Proceedings of the 4th International Symposium on Spatial Data Handling, 67
Zurich, 1990, pp. 151-160.

CALCULATING MAP OVERLAY POLYGONS’ AREAS WITHOUT
EXPLICITLY CALCULATING THE POLYGONS — IMPLEMENTATION

Wm. Randolph Franklin

Electrical, Computer, and Systems Engineering Dept., 6026 JEC,
Rensselaer Polytechnic Institute, Troy, NY, 12180, USA

Internet: wrf@ecse.rpi.edu, Bitnet: wrfrankl@rpitsmts.bitnet
Telephone: (518) 276—6077, Telex: 6716050 RPI TROU, Fax: (518) 276-6261

Abstract

The implementation of OVERPROP, an algorithm for quickly calculating the areas of all
the polygons resulting from overlaying two input maps, is presented. OVERPROP works from a
reduced representation of each map as a set of “half-edges” with no global topology. It does not
first calculate the overlaid map. In fact, finding the areas of all the output polygons is simpler
than finding the polygons themselves. This method is exact within the arithmetic precision of the
machine, and does not use raster, Monte Carlo, or other sampling techniques. It is well suited
to a parallel machine, and could be extended to overlaying more than two maps simultaneously,
and to determining other properties of the output polygons, such as perimeter or center of mass.
OVERPROP is useful when the sole purpose of overlaying two maps is to find some mass
property of the resulting polygons.

Introduction

In the map overlay problem, two maps, or planar graphs, are combined to make a third,
each of whose polygons represents the intersection of one polygon from the first input map with
one from the second. For instance, if the first map’s polygons are countries and the second
watersheds, then one output polygon would be that part of France that drains into the Atlantic.
The overlay problem is one of the more difficult computational issues in GIS since the algorithm
is complex, the data are large, and the numerical inaccuracy of computers can confound even
correct algorithms [10, 11].

Our algorithm, OVERPROP, presents a simpler method, more efficient for large databases,
that is less sensitive to numerical errors since they cannot cause topological difficulties. It is
based on our simpler, local topological data structures for representing polygons and polyhedra.
Its speed comes from the uniform grid data structure. These concepts have been described in
the context of computer aided design (CAD) most recently in [4]. A preliminary description of
this algorithm was presented in [3]. In the rest of this paper, we will see, first, the logical data
structures, then the theoretical formulae underlying the algorithm. We will see the algorithm
described, first, briefly, ignoring efficiency considerations, and then in more detail. Control of
numerical errors, design tradeoffs, and possible extensions complete of the paper.

“Iplzurich-4th-spatiallpaper 1 April 3, 1990

Major Data Structures

Conceptually, each input map is a planar graph composed of vertices and edges partitioning
the E? plane into polygons. The graph may be disconnected with the components either nested
or disjoint. Each polygon has an identification number, which may be non-unique when one
logical region is composed of several polygons. By convention, the outside is polygon #0. In
our map data structure, the vertices and polygons are not represented explicitly, but could be
recreated if desired.

We assume that each input map is a set of tagged edges: {(z1,y122,y2,p1,pr)} Where
(z1,y1) are the Cartesian coordinates of the edge’s first endpoint, and(z2,y2) are the second.
(p1, pr) are the numbers of the polygons to the left and right.

Each edge of each polygon has two endpoints, each of which defines a “half-edge”, e. Since
a data structure edge borders two polygons, it decomposes into four half-edges. Although the
half-edges are not explicit data structure elements, they can be derived easily, and are important
in the following algorithm. A half-edge contains the information (v, vy, tz,y, ns,n,) Where
(ve,vy) is the location of the endpoint, (t;,t,) is a unit tangent vector from the endpoint along
the edge, and (n;,ny) is a unit normal vector perpendicular to the tangent, and pointing into
the polygon.

A polygon number of the output map is an ordered pair (p;,p2) of the two input polygons
whose intersection forms this particular output polygon.

Theoretical Basis of the Algorithm

The algorithm is built on the following principle. Many properties of a polygon, such as area,
center of mass, and moments of inertia, may be calculated separately for each half-edge of the
polygon and then summed. These are “extensive” properties in a thermodynamic sense, in that
the total value for an object may be found by integrating over its area or volume. This concept
is also related to Greene’s theorem in calculus, where an integral over an area is transformed
into an equivalent integral over the boundary of the area. Formally, let polygon P have the set
of half-edges E. Let F(P) be some desired function of the polygon, such as area. Then for these
F, there exists a functional that returns a new function fr such that F'(P) = > fr (e).

el

For example, fireql= % (vats + vyty) (Vang + vyny) and fperimeter = — (Vsts + vyty)

So if we can find the half-edges of the output polygons we can find the areas. The output
half-edges needed by the formulae are of two types:

a) derived from an endpoint of an original edge of one of the input maps, or
b) derived from an intersection of two input map edges.

For each original endpoint we also need to know which polygon of the other map this point
is in. For each intersection of two edges we already know the numbers of the relevant polygons.

“Iplzurich-4th-spatiallpaper 2 April 3, 1990

Brief Algorithm

A sketch of the algorithm, ignoring efficiency considerations, now appears as follows.

1. Initialize a data structure to contain a list of triples, (p;, p2, partial-area), to accumulate the
parts of the areas of the output polygons. p; and p; are polygons from the first and second
input maps respectively.

2. Find all intersections of any edge of map 1 with any edge of map 2. Each intersection
will generate 8 half-edges, as shown in figure 1 where the tangents and normals of three
are labeled.

Edge 2

Figure 1: The 8 Half-Edges Derived from One Intersection

3. For each half-edge resulting from an intersection, find the tangent and normal vectors and
the relevant polygons from each input map. Note that in figure 1 there are two polygons
from map 1, one on each side of edge 1, and also two from map 2, one on each side of edge
2. Each of the 4 possible pairs of the input polygons will apply to 2 of the 8 half-edges.
For example, half-edges 1 and 2 are part of the output polygon that is the intersection of the
polygon on map 1 to the right of edge 1 with the polygon on map 2 above edge 2.

4. Apply the formula to each half-edge to calculate its contribution to the relevant output
polygon’s area.

5. Now we must calculate and process the half-edges not resulting from an intersection. For
each endpoint of each edge of map 1, determine which polygon of map 2 contains it.
Repeat for the edges of map 2.

6. Split each edge of each input map into four half-edges.
7. Apply the formula to these half-edges and store their partial areas.

Extract the final area of each non-empty output polygon, which was the goal.

“Iplzurich-4th-spatiallpaper 3 April 3, 1990

Detailed Efficient Algorithm

The algorithm presented in the last section is of value only if it is efficient enough. For
instance, if finding all intersections of input edges takes quadratic time in their number, then
maps with 10,000 edges, and thus 50,000,000 possible intersection, will be difficult to process.
This section tells how to make the algorithm practical.

General numerical speed: On almost every computer, floating point computations are slower
than integer, sometimes by a factor of three or more. Initially, when using 4 byte integers, we
scale the map coordinates to the range [—M, M] in X and Y, where M=20000. This allows
us to calculate edge equations exactly and then substitute a point into the equation to determine
which side of the edge it is on, again without any roundoff, since the largest number computed
will be absolutely less than 4M2.

Storing (cell, edge) information: We use a square array with one extendible array per cell. The
cell is a pointer to an array initially 5 long, with the first element the allocated size and the
second the number of elements in use, leaving 3 to store edge numbers. If that is insufficient,
then the array is reallocated with double the size, the old elements copied, and the pointer from
the square cell array changed to point to the new one. Statistics are kept of the number of times
that a reallocation is necessary. Contrary to appearances, even if a cell’s array is reallocated
many times, each edge number is copied very few times. If the array size is grown by a factor «
each time (here a=2) from one element to a large size, then each element is copied an average
of 1/(a— 1) times (here 1).

Finding intersections: We use Franklin’s uniform grid method [4, 6].

Locating the polygon containing each edge endpoint: The naive method compares each point
against each edge of the other map. However, using a uniform grid again, this can be done in
expected time O(N+M) if there are N points to test against a map with M edges. We use an
optimized version of an implementation of a one-dimensional grid method by V. Sivaswami that
has the following performance on a Sun 3/60 workstation.

1. The first case tested 10,000 points against a random polygon with 100,000 edges. Prepro-
cessing took 190 usec/edge, or 19 seconds CPU time, and classification took 7.6 msec/point,
or 76 seconds.

2. In the second test, we took a map of the USA with 915 edges in 166 chains and 49 polygons,
and located 930 random points. Preprocessing took 440 usec per edge and location took
3.8 msec per point, for a total preprocessing and query time of 3.9 seconds. The sample
data are shown in figure 2.

“Iplzurich-4th-spatiallpaper 4 April 3, 1990

In these tests, the total time varied less than 25% as the linear grid resolution varied over
a range of 25:1.

Figure 2: Point Classification in a Planar Graph. Each
Point is Labeled with its Calculated Polygon Number.

If the user is feeling pessimistic about the data, and worried that the uniform grid might
fail, then there do exist more complicated but worst-case optimal methods [8]. A typical time
for these might be O((N+M) log M).

Creating the one dimensional slab structure:

1. Each slab is one column of grid cells. The edges in the cells in a column are gathered
together and sorted primarily by their minimum Y coordinates, and secondarily by their
number. This comparison predicate assures that two edges will not compare the same unless
they are the same edge. This results in duplicates of the same edge being adjacent after
the sort, so they can be deleted. Duplicates occur when the same edge falls in more than
one cell in the column.

“Ip/zurich-4th-spatial/paper 5 April 3, 1990

2. Finally a selection sort is performed on the unduplicated edges. The criterion is the partial
order where one edge is less than another if, from a viewpoint of (0,—oc0), the former edge
(at least partly) obscures the latter one.

3. To determine the polygon containing a point, first the slab containing the point is determined.
Then a ray is fired up from the point to the first edge that it hits, in the order that the edges
are stored in the slab. Then the point is in this edge’s left or right neighboring polygon
depending on whether the edge’s first endpoint is to the right or left of its second endpoint,
respectively.

Degenerate cases: These occur when a vertex of one map falls on an edge or vertex of the other.
Although this has previously been a very difficult problem, there is now a complete theoretical,
and practical, solution to the problem of degeneracies, the Simulation of Simplicity technique
of Edelsbrunner and Mucke [2]. Briefly, this pretends to add an infinitesimal to the coordinates
of the second map. By definition, all first order infinitesimals are less than all positive finite
numbers. Different orders of infinitesimals may be used; all second order ones are less than
all first order ones, etc. A delightful book on this is by Knuth [7]. The effect of infinitesimals
is to prevent any comparison tests from returning an equality. We do not actually work with
infinitesimals, but instead determine what their effect would be on any test, and code a modified
test accordingly. The modified test is longer but generally not significantly slower. For example,
suppose that we are testing a point (z,y) against a line az + by + ¢ = 0, and that we are using
simulation of simplicity to pretend to shift the point by (e, €2). Thus the test becomes as follows.

d=ax+by+c;

if (d#0) return signum(d);

else 1f (a#0) return signum(a);

else return signum(b);

signum returns —1, 0, or 1 according to the sign of its argument. Note that the extra
tests are called only in the degenerate case. Now, one might deduce this particular test without
resort to simulation of simplicity. However this technique provides a general, theoretically
well-founded, method for creating all such tests.

Error Control

Numerical roundoff errors, and the numerous sliver polygons generated even if there is no
roundoff, help make the polygon overlay problem so hard. With OVERPROP, slight errors in
calculating intersections vertex coordinates will cause proportionally slight errors in the areas.
However, although OVERPROP does not explicitly use the topology of the polygons, it implicitly
assumes that it is consistent in the following ways.

a) There are no missing edges, and no gaps between edges of a polygon.
b) The polygon numbers stored with the edges are all correct.

“Iplzurich-4th-spatiallpaper 6 April 3, 1990

In fact the sensitivity of OVERPROP to these input errors may be used to test for consistency
by the following method.

a) Repeatedly randomly translate and rotate the input maps.

b) Find the areas with OVERPROP.

c) If the answers are different by more than numerical roundoff, then the input is bad. If the
answers agree after several random operations, then the input is almost certainly internally
consistent.

OVERPROP does not care about roundoff errors that cause one chain of edges to cross
another erroneously as shown in figure 3. The will cause the output to be off by an amount
proportional to the geometric error in spite of this topological error.

>

Wrong Right

Figure 3: Topological Error Caused by Numerical Inaccuracy

Design Tradeoffs

The data structures and algorithms used here were selected from many possibilities. Factors
considered included efficiency of execution and efficiency of implementation, i.e. simplicity.
Some decisions included the following.

Storing the vertices in a separate array and having the edges contain vertex numbers instead
of vertex coordinates: This is the choice between immediate versus indirect data. Storing the
vertex coordinates immediately in the edges makes processing the edges cheaper. Depending on
wordlengths, the storage will be the same or greater. If a vertex position takes 2 bytes each for
x and y, and a vertex number takes 4 bytes, then the storage is identical. On the other extreme,
if each coordinate takes 4 bytes, but a vertex number takes only 2, then the indirect method
will be smaller. With memory prices for workstations at $100 per megabyte and falling, then
memory is not so important as before. However, big programs will always execute more slowly
than otherwise equivalent small programs because of bus bandwidth limitations, and because the
big programs will use the cache less efficiently.

Using integers instead of reals for coordinates: This saves space and execution time. However,
attention must be paid to scaling since that is no longer automatic.

Splitting long chains of edges that form a common boundary into the separate edges: This
somewhat controversial choice makes the data structure bigger, but each data element is now
fixed length instead of variable. This is a similar concept to a relational database satisfying
Codd’s third normal form [9]. Also the algorithm is simpler with fixed length items, and
parallelizes better.

“Ip/zurich-4th-spatial/paper 7 April 3, 1990

Implementation

A preliminary version of OVERPROP is now up and running, coded in C on a Sun 3/60,
a 4 MIPS machine with an MC68020 processor. The biggest test case, shown in Figure 2,
involved overlaying a map of the coterminous United States with 1081 vertices, 915 edges, and
49 polygons against a map of July isotherms at 10°F intervals, with 920 vertices, 892 edges,
and 6 polygons. With a 100x100 grid, the biggest cell had only 14 edges from the 2 maps.
The actual histogram of number of cells with n edges for 0<n<14 was 5259 2900 1065 493 159
66 3115800021 1. Among the 10000 cells there were only 287 reallocations for more
space. 1357 pairs of edges were tested for intersection to yield 111 intersections and another
146 duplicate intersections. When the slabs were created from the edges, the biggest slab had
under 100 edges from both maps together.

The time was measured using the Free Software Foundation gcc compiler with optimizing
enabled. Reading the input files took 4.9 CPU seconds, and after that, everything else, including
applying the grid, finding the intersections, locating the vertices of each map in the other, and
calculating the areas of all the output polygons, took another 7.2 seconds. We expect the total
time to shrink in the future, and also expect to test much bigger data sets.

Possible Extensions

Overlaying multiple input maps simultaneously: These ideas extend to finding the areas of the
results of overlaying more than two input maps simultaneously. As with two maps, the output
half-edges are derived from input edge endpoints and intersections of edges. What is new is
that the location of each half-edge must be determined in every input map. In this case, the
advantage of OVERPROP compared to actually finding a sequence of more and more complicated
intermediate maps would be even greater. There would also be no artifacts resulting from the
order in which the several input maps were processed, since they would all be used together.

Execution on parallel machines: OVERPROP is designed also to be implementable on a parallel
machine. The component operations are generally one of two types: map a function over a set of
elements to calculate a new set, or sort a set of elements, perhaps combining adjacent elements.
Mapping is easily executable even on a SIMD (single instruction, multiple data stream) machine.
Sorting is a little harder, but parallel sort algorithms exist.

This ease of parallel execution contrasts to many other, more complicated, geometric
algorithms that are essentially sequential. We have not implemented this complete algorithm
in parallel yet, but Chandrasekhar Narayanaswami and Mohan Kankanhalli have implemented
edge intersections in parallel, as well as other other algorithms, such as Boolean combinations
of polyhedra, [1], and hidden surface determination, [5]. The machines used have been a 16
processor Sequent Balance 21000 and a 32 processor hypercube. Both are MIMD machines. The
Sequent has a common memory, runs Unix, and makes it easy to allocate different processors
to different processes, or to different iterations of the same loop of the same process. As many
as 15 of the 16 processors can be used in this case. Typical speedups when using 15 processors
have been ten times faster than when using one processor.

“Iplzurich-4th-spatiallpaper 8 April 3, 1990

The Hypercube has a separate, rather small, memory for each processor, and communication
between processors is somewhat slow. Since one processor has too little memory to run a
reasonable sized problem, we couldn’t compare a sequential and a parallel time. Therefore we
measured the communication time compared to the total CPU time, and the CPU time of the
slowest processor compared to the average of all the processors. The communication time was
1/3 or less of the total time, and the slowest processor took no more than twice the average
processor. Therefore if the load were perfectly balanced over the 32 processors and had no
communication cost, it would be under three times faster, which is a respectable performance.

Summary

OVERPROP calculates the areas of the intersection polygons resulting from overlaying
two maps very efficiently. Unlike other polygon overlay algorithms, it uses no explicit global
topology. There is no tracing chains of edges. Polygons completely contained inside other
polygons are not a problem, in fact are not even recognized; however the correct answer is
produced with the area of the outer polygon excluding the inner area. Polygons may also
have multiple separate components. OVERPROP is a result of an investigation into how little
topology we actually need explicitly to store, and concurrently, by how much can special cases
be reduced. Sometimes a more complete topology is needed, for instance to draw the output
polygons, but for mass calculations it is not.

Acknowledgements

This work was supported by NSF Presidential Young Investigator grant CCR-8351942.
Partial support for this work was provided by the Directorate for Computer and Information
Science and Engineering, NSF Grant No. CDA-8805910. We also used equipment at the
Computer Science Department and Rensselaer Design Research Center at RPI. Part of this work
was conducted using the computational resources of the Northeast Parallel Architectures Center
(NPAC) at Syracuse University, which is funded by and operates under contract to DARPA and
the Air Force Systems Command, Rome Air Development Center (RADC), Griffiss Air Force
Base, NY, under contract # F306002-88-C-0031. Part of the research reported here was made
possible through the support of the New Jersey Commission on Science and Technology and the
Rutgers University CAIP Center’s Industrial Members.

Bibliography

[1] Chandrasekhar, N., and Franklin, W. R. A fast practical parallel convex hull algorithm.
Tech. rep., Electrical, Computer, and Systems Engineering Dept., Rensselaer Polytechnic
Institute, 1990.

[2] Edelsbrunner, H., and Mucke, E. P. Simulation of simplicity: A technique to cope with

degenerate cases in geometric algorithms. In Symposium on Computational Geometry
(1988), pp. 118-132.

“Iplzurich-4th-spatiallpaper 9 April 3, 1990

[3] Franklin, W. R. Overprop - calculating areas of map overlay polygons without calculating
the overlay. In Second National Conference on Geographic Information Systems (Ottawa,
5-8 March 1990).

[4] Franklin, W. R., Chandrasekhar, N., Kankanhalli, M., Akman, V., and Wu, P. Y. Efficient
geometric operations for CAD. In Geometric Modeling for Product Engineering, M. J.
Wozny, J. U. Turner, and K. Preiss, Eds. Elsevier Science Publishers B.V. (North-Holland),
1990, pp. 485-498.

[5] Franklin, W. R., and Kankanhalli, M. Parallel object-space hidden surface removal. In
Proceedings of SIGGRAPH’90 (Dallas, Texas) in Computer Graphics (August 1990),
vol. 24,

[6] Franklin, W. R., Narayanaswami, C., Kankanhalli, M., Sun, D., Zhou, M.-C., and Wu,
P.Y. Uniform grids: A technique for intersection detection on serial and parallel machines.
In Proceedings of Auto Carto 9: Ninth International Symposium on Computer-Assisted
Cartography (Baltimore, Maryland, 2-7 April 1989), pp. 100-109.

[7]1 Knuth, D. E. Surreal numbers: how two ex-students turned on to pure mathematics and
Jound total happiness: a mathematical novelette. Addison-Wesley, 1974.

[8] Preparata, F. P., and Shamos, M. I. Computational Geometry: An Introduction. Texts and
Monographs in Computer Science Springer-Verlag, 1985.

[9] Ullman, J. D. Principles of Database and Knowledge-base Systems. Principles of computer
science series, 14. Computer Science Press, 1988.

[10] White, D. A new method of polygon overlay. In An Advanced Study Symposium on
Topological Data Structures for Geographic Information Systems (Cambridge, MA, USA,
02138, 16-21 October 1977), Laboratory for Computer Graphics and Spatial Analysis,
Harvard University.

[11] White, D., Maizel, M., Chan, K., and Corson-Rikert, J. Polygon overlay to support point
sample mapping: The national resources inventory. In Proceedings of Auto Carto 9: Ninth
International Symposium on Computer-Assisted Cartography (Baltimore, Maryland, 2-7
April 1989), pp. 384-390.

“Iplzurich-4th-spatial/paper 10 April 3, 1990

