3 April 1992

mputed in

writhm for
evidence
-oblem is
then our
(such as
all solu-

.2 is due
in Vardi
* various
e the as-

Ramin
the Fan-

‘viele, Vol.

mber 12,
Springer,

¢ search
Artificial

arrés ma-

ingen des
pp. 237-
terhaltung
718) 363~

n-queens
-onstraint

Conf. on
39.

Information Processing Letters 41 (1992) 257-262
North-Holland

3 Apnl 1992

Edge intersection on the hypercube computer

Chandrasekhar Narayanaswami and William Randolph Franklin *

Electrical, Computer. and Sysiems Engineering Department. Rensselaer Polvtechnic Institute. Trov. NY 12180, USA

Communicated by 5.G. Akl
Received 21 June 1990
Revised 5 December 1991

Keywords: Parallel algorithms. computational geometry. performance evaluation

1. Introduction

We describe a parallel algorithm for a hyper-
cube computer for determining and reporting the
intersections between line segments lying on the
plane. This problem occurs in many geometric
appiications such as interference detection, visi-
ble surface determination. and set operations on
polygons.

The sequential algorithm [1] is given first and
its parallelization is presented next. Results from
implementation are also provided. This comple-
ments both the optimal sequential algorithms of
Chazelle and Edelsbrunner [2] and Mulmuley [5),
which seem hard to parallelize, and the parallel
algorithm of Goodrich [3], which seems difficult
to implement. In the sequential case. experimen-
tal studies by Pullar [7] show that in a wide
variety of practical situations, the algorithm cho-
sen here for parallelization performs better than
other theoretically superior algorithms.

2. The sequential algorithm

1. Partition the 2D region of interest into G X G
uniform square cells.

Correspondence 1o: Professor C. Narayanaswami, IBM
Corporation, AWD, Graphics Architecture, 11400 Burnet
Road, Austin, TX 78758-9260. USA. Email: chandra@
innerdoor.austin.ibm.com. phone: +1 512 838 1105.

* Email: wrf@ ecse.rpi.edu. phone: +1 518 276 6077.

2. For each edge. determine which cells it passes
through and write ordered pairs (cell number.
edge number). The left and bottom boundaries
of a cell belong to it whereas the top and right
boundaries do not. Appropriate adjustments
are made while dealing with the peripheral
(border) cells of the grid.

3. Sort the list of ordered pairs by the cell num-
ber and collect all the edges that pass through
each cell.

4. For each cell. compare all the edges in it. pair
by pair. to test for intersections. To determine
the intersection between a pair of edges. the
endpoints of each edge are first tested against
the equation of the other edge to check
whether an intersection occurs. Actual inter-
sections are then determined if necessary. In-
tersections that fall outside the current cell are
ignored. This handles the case of some pairs of
edges occurring together in more than one
cell. Intersections which fall on the cell bound-
aries are also handled correctly because no
boundary belongs to more than one cell.

3. Parallelization of the sequential algorithm

The key idea in parallelizing the sequential
algorithm is that computation of the cells through
which the edges pass and of the intersections in
the cells can each be done concurrently.

0020-0190,/92,/805.00 € 1992 - Elsevier Science Publishers B.V. All rights reserved 257



Volume 41. number 3

The parallelization is discussed in the context
of a hypercube machine which is an MIMD (Mul-
tiple-Instruction-Multiple-Data) coarse-grained.
message-passing parallel computer with the pro-
cessors (each with its local memory) connected in
a hypercube network [4]. In addition to these
processors. there is a host processor which is
used for I /O and to control the node Processors.

The second step of the sequential algorithm is
parallelized by letting the host distribute the edges
among the node processors which then compute
the cells through which the edges pass. At the
end of the above step, the cell-edge pairs of the
edges handled by a processor are stored in its
local memory.

Before the intersection computation within the
cells can proceed, all the cell-edge pairs belong-
ing to a cell have to be gathered in the processor
responsible for it. To do this. every processor may
have to communicate with every other Processor.
This requires an all-to-all-personalized (global)
communication scheme. A simple (though sub-
optimal) way of doing such an information ex-
change is to reduce the operation to an all-to-all
communication (not personalized) operation. This
type of communication can be done by embed-
ding a ring in the hypercube network (using a

(a) Random edges

INFORMATION PROCESSING LETTERS

3 April 1992

Gray code labeling for the processor) and by
circulating the cell-edge pairs around it. In the
first iteration every processor sends the cell-edge
pairs it computed. to the next processor in the
ring. In the next n - 2 iterations. the processors
send the message they received in the last jtera-
tion, to the next processor in the ring. Communi-
cation and computation are overlapped, Le., while
the message is on its way to the next processor,
€Very processor processes the buffer it just sent
out, to check whether anv relevant cell-edge pairs
are present in the buffer. in which case it stores
them in its pair list. In order to speed up the
retrieval step. the cell-edge pairs are sorted at the
beginning so that the pairs for each Processor are
stored contiguously in the message buffers. After
n — 1 such iterations. every processor would have
communicated with all the other processors and
will therefore have all the pairs it needs for
computing the intersections.

Next, the cells are evenly distributed among
the node-processors and the computation within
the cells is done concurrently. For reasons of
simplicity of implementation of the communica-
tion mechanism. every processor gets a set of
cells with consecutive labels. This implies that a
processor gets a set of cells that occupy contigu-

{b) Overlay of USA maps

Fig. 1. Plots of data sets.



€«

;pril 1992

and by
In the
ll-edge
in the
CESSOrs
t itera-
1muni-
. while
cessor,
st sent
2 pairs
stores
1p the
at the
or are
After
I have
s and
is for

mong
vithin
ns of
inica-
et of
hat a
1igu-

Volume 41. number 3

ous regions in the scene. Finally, each node-
processor sends its results back to the host-
Drocessor.

3.1. Implementation and results

The above algorithm was implemented on an
Intel IPSC /1 hypercube machine with 32 proces-
sors and was tested extensively on three data
bases with different geometric characteristics.
One of them was a randomly generated data set.
The second was a set of edges representing the
state boundaries of the USA. For the third data
set, the map of USA was shifted by 10% and was
overlaid on it. Figure 1 shows a plot of two of the
data sets.

Figures 2 and 3 show the times for the main
stages of the algorithm for grid resolutions of 5
and 40, respectively. The dotted lines represent
the timings for the case where 32 processors were
used. A point (x, y) on a dotted line in the graph
indicates that the processor whose id was v took

INFORMATION PROCESSING LETTERS

3 April 1992

¥ seconds for that stage of the algorithm. The
solid lines represent the timings for the case
where 16 processors were used. A point {(x, ¥) on
a solid line in the graph indicates that the proces-
sor whose id was x/2 took y seconds for that
stage of the algorithm.

The experiments and a closer study of the
graphs reveal the following:

(1) The time to put the edges into the cells
scaled inversely with the number of processors
used. The time spent in casting the grid with 32
processors was about half the time spent when 16
processors were used. This was true. both for
random and real edges.

(2) The work of putting the edges in the grid is
distributed evenly among the processors. This is
shown by the fairly horizontal shape of the graphs
for the grid time. This is the case even though the
lengths of the edges vary considerably. The rea-
son for this was that though the independent
edge lengths varied significantly. the sum of the
lengths of the edges processed by each of the

Number of edges: 3800, Number of intersections: 16823

03 3

02k A 2 25~
Grid | Message Do
Time i Time - s
{secs.) | 2 (secs.) .
LU ) S, 1+

g

2 10 20 30
Processor Processor
(@) ®)

&0
Intersection f
Time 40
(secs.) &

Processor Processor
«© (d)

Grid Size: 5

0.4~ 4 r
N—————— i,
R
03, Ik Ladagt ]
i .z -
Grid ; Message b
Time 02+ - Time 2L
(secs.) P e (secs.) i
H |
o1~ 1=
: I
I R e al ;
0 10 20 30 40 0 10 20 30 40
Processor Processor
(a) ®)
10~ 15
; i
i e
Intersection { Toual i E \
Time 5} Time ! AT
(secs.) e “_ s (secs.) S}' R ‘\
o i 5 l. i

: | -
o ; i gl

j e DR R

DD 10 20 40 ] 10 20 30 40

Processor Processor
{d} (d)

Grid Size: 40

Fig. 2. Timings for random edges (Fig. 1(a)).

AT

WU GRS ERSINAR 1 e

ig
',
:

Wikt 5

ot b S et o - g il L

[ re— ree——



Volume 41. number 3

processors was quite uniform. If this is not the
case. more sophisticated schemes for division of
work among the processors have to be developed
for this step. However, this does not appear to be
necessary while processing real scenes.

(3) The intersection time scaled inversely with
the number of processors when the data was
random. The time taken bv 16 processors was
approximately twice the time taken by 32 proces-
sors. For certain grid sizes, when real data was
used. the intersection time did not change much
when 16 or 32 processors were used because a
few contiguous cells had many edges at all grid
resolutions. The najve work sub-division scheme
allocated contiguous cells from a dense region to
the same processor. Thus. the time taken by the
processor responsible for this dense region domi-
nated the computation. For random edges. the
naive allocation of cells to the processors is not a
problem. A solution to this problem is suggested
in the following section.

INFORMATION PROCESSING LETTERS

3 April 1992

(4) For both random edges and real edges the
intersection time decreased as the number of
cells was increased from 25 to 1600. This is due tg
the reduction in the total number of cell-edge
pairs tested for intersections.

(5) The communication (message) time be-
came significant (when compared with the tota]
time) when the number of cells was increased and
also when the number of edges was small. When
the number of cells was high this was due to the
rapid rise in the number of cell-edge pairs,
whereas while dealing with a small number of
edges. the actual intersection computation took
very little time compared to the communication
time. In the first case a coarser grid resolution
will give better results. In the second case it is not
worthwhile to use many processors to solve the
problem.

The main observation is that. while in the
sequential algorithm a broad range of finer grids
usually produce faster results, in the paralle] al-

Number of edges: 1830, Number of intersectjons: 2344

0l 3
= -
| A s
| 24 :
Grid ! Message i
Time 0.05 . . Time
(secs.) J! 2T (secs) b —
]-- o T . e ; s

Processor Processor
(@) -}

30
|
|
ZUL H
Intersection | o
Time il
(secs) i ¥l 1
0K '

—a,

1
LEY ! li
:_,f.-\-. B

Processor Processor
(c) (d)
Dotted Lines - 32 Processors. Solid Lines : 16 Processors

Grid Size: 5

: \.zv—\ —~
QI LS B RS
] 10 20 30 <0 0 10 20 30 @0

0.15 -
0.1 'f-\,\,'\/\/\
Grid , Message
Timz) l o= (Tlme)
(secs. T secs.
0.05 b..-r‘-.'—.' W R
0 L . .
0 10 20 3¢ 40
Processor
(a)
2~
Intersecdon Total
Time

0 10 20 30 40

(secs)

Processor Processor
() (d)

Dotted Lines : 32 Processors, Solld Lines : 16 Processors

Grid Size: 40
Fig. 3. Timings for USA map shifted and overlaid on itself (Fig. 1(b)).



3 April 1992

| edges the
qumber of
15 is due to
¢ cell-edge

time be-
. the tota]
‘cased and
‘all. When
lue to the
lge pairs,
umber of
tion took
unication
-esolution
¢ it is not
solve the

e in the
ner grids
-rallel al-

Volume 41, number 5

gorithm the number of cells has to be reasonably
small so that the computation to communication
ratio is high.

(6) For a fixed grid resolution, the communi-
cation time went up as the number of processors
increased because of the bigger size of the net-
work. but was still less than half the total time.

3.2. Extensions for larger hvpercubes

Based on our experiments with 16 and 32
processors hypercubes. the following changes are
recommended to improve the performance of the
algorithm in the context of massive hypercubes.

3.2.1. Communication-relared improtements

(1) In the current global communication
scheme, all cell-edge pairs travel a distance of
(n — 1), even though the diameter of the hyvper-
cube network is only log n. While this is reason-
able in the context of 16-32 node hvpercubes, it
is not practical for larger hypercubes. A better
approach is 1o sort the cell-edge pairs based on
the intended destination and use more sophisti-
cated hypercube communication schemes such as
the ones discussed by Johnsson and Ho in [4].

(2) If the preliminary task of putting the edges
in the cells takes only a small fraction of the total
time, as experiments with 16 to 32 processors
indicate, it might be more efficient to let the host
processor compute and distribute the cell-edge
pairs to the nodes. The nodes then compute the
intersection in the cells assigned to them. If this
is done. only host-to-node and node-to-host com-
munication are used and there is no need for
all-to-all personalized communication.

(3) If a static assignment of cells to the proces-
sors is used, the location and orientation of the
edges can be used to distribute the edges to the
processors in the first step. This will reduce the
amount of communication needed to organize the
pairs. However, long edges which pass through
many cells could require still global distribution.

3.2.2. Load-balancing improvements

(1) By assigning contiguous cells to Processors
in a cyclic fashion, it can be ensured that differ-
€nt processors get assigned to contiguous cells

INFORMATION PROCESSING LETTERS 3 April 1992

from a region where the density of the edges is
high. This will help achieve better load-balancing
while computing intersections.

(2) Instead of partitioning the work among the
processors by distributing the cells equally while
computing intersections, the work can be parti-
tioned more evenly by distributing the cells among
the processors such that the sum of the squares
of the pairs in each cell over all the ceils handled
by every processor is approximately the same.
This can be done by building a table containing
the cumulative squares of the pairs in the cells.
This procedure will take care of uneven distribu-
tion of edges.

4. Conclusion

Even with static. non-randomized. allocation
of work 10 the processors, and a simple communi-
cation scheme, message-passing time was less than
half the rotal time. In addition the slowest pro-
cessor took less than 50% over the average pro-
cessor time. This result, when combined with
timing results of various sequential algorithms
reported in [7], suggests that the parallel algo-
rithm presented will compare favorably with effi-
cient parallelizations of other practical sequential
algorithms. Thus, using uniform grids is an effec-
tive method of finding, in parallel, all the inter-
sections among large set of small edges on a
hypercube with up to 32 processors, at least.
Moreover. since newer hypercube machines have
faster communication paths, our results are ex-
pected to improve.

As shown in [6], other related geometric prob-
lems are similarly parallelizable.

Acknowledgment

This work was supported bv NSF ‘Presidential
Young Investigator grant CCR-8351942. Partial
support for this work was provided by the Direc-
torate for Computer and Information Science
and Engineering, NSF Grant No. CDA-8805910.
We also used equipment at the Computer Sci-
ence Department in Rensselaer Polytechnic Insti-

261

e A s o




Volume 41. number 3

tute. Part of the research reported here was made
possible through the support of the New Jersevy
Commission on Science and Technology and the
Rutgers University CAIP Center's Industrial
Members.

References

[1] V. Akman. W.R. Franklin. M. Kankanhalli and C.
Narayanaswami. Geometric computing and the uniform
grid data structure. Compui. Aided Design 21 (7) (1989)
410-420.

[2] B. Chazelle and H. Edelsbrunner. An optimal algorithm
for intersecting line segments in the plane. in: Proc. 29th

262

INFORMATION PROCESSING LETTERS

3 April 1992

Ann. Symp. on Foundations of Computer Science, White
Plains (1988) 390-600.

[3] M.T. Goodrich. Intersecting line segments in parallel with
an output-sensitne number of processors. SIAM J. Com-
put. 20 (4) (1991) T37-755,

[4] LS. Johnssen and C.-T. Ho. Optimal broadcasting and
personalized communication in hypercubes, /[EEE Trans.
Comput. 38 19) (1989) 1249-1268.

(3] K. Mulmuley. A fast planar partition algorithm, 1, in:
Proc. 29th Symp. on Foundations on Computer Science,
White Plains +1958) 380-389.

[6] C. Narayanaswami. Parallel processing for geometric ap-
plications. Ph.D. Thesis. Rensselaer Polytechnic Institute,
Trov, December 1990,

[7] D. Pullar. Comparative study of algorithms for reporting
geometrical intersections. In: Proc. Internat. Symp. on
Spatial Dara Handling. Zurich (1990) 66-75.



