69

International Journal of Computational Geometry & Applications Vol. 1

® World Scientific Publishing Company No. 4 (1891) 381-403

DETERMINATION OF MASS PROPERTIES OF
POLYGONAL CSG OBJECTS IN PARALLEL"

CHANDRASEKHAR NARAYANASWAMI!
Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12180, USA

and

WILLIAM RANDOLPH FRANKLIN®

Electrical, Computer, and Systems Engineering Department
Rensselaer Polytechnic Institute
Troy, New York 12180, USA

Received 7 June 1991
Revised 15 October 1991

ABSTRACT

A parallel algorithm for determining the mass properties of objects represented in
the Constructive Solid Geometry (CSG) scheme that uses polygons as primitives is pre-
sented. The algorithm exploits the fact that integration of local information around the
vertices of the evaluated polygon is sufficient for the determination of its mass properties,
i.e., determination of the edges and the complete topology of the evaluated polygon is not
necessary. This reduces interprocessor communication and makes it suitable for parallel
processing. The algorithm uses data parallelism, spatial partitioning and parallel sorting
for parallelization. Tuple-sets on which simple operations have to be performed are iden-
tified. The elements of tuple-sets are distributed among the processors for parallelization.
The uniform grid spatial partitioning technique is used to generate sub-problems that
can be done in parallel and to reduce the cardinality of some of the tuple-sets generated
in the algorithm. Parallel sorting is used to sort the tuple-sets between the data-parallel
phases of the algorithm.

Keywords: Computational geometry, parallelism, uniform grid technique, mass proper-
ties, local topology, polyhedron, null object detection, boundary representation.

* A previous version of this paper appeared in the Proceedings of the First ACM Symposium on
Solid Modeling Foundations and CAD/CAM Applications.

tNow at: International Business Machines Corporation, Austin, Texas 78758.

Email: chandra@innerdoor.austin.ibm.com, Phone: (512) 838-1105

‘Email: wri@ecse.rpi.edu, Phone: (518) 276-6077

382 C. Narayanaswam; & W. R. Franklin

1. Introduction

The Constructive Solid Geometry (CSG) scheme is an intuitive way of syn-
thesizing complicated solids by performing set-theoretic operations, such as union
and intersection, on simpler solids. The synthesized object is represented as a tree
whose leaves consist of the simple primitive solids and interior nodes represent set-
theoretic operations. The CSG scheme does not store the boundary of the resulting
solid. The Boundary Representation (B-rep) scheme represents the solid in terms
of its boundary given by vertices, edges, and faces. This scheme is more suitable
for analyzing a solid’s mass Properties such as perimeter, area and volume, and
for generating images. The CSG and B-rep schemes are used in conjunction to
represent solid models because of their complementary functionalities. Due to this
complementary nature of the two schemes it is often necessary to convert between
the two. This process is commonly known as representation conversion.

Lee and Requicha 2 have presented sequential algorithms, based on cellular ap-
proximation, for evaluation of mass properties of solids defined in the CSG scheme.
Lien and Kajiya 4 give a symbolic sequential method for calculating the mass
properties of arbitrary nonconvex polyhedra.

Since speed is important in these interactive applications, a fast and practical
parallel algorithm for this problem will be useful. We present new sequential and
parallel algorithms for answering some of the commonly encountered queries, such
as the determination of area and perimeter, on polygonal objects stored in the CSG
representation scheme without complete representation conversion. Implementa-
tions of related algorithms 1810 o the Sequent Balance 21000 parallel machine
have shown close to linear speedup. Since the algorithm presented here uses similar
techniques and ideas they are expected to show similar performance.

Since the mass property of a null CSG object is zero, our results can be used to
perform Null-Object-Detection (NOD) in parallel without complete representation
conversion. This result can be extended to Same-Object-Detection (SOD), used for
interference detection, in parallel because the mass properties of the union of the
symmetric difference between two CSG objects, i.e., ((4 - B)uU (B - A)) can be
checked for nullity.

2. Techniques
Our algorithm uses the combination of the following techniques:
(i) Data parallelism.

(ii) Uniform grid.
(iii) Local topology.

2.1. Data Parallelism

Most graphics and geometric applications that Jjustify parallelization deal with
a large number of objects on which many common operations are performed. It is
natural to attempt parallelization of these algorithms by distributing the vertices,

Determination of Mass Properties of Polygonal CSG
383

edge;,_ fa.;es. or cgmplete objec‘rfs among the processors. In order to yse tiie datn
partitioning technique, the attribuies of the fuple-sets on which the algorithm can
operate have to be identified. For example, a set of (cell, edge) tuples form a tuple-
set. Each element of the tuple-set is defined by a set of attributes. The attributes for
the above example are cell and edge. The number of attributes needed to describe a
tuple is its arity. The number of tuples in the tuple-set is its cardinality or size. For
parallelization, the elements of the tuple-sets are distributed among the processors.

For complex applications, vertices, edges, and faces are not sufficient attributes
for the tuple-sets, and more complex tuple-sets which are necessary to solve the
problem have to be identified. The arity, the attributes themselves, and the cardi-
nality of the tuple-set are dependent on the problem and the cost of inter-processor
communication on the parallel machine. Problems with limited precision numerical
representation on computers and the presence of special cases due to co-incident
geometric entities '® can increase the arity of the tuple-set. The use of tuple-sets
and data-parallelism in our algorithm is demonstrated in later sections.

2.1.1. Work allocation to processors

Once the tuple-sets have been identified, they have to be distributed among the
processors such that the work is more or less evenly subdivided. For this purpose
a load evaluation function for each tuple-set is derived. This estimates the amount
of work in processing the tuple. For example, the cost function for determining
the cells of a grid (see Section 2.2 for more detalls) that are intersected by a line is
(lecosf + lsind) where [is the length of the edge and @ is the angle made by the edge
to the horizontal. To assign, in parallel, all the edges in the input to the cells, the
above cost function is calculated for all the edges in the input and a cumulative cost
estimate is created. Edges are then assigned to the processors so that the estimated
cost for each processor is the same. This step is simple on shared-memory machines
but on distributed-memory machines it requires interprocessor communication as
discussed in the next section.

The cost function to determine all the intersections of edges in a grid cell is equal
to the square of the number of edges in the cell. Similarly, the cost to determine
whether two faces intersect each other is equal to the sum of the number of edges
in each of them.

In practice, we have observed that simpler or equal-cost criteria yield reasonably
good load-balancing when the size of the problem is large.

From a practical point of view, this technique has the following advantages:

(1) ease of implementation,
(ii) ease of load-balancing among the processors, and
(iii) regular memory accesses and good use of hardware caching-mechanisms.

2.1.2. Interprocessor communication cost

Many phases of our algorithms operate on elements of a particular tuple-set and
generate the elements of another tuple-set. Before the next phase of the algorithm

384 C. Narayanaswami & W. R. Franklin

can proceed, the elements of the new tuple-set have to be sorted by one of their
attributes. For example, in our edge intersection algorithm, the first phase uses the
set of (edge) tuples, determines the cells through which the edges pass, and generates
(cell, edge) tuples. The next phase determines all the intersections by comparing
the edges in each cell pairwise. Before this phase can proceed, the (cell, edge) tuples
have to be sorted by the cell so that all (cell, edge) tuples for a particular cell are
in contiguous locations.

On a shared-memory machine, parallel bucket sort and quicksort algorithms can
be used '3 for sorting the elements of tuple-sets.

The cost of communication on a distributed-memory machine to rearrange the
tuples among the processors is equal to the cost of sorting on the parallel machine.

2.2. The Uniform Grid Technique (UGT)

The uniform grid 5 spatial subdivision scheme divides the extent of a geometric
scene uniformly into many smaller subregions (cells) of identical shape and volume.
The idea is to exploit the limited spatial extent of individual geometric entities by
inserting them into the subdivision and performing subregion-wise computations
on them, thereby minimizing global computations. This reduces the cardinality of
the tuple-sets in the average case and plays an important role in increasing the
efficiency of the algorithm. Note that the geometric entities are not split at the cell
boundaries and thus this technique is different from many similar techniques.

The technique is also a divide-and-conquer mechanism because problems of the
same type but of smaller size are generated for each sub-region. The uniform grid
is also useful while searching for geometric entities in particular regions of a scene
and hence is an indexing scheme for locating objects. For example, it improves the
average-case query time for the point location problem. Akman et al., ! summarize
the applications and algorithms developed with this technique.

According to Asano,? the popularity of bucketing schemes similar to the uniform
grid is because they often outperform theoretically better algorithms. For example,
Pullar 2° has experimentally shown that the sequential version of the uniform grid
technique for determining the intersections between a set of segments lying in the
plane is faster than the theoretically better plane-sweep technique for a variety
of data sets. The overhead of maintaining the complicated data structure for the
plane-sweep technique is cited as the reason for its inefficiency. Hopkins and Healey ®
have also done a parallel implementation of Franklin’s uniform grid technique for
line intersection detection on a large transputer array. As argued below, in the
parallel domain the plane-sweep technique is even less attractive when compared to
the uniform grid.

2.2.1. Uniform grid and parallel processing

It is the following properties of the UGT that make it a useful and practical
technique for parallel processing:

(i) Some optimal geometric techniques such as the plane-sweep technique, used

Determination of Mass Properties of Palygonei CSG . 185

for solving many geometric problems, impose a temporal ordering of compu-
tation on the objects, e.g., by scan line. The UGT does not impose one when
none is strictly Necessary. For example, computation of intersections withip
the grid cells can be done in any order. Therefore, the uniform grid technique
is much simpler to parallelize on shared-memory and distributed-memory ma-
chines.

(ii) The uniformity of the partitioning makes the reduction of the cardinality
of tuple-sets simple anq fast. It also makes the mapping of sub-tasks on
to the processors €asy and hardware implementations easier. When more
sophisticated schemes such as quadtrees and octrees are used,'5:23 distribution
of sub-tasks among the processors becomes more complicated, The overhead
for maintaining the data structures would also be higher. However, such
schemes may achieve a greater cardinality reduction.

(iii) Unlike hierarchical and adaptive spatial partitioning schemes, the UGT is a
single-level spatial partitioning scheme which uses a flat data structure that
exploits the large memories of modern shared-memory parallel machines and
avoids tree data structures and indirect references through pointers to lo-
cate objects. This helps in avoiding log factors (due to tree traversals) in
the complexity of the algorithm. In a shared-memory parallel machine sce-
nario, hierarchical schemes that use tree data structures can also introduce
bus congestion if the leaf nodes have to be accessed through a commeon root.
Mapping of tree data structures on distributed memory machines is inefficient
in practice because of huge interprocessor communication overhead to access
the elements of the data structure.

(iv) The contiguous location of the tuples and the absence of pointers in the data
structure for the UGT increase locality of memory references and exploit hard-
ware caching-mechanisms. When objects in adjacent cells in the spatial par-
titioning interact, it is useful to transform adjacency in space to adjacency
in memory to improve memory access patterns. The data structure for the
UGT preserves such adjacency. This is important in the context of shared-
memory parallel computers because improper use of caching-mechanisms 4
causes severe degradation of performance.

2.2.2. Limitations of the uniform grid

Though the uniform grid has many advantages, it has some important limita-
tions:

(1) In worst-case situations, when all geometric entities are concentrated in a few
grid cells, there is no appreciable reduction in the cardinality of the tuple-sets.
(i) Uneven spatial densities of the objects reduce the efficiency of the uniform
grid technique. However, experiments with the sequential segment intersec-
tion algorithm ° have shown that this is not as serious a problem as it appears
from a theoretical point of view because in such situations the added complex-
ity of building an adaptive or finer sub-division for better object resolution

386 C. Narayanaswam: & W. R. Franklin

N (normal)
Vertex P

T (tangent)
P

O (origin)

Fig. 1. Local topology representation for a vertex.

competes with the benefit of such a sub-division. For better load-balancing in
the context of parallel computation, contiguous cells from dense regions are
allocated to different processors. In such situations, both load-balancing and
locality of memory references for proper use of caching-mechanisms have to
be considered.

(iii) In some applications where separate static data structures are used for each
grid cell as opposed to a list of tuples, the memory requirements of the uniform
grid technique may be greater than that of other schemes. However, with the
decreasing cost of memory, this may not be a serious disadvantage.

2.3. Local Topology Scheme

The key idea of the local topology data structure for representing a polygon is that
an integration of local information around its vertices is sufficient to determine its
mass properties. A tuple of local information about a vertex includes its coordinates,
the direction of an edge incident on it, and the direction of the inward normal to
the edge. Franklin ®7 provides formulae for mass properties and point classification
for individual polygons and polyhedra. In this paper we extend this scheme for the
evaluation of mass properties of CSG objects.

In many CSG to B-rep conversion algorithms, edges, faces, and other higher
dimensional entities like shells are constructed in the later stages from lower dimen-
sional entities. For example, while finding the union of two polygons, the tentative
vertices of the resulting polygon can be determined first and the tentative edges can
be determined next by splitting the edges of the primitives at these vertices. Since
the local topology representation can be determined as soon as all the intersec-
tions among the primitives have been found, the later phases of the representation
conversion process are not necessary when only mass properties are needed.

From the point of view of parallel processing, elimination of the unnecessary
phases eliminates the corresponding inter-processor communication needed. Also,
the data structure for the local topology representation scheme is simple and can
be stored in an unordered fashion among the processors. The absence of any strict
order in the data structure makes work distribution among the processors easier.

Determination of Mass Properties of Palygonal CSG I 387

T’l 3 TZ}'.’

B Ps
; N _
I SJ T34
-'\'.'2 \4
Tl 2 X T4 3
P 1 :Vl l 2 4
Tl 4 T4 1. &
Tq Sl T4 6
.\"5
. W S
Ts 4 B T5 4
Ne 5
B Ty T *°

Fig. 2. Local topology representation for a polygon.

2.3.1. Theory

A polygon is represented as an unordered set of (P, T, N) tuples. P is a vertex
and £ = (Pz, Py) is the position vector of the vertex in a coordinate system of
which O is the origin. T is a unit tangent vector from P along an edge incident on
the vertex P and points to the other vertex of the edge. N is a unit vector normal
to 7', in the plane of the polygon and points towards the face’s interior. n denotes
the number of tuples needed to describe the polygon.

Figure 1 shows an example of a vertex and its neighborhood. Figure 2 shows
the representation of a polygon which has non-manifold conditions by the following
set of local topology tuples.

{ (PI,le,Nz) (P1-T14,N1) (szTu, Na), (Pz,Taa. N3), (Pa,Tazg N3),
(Pa,TM, Na), (P4,T41, Nl) (P4,T43, N4) (Ps, Tas, Ns), (Ps, Tus, N7),
(Ps, Tsa, Ns), (Ps, Tse, Ne), (Ps, Toa, N1), (Ps, Tes, Ne) } B

The following notation is used in the remainder of the paper. T,; is a vector
from P, to P;. &-b represents the dot product of the vectors @ and b. | @ | represents
the norm of the vector @, and | AB | the length of the line segment AB.

2.3.2. Mass property formulae

The formulae for determining some of the mass properties of the polygon are as
follows.

n

Perimeter = - ;T (1)

-
I
i

388 C. Narayanaswami & W. R. Franklin

: %

Fig. 3. Proof for 2-D mass property formulae.

i=n

15.7".13.1"": (2)
1

Area =

B =

Consider the local topology tuples for the edge showq in Figure 3. Here, 7| =
PPand T, = PP = ~T\. As shown below, the contributjon of these tuples to
the formula for the perimeter is the length of the edge. Therefore the sum over all
the tuples gives the perimeter of the polygon.

contribution = _ liz BT
i=1
= -A-1i- 5.4
= [P1F1+IP2FJ
= |PP|
For the area, the tuples for the edge shown in Figure 3 contribute the signed
area of AOP, P, because their

contribution

= URFIx|0F 4| RF|x|oF))

= 3IBRIx0F|

to (w.r.t.) the polygon.

0= Y 0P, T)o(F -) 3)

=1

where ¢ is the sign function

I ifz>0
o(z) = 0 ifz=0

=1 if #<«ip

Determination of Mass Properties of Polygonal CSG ..~ 389

F

E
S
+A il i
AlD
B |4
B G S i
D |4
E| 2
F |2
G | 4
H|O
el ol

Fig. 4. Examples of point classification.

: ' fmt.side polygon then sop =0
If point O is = { inside polygon then so =4
on boundary then sp = 0,2,0r4

The above result is a direct application of the Jordan Curve theorem in which
the ray is a vertical one. Consider the tuples for the edge P, P2 In Figure 3. These
tuples contribute a value of 2 if O is contained within the horizontal projection of
the edge and is on the material side of the edge, a value of -2 if O is contained within
the horizontal projection of the edge and is not on the material side of the edge,
and a value of 0 if O is not contained within the horizontal projection of the edge.
If O is vertically below an endpoint of the horizontal projection of the edge, the
contribution is 1 instead of 2 and —1 instead of —2. The sum of these contributions
is the quantity indicated in the formula.

Figure 4 shows some examples. The case where the origin is on the boundary of
the polygon needs elaboration. If the origin is on an edge, then so = 2 (case F in
Figure 4). If the origin is on a vertex, so can be 0, 2, or 4 (cases H, E and B). The
ambiguity between these cases and those of the points being inside or outside the
polygon is resolved by noting that P will be zero for at least one (P, T, N) tuple in
the polygon if the origin is on a vertex.

Degenerate cases, such as when the origin is on an edge, can cause problems.
To handle degeneracies, we recommend the Simulation of Simplicity technique 3 of
Edelsbrunner and Mucke. Conceptually, this adds (¢, €?) to the origin so that it
cannot be exactly on any vertex, edge, or extended edge. Epsilon is an infinitesimal,
smaller than any positive real. See Knuth,!! for an explanation of infinitesimals.
We cannot actually add epsilon since it is not a representable floating point number,
so we calculate the effect that it would have on any decisions.

Most of the formulae presented in this section can also be derived by using
Green’s theorem in the plane, which we recall here.

.ﬁsz+Qdy=/-[R (%—2-— %—5—) dzdy

350 . Marayanaswam: & W. R. Frankhin

P, Q %"3 and %ﬁl are single-valued continuous functions in R bounded by a closed
1 » y r .

ve C. :
curThe evaluation of [[F(z,y)dzdy can therefore be transformed into a contour

integral after finding functions P(z,y) and Q(z,y) such that

8@ @P

. ala E = F(z,y)
The contour integral can be evaluated piecewise over the edges of the polygon. Since
y = f(z) for each edge P Py, the contour integral simplifies to G(P2)—G(Py), where
G(P) can be computed with information in the local topology tuples for vertex P.
In essence, the information needed to evaluate G(P) must be captured in the local
topology representation for the vertex P.

The above result can be used to derive local topology based formulae for deter-
mining the center of gravity and the moments of the polygon. The point to note is
that though these formulae are just a simple reorganization of standard formulae,
they are useful in the parallelization of the evaluation of the mass properties of CSG
trees and in eliminating the need for a complete evaluation of the boundary.

3. Mass Properties of CSG Trees

J3.1. Input Specifications

The input to our algorithm includes the boundary representations of all the
polygonal primitives of the CSG tree and any convenient representation of the CSG
tree. The edges of the primitives of the CSG tree can be given in any random
order, but they are oriented such that the interior of the primitive is to their right.
The orientation of the edges is used in the point in polygon test described later.
The primitives can themselves have multiple components and holes. Non-manifold
conditions do not pose any representational problems in this scheme.

3.2. Outline of Algorithm

The outline for the algorithm is as follows:

(1) Use the uniform grid technique to determine all the intersections between the
edges of the primitives of the CSG tree.
(ii) Determine the local topology representation of the evaluated object.
(iii) Use the local topology representation to determine the mass properties of the
CSG object.

3.8. The Detatled Algorithm

The algorithm resulting from the strategy outlined above is described in greater
detail in this section.

Determination of Mass Properties of Palygonal €56
Sl 391

3.3.1. Parallel computation intersection points

Tbe algorithm used for computing the points of intersection in parallel]
described.
Procedure: get_pts_of_intersection (polygons in tree)
begin
partition the scene into G x G uniform square cells;
for each polygon in CSG tree in parallel do
for each edge in polygon do
determine (cell, edge, polygon) tuples;
end for
add (cell, edge, polygon) tuples to global list of tuples;
end parallel for
/* sort by cell to reorder tuples */
parallel_bucket_sort ((cell, edge, polygon) tuples);
for each cell in grid in parallel do
for all pairs of tuples (e;, px), (ej, pt) in cell do
if pr # pi and e; and e; intersect then
begin
get point of intersection, P, of ¢; and ¢;;
if P is inside cell then
begin
if P is a vertex of ¢; or e; then t.x «— end point intersection;
else t_x — mid point intersection;
if P is close to cell boundary then on_g + true;
else on_g — false; '
add tuple (e;, px, €j, o1, Pz, Py, tx, on_g);
end if
end if
end for

end parallel for
end

is now

Parallelization is achieved by distributing the polygons and the cells among the
processors. The cost function for the task of determining the (cell, edge, polygon)
tuples is based on the cost estimate for the polygons which in turn is equal to the
sum of the cost estimates for all the edges in it. However, good load-balancing can
be achieved by distributing the polygons among the processors in a random fashion.

The cost function for parallel computation of the points of intersection is based
on the cost estimate for the cells which in turn is equal to the square of the number
of (cell, edge, polygon) tuples in the cell. To achieve better load-balancing for
cases where the density of edges varies considerably over the cells and when certain
regions contain a lot of edges, the cost estimate ensures that spatially adjacent cells
are given to different processors. In practice, a round-robin scheme of allocation of
cells to the processors works well in a shared-memory parallel machine.

392 C. Naerayanaswam: & W. R. Frankiin

The fineness, G, of the uniform grid is a function of the length of the edges in the
primitives of the CSG tree. Usually G = cL~! is a good heuristic for minimizing the
computation time, where L is the average length of the edges of all the primitives
and ¢ is a tuning constant.

The cells which an edge passes through are determined by using a variant of
Bresenham's raster line drawing algorithm. For this purpose, the lower and left
boundaries of a cell are included in the cell. For improving numerical robustness,
if an edge passes through a grid corner it is entered in all four cells adjacent to the
corner.

In order to handle cases of collinearity and co-incidence in the input, overlapping
collinear edges and edges which touch each other are considered to intersect.

In order to avoid multiple reporting of the same intersection between a pair of
edges going through many adjacent cells, the intersection is reported only if the
point of intersection lies inside the cell in which the pair is tested. Since a point-in-
cell test can be devised such that the point belongs to only one cell, when the same
pair of edges is checked for intersection in many cells, only one of them will report
the intersection.

Suppose two edges intersect at a grid corner. For robust intersection detec-
tion, they are tested for intersection in all four grids cells incident at the corner.
Otherwise, there is a possibility of missing the intersection because the computed
point of intersection may lie in one of the other three cells, due to limited numerical
accuracies.

Cases where numerical problems could lead to incorrect results are identified
in the intersection phase and appropriate information is stored in the intersection
tuples for use in the determination of the local topology representation.

3.3.2. Determination of local topology

At this point, the locations of the tentative vertices in the evaluated polygon
have been determined. To determine the local topology representation, it is neces-
sary to determine the vertices that lie on the evaluated object and the corresponding
edges incident on them. To determine whether a vertex lies on the evaluated object,
the classification of the vertex w.r.t. the CSG tree has to be obtained. This requires
the classification of the vertex w.r.t. all the primitives in the CSG tree. These
classifications then have to be combined at the internal nodes of the CSG tree. As
shown in Table 1, one of the problems with combining the classifications is that
combining ON-ON classifications needs explicit neighborhood information. More-
over, determination of the vertices of the evaluated object alone is not sufficient to
determine its local topology representation.

The following simple observations (also see Figures 5 and 6) can be used to solve

the above problems.
Observation 1 A verter can lie ON the boundary of only primitives which inter-
sected to form it. [is classification w.r.t. all other primitives is either IN or OUT.
Observation 2 Poinis which are infinitesimally close to the verter and lie in the
wedges around the veriez (wedge points) cannot lie ON any primitive in the CSG
tree.

Determination of \
f Mass Properties 2f Polygong

10SG . g5

Fig. 5. Some possible wedges around a vertex.

Material (interior of the polygon) is to the right of the directed edge

4
De P1
Ps P2
Pl e Edge of C
Edge of A
Edge of B
L Point A l B l C J

pl ouT IN IN
p2 IN IN IN
p3 IN IN ouT
p4 IN ouT ouT
p5 ouT ouT ouT
PS5 ouT ouT IN

Fig. 6. Point classification for wedge points.

394 C. Narayanaswami & W. R. Franklin

A\B | in | out | on
in In | In n
out in | out | on
on in | on 2

Table 1. Combining classifications for 4 U 5.

Observation 3 The classification of wedge points which lie in consecutive wedges
around the verlez changes only w.r.t. the primitive(s) to which the common edge(s)
between the consecutive wedges belong.

Observation 4 A vertezr will be ON the evaluated object if the classification w.r.t.
the CSG tree of the points in the wedges around the verter are not all tdentical.
Observation 5 If the classifications of points w.r.1. the CSG tree in the radially
adjacent wedges around a verter are different, the edge that is common 1o the two
wedges lies on the boundary of the evaluated object,

The use of the above observations removes the ON-ON ambiguity (see Table 1)
and also allows the determination of the local topology representation of the eval-
uated polygon. Figure 5 shows an example where primitives A, B, and C intersect.
The wedges at this intersection in the final object corresponding to different Boolean
operations on these primitives are also shown. Figure 6 shows the wedge points for
the intersection in Figure 5. The classifications of the wedge points w.r.t. the prim-
itives A, B, and C are also shown. Note that no wedge point lies on any primitive.

Before the following procedure to determine the local topology representation is
invoked, tuples corresponding to the vertices of the primitives are also added to the
appropriate cell’s list of (e;, pg, €j» P, Z, Y, tx, on_g tuples. The computations in
the procedure are done in parallel on a cell-wise basis after the following adjustment.
Consider scenarios in which more than two edges intersect at a grid line or corner
(detected by checking the on-g variable for the intersection). In these cases, due
to limited numerical accuracies, all the intersections at these vertices may not be
reported in the same cell. This implies that tuples corresponding to the same inter-
section may not be handled together since computations are done independently in
the cells. This can cause incorrect wedges in the result and therefore tuples whose
on.g variable is true are gathered together and the core of the procedure is invoked
on them separately.

Determination of Mass Properties of Bolganei csc
i 395

Procedure: get_local_topology (intersection tuples)
begin
for each cell in grid in parallel do
sort (e:, P, €54 P T, s tz, false) tuples by the z and v;
for each set of tuples whose intersection points (z, y) are closer than ¢ do
let V' be the vertex at location (z, y);
sort (i, Pk, €j, pi,tz, false) tuples radially around v
classify V' with all primitives not intersecting at V;
create wedges around V;
for each wedge around V do
classify wedge pt. w.r.t. primitives intersecting at V;
deduce wedge pt. classification w.r.t. primitives not intersecting at V;
evaluate wedge pt. classification with CSG tree expression;
end for
for each wedge around V do
if classification of wedge point # classification of next wedge point then
begin
get direction of edge between wedges;
add local topology tuple for V;
end if
end for
end for

end paralle] for
end

Let n; be the number of (ei,px,e5,pm, 2,9, tz, false) tuples in the ith cell. The
cost-function for each cell for this phase of the algorithm is n; log n;. This function is
used to determine the allocation of cells to the processors. In practice, a random or
round-robin allocation works equally well when the number of cells is large compared
to the number of processors.

For the purpose of sorting the intersections, vertices that are separated by a
distance less than ¢ are treated as identical vertices. € is a small constant that is
determined experimentally. If vertices are not grouped correctly, the topology and
therefore the mass properties of the resulting object will be wrong. However, minor
differences in positions of vertices do not affect the accuracy of the result signifi-
cantly and allow grouping of vertices correctly. So € is chosen on the conservative
side to obtain the right topology.

As shown in Figure 6, the classification of the wedge points w.r.t. the primitives
intersecting at the vertex is determined from the circular ordering of the edges
around the vertex. From observation 3 it follows that the wedge points need not be
classified individually with a point in polygon test w.r.t. all the primitives that did
not intersect at the vertex; instead classification of the vertex is sufficient.

The classification of wedge points w.r.t. the CSG tree is done by combining
the classifications recursively as shown in Table 1. Figure 7 shows the point w.r.t.

396 (. Narayaneswam: & W. R. Franklin

Pl \
R [S

\’//

* o
=)

Fig. 7. Point classification with polygons.

primitive classification procedure. The pseudo-code for the test is shown below.

Procedure: classify pt_with_polygons (P, polygons)
begin
determine cells intersected by ray from P in +z direction;
for each cell in ray’s path do
for each edge in cell do
if ray passes through vertex of edge then
perturb ray in —y direction;
if ray intersects interior of edge then
begin
determine x coordinate of point of intersection Tii
add (polygon, edge, I.) to list of such tuples;
end if
end for
end for
/* major key polygon, minor key I, */
sort (polygon, edge, I.) tuples;
for each polygon in (polygon, edge, I.) tuples do
get first (polygon, edge, I.) tuple for polygon;
if P is to left of the oriented edge then
mark P as outside the polygon;
else mark P as inside polygon;
end
for each polygon not in (polygon, edge, I.) tuples do
mark P as outside polygon;

end for
end

The ray will intersect only a few cells and in the average case the uniform grid
ensures that it intersects only a small fraction of the primitives. If the ray intersects
a primitive, it can be classified with the orientation of the first edge of the primitive

Determination of Mass Properties of Polygonal CSG 3

s 97
to intersect it. If the ray does not intersect an edge of a Primitive, the point is
outside that primitive. So a single ray is used to classify the point with all the

Primitives.

3.3.3. Parallel evaluation of formulae

Once the local topology representation of the polygon is available, the evaluation
of the mass properties using the formulae in Section 2.3.2 can be easily parallelized
because they involve a sum of simple functions. In a tightly coupled multiproces-
sor (sharing common memory through a bus) each processor can compute some of
the necessary calculations which can then be summed up using the parailel prefir
algorithm. In a Single-Instruction-Multiple-Data (SIMD) machine with many node
processors, the local topology tuple can be stored in the node processors which
compute the desired information w.r.t. that vertex. The host processor then gath-
ers the results of the computations performed by the nodes by using the broadcast
graph used to dispatch the data to the node processors. The regular communica-
tion pattern between the nodes and the host, and the absence of any inter-node
communication are some of the advantages of this scheme.

3.4. Accuracy

Some methods to increase the robustness of computation were presented in the
algorithm. The criterion for determining special cases, such as an intersection being
close to a cell boundary is less strict than for checking whether two intersections are
co-incident, i.e., a larger ¢ is used to check closeness to a cell boundary than the one
used to group intersections together. This is done to be on the conservative side
so that incorrect topologies in the output are avoided, since incorrect topologies.
produce incorrect results. .

The error introduced by grouping vertices closer than ¢ is now analyzed. Let
P! = B, + dP, be the local topology tuples due to errors in computation. Note
that the N and T are not affected by this process as these vectors are derived from
the input primitives. | dP |< 2¢, where ¢ is the tolerance to check whether two
vertices are co-incident. The effect on perimeter is dPerimeter = ::T d]bi . 'f,
Thus the error in the perimeter is linear in the error introduced in the computation.
Similarly, the error in the area is also linear.

3.5. Algorithm Complezily and Implementation

Let N, be the number of non-leaf nodes in the CSG tree, N, the number of
primitives or leaf nodes in the CSG tree, n the total number of edges in all the
primitives, and k the number of intersections between the edges of the primitives.
Usually in the CSG domain n = §(N,). Also when every interior node has only two
children, N, = N;; + 1. Finally, let p be the number of processors used.

We derive the worst-case sequential complexity first in the absence of the uni-
form grid. The intersection process can take O(n?) time as k can be n?. Sorting
the k intersections takes O(klogk) = O(n?logn) time. Each of the (k) point

398 C. Nerayanaswami & W. R. Franklin

I5|-
X
X
X
X
10 X
X
Speedup e
X
5 F ke
X
X
x
X
1 !]
(0,0) 5 10 15

Number of Processors

Fig. 8. Speedup for parallel polygon intersection.

classifications against all the primitives takes O(N,) time. Combining each of the
#(k) classifications at the interior nodes of the CSG tree takes 6(Nin) time as each
combination can be done in constant time. The net complexity of this step is O(n9).
The complexities of the local topology representation and the related formulae are
linear in the size of the result and is thus O(n?). Using the above relations, the
worst-case sequential complexity of the algorithm is thus O(n3).

Experience with practical implementations of geometric algorithms shows that
worst case complexity results provide little information on the expected perfor-
mance. In the average case, the uniform grid will determine the intersections in
O(n) time !° and will also ensure that only a constant number of edges of the
primitives intersect the ray for the point classification test. Thus a more reasonable
estimate of the expected complexity of the complete algorithm is O(n?).

Extensive experiments '8 show the practicality of the techniques for paralleliza-
tion discussed in Section 2 and allows us to assume that for the data-parallel phases
the load is evenly balanced among the processors when the size of the input is large
compared to the number of processors, i.e., p < n. The data-parallel phases are
thus expected to show close to linear speedup. An implementation of the polygon
intersection algorithm ® on the Sequent Balance 21000 shows linear speedup (see
Figure 8 and Table 2). Thus the intersection phase of the mass property deter-
mination algorithm will also show linear speedup. Though optimal parallel sorting
algorithms are available, they have huge overheads and in practice the parallel sort-
ing phases will show sub-linear speedup. The classification of wedge points and the
evaluation of the formulae are also expected to show linear speedup because good
load-balancing can be achieved for these data-parallel phases.

Determination of Mass Properites of Polygonal CSG ... 399

Operation Time % Time % Speedup

1 proc " time 15 procs time

Random Polygon Example, Grid Size = 97

Putting edges in the grid 39.82 1.66 8.48 4.79 4.70
[ntersecting the edges 2101.27 87.83 141.34 T9.97 14.87
Sorting the intersections 4.38 0.18 4.04 2.28 | Sequential
Forming sub-edges 32.86 1.37 4.85 2.74 6.78
Classifying uncut edges 214.13 8.96 18.57 10.48 1153
Complete polygon combination | 2392.46 100.00 177.19 100.00 13.50

Square Example, Grid Size = 20

Putting edges in the grid 7.96 2.25 4.64 13.52 1.72
Intersecting the edges 143.14 40.44 10.93 31.84 13.10
Sorting the intersections 2.48 0.70 2.48 7.22 | Sequential
Forming sub-edges 23.06 6.52 3.28 9.55 7.03
Classifying uncut edges 177.30 50.09 13.00 37.87 13.64
Complete polygon combination 353.94 100.00 34.33 100.00 10.31

Table 2. Complexity of individual phases for polygon intersection.

4. Discussion

4.1. Acceleration Techniques

In an implementation many optimizations are possible. For example, at a union
node it is not necessary to classify the point w.r.t. the right sub-tree of the node if the
point lies inside the object represented by the left sub-tree. Similar optimizations
can be done at other types of nodes.

Furthermore, it may not be necessary to evaluate the complete tree for each
of the wedge points around a vertex. The classification of all the wedge points
around a vertex w.r.t. a subtree will be identical if the leaves of the subtree do
not include the primitives intersecting at the vertex. Consider the vertex shown
in Figure 5 where the primitives A, B, and C intersect. Figure 9 shows subtrees
(enclosed in the boxes) whose leaves do not include the primitives A, B, and C. In
an implementation, this can be done by storing the list of a node’s children at the
node. :

It remains to be investigated whether our ideas can be combined with the active-
zone technique proposed by Rossignac and Voelcker 2 for accelerating CSG com-
putations.

At a more theoretical level, as indicated by Narayanaswami,'” the techniques for
parallel tree contraction (evaluating an arithmetic expression tree) given by Miller
and Reif 1 can be used for the parallel evaluation of a CSG tree whose primitives
store Boolean values of 0 or 1. Goodrich 8 has also independently explored the
application of the above ideas to boundary evaluation of CSG trees. This approach
would be practical when a large number of processors is available.

& W. R Frankiin

400 C. Narayangswam!

Fig. 9. Optimization of CSG point classification.

4.2. Analysis of Our Approach

In contrast to the symbolic formulae for mass properties that were presented
in this paper techniques proposed by Lee and Requicha 12 for determining integral
properties of CSG objects are approximate. Also they do not consider determina-
tion of the area of the CSG object. However, their techniques are easier to modify
for handling curved polyhedra. In their approach greater accuracy is available at
the expense of both computer time and memory. Their technique is likely to become
progressively more susceptible to numerical errors in point classification as the res-
olution of the cellular approximation is increased to obtain greater accuracy. The
complexities of their algorithms depend on the square and cube of the resolution. In
contrast, the complexity of our algorithm depends on the number of intersections
between the primitives. For coarse resolutions, their algorithm may be faster if
parallelized, but when accuracy requirements are increased our algorithm is likely
to perform better.

As with some of the algorithms developed by Lee and Requicha,!? an advantage
of our method is that it does not need an edge w.r.t. polygon classifier with explicit
neighborhood information and can manage with a simpler point w.r.t. polygon
classifier without explicit neighborhood information.

The algorithm presented can be used to handle dynamic insertion of objects
into the CSG tree. The points of intersections of the new object with the other
primitives, and the subtrees which get modified as a result of insertion are the only
factors to affect the mass property of the new evaluated object. The uniform grid
and the local topology scheme are well suited for this computation.

The advantage of flat non-incremental evaluation 21 of the CSG tree and the
consequential parallelism derived from it has to be compared with the additional
work performed in computing unnecessary intersections which an incremental eval-
uation algorithm would avoid. In addition to applicability of the local topology
technique, an advantage of non-incremental evaluation is that if the interior nodes
of the CSG tree are modified, the mass properties of the new tree can be evaluated

Determinetion of Mass Properties of Palygenal CSG i
€86 , . 1

by simply re-evaluating the classifications of the wedge points.

5. Conclusion

We demonstrated that the uniform grid and local topology techniques can be
combined to determine the mass properties of objects stored in the CSG representa:
tion scheme with polygonal primitives efficiently in parallel. The technique can be
extended to handle polyhedra and curved polygons. Whether and how extensions
to handle curved polyhedra can be made is yet to be investigated.

Our objective was to demonstrate that a synergy of previously known techniques
is useful to design parallel geometric algorithms. We hope that this paper will
motivate researchers to think of new object representation schemes that are suitable
for parallel processing.

Acknowledgments

This work was supported by NSF Presidential Young Investigator grant CCR-
8351942. Partial support for this work was provided by the Directorate for Com-
puter and Information Science and Engineering, NSF Grant No. CDA-8805910
We are thankful to a number of referees who provided useful comments to improve
the conference and journal versions of this paper. We also used equipment at the
Computer Science Department in Rensselaer Polytechnic Institute. Equipment at
International Business Machines Corporation was used to prepare the final version
of this paper.

References

1. V. Akman, W. R. Franklin, M. Kankanhalli, and C. Narayanaswami, “Geometric
Computing and the Uniform Grid Data Structure”, Computer Aided Design, 21(7)
(September 1989) 410—420.

2. T. Asano, M. Edahiro, H. Imai, M. Ir, and K. Murota, “Practical Use of Bucketing
Techniques in Computational Geometry”, in volume 2 of Machine Intelligence and
Pattern Recognition (Elsevier Science Publishers, 1985), pp. 153-195.

3. H. Edelsbrunner and E. P. Mucke, “Simulation of Simplicity : A Technique to Cope
Degenerate Cases in Geometric Algorithms”, Proceedings of the ACM Symposium
on Computational Geometry, Champaign-Urbana, lllinois, June 1988, pp. 118-133.

4. S. J. Eggers and R. H. Katz, “The Effect of Sharing on the Cache and Bus Perfor-
mance of Parallel Programs”, Proceedings of the Third International Conference on
Architectural Support for Programming Languages and Operating Systems, Boston,
April 1989, pp. 257-270.

5. W. R. Franklin, “Combinatorics of Hidden Surface Algorithms”, PhD thesis, Center
for Research in Computing Technology, Harvard University, June 1978.

6. W. R. Franklin, “Rays - New Representation for Polygons and Polyhedra”, Com-
puter Graphics and Image Processing, 22 (1983) 327-338.

7. 'W. R. Franklin, “Vertex Based Polyhedron Formulae”, (submitted for publication),

402

10.

11.

13.

14.

15.

16.

17

18.

19.

20.

21.

c ,Varayanaswﬂmi &g W R Frankhn

November 1988.

. T. Goodrich, «Applying Parallel Processing Techniques to Classification Prob-
lems in Constructive Solid Geometry”, Proceedings of the First ACM-SIAM Sympo-
sium on Discrete Algorithms, San Francisco, January 1990, pp. 118-128.

5. Hopkins and R. G. Healey, «A Parallel Implementation of Franklin's Uniform Grid
Technique for Line Intersection Detection on a Large Transputer Array”, Proceedings
of the 4th International Symposium on Spatial Data Handling’, Zirich, 23-27 July
1990, pp. 5-104.

M. S. Kankanhalli, “Techniques for Efficient Parallel Geometric Computations”.
PhD thesis, Rensselaer Polytechnic Institute, Troy, New York 12180, December
1990.

D. E. Knuth, Surreal Numbers: How Two Ez-students Turned on to Pure Mathe-
matics and Found Total Happiness: A Mathematical Novelette. (Addison—Wesley‘
1974).

Y. T. Lee and A. A. G. Requicha, “Algorithms for Computing the Volume and

Other Integral Properties of Solids. II. A Family of Algorithms Based on Repre-
sentation Conversion and Cellular Approximation”, Communications of the ACM,
25(9), (September 1982) 642-650.

Y. T.Leeand A. A. G. Requicha, Algorithms for Computing the Volume and Other
Integral Properties of Solids. I. Known Methods and Open Issues”, Communications
of the ACM, 25(9), (September 1982) 635-641.

S. L. Lien and J. T. Kajiya, “A Symbolic Method for Calculating the Integral
Properties of Arbitrary Nonconvex Polyhedra”, JEEE Computer Graphics and Ap-
plications, (October 1984) 43-51.

D. J. Meagher, “Geometric Modelling Using Octree Encoding”, Computer Graphics
and Image Processing, 19, (June 1982) 129-147.

G. L. Miller and 1. H. Reif, “Parallel Tree Contraction and its Application”, Pro-’
ceedings of the 26th IEEE Symposium of Foundations of Computer Science, 1985,
pp. 478-489.

C. Narayanaswami, “Parallel Processing for Geometric Applications”, Doctoral The-
sis Proposal, Rensselaer Polytechnic Institute, Troy New York 12180, July 1989.

C. Narayanaswami, «Parallel Processing for Geometric Applications”, PhD thesis,
Rensselaer Polytechnic Institute, Troy, New York 12180, December 1990.

C. Narayanaswami and M. Seshan, “The Efficiency of the Uniform Grid for Comput-
ing Intersections”, Master’s thesis, Electrical, Computer, and Systems Engineering
Dept., Rensselaer Polytechnic Institute, Troy, New York 12180, December 1987.

D. Pullar, “Comparative Study of Algorithms for Reporting Geometrical Intersec-
tions”, Proceedings of the 4th International Symposium on Spatial Data Handling,
Zirich, 23-27 July 1990, pp. 66-75.

A. A. G. Requicha and H. B. Voelcker, “Boolean Operation in Solid Modeling:
Boundary Evaluation and Merging Algorithms”, Proceedings of the IEEE, 73, (Jan-

()
(5]

Determination of Mass Properties of Polygonal CSG ... 403

uary 1985) 30-44.

J. R. Rossignac and H. B. Voelcker, “Active Zones in CSG for Accelerating Bound-
ary Evaluation, Redundancy Elimination, Interference Detection, and Shading Al-
gorithms”, ACM Transactions on Graphics, 8(1) (January 1989) 51-8T.

- H. Samet and R. E. Webber, “Hierarchica Data Structures and Algorithms for

Computer Graphics”, [EEE Computer Graphics and Applications, 8 (1988) 48-68.

