 2.2 A shortest path cannot visit a convex vertex.
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Figure 2.3 A shortest path can visit a nonconvex vertex.
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the other to e 2) and to test the line segment connecting them against all 
polyhedra for intersection. If a prespecified number of tries are always con
cluded with reported intersections then we may argue that the given line seg
ments are invisible to each other.

Finally, note that if two edges are only partly visible to each other then a 
sequence holding them in consecutive order in FINDPATH cannot in general 
be discarded without further consideration.



3. SOLUTIONS OF TWO SPECIFIC INSTANCES

This chapter has two sections. Both sections treat the case P = {P j} where 
P ] is convex. (In the rest of the chapter we shall simply use P instead of P].) 
Section 3.1 details the case where s ,g f bdP . Section 3.2 uses the solution for 
that case to solve the instance where s and g are both external to P. This 
chapter is largely based on a revision of our work in [30, 32].

3 1 Shortest Paths on a Convex Polyhedron

Consider the following specific instance of FINDPATH:

BOUNDARY FINDPATH
INSTANCE: Convex polyhedron P , specified points s ,g e bdP 
where s ^g .
QUESTION: Which G t bdP has the shortest length?

Before we solve this problem we give an argument as to its importance. Let 
PHP,. • • • .PJ be a set of convex polyhedra. If we are allowed to com
pute a reasonably short (but not the shortest) s -to-g path then we can pur
sue the following strategy. Let P' be the subset of P such that every 
member of P' is intersected by sg . (If a polyhedron is intersected by sg 
only once then it is not included in P' ; thus P' consists of polyhedra inter
sected by sg at precisely two points.) Applying BOUNDARY FINDPATH to 
each member of P' we obtain an s -to-g polygonal path which comprises two 
types of curves: line segments through free space, and polygonal paths along 
the boundaries of the polyhedra between where the path "lands" from free 
space and "takes off again (figure 3.1). Repeated optimization of this path is 
possible and will frequently yield a better (with fewer bend points) and 
shorter path (figure 3.2) although it is not difficult to come up with cases 
where repeated optimization might cause clashes.

We shall assume throughout the thesis that the boundary representation is 
used to define a polyhedron P. In this representation scheme each vertex is 
defined by its x ,y ,z coordinates and each face is given as a list of pointers to 
the vertices, ordered in counterclockwise around the boundary of the face with 
respect to a point above it. It is convenient to think of vertex labels or face 
labels as positive integers.

DEFINITION The face graph (Fgraph) of a convex polyhedron P is an 
undirected graph Fgraph =(FV ,FE ) with unit are weight, FV = {i :Ft is a 
face of P } and FE-{(i ,j):Ft and F3 are adjacent). (Two faces are 
adjacent if they share an edge.) □

27
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S

Figure 3.1 A reasonably short path between s and g in the 
presence of convex polyhedral obstacles.
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Figure 3.2 Further optimization of the path shown in figure 3.1 
yields a shorter path with fewer bend points.
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EXAMPLE Figure 3.3(a) shows the face graph of a cube. In figure 3.3(b), the 
face graph of a parallelepiped is given to note that Fgraph only preserves the 
adjacency information. Figure 3.3(c) shows that two faces with a common 
point only are not considered adjacent by this definition. □

DEFINITION Let CcbdP be an s-to-g polygonal path. The sequence of 
faces that C enters defines the face visit sequence of C which will be denoted 
by fvs C . □

Thus fvs C is a walk in Fgraph between the nodes corresponding to faces Fs 
and Fg , the faces of P containing s and g , respectively. An immediate 
consequence of the above definition is:

LEMMA 3.1 Let C e bd P be an s-to-g shortest path. Then fvsC is a sim
ple walk in Fgraph , 
Proof . If this is not true then C enters a face at least twice. Recalling the 
fact that the faces of P are all convex, we can then further shorten C , a 
contradiction, o

From now on, all face visit sequences will therefore be assumed to be simple.

In addition to Fgraph , a useful construct that will be used by BOUNDARY 
FINDPATH is the planar development of a given face visit sequence. It is 
well-known that the boundary of a convex polyhedron has the structure of a 
planar graph. Therefore, the totality of the faces of P , situated in 3-space in 
certain mutual relationship, can be represented in 2-space (specifically the 
xy -plane) by a system of polygons identified with the faces of P . Frechet 
and Fan[35] refer to this as the "planar polygonal schema" while Abelson and 
DiSessa[l] prefer the term "atlas" noting the similarity of this to a road atlas. 
The relationship between a planar development and the planar polygonal 
polygonal schema will be apparent after the following description of how to 
obtain the latter.

In the xy -plane associate with each face of P a polygon having the same 
metrical form. (Two polygons have the same metrical form if they can be 
made to coincide by translations and rotations.) Define the glue relationship 
between the pairs of edges of these polygons such that two glued edges come 
from the same edge of P. Figure 3.4 illustrates this for a cube. Each edge in 
the planar polygonal schema is glued to exactly one edge.

DEFINITION A planar development corresponding to a face visit sequence 
1, ■ • • ,k is a union of polygons F • ,Fk of the planar polygonal schema 
of P. In the planar development two polygons F, and F,+ p 1^2 <k are 
united along the edge that they are glued to each other, and do not overlap.
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2

(a)

(b)

Figure 3.3 Face graphs of convex polyhedra:
(a) cube, (b) prism, (c) pyramid.
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5

Figure 3.4 The planar polygonal schema of a cube.
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□

DEFINITION The image of a point on a polyhedron under a planar develop
ment is the point in the plane that it ends up under the development. □

DEFINITION A planar development is legal if the line segment connecting 
the images of the source and the goal is internal to the development. □

EXAMPLE Figure 3.5 shows several planar developments computed and 
drawn by SP, our shortest path workbench. The objects (and their file 
names) are as follows. Figure 3.5(a): cube (cube.DAT ), figure 3.5(b): 
icosahedron (icosa.DAT ), figure 3.5(c) and (d): dodecahedron (dodeca.DAT ). 
It is noted that the last development is not legal. □

It should be apparent that once a planar development is built, it can be 
moved to any position and orientation in the plane without changing the 
intrinsic geometry of the paths. We shall now give a procedural definition of 
a planar development:

DEFINITION To compute the planar development of a face visit sequence 
1, - ■ • ,k , start with F v If affF] is parallel to the xy -plane then translate P 
by a suitable amount so that F is now in the xy -plane; otherwise, let the 
dihedral angle between affF ] and the xy -plane be D and and rotate P about 
the line affF -plane by D to map F to the zy -plane. The remaining 
faces F, are inductively handled as follows. Let e be the common edge of 
F, _ ] and F, whose dihedral angle is D. Rotate P by D about affe to place 
F, to the xy -plane while avoiding overlaps with F, ,/s polygon which is 
already there. □

Now we are ready for:

Algorithm BOUNDARY FINDPATH
1. Let Fs and Fg be the faces of P including s and g, respectively. Assume 
that Fs^Fg; otherwise the shortest path is C = sg .
2. Let F VS be the set of all simple walks in Fgraph of P , between the nodes 
corresponding to F, and Fg . Initialize vs = $ and I = +oo.
3. For each member of F VS do the following steps:

3.1 Compute the planar development corresponding to this face 
visit sequence. Let s' and g' be the images of s and g in the 
xy -plane under the same development. (They can be computed 
along with the planar development.)
3.2 If the development in step 3.1 is not legal then continue with 
step 3. Otherwise, if d(^ .g' )</ then replace vs with the 
current face visit sequence, let I =d(s' ,g' ), and continue with
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Figure 3.5 Some planar developments computed and drawn by SP.
The objects that are developed are as follows: (a) cube, (b) 
icosahedron, (c) and (d) dodecahedron.
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step 3.
4. At this point I is the length of the shortest path and vs is the face visit 
sequence that should be used to to compute the shortest path itself. To do 
this, first compute the planar development of vs (and s' and g' ) and inter
sect s' g' with all pairwise common edges of the polygons in the development. 
The intersection points in the plane are then easily used to compute the bend 
points of the shortest path C . We know from the planar development of 
vs the distance of an intersection point from a vertex in the plane. All we 
need is to identify the vertex of P in three dimensions that led to this vertex. 
Then marking the point which is away from this vertex the same distance 
over the edge touched by the shortest path we locate the bend point for one 
intersection. The others are found completely analogously.
End

An efficient way of checking whether a planar development is legal follows. 
Let e ]. ■ • • ,e( be the sequence of edges that are glued in the development. 
Then the development is legal if s' g' intersects every e, . Note that this is 
always easier than testing if s' g' is internal to the planar development’s 
boundary.

To list the simple walks between two nodes of a graph we can use the algo
rithm of Yen[115] which works in 0 (kn 3) if there are n nodes in the graph 
and we require the first k simple walks in increasing walk length. Katoh et 
al [56] give an improved algorithm for the same task with a time complexity 
O (kf (n .m )) under the assumption that shortest walks form one node to all 
others can be found in / (zi .m ) time where m is the number of arcs in the 
graph. Since / (n .m ) is either O (n") or O (m logn ) in the worst case, this 
algorithm is more efficient than Yen's.

Determining the value of card .Fl'S is difficult. Garey and Johnson[39] state 
that the following problem is NP-hard:

K-th SHORTEST PATH
INSTANCE: Graph G = ( V .E ), positive integer lengths le for 
each e £ E , specified nodes s ,t ( V . positive integers b and k . 
QUESTION: Are there k or more distinct simple walks from s to 
t in G. each having total length b or less?

They also mention that K-th SHORTEST PATH remains NP-hard even if 
le =1 for all e e E. and is solvable in pseudo-polynomial time (polynomial in 
card V. k, and log6 ) and accordingly, in polynomial time for any fixed k 
(e.g., Yen’s algorithm). The difficulty of K-th SHORTEST PATH basically 
resides in the following counting problem which was proven to be #P- 
complete by Valiant[lll]:
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S-T PATHS (SELF-AVOIDING WALKS) 
INSTANCE: Graph G = ( V .E ). specified nodes s ,t e V. 
QUESTION: What is the number of walks from s to t that visit 
every node at most once?

Cartwright and Gleason[11] give an algorithm to compute this number but 
their algorithm uses large matrices and is inefficient even for small values of 
card V.

The problem of counting (s ,t )-walks in (s .t )-planar graphs is also #P com- 
plete[90]. (A graph is called source -sink planar . or (s ,/ )-planar in short, if 
it has a planar representation with nodes s and t on the boundary.) Pro- 
van[91] states that the approximation probh :i for (s ,t )-walks is unsolved, in 
the sense that the following problem is open:

"For any fixed e <1, does there exist a polynomial algorithm 
which for a given (s )-planar graph G , will give an approxima
tion A'o for the number N of [s .t )-walks in G which satisfies 

| N-N0| <t.V?"

On the other hand, for any fixed c >0, can it be proven that the above prob
lem is NP-hard? Currently, the only known approximations are to count the 
minimum length walks or to enumerate as many walks as possible (using a 
large value of k. in Yen's algorithm, for example).

It is not hard to find a convex polyhedron which has an exponential number 
of simple walks in its F graph (figure 3.6). If there are l lateral faces of this 
pyramid-like object (not counting the small triangular faces) then the number 
of simple walks between the nodes Fs and F in the figure is 0(2^ ' 2). This 
result also shows that our BOUNDAR Y FINDPATH algorithm is of exponen
tial time complexity in the number of faces of P. Section 4.3 describes poly
nomial algorithms by other researchers for this problem. Unfortunately, theirs 
do not seem to admit practical implementations. In the light of this, the algo
rithm presented in this section is applicable for objects of moderate complex
ity. We can also try to test only a certain section (e.g., first few in increasing 
walk length) of the face visit sequences between the source and the goal faces 
for an object with many faces with the hope that the shortest path is gen
erated by a short face development sequence. The shortest path rendered by 
the legal developments found among the developments that these sequences 
give may be taken as the true shortest path although this too is certainly 
vulnerable to an adversary (figure 3.7).
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Figure S.6 There exist an exponential number of simple walks 
between nodes Fs and Fg in Fgraph of this object.
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Figure 3.7 Shortest face visit sequences do not always render 
the shortest paths.
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3.2 Shortest Paths around a Convex Polyhedron

Now we inspect the following variant of BOUNDARY FINDPATH:

EXTERIOR FINDPATH
INSTANCE: Convex polyhedron P and points s ,g where at least 
one of them is external to P . s g .
QUESTION: Which C e C (s ,g’,P) has the shortest length?

Without loss of generality, we shall treat the case where s and g are both 
outside P . In this case, the following fact is useful:

LEMMA 3.2 Let H = conv({s ,g }(JvertP ). Then an s -to-g shortest path for 
EXTERIOR FINDPATH is entirely on bdH.
Proof . Similar to theorem 1.1. □

Thus, once H is computed using standard 3-space convex hull algorithms, we 
can apply BOUNDARY FINDPATH to the instance made of H. s . and g . 
(Preparata and Hong[88] give an algorithm to find the 3-dimensional convex 
hull in O (n logn ) time for n points.) However, there is a slight difficulty 
with this approach. Assuming that we want to know which edges of the origi
nal polyhedron the shortest path touches, we must keep extra information 
with H, i.e.. which vertex of H comes from which vertex of P. Below, we 
shall give a more direct method to obtain H while keeping this information 
implicitly using a visibility-based approach. (Sutherland et al[106] give an 
excellent overview of polyhedral visibility.)

DEFINITION For a convex polyhedron P and a point x external to it. the 
silhouette edges of P are members of

{e :e e F t and et F 2 where F xc Fvts and F 2f Ftnms }

Here. Fvls (resp. Fmt„s ) is the set of visible (resp. invisible) faces of P from 
viewpoint x. □

Clearly, Fvts QFtriUlj =$ since a face of a convex polyhedron is either com
pletely visible or completely hidden to an observer. Let Estl ,s (resp. Eslt g ) 
denote the silhouette edges of P from s (resp. g ). It is clear that the faces of 
H will be the union of three disjoint sets:

~ Fin ,s LJ F tn ,g LJ ,s f") ^"tnvts ,g )
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Here Ftrt s (resp. Ftri g ) is a set of triangular faces each characterized by an 
edge of Esii s (resp. Esil g ) and s (resp. g ). In essence, these are the lateral 
faces of a pyramid-like object with (generally nonplanar) basis Esi/ s (resp. 
Esi! g ) and apex s (resp. g ). It is noted that the geometric complexity of 
object H is the same as with P .

We conclude this section with an algorithm to compute the silhouette edges of 
P from a point x external to it:

Algorithm SILHOUETTE
1. Compute Fvts^ . the visible faces of P from viewpoint x, by checking line 
segments xct where c, is the center of mass of face Ft against all Fj, 
for intersection. Fvls 7 consists of all F, which do not cause any intersection.
2. Let the totality of the visible edges of P from x be Evis z ={e :e e F where 
F c Fvts 7 }. Sort Evu z and eliminate both of duplicate members. The 
remaining edges are precisely the edges of Esii x .
End '

Figure 3.8 demonstrates the working of EXTERIOR FINDPATH on a simple 
object.
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Figure 3.8 Demonstration of how EXTERIOR FINDPATH works 
via silhouettes.



4. TWO VORONOI-BASED TECHNIQUES

This chapter has three sections. In section 4.1 we introduce an extension of 
Voronoi diagrams on the boundary of a convex polyhedron and give an algo
rithm to compute it. Similarly, in section 4.2 we introduce the partitioning of 
the free space around polyhedra into regions. Section 4.3 evaluates other 3
dimensional FINDPATH algorithms of similar nature. This chapter is based 
on work reported in [33] and [34].

4 1 Partitioning the Boundary of a Convex Polyhedron

Consider the following variant of BOUNDARY FINDPATH:

BOUNDARY FINDPATH (locus)
INSTANCE: Same as in BOUNDARY FINDPATH except that g 
is not given. However, it is guaranteed that, when specified, g will 
be on bdP.
QUESTION: Preprocess P so that for any specified gtbdP the 
s -to-g shortest path is computed efficiently.

A practical case which would benefit from BOUNDARY FINDPATH (locus) 
is as follows. Consider a truck on the surface of a mountain modeled as a con
vex polyhedron, say. a pyramid. Suppose that the truck is required to carry 
material from a fixed location on the surface to several points, say, construc
tion sites. Then, it is reasonable to compute the shortest routes for the truck 
(approximated as a point) more efficiently than can be achieved by repeated 
applications of BOUNDARY FINDPATH for each specified destination.

This is a powerful paradigm of computational geometry known as the locus 
approach and is studied in Overmars[84]. In solving a problem using this 
approach, we are allowed to spend some initial effort (i.e., preprocessing) to 
construct a data structure which will let us answer future requests (i.e., 
queries) quickly. To be effective, this assumes two things. First, the number 
of the query points must be large to validate such an initial effort. Second, the 
data structure must embody succinctly the locus of the required solution and 
must enjoy the existence of a fast search procedure to retrieve it.

We shall now summarize one such data structure suitable for solving BOUN
DARY FINDPATH (locus). The data structure is known as the Voronoi 
diagram and was first introduced to computational geometry by Shamos[101]. 
Let S = {x p • • ■ ,rn } be a subset of R2. For n let

regnz, = {y :d(^ ,y Kd(z, .y ) for all j } 
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be the Voronoi region of point z, . The Voronoi diagram of S , denoted by 
vorS , partitions the plane into card5 = n regions, one for each member of S . 
The (open) Voronoi region of point it consists of all points of 7? 2 closer to z, 
than any other point of S . For l^i ,j^n. letting = {y :d(z, ,y )^d(xy ,y )} 
(the halfspace defined by the perpendicular bisector of z, Zy ), it is seen that 
for i . regnz, = QH13 . Thus, regnz, is a convex polygonal region and 
vorS is equal to the union of the boundaries of all regnz, . For every vertex z 
of vorS there are at least three points z, . z, , ik in S such that
d(z .z, ) = d(z ,z; ) = d(z vEk ). The Voronoi diagram for a set of n points has at 
most 2(n —2) vertices and 3(n —2) edges[73].

The Voronoi diagram of S can be computed in O (n. logn ) time [100] and this 
is optimal with respect to a wide range of computational models[59], Unfor
tunately. practical Voronoi programs which are both fast and reliable are dif
ficult to write mainly due to the special cases in the diagram that are to be 
handled precisely. Among the published algorithms, those by Avis and Bhat- 
tacharya[6j. Lee[64j. and Guibas and Stolfi[42] seem to be more promising for 
practical use. On the other hand, it is possible to construct slower implemen
tations which handle special cases without much effort.

We now summarize how to search Voronoi diagrams in logarithmic time in 
the number of the edges, n . of the diagram, i.e., we cite methods which let 
one find the point z e S such that for a query point y c R 2, d(z ,y ) is 
minimum. The search methods we shall review are more general than search
ing Voronoi diagrams in that they are based on searching a planar subdivi
sion . i.e.. a straight-edge embedding of a planar graph. The underlying prob
lem is generally known as planar point location in computational geometry. 
Let us call a subset of the plane monotone if its intersection with any line 
parallel to the y -axis is a single interval (possibly empty). A subdivision is 
monotone if all its regions are monotone. Mehlorn[73] shows that a simple 
planar subdivision (a subdivision with only triangular faces) can be searched 
in time O (logn ) after spending preprocessing time G (n ) and storage space 
O (n ). He also gives the following property to show that the last two bounds 
apply to general subdivisions also, with a small penalty in preprocessing time:

LEMMA 4.1 If the searching problem for simple planar subdivisions with n 
edges can be solved with search time O (logn ). preprocessing O (n ), and 
space O (n ). then the searching problem for general subdivisions with n 
edges can be solved with the same search time and space but preprocessing 
O (n logn ). If all faces of the generalized subdivision are convex then O (n ) 
preprocessing is sufficient.
Proof . Mehlorn[73], (Lee and Preparata[62] also show that an arbitrary sub
division with n edges can be refined to a monotone subdivision having at 
most 2n edges in O (n logn ) time.) □



47

Now we shall review some planar point location algorithms in the literature 
which either achieve these bounds or come close. Dobkin and Lipton[18] were 
the pioneers to obtain an 0 (logn ) query time but they use 0 (n2) space. 
Preparata[89] modifies their method to prove that O (n logn ) space is suffi
cient. His solution is implementable. In an important paper Lee and 
Preparata[62] give an algorithm which is based on the construction of separat
ing chains. Their algorithm achieves O (n logn ) preprocessing and O (n ) 
space yet has a query time of 0 (log2# ). The constants hidden in these 
expressions are small and make their algorithm practically useful. (Their algo
rithm works for monotone subdivisions only.) Edelsbrunner and Maurer[22] 
give a space-optimal solution which works for general subdivisions (and even 
families of nonoverlapping subdivisions). Their query time is O (log3n ). Lip
ton and Tarjan[68. 69) give a method with O (logn ) query time and O (n ) 
preprocessing and space (and thus optimal in all respects). Although based on 
a brilliant graph separator theorem which has many far-reaching conse
quences, they admit that their method is of only theoretical interest because 
of the serious implementation difficulties. Kirkpatrick[58] gives another 
method with the same bounds. His method builds a hierarchy of subdivisions 
and seems to be implementable. Finally, Edelsbrunner et al[24] give a sub
stantial improvement of the technique of Lee and Preparata and again attain 
the optimal bounds in all three respects. The importance of their method is 
that it seems to admit an efficient implementation along with extensibility to 
subdivisions with curved edges.

Now we are ready to present our algorithm for BOUNDARY FINDPATH 
(locus). In the following we show the partitioning for only a face of P (other 
than Fs ) which we shall denote by Fg . To partition bdP. we apply the fol
lowing algorithm for each face. (Note that no partitioning is necessary for Fs 
due to convexity.)

Algorithm BOUNDARY FINDPATH (locus): Preprocessing
1. Find all simple face visit sequences between Fs and Fg using Fgraph of P . 
2. For each face visit sequence found in step 1. compute the image of s with 
respect to the planar development which starts with face Fg and ends with 
Fs . (Note that we are not required to compute the whole development, but 
just the image point.)
3. Compute the Voronoi diagram of the image points calculated in step 2 
using standard Voronoi programs mentioned above. It is required that with 
each image point (Voronoi center) we store the face visit sequence which is 
used to arrive it.
4. Clip the diagram obtained in step 3 with respect to "window" Fg so as to 
preserve only those parts of it within the polygon Fq . (Any of the standard 
graphics algorithms such as the one due to Sutherland and Hodge[28] can be 
used for clipping.)
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End

Assume that for a given P . the above preprocessing is carried out for all faces 
(except Fs ). Thus, we have a family of planar subdivisions for each face such 
that for each region of a given subdivision we know the ordered sequence of 
faces to be developed to the plane if g specified within that region. More 
specifically, we can apply the following algorithm when we are queried with a 
new g :

Algorithm BOUNDARY FINDPATH (locus): Querying
1. Compute the face Fg holding a given g . If Fg = Fs then the shortest path 
is trivially sg .
2. Using standard planar point location algorithms mentioned above locate g 
inside the planar subdivision belonging to Fg .
3. Since we stored the face development sequence used to arrive this region we 
can now use it to compute the s-to-g shortest path. Note that there may be 
cases where g will be shared by at least two regions and thus there will be at 
least two shortest paths each of which is obtained via a different development 
sequence.
End

Figure 4.1 shows the Voronoi partitioning on a face of a cube using the above 
algorithm. This figure was drawn by SP. It is noted that in figure 4.1(a) the 
given face is partitioned into 4 regions whereas in figure 4.1(b) this number 
becomes 6. This effect was obtained by simply moving the source to another 
location on the source face.

In general, the number of regions a given face Fg is partitioned by this algo
rithm is expected to be small. An informal argument for this is as follows. 
Consider the images of s in the plane of Fg . If the face visit sequence for a 
particular image is long then the image will usually end up in a point farther 
away from Fg compared to another image obtained by a shorter visit 
sequence. Thus, only a small portion of the possible face visit sequences 
between Fs and Fg can render images in the plane close to Fg and contribute 
to the Voronoi diagram on it.

4.2 Partitioning the Free Space around Polyhedra

The inspiration for the work to be described in this section is Franklin’s 
extension of Voronoi diagrams in the plane in the presence of barriers (line 
segments) [29]. Here he generalizes the Voronoi concept by allowing opaque 
barriers that a shortest path must avoid. With this environment, a shortest 
path will always be a polygonal path through the free space bending at the 
endpoints of the barriers. The ordered list of endpoints that a shortest path
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passes through is called its contact list . Franklin’s construction works as fol
lows. Regions are constructed so that every goal point in a region has a shor
test path to the source with identical contact lists. Each region will have an 
associated vertex which is defined as the first vertex on its contact list.
When a new barrier is introduced to the environment, two halflines extending 
from its endpoints are added. These boundaries are called shadow lines and 
are the projections of the endpoints by the associated vertex of the region it is 
in. A second type of boundary is added to separate the two new regions 
created. This will in general be a hyperbola and is called a ridge curve . A 
goal on a ridge curve has two shortest paths to the source. If a boundary 
extends to infinity nothing interesting happens. However, sometimes a boun
dary intersects a barrier or another boundary. In the former case, the boun
dary is cut (i.e., stops at or blocked by the barrier). In the latter case, when 
two boundaries hit each other they join to create a junction .

We now give an example to illustrate Franklin's partitioning. The reader is 
referred to Verrilli [112] who presents a rather complete implementation and 
gives several interesting computer-generated examples.

EXAMPLE In figure 4.2. there are two barriers ab , cd in the plane and s is 
given as shown. In this case the plane is partitioned into five regions. R * 
holds the goals directly reachable (visible) from s . Ra holds the goals which 
cause a shortest path to bend at endpoint a of ab . Rb holds the goals which 
cause a shortest path to bend at b . Rd holds points which give rise to shor
test paths bending at d . Finally. Rac describes shortest paths bending first 
at a , and then at c while going from s to g. It can be easily shown that the 
boundaries between Ra and Rb , and Rd and Rac are hyperbolic portions. All 
other boundaries are made of straight lines. □

A crucial property of the diagram in figure 4.2 (and of any Franklin's parti
tioning in 2-space around barriers) is that a bend point acts as a source point 
for a later region. (For instance, a acts as a source for the points of Rac.) 
Thus the source is continuously "pushed back" and this is the underlying rea
son for all boundaries being either line segments or hyperbolic sections.

We now emulate Franklin’s approach in 3-space where the regions will have 
the following property: all points of a given region are reached from the source 
after bending at the same edges of the obstructions in the same order. We 
shall call this problem FINDPATH Hocus). Our treatment will not be algo
rithmic since we have not yet answered all the questions posed by this prob
lem. In this environment, it is seen that the analogous constructs to those 
outlined above will be associated edge , shadow plane , and ridge surface. A 
contact list will now hold the ordered set of edges instead of endpoints. We 
shall use the terms cut and junction without modification although now they
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Figure 4-2 Franklin's partitioning in 2-space in the presence of 
linear barriers.
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refer to surfaces instead of curves. .

Let a .b .c ( R 3 be noncolinear points. We shall refer to the opaque triangle 
abc by T . Let g be any point outside aff T . We shall start with the follow
ing simple case: partition the space into regions such that if a new gt R" is 
specified, then we can tell if g can directly be reached from s , and if not, the 
edge of T where an s -to-g shortest path bends.

When g is outside the infinite frustum obtained by subtracting the finite 
pyramid described by basis T and apex s from the infinite pyramid described 
similarly, the shortest path is sg itself. Thus, one of the regions. R $ contains 
all points g t R 3 such that sjQT = $. (In other words. R $ is the set of all 
visible points from s .) If g is not in R$ then three possibilities exist. For all 
g c Rbr the shortest path bends at be . For all g t Rca it bends at ca . Finally, 
for all g c Rab it bends at ab . The edges be . ca . and ab are the associated 
edges of regions Rbc , Rca . and Rab . respectively. Figure 4.3 shows these 
regions. Intersections of R $ with these three regions are the shadow planes 
for this example.

Now we shall compute the intersections of the pairs of regions. (These will be 
the ridge surfaces.) For clarity, we take a as the origin of the coordinate sys
tem without loss of generality. We shall compute the intersection of regions 
Rab and Rbr and generalize it to the other two cases. If ge Rab Q7?6r then 
there exists a shortest path to g either via ab or be . Label the bend points 
of this shortest path with ab (resp. be ) by dab (resp. dbr ). These points 
should satisfy:

d(*  -dab } + d(dab -g) = d^ ,dbt ) + d(d6f .g ) (1)

The left (resp. right) hand side of (1) is equal to d(s .gab ) (resp. d(g .gbr )) 
where gab (resp. gbc ) is the point obtained by rotating g about affa& (resp. 
affôc ) until it coincides with affso6 (resp. affsic ) and is in the opposite half
plane compared to s . In the sequel, we shall call any such point obtained by 
rotating a point about an axis an image point. If p is a point in 3-space and 
p' is its image due to rotation by an angle 0 about axis u passing through 
the origin then it is well-known from graphics that:

p' = <p ,u > +(p — <p .u >u )cos0+(u xp )sin0 (2)

Applying (2) for the image of g about affa6 . we obtain:

Sab =a +f uab +(ag- f uab )coso +(u^ xagyma (3)
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Figure 4-3 Partitioning the space in the presence of a solid triangle.
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where a is the dihedral angle between affsat and affgab . uab =ab / d(a ,b ), 
and f = <ag ,uab > After some simplifications in (3), which are given in full 
in Franklin and Aktnan[34], the following expression for gab is obtained:

d-^^ )=d2(a )+d2(û ,g ) + 2(<ag ><a .uab >+d(ag xu^ )d(a xuab )) (4)

To have a geometric interpretation of (4). we expand the scalar and vector 
products and simplify the resulting expression to get:

d2(^ ) = d2(a ) + d2(ag )-2d(a )d(ag )cos(o ,+a2) (5)

Here a A and q2 are the angles <gab and <sab . respectively (figure 4.4). 
Thus (5) is a statement of the cosine theorem on triangle sagab .

Up to this point, we found an equation (i.e., (4)) that gives d2(^ ) in terms 
of known quantities a and uab , and unknown g . The equations for d2(g^ ) 
and d2(g^ ) are found completely analogously with obvious modifications.

To compute the intersections of Rab and Rbr we solve the equation 
d(gab )-d(gbf ) = 0, or equivalently, d2(gcb )-d2(gbc ) = 0. In [34] it is shown 
that the intersection surfaces are in general ternary (in x ,y .z , the coordinates 
of g ) quartics which may degenerate to planes in some cases.

If we want to partition the space behind a solid polygon instead of a triangle 
then we are required to compute all the potential boundaries between the 
pairs of regions. It is obvious that the intersections of the regions with the 
polygon (or the triangle in the previous case) are made of straight edges. In 
fact the subdivison of the polygon by these edges can be found more simply:

LEMMA 4.2 Let P be a convex polygon with vertices tp • • ■ ,vn and s a 
point outside affP . The invisible side of P to s is partitioned into at most n 
convex regions (each completely containing an edge of P ) such that for a goal 
g specified inside one of the convex regions the s -to-g shortest path is via the 
associated edge of this region.
Proof . We give a constructive proof which in fact is based on the technique 
of BOUNDARY FINDPATH (locus) (figure 4.5). Rotate s about affe e2, 
affv2i’3. ’ ' ' until it is coincident to affP and always on the opposite side of 
a particular edge with respect to intP. This is basically a planar polygonal 
schema of the pyramid with basis P and apex s in affP . Denote the n 
images obtained in this way by s 12. s 23. • • • and construct their Voronoi 
diagram. When clipped by window P the diagram partitions P into at most 
n regions which are necessarily convex since P is convex, n
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Figure 4-4 Computation of the images gab and gbc of g .
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Figure J.5 Voronoi partitioning on the back face of 
an opaque polygon.
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The extension of the technique outlined for FINDPATH (locus) to several 
obstacles creates difficult problems. In this case we cannot find a similar pro
perty to that of Franklin’s partitioning mentioned above, i.e.. the regions of 
the partition no more stay as quartics but grow in degree for each new obsta
cle causing new regions. We shall now imagine that for a given s we 
managed to compute a subdivision of the space into n regions bounded either 
by planes or quartic (or higher-order) curves using the above approach. With 
each region we assume the existence of a stored label which is simply equal to 
the contact list for this region. If we are given a new point g , we should first 
locate the region that g is in. and then use the contact list for this region to 
compute the s -to-g shortest path. Since the latter operation can be done 
using OPTIMAL EDGE VISIT we shall concentrate on the former operation.

Let 5 be a family of n planes in R3. Dobkin and Lipton[18] show how to 
represent S in a polynomial amount of space so that whether a given point 
belongs to any of the given planes can be tested in O (logn ) time. If we 
approximate the boundaries of our regions with planes then their algorithm is 
applicable. Chazelle[13] generalizes this for the case where S is a family of 
algebraic varieties. His algorithm is an adaptation of Collins’ quantifier elimi
nation procedure[16]. Let d be a positive constant and let S = {Qp ' ’ ' ,Qn } 
be a set of polynomials of degree at most d in three variables with rational 
coefficients. He considers the problem of preprocessing S so that, for any 
(x ,y ,z )t R 3. the predicate "There exists an t , l^t , such that
Qt (z .y ._ ) = 0" can be evaluated efficiently. This problem (and its generaliza
tion to spaces higher than R 3) is known as spatial point location . If the 
predicate is true then any of the indices i for which Qt (z ,y ,z ) = 0 is 
reported. Otherwise, (z ,y ,z ) is seen to lie in a region over which each Qt 
has a constant sign. Assuming that these regions have associated labels, his 
algorithm retrieves the label corresponding to the region containing (z ,y .z ). 
The algorithm uses O (n^2) preprocessing time (and space) and computes the 
above predicate in O (logn ) time. Although it meets our requirements com
pletely, the possibility of a practical implementation of Chazelle’s method is 
highly questionable.

4.3 Critique of Recent Algorithms in 3-Space

Sharir and Schorr's work[102] is probably the most detailed study on shortest 
paths. They mainly consider the case of BOUNDARY FINDPATH (locus) 
and present an algorithm which works in time O (n ) per query where n is 
the measure of complexity of the polyhedron, say the number of vertices. 
Their algorithm is based on the idea of "ridge" points on the object. A ridge 
point on the polyhedron has the property that there exists at least two shor
test paths to it from the source. It turns out that the set of ridge points is a 
union of line segments and that the union of the vertices and the ridge points 
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is a closed connected set. Defining the union of the latter with the shortest 
paths from the source to every vertex, one partitions the polyhedron boun
dary into disjoint connected regions (called "peels") whose interiors are free of 
vertices or ridge points. The peels can be constructed in O ( n 3logn ) (prepro
cessing) time using complicated techniques whose implementation seems 
extremely difficult. The size of the data structure that is created by the 
preprocessing step is O (n 2).

O'Rourke et al[83] use most of Sharir and Schorr's ideas to extend the prob
lem to a polyhedral surface which is no more supposed to be convex. (How
ever. it should be orientable.) The shortest path that they calculate is only a 
"geodesic", i.e.. it is confined to the surface and thus may not be the true 
shortest path. Their algorithm runs in O (n °) time. Furthermore, it does not 
follow a locus approach: using their algorithm on each new query (goal point) 
would take O (n4) time.

Mitchell and Papadimitriou[75] give an algorithm to solve this last problem in 
a locus setting. (It is noted that they are still computing geodesics, not true 
shortest paths.) Theirs is an O (n 2logn ) time algorithm for subdividing the 
surface of an arbitrary polyhedron (possibly of positive genus) so that the 
length of the shortest path from a given source to any goal on the surface is 
obtainable by simple point location. It has striking similarities to Dijkstra's 
method for shortest paths in graphs. As in our algorithm presented in section 
4.1, point location is achieved in time O (logo ). after which the actual shor
test path is backtracked in time proportional to the number of faces that it 
traverses on the boundary.



5. SP - A WORKBENCH TO COMPUTE SHORTEST PATHS

This chapter has two sections. In section 5.1 we give an overview of a work
bench (called SP) to compute shortest paths. Section 5.2 offers a review of the 
kind of shortest path computations that can be done with SP. Appendix 
explains SP in greater detail. This chapter and appendix are based on [31].

5 1 Overview

SP is a family of programs written in Franz Lisp[27] and Macsyma command 
language[40] to experiment with shortest paths in 3-space. To be able to use 
SP effectively a user should have a good knowledge of Lisp and Macsyma and 
is referred to the above manuals. Appendix (a) describes how to use SP. The 
most important parts of SP consist of Franz functions. These are reviewed in 
detail in appendix (b). Macsyma parts of SP are given in appendix (c).
There are some Fortran parts of SP which implement graphical output[12]. 
(Appendix (d) gives a summary.)

SP was designed with the following philosophy. Let W be a workspace (e.g., 
a bounding box) which includes a set of polyhedral obstacles. SP is given a 
geometric description of the members of W and from that point on should be 
able to compute shortest paths inside IF between given pairs of points using 
the algorithms presented in chapters 2 and 3. and the preprocessing strategies 
given in chapter 4. It is imperative that SP has some interactive graphics 
facilities and can supply the user with views of W so that she can have an 
intuitive feeling about the correctness of a particular computation (but see 
appendix (d)). In that sense. SP resembles to Verrilli’s system[112]: it pro
vides the user with facilities to carry out needed computations, but at the 
same time needs her intervention here and there. Following a rapid prototyp
ing approach, we either simply excluded those computations which we do not 
currently know how to perform effectively, or reformulated them to be con
trolled by user advice at certain points.

Currently, one can only work with a single convex polyhedron using the Franz 
part of SP. There are facilities to implement BOUNDARY FINDPATH, 
EXTERIOR FINDPATH, and BOUNDARY FINDPATH (locus). It is also 
possible to implement an approximate FINDPATH algorithm for a workspace 
with several convex polyhedra as outlined in section 3.1 and depicted in fig
ures 3.1 and 3.2. Using Macsyma parts of SP it is possible to compute shor
test paths in a general workspace with many objects (which may be noncon- 
vex) although this is not fully automated in the light of the combinatorial 
explosion that our FINDPATH algorithm has. (Nevertheless, if the user speci
fies the list of edges that the shortest path must visit, then the problem is 
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solved without much effort.) It is also possible (using Macsyma) to work on 
FINDPATH (locus) although this is not automated yet. (In [34] all computa
tions were done in this way.)

5.2 Some Interesting Scenarios

The prospective user is expected to know the details of SP. Fortunately, the 
interactive nature of Lisp comes into play whenever one wants to inspect 
and/or debug the existing data structures. Working with SP is incremental in 
the sense that one computes things, stops and studies them (by plotting if 
necessary), and continues. Thus it is best to visualize SP as a sophisticated 
calculator tailored for shortest path computations.

SP uses simple data structures which are easy to implement and debug. Since 
it is built on Lisp, the list data structure is the most common in SP with a 
few exceptions where arrays are used. There are several global variables 
which exist throughout a session with SP. These will be explained below. 
However, since Lisp is interactive, a better way to learn about the following 
(and about SP in general) is to run SP on an example object and to study the 
created data structures.

We first describe how to solve BOUNDARY FINDPATH. Throughout this 
section, the reader is referred to appendix (b) to understand the details of the 
functions that will be mentioned. We denote functions by lower-case italics 
and (global) parameters by (upper-case) italics enclosed within angular brack
ets.

To read a polyhedron into SP. rpoly is used. A polyhedron file consists of 
three parts: blurb, vertices, and faces. (The blurb part is only for documenta
tion purposes.) Below the format of a simple polyhedron data file 
(tetra.DAT ) is shown:

(blurb 2)
(1 (tetrahedron))
(2 (created by akmanv august 15 1984)) 
(vertices 4)
(1 (0.0000000 0.0000000 0.0000000))
(2 (0.0000000 1.0000000 0.0000000)) 
(3 (0.8660254 0.5000000 0.0000000)) 
(4 (0.2886102 0.5000000 0.8165195)) 
(faces 4)
(1 (1 2 3))
(2 (2 1 4))
(3 (3 2 4))



62

(4 (1 3 4))

As mentioned before, this is the straightforward boundary representation for a 
tetrahedron. One can check whether an object is topologically and geometri
cally consistent by using the function pinteg in SP. Similarly, pinfo gives 
polyhedral statistics about an object. Rpoly creates the global data struc
tures < VER TICES >, < FA CES >, < NV ER TICES >, and < NF A CES >, the 
last two items being the length of the first two lists. An important property 
of rpoly is that it builds the Fgraph for the object as soon as the object is 
read into SP and stores it in < OMEGA > (The function cromega does this 
at any time for the current object.) Once the polyhedron is available, to solve 
BOUNDARY FINDPATH we specify the faces Fs and Fg and using yen 
compute as many simple face visit sequences as required between these nodes 
of < OMEGA >. As noted in section 3.1. the number of such sequences cannot 
be efficiently computed a priori: hence yen must be run until it starts gen
erating null sequences at which point we know that we obtained all simple 
sequences. Since for a large (i.e., with many faces) object the number of gen
erated simple sequences may be large, one may want to try only a small por
tion of the potential sequences. Yen returns the sequences in list 
<KPATHS > It is possible to use the function cart which computes the 
number of simple walks between all pairs of nodes of a graph and returns the 
result in matrix <S >. In this way we know beforehand how many sequences 
we can get between any two given nodes of < OMEGA > without ever run
ning yen .

Once we have the simple face visit sequences, we can try them one by one 
using alex . This function requires the positions of the source and the goal on 
faces Fs and F and works for a single sequence. It creates a planar develop
ment in < UNFOLD > and computes the source-to-goal distance <SRCTO- 
GOL > and the images of them in the xy -plane, i.e.. <PLNSRC > and 
<PLNGOL > It should be noted that all planar developments are created in 
the xy -plane. Ufinteg is a function to check whether a planar development in 
< UNFOLD > is consistent, i.e., all polygons of it have z -coordinates very 
close to 0. A face visit sequence given to alex is stored in <SIGMA > Note 
that alex does not care whether a planar development is legal or not. One can 
run wunfold after running alex to create a plot file which may be drawn using 
Fortran plot utility drawunf. Figure 3.5 shows some planar developments 
obtained in this way.

One can do the above computation automatically via allgoals which will com
pute the images of the goal for a requested number of simple face visit 
sequences and output only those that are legal. In this case, the global 
parameter <MINPATH > gives the shortest paths’ bend points. <MIN
SIGMA > is the face visit sequence that gave rise to <MINPATH > whereas
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<MINSTOG > holds the length of the shortest path.

If one wants to see a computed path on the object along with the object itself 
in perspective, the function prettypit is used. This writes a plot file which can 
be drawn using the utility drawpp . Some examples are given in figures 5.1 
and 5.2. It is noted that the function foldbak takes a planar development 
which is given in < UNFOLD > and maps it into 3-space to obtain the bend 
points of the legal path connecting the source and the goal in <BENDPTS > 
Prettypit draws this path on the boundary of the object.

We now describe how to deal with EXTERIOR FINDPATH, i.e., when the 
source and the goal are outside the current object. To compute the silhouette 
edges of a convex polyhedron. SP first creates <EDGES > and <NEDGES > 
using the function getedges . (Note that the edges are implicit in the boun
dary representation.) Then fassil finds the silhouette edges with respect to a 
given viewpoint (source or goal) and stores them in <SILE >. < CCWSILE > 
has the same information in counterclockwise order when viewed from the 
viewpoint. Fassil also creates < VISE> and < VIS F > which respectively 
hold the visible edges and the visible faces from this point. The latter compu
tations may be individually carried out by the functions visibled and visiblfc. 
The major function which implements EXTERIOR FINDPATH is pyrcons . 
This takes a polyhedron and two points outside it, and writes a new 
polyhedron which now has the source-to-goal shortest path necessarily on its 
boundary. Pyrcons uses the silhouette and the visibility functions mentioned 
above. The new polyhedron file will then be read and a BOUNDARY 
FINDPATH computation can proceed as formulated above. Figure 5.3 shows 
an example object created in this way from a cube.

If there are several convex polyhedra inside workspace W . the function 
Iseghedra can be used to compute an approximate path as depicted in figure 
3.1. Lseghedra finds the intersections of the given polyhedra with the 
source-to-goal line segment and returns a list of point pairs for each 
polyhedron intersecting the segment. Once these pairs are obtained, a 
BOUNDARY FINDPATH computation as described above can be done for 
each pair and its associated polyhedron. SP does not currently know how to 
further optimize a path obtained in this manner.

We now describe how to do the face partitioning as required by BOUNDARY 
FINDPATH (locus) of section 4.1. Naivor is a simple Voronoi program 
which computes the Voronoi polygons for a set of points in the xy -plane. 
Vorin writes the images of a source point for a given number of development 
sequences and specified source and goal faces. These images can then be pro
cessed by naivor to obtain the Voronoi partitioning on the goal face. Since 
the diagram is not finite, a clipping routine called shclip is used by naivor to
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clip it against a rectangular window. Currently, there does not exist a planar 
point location routine in SP to compute the region of the clipped diagram for 
a specified new goal point. (This is not essential and can be incorporated 
easily.) If one uses the function pltvor after running vorin , the Voronoi 
polygons are written to a plot file which can be drawn using drawvor utility. 
Figure 5.4 was generated in this manner.

Finally, we mention some lower level functions that may be used at any point 
during an interaction with SP. Dijk computes the shortest paths in a graph. 
Faceqn gives the face equation of a given face of the current object. Diang 
returns the dihedral angle between two faces. Centroid returns the centroid 
of a given face and is useful when one is trying to find a point inside a face. 
Conversely, inside checks if a given point is inside a given face. The func
tions vadd . rdiff, vtimes . vquotient implement the corresponding 3
dimensional vector functions. Cross , dot. magnitude and distance are some 
other essential functions to work with vectors. Lsegpin computes the inter
section of a line segment with a plane whereas plseg2 does the same thing for 
two planar line segments. Facesof computes a pair of faces which share a 
given edge. Facerot (resp. objrot ) rotate a face (resp. the whole object) 
whereas facexlat (resp. objxlat ) translate a face (resp. the whole object). 
Using these it is possible to create derivative objects from a given object and 
to generate new polyhedral data files. The function wpoly takes an object 
currently in the system and writes it to a file in the format required by rpoly. 
A rather complete matrix package incorporating madd, msub . mexpo . mmul. 
mtpose . etc. also exists.

The reader is advised to study appendix part (b) to see the other functions 
that are available in SP and how to use them. It must be noted that we 
regard SP only as a first approximation to a larger and more general software 
system which will act as a "Geometer's Workbench." This will entail the 
integration of additional geometric know-how from classical and computa
tional geometry along with algorithm/data structure animation techniques 
and better graphics for visualizing complex geometric situations. It is thought 
that such a system may broaden the way geometry is done in the style 
Macsyma accomplished for algebra.
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6. CONCLUSION

This final chapter has two sections. In section 6.1 we summarize the contri
butions of this thesis. In section 6.2 we offer directions for future work and 
cite various open problems.

6.1 Results

As expected in a work of this sort, we now summarize the contributions of 
this thesis:

• We have shown that there is an algebraic flavor inherent in 
FINDPATH. The shortest unobstructed path connecting the 
source and the goal points possibly bends at some edges of the 
given obstacles while subtending equal entry and exit angles. The 
general instance of FINDPATH can then be solved using purely 
algebraic methods such as elimination. We then went on to 
demonstrate the use of the nonlinear system solvers (of a numeric 
nature) in solving this problem. In particular, Newton-Raphson 
and optimization methods were found to be effective in solving 
OPTIMAL LINE VISIT, a major subproblem of FINDPATH.

• We have given two original algorithms to solve FINDPATH 
when the source and the goal are located in a workspace which has 
a single convex polyhedron. In the first case (BOL’NDARY 
FINDPATH) the given points are on the polyhedron's surface. In 
the second case (EXTERIOR FINDPATH) they are outside the 
polyhedron. These algorithms use planar developments and 
polyhedral visibility.

t We have described the advantage of Voronoi diagrams in two 
locus cases of FINDPATH. In one case, there is a single convex 
polyhedron and only the source is given. We then partition the 
boundary of this polyhedron so that future queries with new goals 

" on it can be answered quickly. In doing so. we make use of stan
dard planar point location algorithms for a straight-edge planar 
subdivision for querying. In the other case, we hint the possibility 
of a space partitioning scheme to solve the same problem for many 
polyhedra (albeit very inefficiently for the time being). This parti
tions the free space around polyhedra into regions bounded by 
high-order surfaces so that the shortest paths for all goals in a 
given region follow identical sequence of edges of the given polyhe
dra. This method makes use of a recent spatial point location 
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algorithm for arbitrary algebraic varieties.

• We have completed the preliminary version of a workbench to 
compute shortest paths. The workbench comprises a family of Lisp 
and Macsyma programs which implement the algorithms and the 
techniques mentioned above, lets the user to run these programs 
interactively, and renders graphical output. To the best of our 
knowledge the shortest path pictures computed by this workbench 
are the first ones in 3-space.

6.2 Future Research and Open Problems

We obviously answered only a small section of the problems posed by 
FINDPATH in this thesis. There are many interesting problems deserving 
further study. Below these are listed in no particular order. (An asterisk iden
tifies an especially difficult problem.)

• FINDPATH ( ' ): Is there an algorithm whose execution time is 
provably lower than doubly exponential in workspace complexity 
(e.g.. the total number of vertices) to solve FINDPATH? What 
are the trade-offs if one is willing to solve the problem only 
approximately [86] ?

• OPTIMAL LINE (EDGE) VISIT ():  Unless there are break
through achievements in solving GEOMETRIC TRAVELING 
SALESMAN, this problem is intractable if one relaxes the ordered 
visit requirement. However, sufficiently fast numerical methods 
may be designed to solve the ordered version which also seems to 
be intractable with purely algebraic methods.

*

e BOUNDARY FINDPATH: Regarding the shortest paths on a 
convex polyhedron with n vertices, is O ( n 4ogn ) a lower prepro
cessing bound[75] for this problem?

e BOUNDARY FINDPATH (locus): How does the Voronoi 
diagram on the boundary of a convex polyhedron change when the 
source moves? Theoretically, this would amount to parametrizing 
the diagram's edges with respect to the source so that we can 
guess how they will change metrically while the source moves on 
the boundary. Note however that the change is by no means con
tinuous. i.e., there will be certain "jump" points at which the 
diagram on a given face of the polyhedron will gain a new topol
ogy. Accounting for this effect seems difficult. On the other hand. 
Franklin suggested that one can make movies (by animating our 
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algorithm presented in section 4.1 for different sources) showing 
the effect of different locations of the source to study this problem 
experimentally. We think that this is an exciting idea and is 
implementable within our workbench.

• FINDPATH (locus): We think that the first thing to do to 
advance our knowledge about this problem is to build an experi
mental system. This must be similar to Verrilli's program[112] in 
concept, however with more sophisticated data structures and 
operations. A major problem which does not exist in Verrilli's 2
dimensional system is to find effective ways of communicating 3
dimensional visual information about surfaces.

e Algebraic surfaces (*):  We are particularly interested in finding 
the intersection of two arbitrary surfaces efficiently and reliably. 
The latter requirement necessarily dictates a symbolic (rather than 
numeric) approach to the problem since there may be all kinds of 
degeneracies. Another relevant problem is to enumerate the 
regions of 3-space separated by n surfaces which may intersect 
each other in all conceivable ways(7). Although we believe that 
there must exist deep results on the intersections of algebraic 
varieties in the area of algebraic geometry, the introduction of 
them to the realm of computational geometry has begun only 
recently [5].

• FINDPATH for a single nonconvex polyhedron ( ■ ): Efficient 
algorithms for this problem must not exist in the light of the fol
lowing informal argument. Assume that we can find shortest 
paths in the presence of a single nonconvex polyhedron efficiently. 
We shall show that then we can solve the general version with 
many obstacles efficiently too. To see this, imagine that we tie the 
given polyhedra together with thin "connectors" to obtain one big 
nonconvex polyhedron. A connector may be considered as a thin 
prism which runs between two polyhedra while avoiding others

• Polyhedra with higher genus and curved boundary: Given a 
boundary description for a polyhedron, one is first required to 
determine where the holes are. As long as the source and/or the 
goal is not inside it, a bounded cavity (a single-ended hole as in 
figure 6.1) cannot contribute to the shortest path computation and 
thus can be filled. Curved objects make things extremely difficult, 
e.g., there may be an innumerable number of shortest paths. 
Shortest paths on objects like Moebius bands and Klein bottles are 
also confusing.
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(figure 6.2). (This is similar to stabbing lines as studied by 
Edelsbrunner et al[23] or finding transversals of simple objects as 
introduced by Edelsbrunner[25].) Any answer for this object is an 
answer for our initial workspace with many obstacles since the 
probability that a shortest path intersects a connector can be 
made sufficiently small by reducing the connector thickness.

• Good (rather than optimal) paths: Clearly, no real task-level 
robot system would like to compute the shortest paths since the 
latter by definition tend to touch the obstacles. On the other 
hand, finding good paths which avoid the obstacles comfortably is 
not a well-defined problem (at least in computational geometry) 
since the notion of "good" is necessarily subjective[57]. For exam
ple. if there exists a torus-like obstacle in the workspace, in general 
one would require that no robot path pass through its hole. In 
this case none of the inner paths (no matter how comfortably it 
avoids the torus) would be good.
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Figure 6.1 A bounded cavity which can be safely filled.
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constructing a big polyhedron.
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APPENDIX
INTERNALS AND AVAILABLE FUNCTIONS OF SP

This appendix has four parts. In part (a) we describe how to use SP. Parts 
(b). (c). and (d) document the available Franz Lisp. Macsyma, and plot func
tions in SP, respectively.

(a) How to Use it

SP source code resides in three subdirectories under user akmanv in CSLAB: 
phd . maxim , and mts . These respectively hold the Franz Lisp, Macsyma, 
and plot (Fortran) portions of SP. In this part we shall only describe how to 
use the Franz Lisp portion which comprises the bulk of SP. The remaining 
portions will be documented in parts (c) and (d).

To run the Franz part of SP, a user should read the file doit.1 into Lisp thus: 
(load 'doit.I ). Doit does the rest of the work and loads all source files. From 
this point on the user types SP function names along with their required 
parameters into Lisp and receives responses. If graphical output is required 
then the plot utilities in part (d) should be run on the results written into 
plot files.

In addition to doit.I there are 25 files each holding one or more functions: 
alex.l. allgoals.1 . cart.I, consint.l. cromega.l. dijk.l. faced. fassil.l, foldbak.l, 
georn.l , Iseghedra.l . maipac.l , naivor.l . par ms.I . pltvor.l . prettyplt.l. 
pyrcons.l . recons.I , rpoly.l . shclip.l . util.I . visi.l . vorin.l . wunfold.l. yen.I . 
The file parms.l holds some important constants whereas util.I has a few util
ities. The rest of the files comprise technical code. It should be noted that the 
contents of the files reflect the historical development of SP and do not share 
a common underlying theme. In addition to these, there are several 
polyhedral data files such as cube.DAT. dodeca.DAT . etc. which may be 
used for test purposes. (Section 5.2 shows a sample data file.)

In part (b) we summarize each Franz function (there are about 110 of them 
comprising approximately 3000 lines of moderately commented code) in SP. 
The name appearing in parentheses after each function is the source file name 
that contains it. As mentioned in section 5.2. (global) variables are denoted 
in (upper-case) italics inside angular brackets.

We prefer to work with Lisp in the interpreted mode although this makes 
things considerably slower. It is possible (although never tried) to compile SP 
functions under Lisp. In general, almost all of our Franz functions (with the 
exception of pltvor . a Voronoi program, and vedges and vf aces , polyhedral 
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edge and face visibility detectors) in SP are fast enough to be executed while 
the user is interacting with the system. The main reason for the slowness 
(varying from few minutes to 15 minutes for moderate size objects) of the 
mentioned programs originate from their naive (but simple to program) algo
rithmic structure. These are certainly not the most important parts of SP in 
terms of novelty and we think that due to the extensible design of SP, faster 
algorithms can always be incorporated if required.

(b) Franz Lisp Functions

The following functions run under Franz Lisp (opus 38.79). The reader is 
referred to Franz Lisp Manual for more information. (CAVEAT: SP regards 
any file whose name starts with "foo" or "quux" as temporary and at any 
time may overwrite it.)

• function: alex (alex.l )
parameters: <outf> <fvs> <g> <g>
Given a face visit sequence <fvs> and the 3-dimensional source (<s >) and 
goal (<g >) points on the first and the last faces of it. this creates an xy - 
plane planar development, in < UNFOLD > and writes it into file <outf> if 
<outf> is nonnil. < UNFOLD > is a list which holds the vertex coordinates of 
the developed faces for each face specified by </us>. It is assumed that the 
faces in <fvs> are pairwise adjacent in left-to-right order. Alex creates 
<PLNSRC > and < PLNGOL > which are the images of <s > and <g > in 
xy -plane. <Fvs> is saved in <SIGMA>. Also created is <SRCTOGOL > 
which is the distance between them in the plane.

e function: comedge (alex.l ) 
parameters: <fl> </2>
Given two adjacent faces <fl> and <f2> this returns the common edge 
between them. The common edge is a pair of vertex numbers.

• function: xsect (alex.l ) 
parameters: < ul 1> < vl 2> 
Given vertex lists <vl 1> and <vl 2> for two faces this returns a pair of ver
tex numbers (in the order they occur in the face of <vl 2>) common to both.

• function: fndSpts (alex.l) 
parameters: <a> <b > <c > 
Returns a list of two 3-dimensional points (both with zero z -coordinate) that 
are guaranteed to be on line ax +by +c =0 and different.

• function: consnet (alex.l ) 
parameters: </> < vl>
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Returns a list consisting of the 3-dimensional coordinates of the vertices speci
fied in <vl > (vertex numbers for face </> / The first element of the returned 
list is </>.

• function: allgoals (allgoals.1 ) 
parameters: <outf> <fs> <fg> <ndeve> <s> <g> 
Given the 3-dimensional source (<s >) and goal (<g>) points which are on 
faces <fs> and <fg> respectively, this writes the images of <g > into file 
<outf> for the first <ndeve > face visit sequences in < OMEGA > between 
<fs> and <fg> if <outf> is nonnil. Only the images that correspond to legal 
developments are written. With each image, all goals writes the specific 
< UNFOLD > and the 3-dimensional path (< BENDPTS > ) if the develop
ment is legal. The face visit sequence which gives the shortest path is <MIN
SIGMA > whereas the path itself is <MINPATH > (with length <MIN- 
STOG >).

• function: cntnnil (allgoals.I ) 
parameter: <1 >
Returns the number of nonnil items in list </ >

• function: cart (cart.I ) 
parameter: <gr >
Given a graph <gr > this creates a matrix <S > such that the (i .j )-th entry 
of <S > is equal to the number of simple walks between nodes i and j . i j. 
The diagonal entries of <5 > give the number of cycles of any length contain
ing node i. Cart uses specialized functions ordright . ordbottom . nones , and 
nnzrows (all in cart.I ) whose descriptions are omitted.

• function: pint eg (consint.l )
parameter: <inf>
Returns t if the current polyhedron is consistent. This assumes that
<FACES >. < VERTICES >. <EDGES >. < OMEGA >. <NFACES>.
<NVERTICES >, and <NEDGES > are available. A consistent polyhedron 
is defined as one which satisfies the following:

Euler's formula: NF ACES +NVER TICES = NEDGES +2.
Degree of each node in < OMEGA > is at least 3.
Each face has at least 3 vertices.
Each edge belongs to exactly 2 faces.
The vertices of a face are in the same plane within an error of c .
All vertices are different.

If file <inf> is nonnil then the polyhedron is read from it. Pinteg does not 
immediately return after it detects an error but checks all of the above
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properties.

• function: cirmember (consint.l ) 
parameters: <pe > < vl >
Returns t if the elements of <pe > (a pair of edge numbers) occur in <vl > (a 
list of vertex numbers) in circular order. (Two items a and b are in circular 
order in list I if b immediately follows a in I with wrap around allowed.)

• function: ufinteg (consint.l)
parameter: <unf>
Returns t if the planar development in <unf> is consistent (i.e., z -coordinates 
of all developed vertices are in the f -neighborhood of 0). Normally. <unf> 
will be equal to < UNFOLD > Ufinteg will not stop in a single error; it will 
flag all of them.

• function: cromega (cromega.l ) 
parameters: -
This creates <OMEGA > assuming that <FACES > and < VERTICES > 
already exist. < OMEGA > is a list which shows for each face the list of all 
other faces that are adjacent to it.

• function: pxsect 2 (cromega.l )
parameters: </1> </ 2>
Returns t if lists </ 1> and <1 2> have exactly two elements in common.

• function: pinfo (cromega.l)
parameters: <inf> <outf>
This prints useful information about a polyhedron. If file <inf> is nil then 
the current object is used. If file <outf> is nil then the information is written 
to the terminal and consists of the following:

First <BLURB > line for identification purposes. 
< N VER TICES >.
< NF A CES >.
Number of arcs in < OMEGA >
Minimum degree of a node in < OMEGA > 
Maximum degree of a node in < OMEGA > 
Minimum number of vertices in a face.
Maximum number of vertices in a face.
Bounding box extents in r . y . and z directions.

• function: dijk (dijk.l )
parameters: </s> <fg>
This finds the shortest walk(s) between the nodes <fs> and <fg> in
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< OMEGA > and returns them in <SPATHS > It also computes 
<LSPATHS > and <NSPATHS > which are the length and the number of 
the shortest walks, respectively. Dijk uses specialized functions getparsps 
and getalisps (both in dijk.l ) whose descriptions are omitted.

• function: padj (dijk.l ) 
parameters: <nl> <n 2> 
Returns nonnil if nodes <n 1> and <n 2> are adjacent in <OMEGA >

• function: faceqn (faced) 
parameter: </>
Returns a list consisting of the parameters a . b . c . and d in the face equa
tion ar +by + cz +d =0 of face <f>. The normal of the face points outward.

e function: diang (faced)
parameters: <fl> <f2>
Returns the dihedral angle between faces <fl> and <f2> in radians. If <f2> 
is one of ' xy . 'yz . ' xz then diang gives the dihedral angle between the plane 
holding <fl> and the respective plane.

• function: getedges (faced) 
parameters: -
Creates <EDGES > and <NEDGES > assuming that <FACES > and 
<NFACES > are available. <EDGES > consists of vertex pairs which define 
an edge.

• function: facesof (faced) 
parameter: <e >
Returns a pair of faces which share edge <e > (a pair of vertices).

• function: fassil (fas slid) 
parameter: <p >
Creates the silhouette edges of the current polyhedron from viewpoint <p > 
(assumed to be outside) in <SILE >. Also created are <CCWSILE >, 
< VISE >, and < VIS F >. < CCWSILE > is the same as < SILE > but its 
edges are such that they follow a counterclockwise order when viewed from 
<p >. < VISE > and < VISE > hold the visible edges and the visible faces 
from <p>. respectively.

• function: leile (fassild) 
parameters: </ 1> </ 2> 
Returns t if pair <l 1> is lexically less or equal to pair </ 2>. The pairs hold 
integer elements.
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• function: elimdup (fassil.l) 
parameter: <1 > 
Eliminates all occurrences of duplicate members from a sorted list <1 > and 
returns the result.

e function: elimonedup (fassil.l)
parameter: <1>
Eliminates all but one of the duplicate members from a sorted list <l > and 
returns the result.

• function: visiblfc (fassil.l) 
parameters: <f> <p> 
Returns t if face <f> is visible from viewpoint <p>. Due to convexity, </> 
is visible if any of its interior points (specifically its centroid) is visible from 
<p >. However, to prevent numerical problems, visiblfc tests three interior 
points and does a majority voting.

• function: visibled (fassil.l) 
parameters: < e > <p > 
Returns t if edge < e > (a pair of vertex numbers) is visible from viewpoint 
<p>. Due to convexity. < e > is visible if any of its interior points (specifi
cally its midpoint) is visible from <p >. However, to prevent numerical prob
lems, visibled tests three interior points and does a majority voting.

• function: inside (fassil.l)
parameters: <p> </>
Returns t if a 3-dimensional point <p > is inside or on the boundary of face
< />. Inside first maps them into the xy -plane and carries out all the compu
tation there.

• function: majority (fassil.l) 
parameter: <l >
If the majority of the members of < / > are t then return t (breaking ties in 
favor of nil).

• function: foldbak (foldbak.l)
parameters: <outf> <s> <g> <plns> <plng>
If the planar development in < UNFOLD > is legal then this computes the list 
of bend points (<BENDPTS >) of the path connecting the images <plns > 
and <plng > of the source and the goal points (<s > and <g >). If file 
<outf> is nonnil then the result is written to <outf>.

• function: discord (foldbak.l)
parameters: <p 1> <p 2> <d >
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Re urns the coordinates of a point on the edge connecting vertex <p 1> to 
vertex <p 2> and <d > units away from <p 1>. Using discord a point of 
< UNFOLD > can be mapped into the boundary of a polyhedron, i.e.. into 3- 
space.

• function: maptounf (foldbak.l)
parameters: </> </>
Assuming that </ > is a pair of vertices and </> is the face which holds them 
in this order, this returns a list of two points from < UNFOLD > such that 
the first point corresponds to the first vertex and the second point 
corresponds to the second vertex.

• functions: vadd vdiff vtimes vquotient (geom.l) 
parameters: < r 1> <v2>
Return respectively the element-by-element addition, subtraction, multiplica
tion. and division of 3-dimensional vectors < v 1> and < t 2>.

• functions: cross dot (geom.l )
parameters: <rl> < r 2>
Return respectively the vector and scalar product of 3-dimensional vectors 
< r 1> and < r 2>.

• function: magnitude (geom.l ) 
parameter: < v >
Returns the length of 3-dimensional vector < ; >

• function: distance (geom.l ) 
parameters: < v 1> <v2> 
Returns the distance between 3-dimensional points < r 1> and <v2>.

• functions: specrot genrot (geom.l )
parameters: <p> <a > < r >
Return the image of a 3-dimensional point <p > after rotation about axis
<a > by <r > radians. Specrot works only with an axis passing through the 
origin. Genrot can handle arbitrary axes (pairs of 3-dimensional points).

• function: facerot (geom.l)
parameters: </> <a> <r>
Returns a new list of vertex coordinates (z and y values only) for face </> 
after rotation about arbitrary axis <a > by <r > radians.

• function: objrot (geom.l ) 
parameters: <a > <r > 
Returns a new list of vertex coordinates of the current object after rotation 
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about arbitrary axis <a > by <r > radians.

• function: facexlat (geom.l)
parameters: </> < v>
Returns a new list of vertex coordinates (z and y values only) for face </> 
after a translation by vector < v >.

• function: objxlat ( geom.l ) 
parameter: <v >
Returns a new list of vertex coordinates which correspond to a translation of 
the current object by vector < r >

• function: lineqn (geom.l ) 
parameter: <vp >
Returns the parameters a . b . c in the equation ax 4-by +c =0 of the line 
passing through two points specified in <vp >. (The points are in the xy- 
plane within c.)

e function: almost 0 (geom.l ) 
parameter: <x >
Returns t if <x > is in the ( -neighborhood of 0.

• function: centroid (geom.l ) 
parameter: </>
Returns the center of mass of face </> of the current polyhedron.

• function: plugpt (geom.l ) 
parameters: <p > <eqn > 
Substitutes a 3-dimensional point <p > into face equation <eqn > and returns 
the result. <Eqn > consists of the parameters in the equation 
ax +by +cz +d =0.

e function: Isegpln (geom.l ) 
parameters: <l > <eqn > 
Returns the intersection point of 3-dimensional line segment <l > (a pair of 
points) and the plane with equation <eqn > This requires that <l > and the 
plane intersect.

e function: plseg 2 (geom.l ) 
parameters: <1 1> </ 2> 
Returns t if line segments <l 1> and <1 2> (point pairs) intersect. The seg
ments are given in the xy -plane.

e function: triarea (geom.l )
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parameter: <tri >
Returns the signed area of triangle <tri > (a list of three vertices) which is in 
the xy -plane. The area is positive if the vertices are in counterclockwise 
order.

• function: Iseghedra (lseghedra.1 ) 
parameters: <p > <s > <g >
Let <p > be a list of file names each holding a convex polyhedron. This 
intersects the source-to-goal segment sg with each polyhedron and returns a 
list of lists which are of the form (obj x l r 2) where 11 and x 2 are the inter
section points of sg with the object in file obj. Intersections along a vertex 
or an edge are not counted as proper.

• function: makadj [matpac.l) 
parameters: < m > <gr >
Makes an adjacency matrix <m > from a graph <gr > The format of <gr > 
is equivalent to < OMEGA >. In Cm > the (/ .j )-th entry is 1 if node i is 
adjacent to node j in <gr >. Other entries (including the diagonal) are zero.

• function: mmul (matpac.l )
parameters: C m 1> Cm 2> Cm 3>
Multiplies integer matrices Cm 1> and cm 2> to obtain Cm 3>.

• function: mtpose (matpac.l ) 
parameters: C m 1> C m 2> 
Transposes integer matrix Cm 1> to obtain Cm 2>.

• function: mzero [matpac.l ) 
parameter: Cm >
Returns t if all elements of integer matrix C m > are zero.

• function: mgrind (matpac.l )
parameters: C m> c outf>
Pretty-prints matrix Cm > on the terminal or into file Coutf> if Coutf> is 
nonnil.

• functions: madd msub mdot [matpac.l ) 
parameters: cm 1> cm 2>
Respectively add. subtract, and multiply integer matrices Cm 1> and Cm 2> 
element-by-element and return the result in Cm 1>.

• function: mident (matpac.l )
parameters: C m 1> C m 2>
Creates a matrix Cm 1> and copies integer matrix Cm 2> to it.
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• function: mmirror (matpac.l ) 
parameter: Cm >
Returns t if integer matrix Cm > is symmetric.

• function: mexpo (matpac.l ) 
parameters: C n > c m 1> C m 2> 
Raises integer matrix Cm 1> to power Cn > and returns the result, in Cm 2>.

• function: naivor (naivor.l ) 
parameters: C inf> <outf> C ext> 
Writes into file C outf> the Voronoi polygons of the points specified in file 
C inf> after clipping them against the window C ext > This uses the special
ized functions vread and vwrite (both in naivor.l and omitted here) to read 
the points and to write the polygons, respectively. i.J> holds the xy coor
dinates the Voronoi points (centers), one per line. The first line of.it, is the 
number of points, c Outf> holds the copy of <inf> plus the Voronoi polygons 
for each point. If cext > is nonnil then it must be equal to the list (%xmin 
%xmax ^ymin %yrnax ) meaning everything will be clipped against a window 
with the above coordinates. (Default C ext > is equal to (-100.0 100.0 -100.0 
100.0).) Naivor creates the global variables c VPTS > and <NVPTS > which 
respectively hold the Voronoi points and their count. Similarly, CLVOR > 
holds the Voronoi polygons which are in counterclockwise order.

• function: bisect (naivor.l ) 
parameters: <p 1> <p2> 
Computes the line bisecting the line segment connecting points <p 1> and 
<p2> (both in xy -plane) and returns a list (m b ) where m is its slope and 
b is its y -intercept. (If m = oc then b = x-intercept.)

• function: isinside (naivor.l ) 
parameter: <p >
Returns t if point <p > in xy -plane is inside the window boundary defined by 
%xmin . %xmax , %ymin . %ymax (cf. naivor ).

• function: cutbigw (naivor.l ) 
parameter: <eqn >
Returns the intersection points of a line in xy -plane with equation < eqn > 
with the "big" window boundary defined by 2%xmin . 2^ xmax, 2%ymin , 
2%ymax (cf. naivor ). There are always 2 intersections.

• function: makclbd (naivor.l ) 
parameters: < I > <eqn > <p > 
Returns a big clip window to clip a Voronoi polygon against. It is assumed 
that I is a pair of points which are in counterclockwise order when viewed 
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from point <p >. <Eqn > is the equation of the line passing through <l >.

• function: pltvor (pltvor.l ) 
parameters: <inf> <outf> 
Let <inf> be the output of vorin . This will read it and prepare <outf> which 
is then submitted to plot utility dr aw v or (cf. part (d)). The format of 
<outf> is as follows:

Extents: %xmin , %xmax . %ymin , %ymax .
Source face number.
Goal face number.
Source point coordinates.
Number of distinct Voronoi centers.
Number of vertices of the goal face.
Coordinates of the vertices of the goal face (one per line).
Number of faces in this development. (This is followed by faces 
(one per line) and then Voronoi center coordinates.)
Number of vertices of a Voronoi polygon. (This is followed by as 
many vertices as necessary.) '

Pltvor detects equal Voronoi centers and discards all but one. It finds a 
bounding box (with extents %xmm . %xmax , % y min . %ymax ) which is used 
by naivor .

• function: prettylpt (prettypit.I ) 
parameters: <p> <outf>
This writes a file <outf> which is used by plot utility drawpp (cf. part (d)). 
Essentially prettypit is used to plot a polyhedron with a 3-dimensional shor
test. path marked on it from viewpoint <p >. The format of <outf>, is as fol
lows:

Coordinates of <p >.
Source face number.
Goal face number.
Source point coordinates.
Goal point coordinates.
Length of face visit sequence.
Face visit sequence (one face per line).
Length of the shortest path.
Length of list <jBENDPTS >
Coordinates of the bend points (one point per line).
Number of visible faces followed by the below information for each 
face:

Number of this face.
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Centroid coordinates of this face.
Edge endpoint coordinates of this face (one point per 
line).

Number of invisible faces followed by the below information for 
each face:

Number of this face.
Centroid coordinates of this face.
Edge endpoint coordinates of this face (one point per 
line).

• function: pyrcons (pyrcons.l ) 
parameters: <inf> <outf> <s> <g> 
Given two points <s > and <g > external to a polyhedron P (read from file 
<inf>) this constructs a new convex polyhedron P' and writes it into 
<outf > P' is such that the shortest, path from <s > to <g > is necessarily 
situated on it. (In other words. P' is equal to the convex hull of the union of 
< s >. < g >. and the vertices of P .)

• function: assocsrc (pyrcons.l ) 
parameters: < e > </ > 
If item <e > is in list <1 > then assocsrc returns its index.

• function: holder/ (pyrcons.l) 
parameter: <p >
Let <p > be a 3-dimensional point which is supposed to be on the current 
polyhedron. This returns the number of the lowest indexed face that holds 
<p > within ( .

• function: onbd (pyrcons.l ) 
parameters: <p> </> 
Returns t if point <p > is on the boundary of face </>.

• function: recons [recons.I ) 
parameters: <inf> <out.f> 
This constructs the faces of a straight-edge planar graph specified as a set of 
its edges. File <inf> holds the number of edges and the coordinates of the 
endpoints of the edges (one edge per line). The output file <outf> consists of 
the number of vertices of the graph followed by the vertex coordinates and 
the faces of the graph. Each face is specified as a list of pointers to its ver
tices. All faces are in counterclockwise order except the outer boundary of the 
graph which is clockwise. Recons uses the specialized functions markvrt , 
unused, and follower (all in recons.I ) which are omitted.

• function: tupler (recons.I )
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parameters: <e 1> <e 2>
Let <e 1> and < e 2> be two edges (pairs of endpoints). This returns t if the 
first endpoint of <e 1> is lexically less than the first endpoint of <e 2>.

• function: approx (recons.I )
parameters: < r 1> < v 2>
Returns t if vertices < v 1> and < r 2> have equal coordinates within t .

• function: angsort (recons.I ) 
parameters: < u > </ >
Sorts the vertices in list <1 > about vertex <v > in descending angular order 
and returns the sorted list.

• function: angord (recons.I ) 
parameters: < r 1> < t 2>
Returns t if vertex < r 1> is after vertex <v2> in increasing angular value in
[0.2tt).

• function: angle (recons.I ) 
parameters: <z > <y> 
Returns the angle of vector xy in polar coordinates in radians.

• function: rpoly (rpoly.l )
parameter: <inf>
Reads polyhedron data file <inf> and creates <BLURB >. <NBLURB >.
< FACES >. < VERTICES >. < NF A CES >. <NVERTICES >, and 
< OMEGA >. An example data file is shown in section 5.2.

• function: wpoly (rpoly.l )
parameter: <outf>
Writes the current polyhedron into file <outf>. This assumes that
< BL URB >. < NBLURB >. < FA CES >. < VERTICES >. < NF A CES >, and
<NVERTICES > are available. Wpoly can be used to create a new 
polyhedron file from the current polyhedron (e.g., after some rotation or 
translation).

• function: revs (rpoly.l ) 
parameters: -
Reverses the order of the vertex sequences in <FACES >. This is useful 
when the faces of a polyhedron file are in. say. clockwise order but one needs 
them in counterclockwise.

• function: wedges (rpoly.l ) 
parameter: <outf>
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Writes the endpoint coordinates of the edges in <EDGES > into file <outf>. 
Each line of <outf> consists of 6 coordinate values (z 1. y 1, z 1. z 2, y 2. z 2) 
except the first line which holds <NEDGES >.

• function: shclip (shclip.l ) 
parameters: <inp > <clipp > 
Let <inp > and <clipp > be two polygons. < Ch'pp > must be convex whereas 
<inp > may be nonconvex. This clips <inp > against clip boundary <clipp >. 
Both polygons should be given in counterclockwise order. The clipped 
polygon is also in counterclockwise order.

• function: toleft (shclip.l)
parameters: <v> <bd >
Returns t if vertex < v > is inside the the clip boundary <bd > (a pair of 
points) where "inside” is defined as being to the left of the boundary when 
one views from the first point of <bd> toward the second. It is assumed that 
the polygon which <bd > is a part of is given in counterclockwise order.

• function: Isegilin (shclip.l )
parameters: <l 1> <1 2>
Given line segments <l 1> and <1 2> which are point pairs this returns the 
intersection point of </1> with the line holding <1 2> or nil if there is no 
intersection.

• functions: vedges ivedges (visi.l )
parameter: <p >
Return respectively the set of visible and invisible edges of the current 
polyhedron from viewpoint <p > which is supposed to be external to the 
polyhedron.

• functions: vfaces ivfaces (visi.l)
parameter: <p >
Return respectively the set of visible and invisible faces of the current 
polyhedron from viewpoint <p > which is supposed to be external to the 
polyhedron.

• function: vorin (vorin.l )
parameters: <outf> <fs> <fg> < <s>
Given a source point <s > and the source and the goal faces <fs> and <fg> 
this writes the images of <s > with respect to <fg> into file <outf> (along 
with the face visit sequence used to arrive it) for <ndeve > developments. (It 
is guaranteed that when specified <g > will be on <fg>.)

• function: wunfold (wunfold.l)
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parameters: <s > <g >
This is useful for drawing a development. Wunf old writes <UNFOLD > 
into file foobar along with < s > and <g >. The format of foobar is as follows:

Bounding box z and y coordinates.
Number of faces in the development.
The face visit sequence (one face per line).
Source face number.
Goal face number.
Source coordinates (3-space).
Goal coordinates (3-space).
Source image coordinates (zy-plane).
Goal image coordinates (zy -plane).
Source-to-goal distance.
The following is then repeated for each developed face:

Face number.
Number of edges for this face.
z 1. y l, z 2, y 2 coordinates for edge endpoints (one 
edge per line).
Centroid coordinates for this face in 2-space.

• function: yen (yen.1)
parameters: <fs> <fg> <k>
Returns the first <k > simple walks in <OMEGA > between nodes </s> and 
</y> in <KPATHS > in increasing walk length. Sometimes the length of 
< KPATHS > may be larger than <k>. Yen uses the specialized functions 
detach and getmincands (both in yen.I ) which are omitted.

• function: pcoincide (yen.I ) 
parameters: </ 1> </ 2> <n > 
Returns t if the sublists consisting of the first < n > elements of lists <l 1> 
and <1 2> are equal assuming that each of </ 1> and <1 2> has at least <n > 
elements.

(c) Macsyma Functions

Macsyma is a large and sophisticated programming system used for perform
ing symbolic (as well as numerical) mathematical manipulations. The reader 
is referred to the Macsyma Reference Manual for further information. The fol
lowing descriptions apply to UNIX Macsyma release 304 (MIT and Symbolics. 
Inc., 1983).

We first summarize how to solve a system of equations with purely algebraic 
methods in Macsyma. (It is noted that this is basically what OPTIMAL
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LINE VISIT requires.) Macsyma built-in function solve solves a system of 
(linear or nonlinear) polynomial equations. To handle the latter solve uses the 
function algsys which in turn employs the function resultant . Further 
descriptions of these can be found in the Manual. Solve has been tried on the 
equations described below for olvang with success. However, solving many 
equations with solve does not look promising since the function is very slow 
and sometimes returns with failure after some initial effort which may be 
quite costly.

In addition to experimenting with elimination, we implemented two numerical 
functions in Macsyma: olvang and olvdis . These can be loaded into 
Macsyma using the command "batch." Before running olvang or olvdis a file 
holding the number of lines, the source, the goal, and the line endpoints in the 
following example format should be batched into Macsyma:

N:3:
S: [0.0.0] :
G:[0,4.0j:
P[l]:[l.l.l]; Q[l]:[-l.l,l|: 
P[2]:[2.2,lj: Q[2]:[-2.2.1]; 
P[3]:[3.3.1]; Q[3]:[-3.3,lj:

• function: olvang 
parameter: <niter > 
This solves OPTIMAL LINE VISIT using the Newton-Raphson method 
described in section 2.1 to solve a system of equations stating the equality of 
the entry and the exit angles that, the shortest path makes with the given 
lines. Each line is parametrized by A", which is to be determined. Once found. 
A, s are used to calculate Bt ‘s (the bend points). The global variable 
<EST> is a vector holding the starting estimates for the parameters 
A = A i. ' ’ ' A^ of the given lines. (This is initialized by the user before run
ning olvang .) After each iteration, olvang prints three values on the terminal: 
<DELTA >. <EPS >. and <DIS > <DELTA > is an indicator which 
approaches to zero after each iteration if the computation is converging. 
Olvang stops after <niter > iterations are carried out. Inspecting
<DELTA > the user decides to continue with or to abort the computation. In 
the former case, olvang is simply continued with the last value of <EPS > 
used as a new estimate. In the latter case, a new (and possibly more promis
ing) <EST > must be chosen. <DIS > is the shortest distance at this point 
during the computation.

The user has additional access to the following global variables used by 
olvang :
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< A >: number of the lines.
< S > : the source point.
< G > : the goal point.
< P [l..:V]>, <Q [L.zV]>: arrays holding the line endpoints.
< r[l...¥]>: array holding the unit vectors along the lines.
< B [l..A’]>: array holding the bend points.
< AE [l..A']>: array holding the angle equalities.
<EVA >: <AE> evaluated at A' = EST .
<RATE >: constant controlling the rate of convergence.
< IMPS [l..A7]>: array holding the unknown names A, .
<JACOB |1..A\1..AT]>: matrix holding the Jacobian.
<EVJ >: < JACOB > evaluated at A’ = EST .

<RATE > is normally 1 but may be changed by the user to obtain faster con
vergence. In general, there are no well-defined rules for guessing good <EST> 
and <RATE > values.

• function: olvdis 
parameter: <niler > 
This solves OPTIMAL LINE VISIT by optimizing the length of the shortest 
path as described in section 2.1. Each line is parametrized by X, which is to 
be determined. Once found. A, ’s are used to calculate Bj's (the bend points). 
The global variable <EST > is a vector holding the starting estimates for the 
parameters A =AP • • • ,An of the given lines. (This is initialized by the user 
before running olvdis .) After each iteration, olvdis prints three values on the 
terminal: <DELTA >. <EPS>. and <DIS>. <DELTA > is an indicator 
which approaches to zero after each iteration if the minimization is succeed
ing. Olvdis stops after <niter > iterations are carried out. Inspecting
<DELTA > the user decides to continue with or to abort the computation. In 
the former case, olvdis is simply continued with the last value of <EPS > 
used as a new estimate. In the latter case, a new (and possibly more promis
ing) <EST > must be chosen. <DIS > is the shortest distance at this point 
during the computation.

The user has additional access to the following global variables used by 
olvdis :

< A > : number of the lines.
< S >: the source point.
< G >: the goal point.
< P[1..AT]>. <Q [ 1..A']>: arrays holding the line endpoints.
< B [l..A’]>: array holding the bend points.
<RATE >: constant controlling the rate of convergence.
< VARS [l..A'j>: array holding the unknown names A, .
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<GRAD [ 1..A7]>: array holding the gradient.
<EVG>: <GRAD> evaluated at X = EST.
<HESS [1..A7 .l..Ar]>: matrix holding the Hessian.
<EVH > : <HESS > evaluated at A' = EST.

<RATE > is normally 1 but may be changed by the user to obtain faster con
vergence. In general, there are no well-defined rules for guessing good <EST> 
and <RATE > values.

It should be remarked that both olvang and olvdis are very fast compared to 
the purely algebraic solve function of Macsyma. Running them on several 
moderate size (up to 12 lines) instances of OPTIMAL LINE VISIT takes at 
most 0.5 CPU minutes and this performance is observable without appreciable 
difference for both functions. Currently, it is impossible to run solve on such 
large instances since it always fails. (It is noted however that the convergence 
to the correct result in the case of olvang and olvdis is dependent on the ini
tial estimate.)

(d) Plot Utilities

The better way to use SP would be to run it on a graphics workstation (such 
as a SUN) which supports multiple views of text and graphics. At the time of 
this writing that was not possible. Thus several SP functions write output 
files which hold plot information about a problem solved using SP. These plot 
files are then copied to MTS and plotted there using the utilities described 
below. To copy the files from CSLAB to MTS the file transfer program 
"mtscom" is used. Once the files are in MTS they are compiled thus: r *ftnx  
scards^filename spunch=/oo. This compiles the program in filename and 
writes the binary image into foo. To run the program type: r /oo+^plotsys 
5—datafile 9=bar. (Here "^plotsys" is the library for MTS Plot Description 
System.) This reads its data from datafile and writes the plot to bar. Then 
bar may be spooled using the program " * ccqueue."

• utility: drawpp
This accepts the output of Franz function prettypit as input and plots it. The 
format of the input file is described in part (b) under prettypit .

A disadvantage of this approach is the disappearance of the envisioned 
interactive nature of SP. e.g.. it is no more possible to compute and observe 
things at the same time. Another point is the necessity of several (but in 
most cases only slightly different) programs for plot files obtained from dif
ferent SP functions. The following Fortran plot utilities handle three impor
tant cases:
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• utility: drawunf
This accepts the output of Franz function wunfold as input and plots it. The 
format of the input file is described in part (b) under wunfold.

• utility: drawvor
This accepts te output of Franz function pltvor as input and plots it. The 
format of the input file is described in part (b) under pltvor .


