Comput. & Graphics Vol. 13, No. 3, pp. 373-379, 1989
Printed in Great Britain.

0097-8493/8% $§3.00 + .00
© 1989 Pergamon Press plc

Technical Section

: REPRESENTING OBJECTS AS RAYS,
OR HOW TO PILE UP AN OCTREE?

VAROL AKMAN
Department of Computer Engineering and Information Sciences, Bilkent University, P.O. Box 8,
06572 Maltepe, Ankara, Turkey

and

WM. RANDOLPH FRANKLIN
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute,
Troy, New York 12180-3590, USA

Abstract—Quadtrees, octrees, and in general k-trees have established themselves as useful hierarchical data
structures in computer graphics, image processing, and solid modeling. A fundamental operation in a system
based on k-trees is the construction of a k-tree. Here, we review a new way of doing this operation. Basically,
we have invented a method to store an object as a set of rays and an algorithm for converting such a set
into a k-tree. (For example, in 3D a ray is a thin parallelepiped.) The algorithm is conceptually simple,
works for any k, and piles up, using an approach we call stacking, a k-tree from the rays very fast. It produces
a minimal k-tree and does not lead to intermediate storage swell. For large-scale realistic objects, which
consist of many thousands of rays, the algorithm debunks the “expensive octree creation” myth.

1. INTRODUCTION

Quadtrees, octrees, and in general, k-trees are data
structurest all based on the symmetric recursive par-
titioning of space. We are concerned in this paper with
a task of fundamental importance in systems based on
octrees. This is the operation of constructing (creating,
building) an octree. We have observed, somewhat sur-
prisingly, that octree construction has not received the
importance it deserves and that the algorithms cited
in recent overviews[1, 2] are neither efficient nor con-
ceptually easy to understand and implement.

We thus aim to accomplish two things here: (i) pro-
pose a new way of storing an object as a set of rayst,
and (ii) describe an original algorithm to convert this
set of rays into an octree. Our algorithm is so pure and
simple that it is indeed astonishing that it has not been
thought of before. We shall substantiate this claim to
simplicity and ease of understandability with a data
flow diagram (cf. Fig. 8) which succinctly shows the
correctness of our algorithm.

Our previous papers on the theme of this paper are
[3, 4]. Although this presentation will essentially be
self-contained, we refer the interested reader to [3, 4]
for topics which will not be covered here (e.g.,
information-theoretic minimal representations of k-
trees[4]).

1 In order to make the upcoming presentation more con-
crete and the definitions less cumbersome, hereafter we shall
choose octrees (k = 3) as the representative member of this
group. It will be observed, however (and we shall explicitly
note this at times), that our results will be applicable to both
quadtrees (k = 2) and k-trees with k > 3 as well, mutatis
mutandis.

1 In a previous publication[3], we have called the rays par-
allelepipeds. Tt will be seen in the sequel that the latter term
is indeed more suggestive but for the sake of conciseness we
shall adopt the former.

2. TERMINOLOGY

We recall some definitions and cite, for the sake of
completeness, well-known facts regarding octrees while
probably running the risk of boring the reader; this
section should be skipped unless one is unfamiliar with
octrees.

An octree is a special case of the abstract data type
digital search tree. (Knuth[5] gives an excellent ac-
count of digital search trees.) The object, which we
shall denote as Z, is contained in a universe, T, which
is a cube of size U X U X U where U = 2¢. Here ¢ is
a positive integer. (With today’s technology, an ¢ value
of 10 or 11 is more or less standard but this doesn’t
have to concern us at the moment.) T is divided into
U? small cubes of unit volume called voxels. To obtain
an octree, which we shall denote as , T is continuously
subdivided into eight symmetric octants of equal vol-
ume. Each of these octants will be either homogeneous
(i.e., either fully occupied by X or void) or heteroge-
neous (i.e., partly occupied by 2). We further subdive
the heterogeneous octants into suboctants. This is
stopped when octants (possibly voxels) of uniform
properties are obtained. Obviously, @2 is only an ap-
proximation to Z since at the voxel level a partly full
voxel should be labeled either full or empty.

Following the established usage§, let us consider the
obels. An obel can be empty, full, or partial; cf. Fig. 1.
T is considered to be a level-O obel. If 2 is not void
but does not fill T either, then the universe obel is
labeled as partial. Then the following recursive process
is carried out. If / < £ then a partial obel at level-/ is
divided evenly into eight obels at level / + 1. Each of
these obels is again labeled fil, empty, or partial and
the process is repeated on the partial ones. Let us as-

§ Sometimes, we can't help feeling fortunate that we did
not invent the words voxel and obel.

373

-

64

64

374

Fig. 1. Types of octree obels.

sume, without loss of generality, that the partial voxels,
if any, at level-Z are arbitrarily declared to be full.

It is emphasized that the level of a obel v in an octree
is defined recursively as level(r) = 0, in case v is the
root and as:

level(v) = level(father(v)) + 1,

otherwise. The depth of an octree is understood as the
level of its deepest (lowest) leaf. Thus, any octree which
has voxels has depth ¢, by definition.

The quadtree complexity theorem given in [11]
states that the size of a quadtree representation of a
region is linear in the perimeter of the region (in all
but pathological cases). In general, it turns out that[15]
the size of a k-tree of a set of k-dimensional objects is
proportional to the sum of the resolution and the size
of the (k — 1)-dimensional interfaces between these
objects (again, in all but pathological cases).

3. RELEVANT RESEARCH

Quadtrees, octrees, and to a lesser extentY k-trees
have proved to be a fertile area of research with many
hundreds of papers and various surveys. A recent,
rather nontechnical overview is provided by Samet and
Webber[1, 2] who cite about 200 references (although
with some important omissions). Since we carry no
pretensions of covering all the relevant work, we shall
be selective and refer the reader to Requicha[7] and
Srihari[8] for two informative surveys on the repre-
sentation of rigid solids, viz., 3D digital images. The
reader should also benefit from Yamaguchi et al.[18]
and the other overview papers of Samet[9, 10] who
is, without doubt, the most prolific survey author in
this area.

Early work on quadtree algorithms was done by
Hunter and Steiglitz[1 |] who showed how to perform
a set of operations on images using quadtrees. Jackins
and Tanimoto[12, 13] extended this work to octrees.
Doctor and Torborg[14] presented, in an elegant ar-
ticle, display techniques for octree-encoded objects.

Construction of a serious software system which lets

1 For k = 4 an obvious application is as follows. Let the
fourth dimension represent time. Then it is possible to view
a changing 3D scene as a 4D object. Samet and Tamminen
wrote an article[6] on this subject.

VAROL AKMAN and WM. RANDOLPH FRANKLIN

irregular 3D objects to be represented and manipulated
was first accomplished by Meagher[15]. He imple-
mented a large program and obtained a graphics system
that allows the user to build quadtrees interactively,
extend them to octrees, and carry out essential trans-
formations and set-theoretic operations on them. Later,
Meagher built a special hardware, “The Solids Engine,”
which is an impressive system for interactive solid
modeling based on octrees.

Construction of quadtrees or octrees has been treated
in[1, 2] in some detail. To quote Samet and Webber[1,
p. 641f]:

“The algorithm for building a raster quadtree from a 2D array
can be derived directly from the definition of the raster quad-
tree. When building a quadtree from raster data presented in
raster scan order (i.e., the array is processed row by row), we
use the bottom-up neighbor finding algorithm to move through
the quadtree in the order in which the data is encountered.
[...]Such an algorithm takes time proportional to the num-
ber of pixels in the image. Its execution time is dominated by
the time to check whether nodes should be merged. This can
be avoided by predictive techniques that assume the existence
of a homogeneous node of maximum size whenever a pixel
that can serve as an upper left corner of a node is scanned
(assuming a raster scan from left to right and top to bottom).
In such a case, merging is reduced and the algorithm’s exe-
cution time is dominated by the number of blocks in the
image rather than by the number of pixels. However, this
algorithm does require an auxiliary data structure (which can
be implemented by a fixed-size array) of a size on the order
of the width of the image, to keep track of all active quadtree
blocks (i.e., blocks containing pixels that have not yet been
encountered by the raster scanning process).”

Techniques for building octrees include merging the
cross-sectional images (which are represented as quad-
trees) of the object in sequence. This technique is ex-
amined by Yau and Srihari[16]; they show how to
construct a k-dimensional tree representation from
multiple (k — 1)-dimensional cross-sectional images.
It is noted that there is a rather superficial resemblance
between the algorithm in [16] and our algorithm. Sa-
met[19-21] considers the conversion of rasters, binary
arrays, and boundary codes to quadtrees; however, his
methods are slow. Tamminen and Samet[17] give an
algorithm for converting from the boundary represen-
tation of a solid to the corresponding octree model
using a technique called ““connectivity labeling.” Shaf-
fer and Samet[22] consider optimal quadtree con-
struction methods. .

Sometimes, it is possible to use a small number of
2D images to reconstruct an octree representation of
a 3D object. This is done by taking silhouettes (e,
projection images) from various viewpoints. These sil-
houettes are then processed in order to create a bound-
ing volume that serves as an approximation of the ob-
ject. Potmesil[23] gives a fine account of how this can
be achieved.

4. RAY REPRESENTATION
Ray representation has, in fact, been known for a
long time—the catch is that it has been used for another
purpose, namely, numerical integration. For example,
to compute the volume of a 3D object, 2, one ap-

f4-2

How to pile up an octree?

proximates it with a set of rectangular parallelepi-
peds[7]. These parallelepipeds (or, as noted before,
rays, from now on) are assumed, without loss of gen-
erality, to be evenly spaced in the xy-plane but to have
varying lengths along the z-direction. Needless to say,
one postulates some conditions on the shape of 3, such
as its boundary is composed of well-behaving surfaces,
and so on. The reader is referred to Roth[24] for a
particularly clear exposition of a related idea. viz., ray
casting. Fig. 2 shows the rays for a 2D object (region).
In 3D these thin rectangles would become thin par-
allelepipeds. We assume throughout this paper that
the rays are cast at unit spacing. (In [3] we treat the
general case which makes our algorithm only more
tedious.)

We use rays as follows. Let each ray be given in the
following format:

p=(x,¥, 21, 2, ny, ny),

where x, y, z;, z; € [0, U — 1]. This corresponds, as
pointed out in the preceding paragraph, to a ray with
fixed (x, y) that enters the object at z, and leaves it at
Z2. (Assume that z, < z,.) When an object is given as
a set of rays, it is assumed that all rays in the set are
distinct and disjoint. The surface normals n; and n,
are associated with z; and z,, respectively. They are
used to display 2 realistically so that the user can de-
termine its shape, especially if it is an irregular object.
In fact, one can even incorporate the color values in
addition to the local surface normal, for each full sur-
face obel. In the sequel, we shall ignore the surface
normals since they can be easily handled (as shown in
[3. pp. 63-64]) by our algorithm with no extra effort.
There are several advantages of the ray format:

® Set-theoretic (Boolean) operations on two octrees
can be performed via trivial operations on rays since
rays are 1D.

® Translation of a ray is easy. (Rotation is still prob-
lematic; cf. Gargantini[25] for translation and ro-
tation of quadtrees.)

® To display an octree stored as a set of rays, we simply
paint the rays into the frame buffer back to front,
Notice that this would work for any display angle.t

5. RAYS FROM QUADRIC SOLIDS

The second author wrote an efficient program for
converting a quadric solid (e.g., an ellipsoid) to rays.
This program is in Fortran-77 and runs on a
Prime 750.

The reader is no doubt familiar with the definition
of quadrics. Briefly, let = be a 4 X 4 matrix and let
be the vector [xyz1]7. (The superscript T denotes the

+ Depending on the octant in which the viewer is situated,
there is a certain permutation of numbers from | through §
that is easy to determine. If the octree is traversed recursively
with the eight children of each partial obel being visited in
that permutation order, then the leaves will be visited in back
to front order. An alternative display algorithm [15] is to paint
the image front to back and never paint any pixel twice.

Fig. 2. Ray representation for a region (region boundary not
shown).

transpose.) Now a concise way of writing down the
equation of a quadric is:

VTEY = 0.

The program mentioned above clips a solid to the unit
cube (i.e, [0, 1]*) and outputs a set of rays and surface
normals as described before, The algorithm is as fol-
lows;

0. Iterate up the quadric solid in y. For each y, find
the 2D conic in x and z.

1. For each conic in the xz-plane, find the range of x
for which z is real. It is noted that this range contains
up to two segments that may be finite or infinite.
(We do not dwell here on how to determine the
range of x for which the 2D conic f{(x,) is real
but simply state that six cases should be considered
depending on the discriminant of the formal solu-
tion for z in terms of x; cf. [4] for details.)

2. Iterate in x and solve the quadratic equation for z,
and z,. Clearly, they are clipped to [0, 1].

3. Calculate the normals in the obvious way. If z; were
clipped in step 2. then the associated normals would
be (0,0, +1).

Why is the above algorithm fast? Because it doesn’t
work with the rays that do not intersect the object. For
reasonable objects, these are typically the majority of
all the rays.

Caveat: The reader is probably wondering how to
obtain the rays for higher order solids whose boundaries
are, say, bicubic patches. Qur observation is that, al-
though the functions z(x, y) and n(x, p) for intersec-
tions and normals, respectively, would be complicated
then, they are nevertheless smooth. Therefore, efficient
simple approximations using splines can be found [4].

6. COMBINING AND SPLITTING

At the core of our algorithm for piling up an octree
are two operations: combining and splitting. We now
explain them,

Given a ray p, we need the maximal rows of p. These
are computed recursively as follows. First search for
the longest (in z) row in p and remove it from p. This
is a maximal row. Now p is either reduced to a shorter
ray or divided into two rays both shorter than the orig-
inal. In both cases, the search continues until maximal
rows of z-length equal to | are obtained. It is noted

543

376

VAROL AKMAN and WM, RANDOLPH FRANKLIN

length of row

12 4 8 32

16 8 4 1

1718 20 24 32

64 80 88 92 93

z values

Fig. 3. Splitting a ray (1, I, 17, 93) into nine maximal rows (not to the scale).

that, once the maximal rows of p are found, it should
be impossible to obtain a longer row by putting two
maximal rows together.

For example, Fig. 3 shows the nine maximal rows
obtained from the ray (1, 1, 17, 93). They are as fol-
lows:

rows (1,1, 17)and (1, 1,92)........... at level ¢
row(l,1,18) atlevel £ =1
rows (1, 1,20Yand (1, L, 88)........ at level £ — 2
rows(1,1,24)and (1, 1,80)....... . atlevel £ —3
POW (Ll B8 . s smes e s at level £ — 4
TOWCE L 32 v passss s atlevel £ — 5

A row at level-i is a triple (x, y, z) where z is divisible
by 297, Clearly, this is shorthand for the ray (x, y, z,
z + 27 — 1); in other words, the z-length of a row at
level-i is always 2¢7'. Two rows, p; = (x|, y1, z) and
p2 = (X2, Ja, z), at the same level are called adjacent
if x; = x; and |y, — y2| = 1. (Note that they both
have the same z.) A set of 2/ rows at level £ — i can
be combined if, when sorted by y to get a set of rows,
every row in this set is adjacent to its predecessor and

(0,3,0)
(0,2,0) WES)]
(0,1,0)
(0,0,0)
(0,4,0)
0] i (0,3,0)
(0,2,0)
(0,1,0)

Fig. 4. Four rows of length four that are combined into one
square versus four rows that cannot be combined, since they
are misaligned.

its successor. When rows are combined one obtains
squares which are explained below.

For example, the rows (0, 0,0), (0, 1, 0), (0. 2, 0),
and (0, 3, 0) at level £ — | can be combined, while
the rows (0, 1, 0), (0, 2,0), (0, 3, 0), and (0, 4, 0) at
level £ — 1 cannot (Fig. 4).

Let p,, p2, * + - be a set of 2 combinable rows at
level & — i. A square, o, at level £ — | is obtained by
combining them into a single triple (x, v, z) where x
=pi’sx, z=p;'sz,and y = min, p;’s y. Two squares,
o1 = (X1, V1, z) and o3 = (X3,), 2) at the same level
are called adjacent if y, = y; and | x; — x| = 1. A set
of 2/ squares at level £ — i can be combined if, when
sorted by x to get a set of squares, every square in this
set is adjacent to its predecessor and its successor. As
a result of combining squares we obtain cubes which
are defined below.

For example, the squares (0, 0, 0), (1,0,0),(2, 0,
0), and (3, 0, 0) at level £ — | are combinable while
the squares (1,0,0),(2,0,0),(3,0,0), and (4, 0, 0)
are not (Fig. 5).

(3,0,0) B o 1
(2,0,0)
(I,o,q)
(0,0,0)
(4,0,0)
MO 3 (3,0,0)
(2,0,0)
(1,0,0)

Fig. 5. Four squares of length four that are combined into one
cube versus four squares that cannot be combined, since they
are misaligned.

A

How to pile up an octree?

Let ¢;, 03, -+ + be 2/ combinable squares at level
£ — i. A cube, k, is obtained as the triple (x, y, z)
where y = ¢,’s y, z = ¢,’s z, and x = min; ;s X.

Ifarow (x, y, z) at level-i is split in the z direction,
then two rows, (x, v, z)and (x, y, z + A), are obtained
at level i + 1. If a square (x, y, z) at level-i is split in
x and y directions, then four squares, (x, ., z), (x, ¥
+h,2),(x+h,y,z).and (x + h, y + h, 2), are
obtained at level { + 1. Here A = 2° ', Obviously,
the idea of splitting is generalizable to cubes and hy-
percubes, once we are at =4D. See Fig. 6 for illustra-
tions of splitting,

The main data structure is a set of lists which will
be called AA-lists (dimension-level lists). An individual
list in this set is denoted as ip ;. where D denotes the
dimension and [denotes the level it belongs to.

7. THE STACKING ALGORITHM

We assume that each ray has already been divided
into its maximal rows (cf. the example shown in Fig.
3) and these maximal rows have already been inserted
into the relevant 1D AA-lists using the procedure max-
com which is fully described in [3, p. 62].

Qur stacking algorithm first tries to combine adja-
cent rows into squares. If a row cannot be combined,
it will be split into two smaller (half-size) rows which
are tried until the remaining pieces are at level-¢. These
are inserted into since there is no way they can be
combined.

Then the stacking algorithm tries to combine ad-
jacent squares into cubes. Any square that cannot be

Fig. 6. Two rows of length four that cannot be combined into
a square but can be split into four rows of length two and
combined into two squares of side two.

CAG 13:3-F

3717
M > 1,0 — 2,0 — .
8 B
®
, ' { ;
m e
8 1; 1 i 21 - .
1
A o
> ' J ;
o 1
s —» 1,10 . 2,10 s

¥ N
Octree obels

Fig. 7. A diagram showing the dimension-level lists and the
flow of data for the common case of dimension = 3 and
level = 10.

thus combined will be split into four smaller (quarter-
size) squares and the process will be repeated until the
remaining pieces are at level-£. These latter pieces are
added to Q. Clearly, the obtained cubes are also added
to (. It is noted that the elements of «5 ; are rows when
D = 1, squares when D = 2, cubes when D = 3, and
hypercubes when D > 3. Our algorithm is still correct
when D > 3 as a result of its general approach. Another
important point to observe is that we need (kK — 1)
X (£ + 1) lists in k-dimensional space. Fig. 7 shows
the usual case where k = 3 and ¢ = 10.

This process will build the octree, 2, in its reducedi
form.

When there are many rays, it may be suitable to use
linear disk files to implement AA-lists. Only three files
will be open during the execution of the stacking al-
gorithm: ip ; for read operations and ¢p4y, ;. and ¢p 7+
for write operations (cf. Fig. 8). Since the reads always
take place sequentially and the writes are always carried
out as appends, the algorithm is safe against virtual-
memory page faults.

The algorithm works by iterating on dimensions as
follows (cf. procedures csrow and cssqr in [3, p. 63]
for precise descriptions of steps 2 and 4 below):

0. Each ray is partitioned, as noted above, into a set
of rows which comprise a 1D octree. Thus, each
row has a length which is a power of 2 and a starting
z value which is a multiple of its length. [n a nutshell,
rows are to obels as 1D is to 3D.

1. The rows are sorted into lexicographic order by (y,
z, x). This is necessary to detect combinable rows
In one-pass.

2. (Combine/split process for rows): Adjacent rows
are combined into squares whenever this is possible.

1 An octree is in its reduced form if it has no partial nodes
with all empty or all full children.

378

VAROL AKMAN and WM. RANDOLPH FRANKLIN

: - |10 || 2,0—|+L3,o|_........_,.__., 3
0 v \ v ' °
e g 2 el I B I
t
4 b A y O
h ._..[1,2 I_p.' 2,2|_...L3’21__., —»[D2]—» ©
£
T Vo
r ----- nEARA LERL L] aesns c
e \ v v v :
2 —b—l 1,L I —."I 2,L] — | 3,L| —» =« —p= | D,L e
e

\ \

To the

: N

octree

Fig. 8. A diagram showing the data flow of the octree gencration algorithm (D = max dimension, [. = max
level).

A square has a side of 2/ for some 0 = / = ¢ and
starting x and z coordinates that are multiples of
2/ If we find 2! rows with positions

(iX2'+ m,jx2 kx2h,

where m = 0, ..., 2', then we can combine them
into one square. Combining rows is illustrated in
Fig. 4. The process of combining /splitting starts at

= 0 and iterates up to . At any /, after all the
rows that can be combined are indeed combined
into squares, the remaining squares are each split
into two rows of length 2/~'. These smaller rows, it
may turn out, may later be combined into smaller
squares (cf. Fig. 6). At the end, the remaining rows
are of size | and can be considered as voxels.

3. The squares are sorted into lexicographic order by
(z, x, ¥). This is necessary to detect combinable
squares in one-pass.

4. (Combine/split process for squares): Next the
squares are either combined into obels or split into
squares of size | that are voxels. Combining squares
is illustrated in Fig. 5.

5. Finally, the obels are formed into the new octree.
Given an obel, inserting it into an incomplete octree
is a simple problem, cf. Knuth[5] for the analogous
operation in digital search trees.

It is emphasized that the combining operation re-
quires inspecting only adjacent items in memory and
when a new square (or cube) is created, it is appended
sequentially to a list in memory. Since efficient external
sorts are known[5], the whole process executes effi-
ciently in a virtual memory environment.

8. TIMING AND EXTENSIONS

We have presented a novel algorithm for construct-
ing a k-tree from a set of rays approximating a k-di-
mensional object. Our algorithm is simple to program
and easy to implement. It is very suitable for handling
precisely specified objects, that is, objects consisting of
many thousands of rays, since it can work with linear
files which are accessed in an orderly manner.

We have implemented the stacking algorithm in
Ratfor§ on a Prime 750. Building a 1/8 sphere took
9.2 seconds of CPU time; this object has 6569 obels
and i1s made of 833 rays. For a paraboloid built from
916 rays, the final octree has 5913 obels and the timing
is 7.4 seconds of CPU. In each case the I/O time is
small: 0.9 and 0.3 second, respectively.

A high resolution sphere consisting of 12985 rays
took about 3 minutes of CPU; the octree has 106833
obels with the following distribution: 67570 full, 25909
empty, and 13354 partial. This is larger than many of
the examples cited in Yau and Srihari[16], and Tam-
minen and Samet[17].

Our algorithm has certain features which makes it
suitable for a hardware implementation. Central among
them is the heavy use of sorting; there is now much
work in fast sorting machines. A hardware extension
to the stacking algorithm would then be as follows.
Consider a scene of several objects, Z,. Z,, . . . , which
is constantly updated due to say, motion. That is, ob-
jects change their locations as a result of their move-
ment and we want to update their images (conveniently

§ Ratfor is a structured dialect of Fortran, implemented by
T. Beyer and used throughout B. W. Kernighan and P. J.
Plauger’s Software Tools, Addison-Wesley, Reading, MA
(1976).

How to pile up an octree?

rendered on a raster graphics screen). We assume that
the underlying representation scheme is octrees. Ngw,
instead of building the octrees once and then updating
them, we keep the objects as rays and update the rays

and run our algorithm at each time step to obtain the

new Octrees. . .
Probably the best approach to make this paradigm

work would be to have a parallel processing environ-
ment in which each box in Fig. 8 is assigned to one
processor. We first put Z; to the “pipeline.” While this
object is being converted to its octree, ;. the next
object, Z,, can be introduced into the pipeline, since
some processors will be finished with processing Z,’s
rays. Then we introduce Z;, and so on. This is some-
what reminiscent of the systolic algorithms in VLSI.

It is noted that each processor is simply a sort ma-
chine. We assume the existence of (1) a fast ray casting
machine to convert objects to rays (Section 5 shows
that this is not far-fetched), and (ii) a fast rendering
machine which, given an octree, paints it on the screen.
We are aware of the sweeping remarks we have made
in describing this extension but we trust that it may
be feasible. Details remain to be filled. . . .

For example, in Fig. 8, as soon as ¢, is finished with
its computation (Ze., as soon as it forwards the com-
bined (resp. split) rows to tz0 (resp. ¢,) it can receive
the maximal rows for another object. This clearly gen-
eralizes to the other processors. The result is a com-
putation “wave”” which starts at ¢, o and moves in rows
perpendicular to the northwest-to-southeast diagonal
of Fig. 8.

9. CONCLUSION

Of the various data structures to implement the ab-
stract k-tree, a set of rays (along with an algorithm for
converting this to a k-tree) seems to be the most effi-
cient. “While such data structures are not necessary
for the processing of simple scenes, they are central to
the efficient processing of large-scale realistic scenes”[1,
p. 48].

Acknowledgements—The first author is grateful to Ozay Oral
and Mehmet Baray for their unfailing support. The second
author’s research is supported by the National Science Foun-
dation under PYT grant number DMC-8351942. It should be
remarked that the mention of commercial products in this
paper does not necessarily imply endorsement.

REFERENCES

L. H.Sametand R. E. Webber, Hierarchical data structures
and algorithms for computer graphics—Part I: Funda-
mentals. [EEE Comp. Graphics and Appl. 8(3), 48-68
(May 1988).

- H.Samet and R. E. Webber, Hierarchical data structures
and algorithms for computer graphics—Part 1I: Appli-
cations. [EEE Comp. Graphics and Appl. 8(4), 59-75
(July 1988).

- Wm. R. Franklin and V. Akman. Building an octree from

;5“ of parallelepipeds. IEEE Comp. Graphics and Appl.
(10), 58-64 (October 1985).

a.n:!n' R. Franklin and V. Akman, Octree data structures

€Teation by stacking, in Computer-Generated Images:

[

20.

21.

23.

24,

25,

. D. E. Knuth, The Art of Computer Programming, Volume

. H. Samet and M. Tamminen, Bintrees, CSG trees

379

The State of the Art, N. Magenat-Thalmann and D. Thal-
mann (Eds.), Springer-Verlag, Tokyo, 176-185 (1985).

3. Sorting and Searching, Addison-Wesley, Reading, MA
(1973).

and time. ACM Comp. Graphics (Proceedings of
SIGGRAPH 85) 19(3), 121-130 (July 1985),

. A.A. G. Requicha, Represenation of rigid solids: Theory,

methods, and systems. ACM Comp. Surveys 12(4),437-
464 (December 1980).

- 8. N. Srihari, Representation of three-dimensional digital

images. ACM Comp. Surveys 13(4), 400-424 (1981).

. H. Samet, Bibliography on gquadtrees and related hier-

archical data structures, in Data Structures for Raster
Graphics, F. J. Peters, L. R. A, Kessener, and M. L. P,
van Lierop (Eds.), Springer-Verlag, Berlin, 181-201
(1986).

. H.Samet, An overview of quadtrees, octrees, and related

hierarchical data structures, in Theoretical Foundations
of Computer Graphics and CAD. NATO ASI Series, Vol,
F40, R. A. Earnshaw (Ed.). Springer-Verlag, Berlin, 52—
68 (1988).

. G. M. Hunter and K. Steiglitz, Operations on images using

quadtrees. I[EEE Trans. on Pattern Analysis and Machine
Intelligence 1(2), 145-153 (April 1979).

. C. L. Jackins and S. L. Tanimoto, Octrees and their use

in representing three-dimensional objects. Comp. Graph-
ics and Image Processing 14, 249-270 (November 1980),

. C. L. Jackins and S. L. Tanimoto, Quadtrees, octrees,

and k-trees: A generalized approach to recursive decom-
position of Euclidean space. [EEE Trans. on Pattern
Analysis and Machine Intelligence 5(5), 533-539 (Sep-
tember 1983).

. L. J. Doctor and J. G. Torborg, Display techniques for

octree-encoded objects. IEEE Comp. Graphics and
Appl1(3), 29-38 (July 1981).

. D. J. Meagher, Geometric modeling using octree encod-

ing. Comp. Graphics and Image Processing 19(2), 129-
147 (June 1982).

. M. Yau and S. N. Srihari, A hierarchical data structure

for multidimensional images. Comm. of ACM 26(7),
504-515 (1983).

. M. Tamminen and H. Samet, Efficient octree conversion

by connectivity labeling. ACM Comp. Graphics (Pro-
ceedings of SIGGRAPH '84) 18(3), 43=51 (July 1984).

. K. Yamaguchi, T. L. Kunii, K. Fujimura, and H. Toriya,

Octree-related data structures and algorithms. [EEE
Comp. Graphics and Appl. 4(1), 53-59 (January 1984).

. H.Samet, Region representation: Quadtrees from binary

arrays. Comp. Graphics and Image Processing, 88-93
(May 1980).

H. Samet, Region representation: Quadtrees from
boundary codes. Comm. of ACM 23(3), 163-170 (March
1980).

H. Samet, An algorithm for converting rasters to quad-
trees. IEEE Trans. on Pattern Analysis and Machine In-
telligence 3(1), 93-95 (January 1981).

. C. A. Shaffer and H. Samet, Optimal quadtree construc-

tion algorithms. Comp. Vision, Graphics, and Image
Processing, 402-419 (March 1987).

M. Potmesil, Generating octree models of 3D objects from
their silhouettes in a sequence of images. Comp. Vision,
Graphics, and Image Processing, 1-29 (October 1987).
S. D. Roth, Ray casting as a method for solid modeling,
Technical Report GMR-3466, Computer Science Dept..
General Motors Research Labs, Warren, Michigan
(1980).

I. Gargantini, Translation, rotation, and superposition of
linear quadtrees. /nternational Journal of Man-Machine
Studies 18(3), 253-263 (March 1983).

-7

