JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING 27, 107-117 (1995)

Area and Perimeter Computation of the Union of a
Set of Iso-rectangles in Parallel

MoHAN S. KANKANHALLI*! AND WM. RANDOLPH FRANKLINT 2

*Institute of Systems Science, National University of Singapore, Kent Ridge, Singapore 0511; and *tElectrical, Computer and Systems Engineering
Depariment, Rensselaer Polytechnic Institute, Troy, New York 12180

Finding the area and perimeter of the union/intersection of
a set of iso-rectangles is a very important part of circuit extrac-
tion in VLSI design. We combine two techniques, the uniform
grid and the vertex neighborhoods, to develop a new parallel
algorithm for the area and perimeter problems which has an
average linear time performance but is not worst-case optimal.
The uniform grid technique has been used to generate the
candidate vertices of the union or intersection of the rectangles.
An efficient point-in-rectangles inclusion test filters the candi-
date set to obtain the relevant vertices of the union or intersec-
tion. Finally, the vertex neighborhood technique is used to
compute the mass properties from these vertices. This algo-
rithm has an average time complexity of O(((n + k)/p) +
log p) where n is the number of input rectangle edges with
k intersections on p processors assuming a PRAM model of
computation. The analysis of the algorithm on a SIMD archi-
tecture is also presented. This algorithm requires very simple
data structures which makes the implementation easy. We
have implemented the algorithm on a Sun 4/280 workstation
and a Connection Machine. The sequential implementation
performs better than the optimal algorithm for large datasets.
The parallel implementation on a Connection Machine CM-2
with 32K processors also shows good results. ©1995 Academic
Press, Inc.

INTRODUCTION

Iso-rectangles (rectangles with sides parallel to the axes)
are extensively used in VLSI design [21, 19]. Various geo-
metric problems involving iso-rectangles arise in VLSI
since chip layouts are represented as sets of iso-rectangles.
Mask information used in the fabrication of integrated
circuits is expressed in terms of iso-rectangles. The chip
layout is described by different layers each of which con-
sists of a set of iso-rectangles. Each rectangle represents
a segment of a metal wire, an ion implantation region or
a via contact. An important problem in the area of VLSI
design is that of circuit extraction from the mask geometry
of the chip. This involves determining the nodes (set of
rectangles which are electrically connected) and then find-
ing the node resistance and capacitance (from the area,
perimeter of the node and other electrical properties). This

! E-mail: mohan@iss.nus.edu.
2 E-mail: wrf@ecse.rpi.edu.

107

information is then utilized for timing verification of the
integrated circuit. This problem requires that, given a set
of iso-rectangles in a plane, the covered area and the perim-
eter of the contour of the union be determined. The union
problem is also important in the field of digital picture
processing when the picture is represented by the medial
axis transform [24, 5, 25].

Another problem is to compute the area of the intersec-
tion of several polygons, each defined as a set of iso-rectan-
gles. This is used in calculating the probability of a fatal
defect in a chip. For example, suppose that a layer of
insulator lies between two conducting layers. Then the area
of intersection of the three layers is the probability that a
random hole in the middle layer will cause a short between
the upper and lower layers. In this paper, we present solu-
tions to two important iso-rectangle problems, the union
and intersection problems. We now give the formal defini-
tions of these problems.

Union Problem

Given Ry, R,, ..., R,, a list of n iso-rectangles in a plane,
the union problem computes the area and perimeter of
the region R where

R=R,UR,U - UR,. 1)

Intersection Problem

Given Ry, R,, ..., R,, a list of n iso-rectangles in a plane,
the intersection problem computes the area and perimeter
of the union of all pairwise intersections, i.e., the region
R, where

R=U{R,-nlei,jzl,...,n;i#j}. Q@)

Previous Work

Sequential Algorithms. The union problem is also
known as the measure problem. It was first proposed by
Klee [15]. This two-dimensional problem can be general-
ized for d dimensions. Klee proposed an O(n log(n)) solu-
tion to the one-dimensional problem using sorting. For the
two-dimensional problem, Bentley developed an optimal
O(n log(n)) solution based on the line-sweep paradigm
[4]. This was extended to three dimensions by van Leeuwen

0743-7315/95 $6.00
Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

108

and Wood, who used the quad-tree to solve the problem
[22]. Giiting also has an optimal O(n log(n)) algorithm for
two dimensions using the divide-and-conquer strategy [10].
His algorithm computes the contour of the union (set of
boundary edges) as well. Widmayer and Wood have a
time and space optimal algorithm for computing boolean
operations on two masks described by a set of iso-rectan-
gles [23]. They also use the line-sweep paradigm and their
algorithm generalizes easily for more than two layers.
However, they do not compute the area of the result of
the boolean operations. Recently, Overmars and Yap have
obtained an O(n%? log(n), n) time-space upper bound for
the d-dimensional measure problem [18]. They have along-
side presented a plane-sweep algorithm for the three-di-
mensional problem. There are no known published se-
quential algorithms for explicitly solving the intersection
problem, but some of the algorithms for Boolean opera-
tions on rectilinear polygons could be used for this
problem.

Parallel Algorithms. Kane and Sahni have designed
systolic algorithms for rectilinear polygons which are the
union of a set of iso-rectangles [13]. They have developed
algorithms for OR, AND, Oversizing, and Undersizing
operations. The polygons are represented by their edges
which are fed to the left end of a systolic chain of proces-
sors. As the edges float to the right, they compare them-
selves with edges that are resident in the processors and
generate the result polygons. The output polygons float to
the left and are output from the left end of the chain. These
algorithms are useful if a dedicated parallel processor is
to be built.

Chandran and Mount have presented a parallel algo-
rithm for the union problem which takes Of(log(n)
log(log(n))) time using O(n) processors for n rectangles
[5]- They define horizontal slabs by passing horizontal lines
through the endpoints of the vertical edges of all rectangles.
Vertical strips are similarly defined. The area and the pe-
rimeter of the union of the iso-rectangles is computed by
recursively merging the slabs and the strips. This approach
uses the plane-sweep paradigm along with Cole’s sorting
algorithm [6]. Their algorithm can also compute the con-
tour of the union. The algorithm, however, uses complex
data structures and seems difficult to implement. The au-
thors have made no mention of implementation.

Lu and Varman have presented optimal algorithms for
many iso-rectangle problems on a mesh-connected com-
puter (MCC) [16]. A two-dimensional MCC consists of a
number of identical processors arranged in a two-dimen-
sional array. It is a SIMD (single-instruction multiple-data)
machine which executes the same instruction in parallel
on different data items. They present algorithms for the
area of the union and the intersection of a set of iso-
rectangles. Both algorithms take O(Vn) time on a
2Vn X 2Vn MCC. For the area of the union, the plane is
divided into horizontal strips by a set of horizontal lines
passing through the points at the top and bottom of the

KANKANHALLI AND FRANKLIN

rectangles. The total area is the sum of the covered area
of each of the strips. Subsequently, divide-and-conquer is
used to divide the strips successively into two equal subsets
(slabs) by a vertical line until each slab contains exactly
one vertical edge. Then the adjacent slabs are merged
together in a binary tree fashion. The slab construction
and merge are carried out in parallel. The area-of-the-
intersection algorithm is a slight modification of the area-
of-the-union algorithm with the extra information of over-
lap stored in the slabs. The area for a strip is considered
only if there is an overlap. They have given detailed algo-
rithms which can be easily implemented on a MCC. How-
ever, these algorithms cannot be used for a general purpose
parallel computer.

Wu et al. have developed algorithms for the union prob-
lem which take O(n) time using O(n) processors for a
PRAM model and O(n®) processors for a MCC [25]. They
use an area tree which is a generalization of the segment
tree. The area tree differs from a quadtree in that the grid
it is defined on is not necessarily a square and some of the
nodes near the bottom of the tree may have two instead
of four children. The area is computed by first constructing
the area tree and then summing the area for the filled
nodes. The perimeter is similarly computed by keeping
track of the edges of the rectangle represented by a node
and deleting the duplicate entries. The algorithm for the
MCC uses a sweep-line, which marks the boundary points
of the union, to obtain the area and perimeter.

Miller and Stout have presented a variety of G)(\/;)
time algorithms for computational geometry on a MCC
[17]. In particular, they present an algorithm for the area
of the union of a set of iso-rectangles. Their algorithm is
similar to that of Lu and Varman [16}]. They maintain slabs
of areas by a divide-and-conquer strategy in which the
sections counted more than once are discarded. The final
area is obtained by merging the areas of the slabs. They
claim that their algorithms can also be used on hypercubes.
They have not mentioned any implementations—on MCC
or otherwise.

Zubair has recently developed an optimal solution to the
union problem [26]. He has developed a parallel algorithm
based on the divide-and-conquer strategy which has a time
complexity of O(log n log log n) using O(n/log log n)
processors on a CREW PRAM model. The abscissae of
the rectangles are sorted and then the input set is divided
into two almost equal sets. The solution then recurses on
the two subsets till each set contains atmost one rectangle.
Then the partial solutions are merged in parallel. The
merging is complicated with many special cases and the
algorithm assumes the availability of an optimal parallel
sorting algorithm. No mention is made of implementation
of the algorithm.

From the literature survey presented above, it can be
seen that there are no good parallel algorithms for the
union and intersection problems. Chandran and Mount [5]
provide an algorithm which is complicated and difficult to
implement. Wu er al. [25] have an algorithm which is of

AREA AND PERIMETER COMPUTATION IN PARALLEL

quadratic time complexity. Lu and Varman [16] and Miller
and Stout [17] present parallel algorithms for the special-
ized mesh connected computer. Zubair [26] has developed
a parallel algorithm based on the divide-and-conquer strat-
egy. The algorithm uses the Cole parallel merge-sort algo-
rithm [6] which makes it complex and difficult to imple-
ment. It also has to handle a large number of special cases.
For none of these algorithms has there been any mention
of implementation. The aim here is to develop efficient
parallel algorithms which are practical enough to be imple-
mented on real parallel machines.

PRELIMINARIES

Our algorithms use the combination of the following
techniques for achieving parallelism:

1. uniform grid.
2. vertex neighborhoods.

The Uniform Grid Technique

The uniform grid spatial subdivision technique divides
the extant of a scene uniformly into many smaller subre-
gions (cells) of identical shape and size. It is a flat, nonhier-
archical grid which is superimposed on the data (Fig. 1).
The grid adapts to the data since the number of grid cells,
or resolution is a function of some statistic of the input
data, such as the average length of the edges. Each geomet-
ric entity, like an edge, is entered into a list for each cell it
passes through. The technique is like a divide-and-conquer
mechanism because problems of the same type but of

L . N

b o . - - —-——— = ————— e = = = =]

e e mecmmecmcmaqac e f

{(2,1).(1,1),(4,1),(2,2),(5.2).(4.3).(5.3).(6.3).(8.4)}

FIG. 1. Uniform grid example and (cell.edge) pairs.

109

smaller size are generated for each cell. For example, this
allows the edges in each cell to be tested against each other
for intersections. It has been theoretically and experimen-
tally shown [2] that the uniform grid is an efficient tech-
nique for computing edge intersections for random data.
The technique takes an average time of O(n + k) for a
set of n edges having k intersections. We have also found
the uniform grid to be an efficient technique for real world
databases such as those from VLSI, cartography, and com-
puter graphics. Other applications and algorithms devel-
oped with this technique are presented in [2, 9].

Asano et al. [3] contend that the popularity of bucketing
schemes similar to the uniform grid is because they often
outperform theoretically better algorithms. Pullar [20] has
experimentally shown that the sequential version of the
uniform grid technique for determining the intersections
between a set of segments lying in the plane is faster than
the theoretically better plane-sweep technique for a variety
of data sets. The overhead of maintaining the dynamic
data structure for the plane-sweep technique is the reason
for its inefficiency. In the area of parallel processing, the
plane-sweep technique is even less attractive when com-
pared to the uniform grid. This is because optimal geomet-
ric techniques such as the plane-sweep, impose a temporal
ordering of computation on the objects, e.g., by scan line.
The uniform grid technique does not impose one when
none is strictly necessary. For example, computation of
intersections within the grid cells can be done in any order.
Therefore, the uniform grid technique is much simpler to
parallelize. Its uniformity and regularity also makes the
mapping of tasks on to the processors much simpler. When
more sophisticated schemes such as quadtrees and octrees
are used, distribution of tasks among the processors be-
comes more complicated with the increased overhead for
maintaining the data structures. Also, the non-hierarchical
nature of the partitioning exploits the large memories of
modern machines and avoids tree data structures and indi-
rect references through pointers to locate objects. This
helps in avoiding log factors (due to tree traversals) in the
complexity of the algorithm.

Though the uniform grid has many advantages, it also
has some important limitations. Uneven spatial densities
of the objects reduce the efficiency of the uniform grid
technique. However, we have observed that this is not as
serious a problem as it appears from a theoretical point
of view because in such cases the added complexity of
constructing a finer subdivision for better object resolution
using an optimal method loses some of the benefits of such
a subdivision [14]. Another disadvantage is that in some
applications where separate data structures are used for
each grid cell, the memory requirements of the uniform
grid technique may be greater than that of other methods.
However, with the decreasing cost of memory, this may
not be a serious disadvantage.

We use this technique in our algorithm to compute inter-
sections of the edges constituting the sides of the input rect-
angles.

110

(3.5) (3.7
A Bl e-n-t
C
@7

KANKANHALLI AND FRANKLIN

S=(0.1)

= R =(1,0)

FIG. 2. The vertex neighborhoods for vertex D of a rectangle ABCD.

The Vertex Neighborhoods Technique

For a polygon in 2-D, the neighborhood of a vertex
includes location and the directions of its edges, but not
their lengths. Explicit global topology of the polygon need
not be known. The vertex neighborhood of a point (x, y)
is represented as a 4-tuple:

v={(x,y,R,S).

R and § are rays from v in the direction of the two edges

incident on v. If we rotate from R to S in a positive direction

we will sweep the inside of the polygon ABCD (Fig. 2).
For a polygon P, X(p) is a characteristic function iff

1, ifpeP,

0, otherwise.

X(p) = { 3)

A cross function, x,(p) on each vertex for each of the four
wedges is defined as shown in Fig. 3. It can be shown [8] that

x.(p) =
(1 & . o
~——, ifé <wandpisina wedge of 9,
2 2m
_2i’ if ¢ <mandpisinawedgeof 7 — 6,
T
1 8 if ¢ <wandp ison the line between
) 4 27 two wedges, 4)
ﬁ-—l, if > 7 and p is in a wedge of 0,
2 2
21, if $ > 7 and p is in a wedge of 7 — 6,
T
8 1 ifd > 7 and pis on the line between
(27 4’ two wedges.

When p is on a line, its weight is the average of the weights
of the neighboring regions. This is required when p is
on an extended edge of P. It can be shown [8] that the
characteristic function of the whole polygon is the sum of
the x, functions of the vertices:

X(p)= Zy Xv(P). (5)

Furthermore, as derived in [8], the area of the polygon
can be calculated as

Area= A = Jﬂeu ng }:_15_10 wr(P)xv(p) dp (6)
= ;V lim | wr(P)x.(p)dp, (7N

where wy is a sequence of weight functions in the region
R of the entire plane U which satisfies the following condi-
tions:

1. fpeu wr(p) dp exists,
2. limy,y,. wg(p) — 0, and
3. for all & > 0 and for all r there exists R, such that
R>Ry, and |p|<r=1-e<wg(p)<1l+e
This essentially means that we can locally compute a
function for each vertex using the vertex neighborhoods
and can obtain the global mass property, area, by summing
these functions over all the vertices. This means it leads
to O(n) algorithms for n vertices. The interested reader is
referred to [7, 8] for details, proofs, and extensions to
three dimensions.

1_¢
2 2x

—or R 2x
2r SN
‘ \
Y3 \
\
/! \
\
S] \
LK 25

FIG. 3. Cross function on concave and convex vertices.

AREA AND PERIMETER COMPUTATION IN PARALLEL

a .+ (+.4)

A HFEY

(+. +) (+.-)

(+. +)

FIG. 4. (a) Signs of input vertices for area computation. (b) Signs
of intersection vertices for area computation.

For our case of iso-rectangles, the wg sequence of weight
functions is chosen to be unity in the first quadrant of the
plane and zero elsewhere. So, for the special case of iso-
rectangles, the positive X and Y axes can be used as cutting
lines for the wgi weighting function. In this case, the
weighted area for a vertex is the area of the wedge bounded
by the positive X and Y axes, taking proper signs into
account. So the above relations simplify considerably [14]
and we obtain

A= > ox)xo(y)y wherev=(x,y). (8)

vev

o(x) and o(y) are the signs assigned as shown in Fig. 4a
for vertices in the union polygon which are the input verti-
ces. The corresponding signs for the vertices created by
intersection of two rectangles are shown in Fig. 4b. Note
that the ordered pair (+, —) in the figure means that
a(x) = +1 and o(y) = —1. We also assume that the
interior of the polygon is by convention to the left of the

111

a .4 +

T

“ * 4 ¢

+.9)

(+.-)

FIG. 5. (a) Signs of input vertices for perimeter computation. (b)
Signs of intersection vertices for perimeter computation.

oriented edge. For the perimeter of the union polygon,
we have

P=3 @(x)x+a(3)y). ©

Again o(x) and o(y) are as given in Fig. 5a for input
vertices and in Fig. 5b for the intersection vertices. Figure
6 illustrates an example of the use of these relations.

Obviously, these relations can be derived without using
the vertex neighborhood technique. The advantage of the
vertex neighborhoods technique lies in that these relations
can be generalized for any kind of polygons. Furthermore,
the relations can be also generalized to any kind of polyhe-
dra in three dimensions [8].

Overview of the Approach

We present a new algorithm for the union and intersec-
tion of a set of iso-rectangles in the next section. We use a
combination of the uniform grid and vertex neighborhood

(X3.y3) (x2y2)
(X777 (X107 10) (xe¥d
(xu¥o (%g.¥9) (x.yy)
(xe¥o) sy

Area = -X;Y| + X3¥3 - X3¥3 = Xs¥s * Xz¥7 + XV + Xg¥g + X0V 10

Perimeter = x; —

Vit X+ Y2-X3+Yy+ Xg-

Ys-Xy+Yr-Xg—Ya-Xg+ Y9+ Xyg= Yo

FIG. 6. Example of area and perimeter computation.

112

techniques in the algorithm. We have also developed an
efficient point-inclusion-in-rectangles test. The algorithm
has an expected linear time performance, although it is
not worst-case optimal. The algorithm time complexity is
linear in the size of input and the speedup is also linear
with the number of processors.

The uniform grid technique is applied to obtain all the
intersections of the edges which constitute the sides of the
input rectangles. The union/intersection of the rectangles
has two kinds of vertices—points which are vertices of the
input rectangles and points which are intersections of the
sides of two input rectangles. Thus, the set of intersections
of the edges and the input vertices form a superset of the
vertices of the union/intersection. Our algorithm efficiently
filters out the union/intersection vertices from this superset
by using a point-in-rectangles inclusion test. Once we ob-
tain the set of vertices of the union/intersection of the
iso-rectangles, the vertex neighborhood technique can be
applied to compute the area and perimeter. The input to
the algorithm is a set of iso-rectangles and the output is
the area and perimeter of the union/intersection of the
input set of iso-rectangles.

THE ALGORITHM

We now present the details of the algorithm. The edges
of each rectangle are directed such that the interior of the
rectangle is to the left of the edge.

1. From the values of N (the number of input edges) and
L (the average edge length) determine a grid resolution G.
A good heuristic is

G = c¢min (\/JT/ -llj) (10)

where ¢ is a constant, which can be used for fine tuning
[2, 14]. The average edge length can be computed in paral-
lel for each rectangle. The global average can then be
computed by a reduction operation.

2. Cast a G X G uniform grid over the data, in parallel.

3. For each edge of every rectangle, determine the cells
it crosses. Store this information in an appropriate data
structure which allows retrieval by cell. This can also be
done in parallel for each edge.

4. For each rectangle in parallel, determine which cells
it completely overlaps. Mark these cells as covered. This is
analogous to the blocking face concept used in the parallel
visible surface determination algorithm in [9]. Here, we
wish to record whether any grid cell is completely covered
by a rectangle. This information is used to make the point-
in-rectangles test efficient.

5. For each cell in parallel, retrieve the edges passing
through it and test them against each other for intersec-
tions. Store these intersections. The intersection points and
the input vertices of the rectangles together constitute the
superset of the vertices for the union of the rectangles.

KANKANHALLI AND FRANKLIN

6. In this step, we filter out points from the superset so
that we are left with the vertices of the union of the input
set of rectangles. Note that points which lie inside any
rectangle clearly do not belong to the set of vertices of the
union. These are the points which do not lie on the bound-
ary of the union of the iso-rectangles. They must be elimi-
nated to obtain the desired set of vertices. Testing every
intersection and input vertex to check if it lies in any rectan-
gle would lead to a quadratic time algorithm. A more
efficient method for this point inclusion test is described
below. This method takes constant time for each point and
therefore is linear for the whole set.

For each of the intersections found in step 5 and the
vertices of each input rectangle, determine those points
which are not inside any of the input rectangles. Note that
if a point is on a rectangle then it is not inside that rectangle.
The following steps are performed on each point of the
superset in parallel:

(a) Find the cell to which the point belongs. If this cell
is marked covered, then the point is internal and hence dis-
carded.

(b) If the cell is not covered, shoot four rays from the
point, in the directions (1,0}, (0,1), (=1, 0), and (0, —1)
up-to the current cell boundary. Initialize a count variable
for each ray to zero.

(i) Find the number of intersections between each ray
and the rectangle edges in the cell. If an edge is so oriented
that the ray intersects it from outside, add —1 to the count.
Add +1 if the ray intersects it from inside.

(it) If the count is positive for any of the four rays,
then the point is inside a rectangle and thus is discarded.
Otherwise, the point is included in the output set. Note that
checking the intersections in the current cell is sufficient to
know whether the point is internal or not. This is due to
the fact that unless a cell is completely covered, exactly
one boundary of a rectangle containing the point must lie
between the point and cell wall. A grid cell can be partially
covered by a rectangle in only five ways (Fig. 7). All of
these cases can be detected by shooting the four rays. On
the other hand, if a cell is fully covered, it would have
been marked so in step 4 itself.

7. For all the points found in step 6, assign the sign
functions o (x) and o(y) as given in Figs. 4a and 4b for
the area and Figs. 5a and 5b for the perimeter. This can
be performed in parallel.

8. Find the area and perimeter from Eqgs. (8) and (9)
given in the previous section, summed over the points
obtained in step 6. This is done in parallel for each point.
Every processor maintains a partial sum for points in its
domain.

9. Compute the area and perimeter of the union by
adding up the partial results from each processor. The sums
can be computed by forming a binary tree of the processors.

The above algorithm is a parallel solution to the union
problem. In step 6 of the algorithm, we classified the inter-

AREA AND PERIMETER COMPUTATION IN PARALLEL

1
]
1
]
"
[l
Il
[
]
]
4

fomvemgpemmnmnny
]

'

]

)

]

]

]

]

[
Locawadoono

FIG. 7. Various cases of point-in-rectangle test.

section vertices as being either inside or outside. For the
union problem, we discarded the inside vertices and were
left with the vertices defining the boundary of the union.
To the contrary, if we had discarded the outside vertices,
the remaining set would constitute the vertices defining the
boundary of the intersection of the rectangles. Therefore, if
we modify step 6 of the above algorithm to discard the
outside vertices, the resulting algorithm is the solution to
the intersection problem.

ANALYSIS OF THE ALGORITHM

We present the analysis of the algorithm on two different
computation models. The first analysis is done on the stan-
dard CREW PRAM model. This assumes a common
shared memory and therefore, any communication step
takes O(1) time. While this is a good model for the purpose
of theoretical analysis and for shared-memory machines,
it ignores the important cost of communication of many
real parallel machines.

We, therefore, also present the analysis on a “SIMD
machine model” which explicitly takes the communication
cost into account. Another reason for presenting this analy-
sis is that we have implemented this algorithm on a Connec-
tion Machine 2 (CM-2) and this model is a more accurate
representation of the CM-2 than the CREW PRAM model.

CREW PRAM Model Analysis

First, we analyze the algorithm assuming the concurrent-
read exclusive-write PRAM model of computation. The
edges of the input rectangles are assumed to be indepen-
dently and identically distributed (IID). For steps 1 through
S of the algorithm, the analysis of the parallel segment
intersection algorithm can be done as shown in Akman et
al. [2]. Assume that we have »n input iso-rectangles with
O(n) edges. Assume that a grid size of G = |.c/l] is chosen,
where c is a fine-tuning constant and / is the average edge-
length. Finding the cells in which an edge falls takes time
proportional to a constant plus the actual number of cells.
The expected number of cells covered by the bounding box
of an edge is O(I*G?). Therefore, the total time required

113

to place the edges in the cells is O(n/*°G?/p), or simply
O(n/p). Therefore, step 1 through 4 of the algorithm will
take a time of O(n/p). For the intersection part, there are
O(n) (cell,edge) pairs distributed among G? cells, for an
average of O(n/G?) edges per cell, or equivalently, an
average of O(n%/G*) pairs to test. This is true because
the edges are 1ID, their number in any cell is Poisson
distributed. For a Poisson distribution, the mean of the
square is the square of the mean. The time required to
process all the cells becomes O((n?/G*) (G?/p)) which is
equal to O(n%/pG?). Now, using G = |¢/l), this is equal
to O(n%?*p). Now, O(n*?) is the expected number of
intersections of the edges which is equal to O(k). There-
fore, step 5 will take a time of O(k/p). The point-in-rectan-
gle test of step 6 takes O(1) time per point. This leads to
a time of O((n + k)/p) for step 6 since we perform the
test for every input vertex and every intersection. Steps 7
and 8 also take O(1) time per point resulting in a time
complexity of O((n + k)/p) for both these steps. Step 9 is
performed in O(log; p) time since the sum can be com-
puted using a binary tree of processors. Therefore, the
algorithm for the union and intersection problems has a
time complexity of O(((n + k)/p) + log, p) for an input set
of n rectangles with k edge intersections on a p-processor
CREW PRAM. Thus, the algorithm is linear in the sum
of input and output (ignoring the log, p factor which is
very small). The speedup of the algorithm is linear in the
number of processors.

SIMD Machine Model Analysis

Since the algorithm has been implemented on a CM-2,
it is worthwhile to analyze its behavior on a SIMD machine
model. The CM-2 works on the principle of data parallel-
ism [11, 12]. Data paraliel computing associates one proces-
sor with each data element and performs the same opera-
tion on the data at each processor. The CM-2 at the
Northeast Parallel Architectures Center (NPAC) has
32,768 processors. Each data processor features 64K bits
(8 kilobytes) of bit-addressable local memory and an arith-
metic-logic unit that can operate on variable length op-
erands. A data processor can access its local memory at a
rate of at least 5 megabits per second. The processors
communicate among themselves through a router which
is configured as a hypercube. Each CM-2 chip contains 16
processors and one router node. These nodes are con-
nected as a hypercube. The throughput of the router de-
pends on the message length and the pattern of accesses;
typical throughput values for the CM-2 router are 80 mil-
lion to 250 million 32-bit accesses per second. We did some
timing experiments and found that integer addition takes
10 us, floating point addition takes 25 us, move inside a
processor takes 15 us, and a send-to-another-processor
operation takes 500 us. Each pair of CM-2 chips share a
floating point accelerator which can operate in single and
double precision formats. The language for programming
the CM-2 is C* which is an extension of the C language. It

114

also supports extensions of Lisp and Fortran. The program
development is done on the front-end host (a Vax 8000
machine).

For the SIMD machine model, the analysis of the previ-
ous section will hold true for all steps except the casting
of the grid (step 2). This is because there is no shared
memory and thus the processors having edges need to
communicate with the processors having the grid cells. This
communication cost has to be calculated explicitly for the
analysis. We first present the grid-casting algorithm.

Assume that we have p = 32,000 processors and n =
1,000,000 edges of the input rectangles. Further, assume
that the uniform grid is scaled to make the average edge
pass through ¢ = 3 cells. The algorithm for casting the grid
is as follows:

1. Distribute the edges randomly among the processors.
Each processor will have on an average n/p =~ 30 edges.

2. Determine the cells through which each edge passes.
Each processor will find information about cn/p = 100
cell-edge pairs. At the end of step 1 each processor has
been allocated its equal share of edges and cells. In a data
parallel computer like the CM-2, each data element is
operated on exclusively. Thus, when the processor is work-
ing on an edge or a cell, it is unaware of the other edges
and cells in its memory (as if they were residing on other
processors). This concept of virtual processors occurs when
the size of the data is larger than the number of processors.
Each processor first operates on the edges in its memory
and then starts to process the cells. A processor is an
edge-processor or a cell-processor depending on its current
function. After each edge-processor has determined the
cells its edge passes through, it sends this information to
the corresponding cell-processors. Also assume that the
cells are randomly assigned to the p processors.

3. In one write step, each edge-processor sends a mes-
sage to a cell-processor. A cell-processor randomly re-
ceives information from the edge-processors at an expected
rate of one (cell,edge) pair per step. However, it is quite
likely that several edge processors may attempt to send
information simultaneously to the same cell-processor.
Such a case could occur when the edges of many edge-
processors belong to the same cell. Hence, the processor
assigned to that cell may receive several messages at the
same time.

4. If several edge-processors try to write to the same
cell-processor randomly, any one of them will win, i.e., will
succeed in writing. In fact this is exactly how the send
with overwrite instruction is implemented on the Connec-
tion Machine.

5. Since, an edge-processor cannot know whether it has
won, it must read back the information from the cell-proc-
essor after it sends the information to it. If some other
processor has won, it must keep on trying to write until
it succeeds.

The central issue here is that each edge-processor has
some number (a random variable) of messages (edges) to

KANKANHALLI AND FRANKLIN

send to a cell-processor. At every communication round,
some unknown number of these (ranging from 1 through
p) are delivered to the destination processor. The actual
number delivered in each round is equal to the number of
distinct destinations chosen by the edge-processors. The
problem is then to find out how many communication
rounds are needed on average to deliver all messages.

The average number of communication rounds is the
same as the average number of time steps it takes for an
edge processor to send a (cell,edge) pair message success-
fully. For an estimate of the number of time steps assume
that the number of edges x sent to each cell-processor is
Poisson distributed with probability density function
fi(x) = Ne Mx!. Let its probability distribution function
be called F. We want to find the mean of max;(f,(x;)) which
is the expected number of time steps until the last cell-
processor has received its first message (which signifies the
number of communication rounds required). In our case,
since the number of edge-processors is equal to the number
of cell-processors, the mean A is equal to 1.

Let g(x) = max,(fi(x;)) be a probability density function
and G be the corresponding probability distribution func-
tion. We want to compute the mean of g(x).

Then, if 1 =i < p then G = FP. This is because each
of the f,(x%) is an independent random variable and the
probability distribution function of the maximum of inde-
pendent random variables is the product of the individual
probability distribution functions. We will compute the
median rather than the mean of g(x) since it is easier
to compute.

Therefore, we want to determine the median m which
means that G(m) = 0.5. This implies that F(m) = 277 =
0.99998 for p = 32,000. From the tables for probability
distribution function of a Poisson distribution [1], we find
that m = 8, satisfies the equation.

Thus, we expect eight tries for the last edge-processor
to send its first pair to the appropriate cell-processor. In
other words, we expect on the average that eight communi-
cation rounds will be required to send all messages. Our
implementation results showed that the maximum number
of rounds was 11, and the typical number ranged from 1
to 4.

IMPLEMENTATION AND RESULTS

A sequential version of the algorithm was implemented
in C and run on a Sun 4/280 machine. The program con-
sisted of 400 lines of code. Several steps of the algorithm
were combined for efficient implementation. For example,
casting of the grid was combined with the marking of cells
as covered; i.e., steps 2, 3, and 4 were combined. Similarly,
the point-in-rectangle test was performed for an intersec-
tion as soon as it was obtained; i.e., steps 5 and 6 were
done together. Finally, steps 7 and 8 were combined to
compute the area and perimeter at the same time. Degen-
eracies of a ray being collinear with an edge were handled
by perturbing the ray by a small amount ¢. The sequential

AREA AND PERIMETER COMPUTATION IN PARALLEL

115

TABLE 1
Summary of Timings for Sequential Implementation on a Sun4

Intersections

Database Rectangles of rectangle edges Grid size Total time (s)
VLSI data, part of WaRP! 2,500 25,232 400 5.32
VLSI data, part of WaRPI 25,000 262,058 750 34.28
VLSI data, part of WaRPI 50,000 538,776 1,000 82.76
VLSI data, part of WaRPI 100,000 1,457,593 1,500 199.36
WaRP! chip 454,766 6,941,110 1,000 875.23

algorithm was tested for several database fragments of
the WaRP! chip layout (Fig. 8). The correctness of the
implementation was validated by testing for various special
cases like rectangles with a coincident edge or a vertex.
These tests were used for all implementations to check
whether they correctly compute the area and perimeter.
They also check whether the implementations handle the
special cases and degeneracies correctly or not. The timings
obtained for computing area and perimeter are summa-
rized in Table I. The actual area and perimeter for the
databases are shown only in Table III below, since they
were observed to be identical (as they should be) for each
implementation.

To get an idea of how our sequential algorithm compares
with the worst-case optimal sequential algorithm, we also
implemented the optimal algorithm for the union problem
on a Sun 4/280 machine. This algorithm was coded in C,
as well. The worst-case optimal algorithm for the union
problem was suggested by Bentley [4] and is fully described
in Preparata and Shamos [19]. This algorithm uses the
plane-sweep technique. The vertical edges of the iso-rect-

-

-

[~

o

£

[~

]

[~

-

=

&

o o

9 <]
WARP1

i RPI f)

FIG. 8. The WaRP! chip.

angles are sorted by their X coordinate. This sorted list is
used to maintain the event point schedule. The sweep-line
status is maintained in a segment tree. This algorithm has
a time complexity of O(n log n) which is optimal. The
timing of the algorithm applied on the same data sets and
running on the same machine is given in Table II.

The results of Table I show that for our algorithm, the
growth in time is almost linear. For the optimal algorithm,
the time growth is faster (as can be expected from the
O(n log n) time complexity). It is experimentally observed
that the optimal algorithm performs better on datasets
with less than 100,000 rectangles. However, our algorithm
is superior for larger datasets. Comparing the time com-
plexities of the two algorithms, we see that the optimal
algorithm is always of O(n log n) time complexity while
our algorithm is of O(n) in the average case and O(n?) in
the worst case.

The parallel algorithm was implemented on the SIMD
Connection machine. For the grid casting operation, we
used the algorithm presented in the previous section. The
algorithm was implemented in C* which has an object-
oriented flavor like C++. The major data structure was
the cell domain. This was the domain definition for edges
as well as cells. Domains in C* correspond to the objects
in an object-oriented language. These are analogous to
classes in C++. On the Connection Machine, each instance
of the domain resides on a different processor. Data paral-
lel computation is obtained when the same instruction is
executed in parallel on all instances of the domain. The
pointer to a domain instance is actually the address of the
processor on which that domain instance resides. There-
fore, pointers provide the processor address for communi-
cation. If the number of domain instances is more than the

TABLE 11
Summary of Timings for the Optimal Algorithm on a Sun4

Database Rectangles Total time (s)
VLSI data, part of WaRP! 2,500 3.28
VLSI data, part of WaRP! 25,000 33.74
VLSI data, part of WaRP! 50,000 7254
VLSI data, part of WaRP! 100,000 213.02
WaRPI chip 454,766 1,066.32

116

KANKANHALLI AND FRANKLIN

TABLE II1
Summary of Timings for the CM Implementation
Grid No. of No. of Distr. Exec.
Database Rectangles Area Perimeter size procs V procs time (s) time (s)

WaRPI part 250 0.023 0.81 90 8K 8K 0.11 1.42
WaRPI part 2,500 0.091 2.01 90 8K 8K 13 1.41
WaRPI part 25,000 0.144 4.98 512 32K 32K 12.25 1.59
WaRP! part 50,000 0.173 6.36 512 32K 64K 243 342
WaRPI part 100,000 0.321 1091 512 32K 128K 47.7 7.48
WaRPI chip 454766 0.762 19.33 512 32K S12K 216.31 36.21

actual number of processors, the same physical processor is
shared by several domain instances. Each of these domain
instances represents a virtual processor. The Connection
Machine features powerful reduction operations. These
allow it to compute an associative operator on a variable
on all processors in logarithmic time. The result is stored
in a front-end host variable. For example, the reduction-
sum operation computes the sum of all the instances of a
domain variable and writes the sum to a front-end variable.
This operation was used for step 9 of the algorithm. The
results for the data-sets used in the sequential implementa-
tions is given in Table II1.

Note that the execution times presented in Table III do
not include the time taken to distribute the edge data to
the processors. The distribution time is listed in a separate
column. It took 216 s to distribute the whole chip data to
the CM-2 processors, while it took 36 s to compute the
area and perimeter. The overhead in distributing the data
becomes much less significant if this algorithm is used as
a part of a VLSI design package which would include the
complete circuit verification and logic simulation. Also, a
faster (and parallel) disk system like the CM-2 Data-Vault
would also significantly reduce the I/O time. The total
execution time for the first two data sets is almost the
same. This is because the size of the data in both cases is
less than 8k (the minimum number of processors that can
be used). In fact, the total time taken is not very different
for two datasets of any size less than the number of proces-
sors. If the number of virtual processors exceeds the num-
ber of physical processors, the time taken is roughly pro-
portional to the ratio of the number of virtual processors to
the number of physical processors. The time grows slightly
worse than linear with respect to the virtual processor ratio
because of the overhead in managing the context switching
of the virtual processors. The maximum number of retries
in writing to a common processor ranged from 1 to 11,
while the average varied from 1 to 4. For each dataset, the
area and perimeter computed by all of the three programs
was compared and found to be identical.

CONCLUSIONS

We have presented a new method for computing the
area and perimeter of the union/intersection of a set of

iso-rectangles. The algorithm uses the uniform grid tech-
nique for computing the intersections and the vertex neigh-
borhood technique for computing the area and perimeter.
We have also developed a new efficient point-in-rectangles
test which is used to determine the vertices of the union/
intersection of the iso-rectangles. The method is efficient
and very easy to implement. The sequential implementa-
tion of the method compares well with the optimal algo-
rithm for the problem. The parallel implementation on
the SIMD Connection Machine also exhibits very good
performance. This algorithm could be easily extended to
find the contour cycles. This would require the use of the
planar graph traversal algorithm presented in [9, 14]. Other
mass properties such as the moment of inertia can also be
computed easily. The ideas presented in this paper can be
generalized for other types of polygons and polyhedra.
This algorithm also illustrates how the different parallel
algorithm design techniques can be combined to develop
parallel algorithms for geometric problems.

ACKNOWLEDGMENTS

This work was supported by NSF Presidential Young Investigator
Award Grant CCR-8351942 and NSF Grant CCR-9102553. Part of this
work was conducted using the computational resources of the Northeast
Parallel Architectures Center (NPAC) at Syracuse University, which is
funded by and operates under contract to DARPA and the Air Force
Systems Command, Rome Air Development Center (RADC), Griffiss
Air Force Base, NY, under Contract F306002-88-C-0031. We are thankful
to Jim Guilford and Edwin Rogers of the Computer Science Department,
RPI for the WaRPI chip data. We are grateful to George Nagy of RPI
and Jarek Rossignac of IBM T. J. Watson Research Center for their many
useful comments. Finally, we thank the anonymous reviewers, whose
suggestions have improved the quality of the paper.

REFERENCES

1. Abramowitz, M., and Stegun, I. A. Handbook of Mathematical Func-
tions with Formulas, Graphs, and Mathematical Tables. U.S. Govern-
ment Printing Office, Washington, DC, 1972.

2. Akman, V., Franklin, W. R,, Kankanhalli, M., and Narayanaswami,
C. Geometric computing and uniform grid technique. Computer-
Aided Design 21, 7 (Sep. 1989), 410-420.

3. Asano, T., Edahiro, M., Imai, H,, Iri, M., and Murota, K. Practical
use of bucketing techniques in computational geometry, In G. T.

Toussaint (Ed.). Computational Geomerry. Elsevier Science, Amster-
dam, 1985, pp. 153-195.

AREA AND PERIMETER COMPUTATION IN PARALLEL

4. Bentley, J. L. Algorithms for Klee's rectangle problems. Unpublished
notes, Carnegie Mellon University, 1977.

5. Chandran, S., and Mount, D. Shared memory algorithms and the
medial axis transform. Proc. 1987 Workshop on Computer Architec-
ture for Pattern Analysis and Machine Intelligence, Seattle, Oct. 1987,
pp. 44-50.

6. Cole, R. Parallel merge sort. Proc. 26th Annual Symposium on Foun-
dations of Computer Science, 1986, pp. 511-516.

7. Franklin, W. R. Rays—New representation for polygons and polyhe-
dra, Comput. Graphics Image Process. 22 (1983), 327-338.

8. Franklin, W. R. Polygon properties calculated from the vertex neigh-
borhoods. Proc. Third Annual Symposium on Computational Geome-
try, Waterloo, June 1987, pp. 110-118.

9. Franklin, W. R., and Kankanhalli, M. S. Parallel object-space hidden
surface removal. Comput. Graphics 24, 4 (Aug. 1990), 87-94.

10. Giting, R. H. Optimal divide-and-conquer to compute measure and
contour for a set of iso-rectangles. Acta Inform. 21 (1984), 271-291.

11. Hillis, W. D. The Connection Machine. MIT Press, Cambridge,
MA. 1985.

12. Hillis, W. D., and Steele, G. L. Data parallel algorithms, Comm.
ACM. 29, 12 (Dec. 1986), 1170-1183.

13. Kane, R., and Sahni, S. Systolic algorithms for rectilinear polygons,
Computer-Aided Design 19, 1 (Jan./Feb. 1987), 15-24.

14. Kankanhalli, M. 8. Techniques for parallel geometric computations.
Ph.D. thesis, Electrical, Computer & Systems Engineering Depart-
ment, Rensselaer Polytechnic Institute, Troy, NY, Oct. 1990.

15. Klee, V. Can the measure of Ula;. b;] be computed in less than
O(n log(n)) steps? Amer. Math. Monthly 84, 4 (Apr. 1977), 284-285.

16. Lu, M., and Varman, P. Optimal algorithms for rectangle problems
on a mesh-connected computer, J. Parallel Distribut. Comput. §
(1988), 154-171.

17. Miller, R., and Stout, Q. F. Mesh computer algorithms for computa-
tional geometry. [EEE Trans. Comput. 38, 3 (Mar. 1989), 321-340.

18. Overmars, M. H., and Yap, C. New upper bounds in Klee’s measure
problem. Proc. 29th Annual Symposium on Foundations of Computer
Science, White Plains, Oct. 1988.

19. Preparata, F. P, and Shamos, M. 1. Computational Geometry.
Springer-Verlag, New York, 1985.

20. Pullar, D. Comparative study of algorithms for reporting geometrical

Received November 2, 1991; revised September 13, 1993; accepted June
14, 1994

117

intersections. Proc. Fourth International Symposium on Spatial Data
Handling, Zurich, July 1990, pp. 66-76.

21. Ullman, J. D. Computational Aspects of VLSI. Computer Science
Press, Los Alamitos, CA, 1984.

22. van Leeuwen, J., and Wood, D. The measure problem for rectangular
range in d-space, J. Algorithms 2 (1980), 282-300.

23. Widmayer, P.,and Wood, D. A time- and space-optimal algorithm for
Boolean mask operations for orthogonal polygons, Comput. Vision
Graphics Image Process. 41 (1988), 14-27.

24. Wu, A. Y., Bhaskar, S. K., and Rosenfeld, A. Computation of geomet-
ric properties from the medial axis transform in O{(n log n) time.
Comput. Vision Graphics Image Process. 34 (1986), 76-92.

25. Wu, A. Y., Bhaskar, S. K., and Rosenfeld, A. Parallel computation
of geometric properties from the medial axis transform. Comput.
Vision Graphics Image Process. 41 (1988), 323-332.

26. Zubair, M. An optimal speedup algorithm for the measure problem,
Parallel Comput. 13, 1 (Jan. 1990), 61-71.

MOHAN S. KANKANHALLLI received the B.Tech. degree in electri-
cal engineering from the Indian Institute of Technology, Kharagpur in
1986. He obtained the M.S. and Ph.D. degrees, both in computer and
systems engineering, in 1988 and 1990 from the Rensselaer Polytechnic
Institute, Troy, NY. His doctoral work involved developing techniques
for designing parallel algorithms for geometric problems. These tech-
niques have been applied to computer graphics, CAD, and solid modeling.
Since then, he has been a researcher with the Institute of Systems Science,
National University of Singapore. He initially worked with the visualiza-
tion group on medical imaging. He is now with the multimedia group.
He is currently working on projects in graphics modeling and multimedia
information systems. His research interests include computer graphics
and imaging, multimedia, geometric algorithms, and parallel algorithms.

WM. RANDOLPH FRANKLIN is an associate professor in both the
Electrical, Computer, and Systems Engineering Department and Com-
puter Science Department at Rensselaer Polytechnic Institute. He ob-
tained the B.Sc. degree from the University of Toronto in computer
science and his A.M. and Ph.D. degrees from Harvard University in
applied math. He received an NSF Presidential Young Investigator Award
in 1984 and an RPI Early Career Award in 1987. Efficiently processing
large geometric databases using parallel computers is the goal of Dr.
Franklin’s research. Computational geometry, graphics, CAD algorithms,
and data structures are the main themes.

