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Abstract

A parallel algorithm to determine the Boolean combina-
tions, such as the union and intersection, of polygons is
described. It uses partitioning of geometric space and data
parallelism for parallelization. Intersections between the
edges of the polygons are first determined to partition the
edges into segments that are then classified as either com-
pletely inside, outside, or on the other polygon. Depending
on the Boolean combination an appropriate subset of these
segments is the set of edges in the result.

The algorithm has been implemented on a 16-processor
Sequent Balance 21000 shared memory machine and tested
with polygons containing several thousands of edges. Par-
allel efficiencies ( 100 x T1/(P x Tp) ) in excess of 70%
were obtained consistently. In some cases, efficiencies were
as high as 88% with 15 processors.

1 Introduction

The problem of Boolean combination of polygons is as fol-
lows: Given the boundary of two polygons P, and Pg, we
need to determine the boundaries of the various regular-
ized (no dangling edges) Boolean combinations such as the
intersection, union and difference of the two polygons. Fig-
ure 4 illustrates the problem.

Boolean combinations of polygons are used for clipping
polygons with a view area and computing visible surfaces
in computer graphics, for computing the areas of overlap-
ping layers of circuit elements in VLSI, and in the evalu-
ation of the boundary of objects defined in the Construc-
tive Solid Geometry (CSG) representation scheme. We are
not aware of any other existing parallel algorithms for this
problem [4].

For the purpose of our algorithm the edges can be given
in a random order. The edges are oriented such that the
interior of the polygon lies to their right. The polygons can
have holes and can have more than one disjoint component.
The format of the result of our algorithm is the same as
that of the input.

2 The Algorithm

The main steps in our CREW PRAM parallel algorithm
are as follows:

Step 1:

Compute the points of intersection between the edges
of the two polygons.

Step 2:
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Use computed intersections to partition the edges of the
polygons into sub-edges and classify them as either inside,
outside, or on the boundary of the other polygon. When-
ever possible, as shown in Figure 2 the sub-edges are classi-
fied by an analysis of the orientations of the edges causing
the intersection. If the sub-edge lies on the boundary of
the other polygon, its relative orientation with respect to
the other polygon is also determined. Table 1 shows all
the possible classifications for a sub-edge.

Step 3:

Some edges of one polygon may not intersect the other
polygon and some of the sub-edges may not be classified in
the above step because of collinearity and incidence con-
ditions (see Figure 1). Such fragments are classified with
respect to the other polygon by using a point-with-respect-
to-polygon test as shown in Figure 3.

Step 4:

Determine which sub-edges or edges need to be in-
cluded to obtain the boundary of the desired Boolean com-
bination. A salient feature of our algorithm is that the ad-
ditional cost to determine the result of a different Boolean
combination is a pass through the list of sub-edges.

2.1 Computation of the Points of Intersection

The uniform grid technique [1, 5] is used for computing the
points of intersection in parallel and is described below:

Step 1:

Partition the 2-D region of interest into G x G uniform
square non-overlapping cells as shown in Figure 3. The
fineness of the grid G, is a function of the length of the
edges in the input polygons. Usually G = ¢L™? is a good
heuristic, where L is the average length of the edges and ¢
is a tuning constant.

Step 2:

Insert the edges of the polygon into the cells of the grid,
i.e., determine the (cell, edge) tuples. The cells which an
edge passes through are determined by using a variant of
the Bresenham raster line drawing algorithm [2]. If an edge
passes through a grid corner, it is entered in all four cells
adjacent to the corner.

This step can be executed in parallel because the com-
putation is mutually independent with respect to the edges.
A round-robin partitioning scheme is used to distribute the
edges among the processors. Contention for resources oc-
cur in this step when more than one processor wants to
write into the same cell’s edge list. Collisions are resolved
by using atomic locks to lock the cell data structure when-
ever it is updated.

Step 3:

For every pair of edges e; of P., and e; of Ps in C,,
that intersect at the point (z,y) in C;, two tuples, (e, e,
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PFigure 1: Special Cases Occurring in Polygon Combina-
tion. Edges incident on other edges create duplicate inter-
sections.

z, y, type-of zsect) and (e;, €, z, y, type-of_rsect) are
created. The type of intersection records whether it is due
to a vertex incidence or a proper crossing of edges.

To handle cases of collinearity and incidence (see Fig-
ure 1), overlapping collinear edges and edges which touch
each other at a vertex are not considered to intersect. How-
ever, if a vertex of one edge lies in the interior of the other
edge, the two edges are considered to intersect. An inter-
section due to crossing edges is called proper and that due
to incidence of a vert on an edge is called improper.

This step is executed in parallel by distributing the
grid cells among the processors because the computation is
mutually independent with respect to the cells. To achieve
good load-balancing in cases where certain regions contain
a significant number number of edges, adjacent cells are
given to different processors.

Step 4:

The set of (ei, e;, =, y, type-of _xsect) tuples is now
sorted by e; so that all the tuples of intersection along
each edge are in consecutive locations. A parallel sort [3]
may be used for this purpose.

2.2 Formation and Classification of Sub-edges

This step is parallelized by distributing the (e:, €;, z, v,
type—of _zsect) tuples among the processors so that each
processor is responsible for a few edges. Each edge is di-
vided into sub-edges in the following manner:

Step 1:

The elements of the set of (ei, e;, z, y, type-of _zsect)
tuples corresponding to intersections along the edge, ¢:, to
be partitioned and classified, are converted to a set of (e;,
x, y, type_of_zsect) tuples. The fvertices of e; are also
entered into this set of tuples as they each form a vertex
of a sub-edge. These tuples are sorted by either the z or
the y coordinate of the point of intersection, depending on
the slope of the edge. Intersection points that are within
a distance of ¢ (an infinitesimal) are coalesced.

Step 2:

Consecutive elements from the sorted set of (e;, z, ¥,
typeof_ztsect) tuples now define the vertices of the sub-
edges into which the edge is partitioned. The sub-edge is
oriented in the same direction as the original edge of which
it is a part. If at least one vertex of the sub-edge was the
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Figure 2: Classification of Sub-Edges at an Intersection
Vertex. Sub-edges that are to the left of the edges causing
them are outside the other polygon.

result of a properintersection it is a propersub-edge. Other
sub-edges are improper sub-edges.

Step 3:

Proper sub-edges are classified at this stage by an anal-
ysis of the (e;, z, y, type_of_rsect) tuples responsible for
causing them. Figure 2 shows how the orientation of the
edges is used for this purpose. The classification of im-
proper sub-edges is described in the following section.

2.3 Residual Segment Classification

Unpartitioned edges and improper sub-edges of partitioned
edges are classified by using a point-with-respect-to-polygon
test. Note that we cannot propagate the classifications
from one unpartitioned edge to another along the bound-
aries of the polygons as we do not know the contours of
the polygons. The point-with-respect-to-polygon test (see
Figure 3) is done by passing a horizontal ray from the mid-
point of the sub-edge to be classified to the right extremity
of the scene boundary, to determine the first edge of the
other polygon it intersects. The ray-shooting procedure
ends at the first cell in which the ray intersects an edge
or edges of the other polygon. In this cell, determine the
first edge of the other polygon to intersect the ray. Check
whether the point to be classified lies to the right, left, or
on this edge and classify the sub-edge appropriately. If the
ray does not intersect or lie on any edge, the point to be
classified lies outside the other polygon.

This step is done in parallel by distributing among the
processors, the edges and sub-edges that are yet to be clas-
sified.

2.4 Output Determination

Table 1 shows the elements to be included to obtain the
boundary of common Boolean operations. To use it, select
the operation desired, and then read down that column.
For each row below with a "4” or ”-7, read to the left to
find the type of element to include. A ”-” means that the
element is to be used with its direction reversed and a " +”
means that the element is to be used in the same direction
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Figure 3: Point Classification w.r.t. Polygons using the
Uniform Grid. Points P, and Ps are outside the polygon.
P; is inside. Note that the ray stops at the appropriate
cell.

Table 1: Segments to be Included in Various Polygon Com-
binations

Elements to include PauUPpg | PanFg | Pa—Fp

Part of Py inside Pg +
Part of Py outside Pg + +
Part of Pg inside Py + -
Part of Pg outside Py +
Part of Pa on Pg, in same dir. | + +
Part of Pg on Fa, in same dir.
Part of Py on Pg, in opp. dir. +
Part of Pg on Pq, in opp. dir.

as reported. For example, if the elements for P, U Ps
are needed, all elements of P, which are outside Pg, all
elements of Pg which are outside P,, and all elements of
P, which are on Ps and have the same orientation, i.e.,
the interiors of both polygons lie to the same side of this
element, are included in the result.

This step is done in parallel by distributing the sub-
edges among the processors. Since the edges in the result
can be specified in any order the processors can write their
results in local lists. The local lists are concatenated at the
end to have a single list of edges for the output polygon.

3 Complexity of Algorithm

Let no and ng be the number of edges in P, and Pj,
respectively. Let k be the number of intersections.

The cost of determining the cells through which an edge
n; of length I; passes through is approximately l; x G. Now
LG =cand L =3=7"*"8 l;/(na + ng). In the average
case where L/l; is bounded and thus I; x G is bounded,
the cost for this step is constant per edge as observed in
extensive experiments [5]. Thus the number of (cell, edge)
tuples is O(nq + ng) and the sequential complexity of this
step is O(na + ng).

As shown in [5] the k intersections can be determined
sequentially in O(na + ng + k) time in the average case.

Every intersection chops an existing edge into two parts.
Therefore after the intersection process there are no +ng+

k sub-edges. The cost to classify the sub-edges determine

which sub-edges to use in the output is O(na + ng + k) in

the average sequential case due to the use of the uniform
rid.

. From the discussion above, the sequential complexity of

the algorithm is linear in the sizes of the tuple-sets created,

ie,itis O(ng + ng + k).

The following section shows that the parallel implemen-
tation yields close to linear speedup and hence the par-
allelization of the sequential algorithm is quite efficient.
Pullar [7] has experimentally shown that in the sequential
case the uniform grid technique to compute intersections
performs significantly better on many commonly used data
sets than more sophisticated theoretical methods such as
plane-sweep technique [6], use of quad-trees [8], etc. There-
fore, with the help of the above two observations, the par-
allel algorithm presented does have merit.

4 Implementation and Results

The algorithm was implemented on a 16-processor Sequent
Balance 21000 parallel machine. Shared global arrays were
used to store the edges, sub-edges, list of intersections, and
the lists of (cell, edge) tuples.

The algorithm was tested on a variety of data sets. Fig-
ure 4(a) shows an example where the edges of the two
polygons were generated using a random number genera-
tor, with the restriction that a polygon should not intersect
with itself. In a second example, each polygon consists of a
set of squares. Test case polygons which differ drastically
in shapes and standard deviation of the edge lengths have
been chosen because they are expected to spend different
fractions of time in the various phases of the algorithm. In
the first example, the two polygons have 12,000 and 6,800
edges respectively, and in the second example, both poly-
gons have 7,200 edges each. Due to the limited resolution
of the hard copy devices, the figures show data sets which
have fewer edges than the ones actually used. Figure 4(b)
shows the results of our algorithm for the data set shown
in Figure 4(a).

Figures 5 and 6 show the speedup of the algorithm as
a function of the number of processors for both data sets
discussed. They show that close to linear speedup was
achieved in both cases. This indicates that the total time
taken by the algorithm would continue to decrease as more
processors are added, till other factors such as bus capac-
ity and inherently sequential sections begin to dominate. A
speedup of 13.50 and 10.31 with 15 processors was achieved
for the first and second examples, respectively. Using 15
processors, computing all the Boolean combinations for the
first example took 177.19 seconds, using a 97 x 97 grid. For
the second example, the corresponding time was 18.03 sec-
onds, using a 100 x 100 grid.

Table 2 shows the fraction of time taken and the cor-
responding speedups achieved for each phase of our algo-
rithm for both the examples. Table 3 shows the time taken
for the various phases of the algorithm as a function of the
number of processors and the grid resolution G, for the
first example. This study can be used in estimating the
performance of the algorithm when more processors are
used, and on machines with different architectures. The
following observations can be made by examining Tables 2
and 3.
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(a) Pa is the bigger polygon and
Pg is the smaller polygon.

(b) Union of Randomly Generated Polygons

Figure 4: Data Set: Randomly Generated Edges
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Figure 5: Speedup: Randomly Generated Polygons
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Figure 6: Speedup: Uniform Squares

Table 2: Complexity of Individual Phases of the Polygon
Combination

Step 1 Putting edges in the grid

Step 2 Intersecting the edges

Step 3 Sorting the intersections

Step 4 Forming sub-edges

Step 5 Classifying uncut edges

Step 6 Complete polygon combination

Step Time % Time % Speedup
1 proc time | 15 procs time
Random Polygon Example, Grid Size = 97
1 39.82 1.66 8.48 4.79 4.70
2 2101.27 87.83 141.34 79.77 14.87
3 4.38 0.18 4.04 2.28 | Sequential
4 32.86 1.37 4.85 2.74 6.78
5 214.13 8.96 18.57 10.48 11.53
6. 2392.46 100.00 177.19 100.00 13.50
Square Example, Grid Size = 20
1 7.96 2.25 4.64 13.52 1.72
2 143.14 40.44 10.93 31.84 13.10
3 2.48 0.70 2.48 7.22 | Sequential
4 23.06 6.52 3.28 9.55 7.03
5 177.30 50.09 13.00 37.87 13.64
6. 353.94 100.00 34.33 100.00 10.31

Observation 1:

The overall parallel efficiency (100 x T3 /(P x Tp)) of
the algorithm is more than 80% for the first-example and
about 70% for the second example. For the first example,
the parallel efficiency corresponding to the case which takes
the minimum time for the algorithm is about 85%.

Observation 2:

The intersection and the edge classification phases ac-
count for a large fraction of the total time of the algorithm.
Both these phases show very good speedup (more than 10)
and this is the reason for a respectable overall result.

Observation 3:

The performance of the phase which determines the
(cell, edge) tuples tends to saturate as the number of pro-
cessors is increased. The benefit accrued by using more
processors is negated by the overhead of the locking rou-
tines used to resolve collisions in accessing the shared cell
data structure. Better speedup for this phase is achievable
by using temporary local buffers, which are later copied
into the shared cell-entity list, and then sorting the cell-
entity list by the cell number with a parallel bucket sort [4].

Observation 3:

When just one processor is used, sorting the (e;, =, y,
type-of xsect) tuples takes only a small fraction (less than
1%) of the total time. Hence our use of a sequential sorting
algorithm for this phase does not degrade the performance
significantly when 15 processors are used. However, as
the number of processors increases, even small sequential
sections (such as 1%) in the algorithm limit the maximum
parallel efficiency achievable, and the use of a parallel sort-
ing algorithm will be mandatory.

Observation 4:

The time taken by the grid, intersection, and classifica-
tion phases varies with the grid size. The optimal grid size
depends on the exact nature of the dependence of each of
these phases on the grid resolution. In the sequential al-

.
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Table 3: Variation of Time with Processors and Grid Res-
olution

Speedup = Tj(one proc.)/Tp (P procs.).

Parallel Efficiency = 100 x T1 /(P x Tp)

# Get Get Class. Total Speed Par.
Procs  Xsects Sub Sub Time up Eff.
Edges Edges

Grid Size = 60
1 2199.73 37.70 340.94 2578.37 1.00 100.00
2 1108.22 22.70 222.79 1353.71 1.90 95.23
3 787.32 16.78  146.31 950.41 2.71 90.43
4 558.70 13.88 110.78 684.36 3.77 94.19
5 455.22 12.21 89.51 556.94 4.63 92.59
6 391.92 11.26 7275 47593 5.42 90.29
T 320.32 10.37 62.12 392.81 6.56 93.77
8 281.98 9.87 55.54 347.39 7.42 92.78
9 264.26 9.65 43.09 323.00 7.98 88.70
10 238.85 9.37 44.05 292.37 8.82 88.19
11 205.55 897 40.91 255.43 10.09 91.77
12 200.00 893 a371.25 246.18 10.47 B87.28
13 180.02 8.95 35.05 224.02 11.51 88.54
14 -164.22 8.86 33.27 206.35 12.50 89.25
15 154.80 8.91 29.80 193.51 13.32 88.83

Grid Size = 80
1 2181.56 37.32 258.69 2477.57 1.00 100.00
2 1088.72 22.46 165.05 1276.23 1.94 97.07
3 730.29 16.52 109.78 856.59 2.89 96.41
4 577.21 13.70 82.55 673.46 3.68 91.97
5 487.18 12.02 67.42 566.62 4.37 87.45
6 368.53 11.16 55.73 435.42 5.69 94.83
7 315.48 10.37 47.26 373.11 6.64 94.86
B 302.28 9.88 41.00 353.16 7.02 87.69
9 246.92 9.61 37.42 293.95 8.43 93.65
10 254.21 9.31 33.00 296,52 8.36 83.55
11 203.65 9.28 30.36 243.29 10.18 92.58
12 195.70 9.30 27.57 232.57 10.65 88.78
13 174.08 9.28 25.45 208.81 11.87 91.27
14 162.21 9.03 24.11 185.35 12.68 90.59
15 166.63 9.11 22.27 198.01 12,51 83.42

Grid Size = 100
1 2162.23 37.19 214.60 2414.02 1.00 100.00
2 1087.36 22,40 133.46 1243.22 1.94 97.49
3 724.75 16.57 80.03 831.35 2.80 97.19
4 556.26 13.52 67.40 637.18 3.79 95.11
5 463.92 12.06 54.55 530.53 4.55 91.38
6 364.89 10.98 45.33 421.20 5.73 95.92
T 314.69 10.28 38.51 363.48 6.64 95.27
8 279.68 9.84 34.93 324 .45 7.44 93.39
] 246.57 9.56 29.84 285.97 8.44 94.18
10 234.75 9.32 26.55 270.62 8.92 89.57
11 202.55 8.98 25.03 236.56 10.20 93.15
12 189.90 9.06 22.19 221.15 10.92 91.34
13 173.10 8.94 20.87 202.91 11.90 91.89
14 161.14 8.68 20.02 189.84 12.72 91.21
15 160.53 8.93 18.42 187.88 12.85 86.01

gorithm for segment intersection, the opposing nature of
this dependence for the grid and intersection phases was
the reason for the relative insensitivity of the total time
as a function of the grid size [5]. A similar behavior is
observed in the parallel polygon combination algorithm.
In addition, since the various phases of the algorithm yield
different speedup curves, the grid size which minimizes the
total time can differ with the number of processors used.
Table 3 shows that when either 5, 8, or 15 processors are
used, the 60 x 60 grid is faster than the 80 x 80 grid. On
the remaining occasions, the 80 x 80 grid is faster.

We expect the current implementation of our algorithm
to show comparable results on any type of data set for
which the sequential algorithm spends large fractions of
time in the intersection and classification phases.

5 Conclusions

A parallel Boolean polygon combination algorithm that
combined the use of the uniform grid technique, a sort,
and data partitioning for parallelization was presented.
Parallel efficiencies that were consistently above 70% and
speedups between 10-13.5 with 15 processors were obtained
on the Sequent Balance 21000 machine.

As shown in [4] these ideas can be extended to de-
termine Boolean combinations of polyhedra and to dis-
tributed memory machines such as the Intel Hypercube.
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