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COMPUTER SYSTEMS AND LOW-
LEVEL DATA STRUCTURES FOR
GIS

WM. R FRANKLIN

This chapter is an introduction to several aspects of computer science that are
applicable to Geographical Information Systems. First, some of the choices in
computer sysiems and the likely coming advances in hardware and software are
discussed. Then some of the general properties of low-level data structures, with
principles like abstract data structures versus their implementations, and examples
like hash tables, extendible arrays, uniform grids and Voronoi diagrams are
considered. Next there is an introduction to algorithms analysis, its limitations when

applied to practical problems, new trends such as randomized algorithms and
implementation considerations. This is followed by an introduction to software
engineering, including the traditional waterfall model, the newer rapid prototyping
technique and the importance of profiling the program to improve it.

COMPUTER SYSTEMS

Classification of systems

Computer systems may be partitioned by their
memory size and /O (input/output) speed into
personal computers, workstations, minicomputers,
mainframes and supercomputers. In general, within
a class the larger machines may be more cost
efficient, but between classes of machines, the
smaller classes are more cost efficient. That is, it is
most economical to run a computation on the
smallest class of machine that will supportit. A
workstation in the early 1990s typically has the
following features:

® 16 megabytes (i.e. about 16 million bytes) of
real memory;
® three times as much virtual memory;

® 2 500 megabyte hard disk;

® a bit mapped display with 1 million pixels;

® a 10 MIPS (10 million instructions executed per
second) processor. However, note that MIPS is
only a rough measure of speed, and differences
of under 50 per cent can probably be ignored.
Floating point performance is also important;

® a 32 bit wide I/O bus to carry data between the
processor, memory, and the input/output
devices;

® atimesharing operating system, such as Unix
(AT&T Bell Laboratories 1978, 1984;
Quarterman, Silberschatz and Peterson 1985);

® high level languages, such as C, Modula, or
Fortran-77.

Optional, but increasingly common features include
the following:

® colour and grey-scale displays;

¢ CD-ROM:s (compact disk-read only memory)
and optical disks (laser disks) to store large,
fixed databases up to about kgigabyte (10°
bytes);
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® database tools, or ‘fourth generation languages’,
such as Oracle. object-oriented languages such
as C++, artificial intelligence aids such as
expert systems, and numerical libraries such as
IMSL or NAG (Numerical Algorithm Group).

A personal computer, in contrast, would have
each measure of capacity, such as memory and disk
space, several times smaller. Each of these
capacities and speeds is increasing at 20~ 100 per
cent per year. The contrast in cost between disk and
main memory is notable since while disk is 10000
times slower to access, it is only 10 times cheaper.

All this means that a 100 megabyte database
can now be processed easily on a workstation. For
larger databases, the workstation can be
supplemented by access to a supercomputer.
Extremely large databases. such as those obtained
from earth observation satellites and now stored on
magnetic tape. can be over 50 Tb (terabytes, 10'*
bytes) and are still growing. Mel er al. (1988) give a
view of the personal computer in the year 2000.

For most GIS researchers, the workstation is
probably the relevant machine. The personal
computer currently has too little memory for
processing large databases and., unlike
workstations, often does not have virtual memory
or a timesharing environment. In addition, after
peripherals are added, personal computers are
almost as expensive as workstations. Current
workstations have as much memory and are as fast
as the mainframes of a few years ago. Because of
their much better price performance. workstations
have made minicomputers and mainframes obsolete
for many purposes.

Hardware advances

Trends that will affect computer systems in the next
few years include hardware advances like parallel
processing, practical storage of audio and video,
and more efficient communication. Although
massively parallel machines such as Thinking
Machines Corp’s 64 000 processor CM-2 exist, they
are not yet recommended for production use
because of their cost, scarcity, and lack of software.
Operating systems are still rudimentary; for
example, there may not even be code to buffer or
efficiently route messages between processors. In
the future, a generally useful parallel machine will
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probably involve dozens of powerful processors,
such as might be used alone in a workstation. and
each processor will have a considerable amount of
memory. At the present time. the best method
actually to compute something is to use a fast serial
machine. The best reason for a parallel
implementation is to learn the techniques for the
time when parallel machines become useful. This
must happen sometime since the speed of a single
processor is limited by physical laws such as the
speed of light, some machines already being so fast
that an electrical signal can travel only 10
centimetres during one cycle of the central
processing unit.

Parallel machines may be classified by whether
the multiple processors execute the same instruction
- SIMD (single instruction multipie data), or
whether each processor may execute a different
instruction — MIMD (multiple instruction multiple
data). SIMD machines, such as the CM-2, are
simpler since the same instruction is decoded and
then broadcast to all the processors which have
separate memories. To implement an if-then—else,
processors may also be selectively disabled from
executing instructions. In the following code:

7

if (test) then true-code else false-code

each processor executes test to compute a bit. Then
those processors whose bit is 0 disable themselves
and the remainder execute true-code. Finally. those
processors whose bit was 1 disable themselves,
while the others enable themselves and execute
false-code.

A MIMD machine is like a Hypercube or
Sequent, or like a roomful of workstations. Each
processor executes a different program, and
communicates with other processors by some
network. This is more powerful, but also more
expensive per processor than a SIMD machine.

Practical storage and processing of audio and
video data will arrive in the next few years, assisted
both by larger mass storage, and by sufficient
processi'ng power to compress and expand the data
in real time. This will be assisted by faster networks
- several hundred megabit per second local area
networks and megabit per second wide area
networks buiit on telecommunication standards
such as [SDN (integrated services digital network),
a standard for future communucations.

Computers typically have large flat address
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spaces of main memory. which means that a
programmer can address any one of eight or more
Mb equally easily. However, since the processors
are faster than the /O bus. the processors also have
on-chip caches of typically 8 Kb to contain the most
recently used data. Therefore, programs whose data
references hit the cache more often will be more
efficient. Even if memory were free, programs
would still need to conserve it. Indeed, there is a
cost associated with retrieving data over the bus and
larger data sets mean fewer cache hits.

Software advances

The term “software engineering’ was coined some
years ago in an attempt to imbue the software
production process with some of the rigour
associated with traditional engineering. That has
been a limited success. The goal has been to devise
more and more powerful stratagems so that
software production becomes more and more
automatic, The continued failure to achieve this has
led Brooks (1987) to suggest that automated
software production is not possible because the
problem is inherently difficult.

Whatever software advances occur in computer

-systems in the future are likely to be less spectacular

than in the past. Artificial intelligence is not having
the impact predicted a few years ago and formal
methods of program design are still being extended
(Hoare 1987). Cohen (1988) describes logic
programming techniques that look promising for the
future. Some applications to geometry and the map
overlay problem are described by Franklin and Wu
(1987) and Franklin er al. (1986). The most
important advance would be the more widespread
availability of tools that have existed for many
years, such as code management and debugging
tools, WYSIWYG (what you see is what you get)
text processors. database managers, fourth
generation languages, and so on (Boehm 1987; Rich
and Waters 1988). Many universities have no access
to such tools as already exist.

The other significant software advance is the
spread of standards. such as the Unix operating
system and X Windows. Standards allow portability
not only of the program to other machines and
projects, but also of the programmer to other
projects. Frequently a standard is not quite state-of-
the-art, such as vendors’ proprietary versions of

Fortran that each contain a few features unique to
that vendor that are not in the standard. A
programmer must consider whether the extra
advantages of these features compensate for being
locked in to that vendor.

LOW-LEVEL DATA STRUCTURES

Abstract data structures versus their physical
realizations

When designing a data structure, it is important to
separate the abstract data structure from its physical
realization (Aho, Hopcroft and Ullman 1983). This
separation is assisted by newer languages with
information hiding, such as Ada (Pyle 1985), or
object-oriented languages, such as C++
(Stroustrup 1987) and Smalitalk (Goldberg 1984).
However, these newer languages are usually not
universal enough, or are too inefficient, to use in
GIS systems. Programmers must, therefore, enforce
this separation themselves.

The abstract data structure is defined by the set
of elements that are to be stored, the operations to
be performed on them and, perhaps, the possible
error conditions. For example, consider the
problem of choosing a data structure for
representing a map, or planar graph.

L. Elements: Polygons representing states or
other regions.

2. Operations:

(a) Draw the whole map or any polygon.

(b) Verify the internal consistency of a
map.

(c) Calculate any property of a polygon,
such as area.

(d) Find the adjacent polygons to a
polygon.

(e) Scale a map or transform it to another
coordinate system.

(f) Overlay two maps.

3. Design criteria:

(a) Amount of storage uséd.
(b) Likelihood of errors.
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(c) Ease of implementation.
(d) Efficiency of execution.

The physical realization of the data structure covers
how it is actually implemented. There are two
major choices here, depending on the major
element of the database.

® Polygon based: The polygons are stored
explicitly, as a sequence of points. Thus each
point on an interior edge is stored twice, once
for each of the adjacent polygons. With this
method, it is easy to operate on individual
polygons. However. more storage is used, and
inconsistencies can arise if the two versions of
each point are not identical down to the last bit.

® Fdge based: Here the edges or chains
separating the polygons are stored. The
polygons exist only in the ID numbers used to
refer to them. Each edge contains the numbers
of its two adjacent polygons. This method is
more compact than the previous one. However,
operating on one polygon requires finding all
the edges on it.

With the edge-based method there are two choices.
whether to store a complete chain of points, or to
store each edge separately. The former is more
compact but has variable length data elements that
are more complicated to work with.

A clean implementation of the logical map data
structure would not allow most of the program
direct access to the data. [nstead the desired
operations would be decomposed into the primitive
operations like the following:

¢ Return the total number of polygons.

® Return the external name of the polygon that is
internally &.

® Return the number of points in polygon i.

® Return point j of polygon i.

Then a user-callable procedure would be made
available for each primitive operation.

The advantage of this separation of logical
from physical realization is that the implementation
may be changed as the system evolves, as
experience with the data structure’s actual use is
obtained by performance monitoring. The prime

disadvantage is that in a low level language. such as
one without macros, the clean implementation of
this concept requires many subroutine calls, which
is clumsy and slow.

Examples of data structures

Some examples of generally useful data structures
are presented in this section. For a broader guide to
the field consult any standard text. such as Knuth
(1973) or Aho, Hopcroft and Ullman ( 1983).

Hashing

In abstract terms, a hash table is a mapping from a
key, such as a character string or a number, to an
entry in the table. Unlike an array where the
elements are addressed 1.2,3...., in a hash table, a

‘list of 10 countries can be accessed by their names,

or information about 100 people can be stored and
accessed by their 9 digit social security number. The
following is a brief description that conveys the
flavour of hashing while omitting complexities and
options.

Suppose the key K is an integer in the range
1...B]. If there are N records to store, a table of size
M = 3N/2 or sois allocated. The problem is to
reduce a key ranging up to B to a table location L
ranging up to M. The simplest method is to use L =
(K modulo M) + 1, where modulo is the remainder
function (e.g. 10 modulo 3 = 1 because dividing 10
by 3 leaves a remainder of 1). The + 1 occurs
because modulo returns numbers in the range 0...M
— 1] whereas the table is assumed to be indexed
from 1 to M.

The collision of two different records that hash
to the same location can be solved in two ways. All
the colliding records may be chained together with a
linked list. Alternatively, the colliding record may
be placed in the next available location, which
means that when retrieving a record its hash
location must be computed and successive locations
checked until a free location is seen. If the table is
nearly full, then runs of consecutive used table
locations can grow surprisingly. If the load factor,
or fraction of table slots occupied, is «, then the
average number of slots that must be examined in
an unsuccessful search for a key is (1 + 1/(1-a)*)/2.
In our example, with a = 2/3, this is 4-5 slots. [f . =
0.9, this would be 50, which is ldtaliy unacceptable.
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On the other hand, if the overflow records are
chained together, then the pointers occupy storage.

[f the key is a character string, such as
Switzerland, then each 4 bytes can be considered as
an integer. In this case, the three integers which
have bit codes corresponding to Swit, zerl, andand
must be combined into one integer. perhaps by
multiplying the ith integer by i. ignoring overflows.
adding them, and taking the absolute value. Then
the above modulo process can be used.

Hash tables are very efficient for inserting and
retrieving records when the total number is known
in advance. They are less efficient for deleting
records and for growing tables dynamically to an
initially unknown size, since the whole table must
be recomputed in a larger area whenever it
overflows. It is impossible to retrieve the records in
order from a hash table without sorting them. [f
these operations are necessary, a more complicated
data structure, such as a B-tree, is preferable.

Extendible arrays

Often there is a requirement to use a logical array,
where read and write elements are keyed by the
subscripts which are small integers from 1 up. but
where there is no a priori idea of how large the
array will grow. None of the conventional choices
for implementation are appealing. A binary tree
carries a large time overhead of 8(log(N)) to access
an element, if there are already N elements (the
notation 8(log(/V)) means that time rises with the
logarithm of the number of elements. It also carries
a coding overhead in that unless the tree is kept
balanced by rotation, that access time may
deteriorate to 8(N) (rising more steeply, in
proportion to N). A hash table has the earlier
mentioned problems. A simple array requires
advance estimation of the maximum likely N, and
the array must be copied over if this is exceeded.
Therefore, this last choice is not often used.
However, the extendible array, where the array
is reallocated and recopied when it overflows, is
actually quite efficient. Assume that each such time,
a new array is allocated that is bigger by a factor of
a. Then if the array grows from a sizeof L upto a
very large size, the average element is copied only 1/
(a-1) times. If the array is doubled each time, then
the average element is copied only once. Indeed,
the last half of the elements are never copied after
being first inserted. The previous quarter are copied
once, the previous eighth are copied twice, and so

on. [n a language such as C, the array can be grown
and copied with one procedure call. to realloc. If
there is a restricted language with only static storage
allocation at compile time, then special-dynamic
allocation routines must be implemented to
suballocate storage from a large static array.
However, this must be undertaken for any of the
methods.

Thus extendible arrays are an efficient method
for implementing arrays when the initial size is
unknown.

Uniform grids

A fundamental low-level operation in overlaying
maps and testing for interference is that of finding
all the intersections among a large set of small
edges. The theoretically optimal method is by
Chazelle and Edelsbrunner (1988), which finds all K
intersections of N edges in time 8((K + N)logN). It
has been implemented, but is complicated and is not
obviously parallelizable. A simpler method using a
scan line is by Bentley and Ottmann (1979). with
slightly larger time. Note that if K = N%/2 then this
is worse than the naive time of 8(N?).

The uniform grid of Franklin et al. (1988, 1989,
1990) is an alternative method. It is simple to
program, parallelizable, and has expected execution
time 8(K + N). The worst case time is 8(N?), but
this has not been observed in practice. The uniform
grid is a flat, non-hierarchical grid overlaid on the
edges to be intersected. The grid size is a function of
the number and length of the edges. The actual size
is not critical; a factor of three variation either way
from the optimum tends to increase the execution
time less than 50 per cent. The method is fast even
for unevenly spaced data; hierarchical methods such
as quadtrees are not necessary here. When
implemented on a 16 processor Sequent Balance
21000, the program runs 10 times as fast as when
one processor is used. When implemented on a 32
processor hypercube, the communication costs are
only one-third of the total time, and the slowest
processor to finish is only twice as slow as the
average time. On a Sun 4/280 serial machine,
finding all 144 666 intersections of the 116 896 edges
of the US Geological Survey’s Digital Line Graph
sampler tape (of Chicamauga, Tennessee) takes
only 37 CPU seconds.

The technique also extends to higher level
operations, such as finding the areas of the
intersection polygons resulting frém overlaying two
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maps (Franklin 1990). When applied to two maps,
the conterminous states of the United States. with
1081 vertices, 892 edges. and 49 polygons. and July
isotherms at 10°F intervals, with 920 vertices. 892
edges, and 6 polygons, calculating the areas of all
the output polygons, once the data had been read
in, took only 7.2 CPU seconds on a Sun 3/60.

Voronoi diagrams

How should a set of N (one-dimensional) numbers
be stored so that the closest existing number to a
new one can be located? The obvious data structure
is a sorted array. Sorting the array to build the
structure takes Tproproceving( V) = B(NMogN)., while
determining the closest old number to some new
one takes T..,(N) = 8(logN) with a binary search.

A Voronoi diagram (Preparata and Shamos
1985: Sedgewick 1983) allows N 2-D points to be
stored so that it is possible to insert a new point,
delete a point, determine the closest old point to a
new point. and perform many other location
problems in time T,,...(N) = 8(logN). The
Voronoi diagram, which can be built in
Tpreprocessing(N) = 8(NogN), partitions the plane
into a set of polygons, also called Thiessen
polygons, one around each input point. The dual of
this diagram., called a Delaunay triangulation, has
an edge joining a pair of original points whenever
their polygons are adjacent. This is useful for
interpolation of a value at any point given the values
of some function only at the set of N randomly
located input points. To calculate the function value
at the new point, interpolate the values at the
vertices of the Delaunay triangle containing it.

Generalized Voronoi diagrams allow other
objects than just points (Drysdale 1979). A scene
with points, edges, circles, and so on, can be pre-
processed so that when a new point is presented, the
closest old object can be determined quickly.
However, generalized Voronoi diagrams are much
more complicated to implement.

Large databases

Many data structure textbooks are not completely
appropriate for the size of data structures that are
reasonable to use today, where a workstation may
have several megabytes of memory and many
megabytes of disk. For example, consider that
perennial favourite the binary tree, if used to
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organize | million 4-byte integers. [f the pointer to
each integer also requires 4 bytes. then this tree
would occupy 8 megabytes of memory. Why would
this tree be the wrong solution?

If the tree were perfectly balanced. it would be
20 levels deep, so that accessing any element would
require following 20 pointers. probably to 20 widely
separated locations in memory. This would activate
20 pages in the cache or virtual memory handler.
Worse, the tree could not be perfectly balunced if it
were being modified. A practical tree here would be
an AVL tree (Aho, Hopcroft and Ullman 1983),
which allows the left and right sub-trees of each
node to differ in height by up to one. An AVL tree
with | million elements would be perhaps 35 levels
deep, which is even worse. Basically a binary tree is
obsolete for large databases.

A B-tree, where each node can have from M to
2M—1 sons for some fixed M, such as 100, would be
much more efficient. and in this case would result in
a tree about six levels deep. The B-tree can also be
used to organize data on a disk. If M is made so
large that one node is the size of one track of the
disk, or whatever the most efficient quantity of data
is to read, and if the first two levels or so of the tree
are stored in main memory. then any element of a
10” byte tree can be read in one or two disk
accesses.

For smaller data sets, the best version of a
binary tree is the splay tree (Tarjan 1987). Here the
tree is readjusted during every query to move that
record to the root. This is not so bad as it sounds
since locating the record requires 8(logN) work and
moving the record to the root requires only
additivnal work proportional to that. This causes
the average access time to be minimized even when
some elements are retrieved more often than
others.

ALGORITHMS

Theoretical analysis

Deep theoretical analysis of algorithms and data
structures is desirable when possible. Some
standard books dealing with this include Aho,
Hopcroft and Ullman (1983) and Knuth (1973).
Tarjan's Turing Award lecture (Tarjan 1987) is also
excellent. Unfortunately, this analysis is subject to
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error. Even highly selective theoretical computer
science conferences and monographs have
published repeated errors. A more serious
limitation. at the moment, is that what is
theoretically analysable is not always what is most
needed. Cartography needs expected time analysis
as much as worst case analysis: however, expected
time analysis is still almost impossible for
sophisticated data structures.

Some useful notation for theoretical analysis
follows. T(N) = 8(f(NV)) means that the worst-case
execution time of an algorithm for all problems of
size N grows proportional to AN) as N—=. T(N) =
B(f(N)) means that the execution time ETows at
most as fast as f(N). and T(N) = Q(AN)) means
that it grows at least as fast as f(N). Thus since it is
known how to multiply two N x A matrices in cubic
time. and that it takes at least quadratic time,
therefore. here 7.l N) = 6(N-) and Toesseins
muil N) = Q(N'). The actual minimum time is not
known. This notation. which was devised to hide
dependencies of the time on particular machines.
can hide too much. If one algorithm's time is V-,
while another’s is [ 00 000N?, then the latter is
asymptotically faster. but practically slower for ¥ <
1000000. Finally. it is necessary to distinguish
between a particular problem and the various
algorithms to solve it. The problem of matrix
multiplication has several algorithms, from the
naive, with 7,,,.(N) = 8(N”), to the Schénhage-
Strassen (Schonhage and Strassen 1971), with
Tss(N) = 0(N*%'), to even (asymptotically) faster
ones.

Expected time analysis is difficult in
cartography because the statistical distribution of
the input data is not well characterized. However. it
is known that cartographic data can be distributed
much worse than if it were independent and
uniform. Consider, for example, the edges of a map
of a city such as Chicago, where each edge is one
block of a street. Along each street there will be
dozens of correlated, collinear, edges, which could
not happen if the edges were random. This severe
degeneracy can cause problems for a scan line
algorithm. _

The US Geological Survey’s Digital Line
Graph sampler tape illustrates how statistically
unusual GIS data can be. If the 116 896 piecewise
straight edges are scaled to fall in a 1000 X 1000
square, then the mean edge length is 2, but with a
standard deviation of 8, which is a very skewed

distribution (since there are no negative lengths).
Another unusual feature is that 34 edges have zero
length. to six significant digits. This non-
randomness. which is typical of cartographic
databases. can destroy an algorithm that makes
uniformity or normality assumptions.

Randomized algorithms

A powerful recent concept in algorithm design is
randomization, that is. the algorithm ‘fips a coin’
and alters its actions depending on the outcome. A
simple example of this is when running a scan line
up a database of city streets. where there is one
edge per block. For each position there might be a
requirement to process the active edges, or those
which cross that scan line. If both the scan line and
the streets are horizontal, when the scan line
coincides with a long street then there will be many
horizontal active edges, If the program is comparing
all active edges against each other, perhaps to build
up chains, then this can be a serious problem. The
solution is to rotate the map by a random angle
before processing.

Another example occurs in the operation of
sorting N numbers by a quicksort. Here it is possible
to proceed by divide-and-conquer, a common
method of algorithm design. A pivot number is
chosen from the set and the set is partitioned into
those numbers smaller than, those equal to, and
those larger than the pivot. The first and last subsets
are then recursively quicksorted. If all inputs are
equally likely then the average time is E(T(N)) =
6(MogN). which is quite good. The problem occurs
if the pivot element is the smallest number in the
set, which will happen if the set is already sorted,
which is not so unusual, and the first element is
chosen as the pivot. Now T(N) = 6(N?). which is
totally unacceptable. However, if the pivot element
is selected randomly, there are now no bad inputs.
Even if the set is already sorted, E(T(VM) =
B(MogN), where there is averaging over different
outputs of the random number generator. Every
time the algorithm is run on some fixed input. it will
take a different time. However, the average of all
those times for the same input is fast.

The virtue of simplicity

For many low-level data structures and algorithms,
it has been determined after extensive analysis that
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the best choice is the simplest. For example, in

random number generation, a linear congruential
generator:

X =(TPx)mod (2> - 1)

is better than many more complicated methods.
including those used in many packages and
textbooks (Park and Miller 1988). The coefficients
in the above equation were chosen with great care
to achieve this.

In hashing, a simple modulo operation for the
key to bucket transformation is excellent, and for
handling overflows, similar simple methods are
adequate. A second example may be used to
illustrate this point. In virtual memory paging, an
important question is which current page is to be
paged out so that a new page may come in to satisfy
a page fault. The simple concept of writing out the
LRU (least recently used) page is quite adequate.
Finally, there are many problems, called NP (non-
deterministic polynomial time), for which the best
known (deterministic) algorithm requires
exponential time (Garey and Johnson 1979).
However, many of them, such as the travelling
salesperson problem, have obvious heuristics with
which an almost optimal solution can be found in
linear time. '

Finally, when locating a number in a long
sorted list, guessing where the number should be
usually beats a binary search (Perl, Itai and Avni
1978). For example, when trying to locate the
number 73 in a list of 100 independent numbers
ranging from 1 to 1000, the first probe should be at
the seventh number, not at the fiftieth. With this
interpolation searching, if the numbers are
independently and uniformly distributed, then the
average number of probes to find a numberina
sorted list of N numbers is E(T,,.,) = log,(log,N),
although the worst case is Ty, < N. This can be
compared to the average and maximum in a binary
search, which are both T, = log,N. For example,
if N = 1 million, then binary search takes 20 probes,
while interpolation search may take about five.

Of course heuristics do fail at times. In
addition, simple concepts may not be simple to
implement in practice; as Einstein said, ' A theory
should be as simple as possible but no simpler’.
When attempting to wring the last bit of
performance out of a system, a design might get
quite complicated. However, if machine speeds are
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doubling each year. then a 40 per cent increase in
speed can be achieved by waiting six months for a
new machine, which is better than spending more
than six months getting that same degree of
improvement from the software.

Implementability

A major advantage of simplicity is that the system is
then more implementable. Instead of programmers
spending all their time getting the system just to
compile correctly, there is time to profile and
improve the working system. [n addition. the
largest feasible system is determined by the point at
which details are forgotten and new bugs are
created as fast as system details are remembered
and old bugs fixed. Simpler systems mean that the
largest feasible system will have greater
functionality.

Size-time trade-offs

Many data structures and algorithms have different
possible versions depending on the relative costs of
memory versus CPU cycles. For instance, consider
allocating memory to a routine whose needs will
gradually increase, as in the extendible array
described above. When the block that has been
allocated is full, a bigger region must be allocated,
the complete old block copied over into the new
region and any pointers updated. If bigger blocks
are allocated then more memory is used but
reallocations will be fewer. Another example occurs
in storing and transmitting digital images. It is
possible to compress typical 8 bit per pixel black and
white images by a factor of ten with little visible
degradation of the image quality. A video image
such as a TV transmission can be compressed by a
factor of 100 by the expenditure of considerable,
and so far impracticable, processing. In the design
of hardware, such as multipliers, there isalso a
continuum of trade-offs between multiplication time
and cost.

Nevertheless, sometimes smaller is also faster.
Many small computers are limited by the speeds of
the /O bus and memory since those technologies
are advancing more slowly than processor
technology. If some very big, often accessed, data
structure can use, say, 2 byte integers instead of 4
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byte integers, then I/Q requirements are halved.
and twice as many data elements will fit in the
cache, raising the cache hit percentage. The
disadvantage is that the program will hit a hard limit
when 2 bytes becomes insufficient. Hard limits such
as this are the most common reason for the death of
a type of hardware. Consider, for example, the
€normous problems caused for users of IBM PCs by
Intel's decision to use first 16 and then 20 bit
addressing for the CPU in the PC. This restricts the
system to 2%, or | megabyte of memory. After the
operating system’s requirements, the user is left
with only 640 Kilobytes of memory. Thankfully, the
processors in the IBM PS/2s have removed this
restriction.

Given relative costs of memory, disk space and
processing power, it is possible to calculate how
often a word in memory must be referenced before
it is better to swap it out to disk, and the trade-offs
between storing and recalculating intermediate
results. A good summary of data compression
techniques, useful for implementing the tradeoff. is
Lelewer and Hirschberg (1987).

SOFTWARE DEVELOPMENT STRATEGY

Waterfall model

The traditional software development strategy is the
waterfall model, named from a popular method of
diagramming the process, which has several stages.
This can be illustrated with the problem of
determining the area of New York State above 1000
metres elevation.

1. Requirements analysis: Global analysis of the
problem, deciding whether to use satellite
photographs, US Geological Survey databases.
or even renting a plane, flying around the state
and estimating by eye. This step is about 5 per
cent of total life-cycle system cost.

2. Specification: Deciding the user-visible parts
of the program, such as commands and
database formats - 5 per cent.

3. Design: Designing the internal details of the
system, such as data structures and subroutine
interfaces - 10 per cent.

4. Coding: Actually writing the programs - 5 per
cent.

5. Debugging and testing: Getting the code to
work, and, if verification and validation are
involved, proving its correctness. The system is
released to the customer at the conclusion of
this step - 25 per cent.

6. Maintenance: Modifying the released system
to account for new hardware or users’ needs. or
to fix newly discovered bugs - 50 per cent.

This model is best when it is possible to predict in

advance the system requirements. It is now being
partly replaced by rapid prototyping.

Rapid prototyping

‘Here asmall prototype with stubs of the major

components is readied for the user's comments.
Then new functions are gradually added. This has
the advantage of better feedback from users. who
may be unable to specify the requirements in
advance, but will know what they want when they
see it. However, the evolutionary development may
allow major irreversible decisions to be taken
before all the implications are known, and this can
lock the designer into a bad choice.

For example, suppose a mapping display
system is being designed. It might be pointless to
specify everything, such as legend format. in detail
in advance, if it is necessary to see some finished
maps to know whether the total effect was
appropriate. On the other hand, through lack of
planning ahead, a data structure might be picked
that does not allow later program porting from a
low resolution colour display device to a high
resolution black and white one. This might happen
if certain special, unused, values were used for the
colour pixels to code for properties such as the
pixels used for the legend. A higher resolution
device, with only 1 bit per pixel, would have no
unused pixel values and allocating extra bits per
pixel might not be possible because of the total
number of pixels.

Another case of an innocent early decision
causing later problems appears when porting a
system written for European users into Japanese.
The idea that message characters are chosen from a
small possible set, such as ASCII "each character
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representable in 7 or 8 bits, is so thoroughly
embedded in most program libraries that converting
to Kanji is a major task. Even the appropriate data
structures are totally different. Dispatch tables,
which are used to parse input text by branching on
each character, are more suited to 128 entries than
to 2000 entries.

Profiling and improvement

It is impossible to predict in advance how most
systems will be used and which parts will consume
the most resources. Thus it is important to profile
the system in actual use to determine which parts
should be improved. Then the data structures and
algorithms that are too simple can be selectively
upgraded to more complicated but faster versions.
This is how Unix was originally developed. It was all
written in C, then profiled and about 10 per cent
recoded in machine language.

In Unix, typical profiling tools include /int to
detect most syntax errors and to perform an
elementary static flow analysis to detect unused
variables, prof to profile the CPU time used in each
procedure. and fcov to count the number of times
each statement is executed (Sun Microsystems
1985). With these tools the critical parts of the
system can selectively be improved.

Profiling a system, perhaps by adding extra
counters and timers, is also critical in understanding
how a complicated program is actually behaving
inside. For example, how full does a hash table get?
How many collisions occur during insertion, or
during retrieval? When splitting edges with a
uniform grid, how many segments does the average
edge get split into, or the worst edge? How many
edges does the average cell contain, or the worst
cell? Most people have not the faintest idea. The
process of software development does not end when
the program compiles correctly, or even when it can
process a small test case. To produce a work of art,
cleanly designed and coded, and efficient, requires
following systematic design steps and then watching
how the program performs in actual use.

CONCLUSION

If computer science has any meaning other
than as a sterile intellectual exercise, it is to help
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other disciplines use the computer more effectively.
GIS practitioners need not recapitulate computer
scientists’ painful process of learning if they can
learn from their experience, as described above in
this chapter. [t is not sufficient to design G[S to use
current computer systems; they must be planned for
the computer systems that will be available when
the new GIS is ready.
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