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Efficient parallelizable algorithms that process large geometric data sets with
millions of edges are possible using techniques such as uniform grids and local
topology data structures. Possible operations include edge intersection detec-
tion, and calculation of mass properties of boolean combinations of objects.
These techniques are also useful in the low level compute-bound steps in other
geometric areas. The uniform grid is a regular grid overlaying the data whose
resolution depends on the number and length of the data’s edges. Hierarchical
data structures such as quadtrees are not necessary for these operations. The
grid resolution can be varied a factor of three either way from the optimum
without increasing execution time over 65%. The local data structures represent
the object as a set of fractional neighborhoods of the vertices. The edges and
faces are stored only implicitly. Properties such as total edge length, face area,
and volume can be calculated in one pass through the data. Both of these tech-
niques can be parallelized on SIMD machines as vector reduction operations.
High speed on large databases is a major advantage of these techniques, and has
been demonstrated experimentally. For example two million edges were tested
to find all seven million intersections in three minutes on a Sun 4/280.

1. INTRODUCTION

Geometric problems in separate fields, such as interference testing in robotics, VLSI
circuit extraction, hidden surface removal in computer graphics, and map overlay in
cartography have in common low level operations, such as testing a point for inclu-
sion in a polygon, and finding which of a large set of small edges intersect. These
operations then integrate upward to applications such as boolean operations on
thousands of polyhedra, visible surface calculations for large scenes, determining
mass properties of the union of many rectangles without determining the union
polygon itself, and determining the area of the intersection of several polygons each
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defined as the union of many rectangles.

This paper presents algorithms to solve some of these problems using the techniques
of uniform grids, local topological data structures, and multiple precision rational
fractions in Prolog. An efficient algorithm for finding the intersections among large
numbers of edges is extended to finding the area and perimeter of the union of many
rectangles. These use the uniform grid and the local data structures. These mass
properties can be found more quickly than finding the resulting polygon itself. A
map overlay algorithm using rationals in Prolog is also presented. Applications to
constructive solid geometry tree evaluation are mentioned.

High speed on large databases is a major advantage of these techniques, and has been
demonstrated experimentally. We have processed a complete integrated circuit
design of 1,819,064 edges to find all 6,941,110 intersections in 178 seconds on a Sun
4/280. When implemented on a 16 processor Sequent, which has separate processors
with a common bus and memory, the program ran 10 times as fast with 15 processors
as with one when processing the complete USGS Chikamauga DLG (Digital Line Graph)
took only 37 CPU seconds. Finding mass properties of the union of many rectangles
was also implemented. It processed a union of 100,000 rectangles in 199 seconds.

This paper will first present uniform grids, compare them to other possibilities, and
describe their use to intersect edges. Then it will describe local topological data
structures. Next it will give applications combining these two ideas, such as finding
the area of the union of many polygons, and overlaying two maps in cartography.
Finally it will discuss the advantages of these concepts.

2. UNIFORM GRIDS

We use uniform grids to determine spatial adjacency and intersection [1,2,10,14].
Here a uniform, regular, grid, with resolution determined by the number and average
length of the edges, is laid over the data. For each object, the cells that it passes
through are noted. Then the data structure is inverted and the contents of each cell
are processed sequentially. This algorithm is useful for operations such as detecting
intersections among large numbers of small edges, boolean combinations of polyhe-
dra, and hidden surface calculations of complex scenes.

2.1. Comparison to Quadtrees

The obvious, but wrong, objection to uniform grids is that they cannot handle irregu-
lar scenes, and that hierarchical methods such as quadtrees must be used to give
finer cells where the data is denser. There are three answers to this.

1. Theoretical: If the data are distributed independently and identically then some
cells will have more objects than others, with n;, the number of objects in cell #i
following a Poisson distribution, p(n; = k) =X e~ /kl, where )\ is the average
number of objects per cell. Then the time to process cell #i by comparing all
objects In it against each other will be n?, and its mean will be \?. That is, for
the Poisson distribution, the mean of the square is the square of the mean. In
this case, the expected time, T = ©(N+K), where N is the number of input objects,
and K the number of output intersections. More details of the analysis are given
in [1,10].
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If the input objects are distributed unevenly, but the unevenness is “bounded”,
then the above result is still true. It is sufficient that the densest cell be a con-
stant times the average density as the data sets grow to infinity. Similar restric-
tions are imposed on data in other fields, such as Lipschitz conditions in partial
differential equations, and bounded variation in analysis.

Real data can be worse than than the randomness assumptions indicate. For
example, the probability of two random edges having the same endpoint is zero,
but this happens. However, such correlations are of only local importance, and
become relatively more insignificant as N—oo.

2. Experimental: We have tested uniform grids with several algorithms on data in
assorted applications, and have never observed a serious problem. These tests
have included apparently quite bad input data, such as a haloed line algorithm
on a wire-frame database of 11,000 edges [6]. The data contained faceted
cylinders composed of dozens of faces, whose many, close, parallel lines did not
intersect each other, but did pass through the same cells several times. This
caused some cells to have many more edges than the average. Also, when one
cylinder's projection crossed another, all the edges of one intersected all the
edges of the other. Nevertheless, calculating the haloed lines took only about 10
minutes on a Prime 500 computer.

Experimentally the actual grid size is not critical, within large variations. Factors
of three in grid resolution off from the optimum tend to increase execution time
by under 50%. This represents a range of almost 100 in number of cells during
which the execution time varies less than 50%. The optimum is so broad
because the total time is the sum of two parts: putting objects into cells, which
runs faster if there are fewer cells, and processing the cells, which runs slower.
This insensitivity of time to grid size explains why the uniform grid can handle
regions of varying data density.

3. Quadtree Performance: Quadtrees are useful for defining irregular regions of
space in image processing and (as octrees) defining irregular objects, but they
cannot handle very irregular geometric scenes. Consider a scene with N parallel
edges spaced 1/N? apart. A quadtree fine enough to determine that there are
no intersections would require more than N? time to construct, so the even
naive method would be faster.

The problem with hierarchical methods in general is that if N=1,000,000 and the
quadtree is fine enough that on average each object is in a separate low level
cell, then the tree, even if perfectly balanced, is log41000000 = 10 levels deep.
In practice, 15 would be more likely. Thus accessing any object requires follow-
ing ten to fifteen pointers. Pointers to random locations in memory, the usual
case, defeat any hardware caching mechanism. The tree can be sorted and
compressed, but this is slow and prevents dynamic updating.

The difference between flat uniform data structures and hierarchical adaptive data
structures is similar to the difference between relational databases and hierarchical
ones. Forcing a database to satisfy the Codd Normal Forms may increase the size,
gives increased regularity in return.

Parallelizability is the final advantage of a uniform data structure. The cells that an
object passes through can be determined in parallel with each object. After the data
set is inverted, each cell can be processed in parallel. In contrast, constructing a tree



488

is inherently a more sequential operation, and accessing all elements by first travers-
ing the root may cause collisions there (depending on the model of parallel machine)
unless the top few nodes of the tree are replicated.

The problems with using trees on parallel machines have been observed by Hillis
[12,13]: “One case where our serial intuition misled us was our expectation that paral-
lel machines would dictate the use of binary trees. It turns that linear linked lists
serve almost as well, since they can be inverted to balanced binary trees whenever
necessary and are far more convenient for other purposes.”

Nevertheless, a limited hierarchical data structure may prove useful in the future if
the available storage is hierarchical. On a parallel machine such as a Connection
Machine or Hypercube, it may be reasonable to partition the data in subsets small
enough to fit onto one processor. Each processor would then apply a uniform grid.
This two level data structure would increase computation costs, since it would be
harder to parallelize the initial partition step, but it would lower communication
costs, which are often more important.

2.2. Comparison to Functional Hierarchies

Although the data are often originally organized into a functional hierarchy, such as
described in standards like PHIGS, we ignore this and flatten the directed acyclic
graph into a set of objects before processing. This is because two objects’ spatial
coincidence, especially in projection, often bears little resemblance to their functional
relation, or even to their spatial relation in E3.

2.3. Comparison to Theoretically Optimal Methods

Chazelle and Edelsbrunner’s line intersection algorithm [3], has a worst case time of
T = ©(NlogN +K) . However, the algorithm is much more complicated to implement
and appears to be quite difficult to parallelize. There are simpler “scan line” algo-
rithms with T =6((N+K)logN). However they also appear inherently sequential. One
could start P separate scanlines in parallel, but that would incur an overhead in split-
ting the edges between the processors. The scan line methods also take up to
T = (N2 logN), that is, worse than the naive method, for very bad data.

Both of these theoretically optimal methods have a logN factor in the time because
they work with a theoretical machine model which is weaker than real computers.
Thus they assume that sorting takes ©(NlogN) expected and maximum time, which is
true only for pair-comparison models of machines. If we assume that in constant (not
log) time we can write to any one of N words of memory, then sorting i.i.d. keys takes
T = 6(N) time with the address calculation sort, [15]. A radix sort, similar to a bucket
sort, is also much faster than the theory on a pair-comparison machine would sug-
gest. The procedure is as follows.

a) Consider the key to be composed of 8-bit bytes. Read the data once to deter-
mine the frequency distribution of values of each byte of the keys.

b) Read the data and write each record to one 256 lists depending on the value of
lowest order byte of the key. The 256 lists are really a partition of a work space
of N records, where the amount of space each list will need was known from the
frequency distribution found in step (a).
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c) Read the 256 lists in order and distribute the data into a new set of 256 lists
according to the second lowest byte of the keys.

d) Repeat for each byte of the key.

For B byte keys, this requires reading each record B+1 times and writing it B times,
with B =logzseN usually. In contrast, the pair comparison model quicksort reads
each record about 1.4 logz N times.

2.4. Application to Edge Intersections

Finding all the intersections among a large set of small edges was the first application
of uniform grids. The algorithm, presented in [1,2,10,14], has expected time equal
to the sum of the sizes of the input and output. The sophistication of the algorithm
rests in its simplicity, as well as in the appropriate implementation of the abstract
data structure for the cell-edge information. The various possibilities examined
include these:

1. With G = the number of grid cells on a side, and M = the maximum number of
edges per cell, allocate a GXGxM array for the edges. This is fast but too big,
even with virtual memory.

2. Allocate a GxG array of pointers for G2 linked lists of edges. This is smaller but
accesses storage randomly. However, that has not been a problem in practice.
No sorting is needed here. We used this and the next method alternately.

3. Write a list of (cell, edge) ordered pairs and then sort it. This accesses storage
sequentially, and avoids thrashing, but requires a sort, which adds a (small) log
factor to the time. Note that if a cell number takes the same space as a pointer,
then this method requires the same storage as the previous one. Note that an
empty cell requires no storage at all here.

4, LetE= expected number of edges per cell. Allocate GXGXE array for edges and
use another method for overflow. This is the smallest but most complicated
method.

For parallel intersection detection, there are several possibilities. These are designed
for the Sequent’s model of a common memory with interlocks and separate proces-
sors [17].

1. Let P = number of processors, and multiply any sequential data structure above
by P. This is too big.

2. Use one (cell, edge) list, or one GxG array of linked lists, for all the processors
and interlock the append operation. This assumes that a relatively small frac-
tion of the time is spent storing the new (cell, edge) information, which may not
be true.

3. As above, but each time a processor requires an element to store edges in, then
allocate it several elements to reduce the number of interlocks and possible col-
lisions. At the end, compress out the unused elements.
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Figure 1: WaRP1 Integrated Circuit

The largest example used so far is a complete design of WaRP1, a VLSI chip by Jim
Guilford, figure 1. It has 1,819,064 edges, and we found all 6,941,110 intersections in
178 seconds on a Sun 4/280 with 32 MB of real memory. The program took advan-
tage of the large flat address space by storing all the intermediate and final data in
110 MB of virtual memory. The virtual memory was not thrashed. The algorithm was
implemented as a C program using the Sun-supplied compiler, which doesn’t optim-
ize. Using commercial quality compilers and assembler modules for inner loops
would presumably reduce this time considerably. This version did take advantage of
the fact that all the edges were horizontal or vertical, which gave us an estimated fac-
tor of three in speed, and simplified the code.

We also implemented a version for general (non-rectilinear) edges, and tested it on
the complete USGS (United State Geological Survey) DLG (Digital Line Graph)
sampler tape, of Chikamauga, Tennessee, figure 2. This database contains all surface
features, such as roads, railroads, rivers, streams, power lines, and pipelines, but not
the contour lines. Finding all 144,666 intersections among the 116,896 edges took
only 37 CPU seconds. The unevenness of the data can be seen and its irregu-
larity quantified: for the edge lengths, p = 0.00231, while s = 0.0081.

The uniform grid structure is remarkably insensitive to the actual grid spacing. Fig-
ure 2 shows the effect of processing the Chikamauga data and varying the grid reso-
lution over a range of from 50x50 to 2000x2000. Over a factor of eight in grid resolu-
tion, from 125 to 1000, the time is less than 65% worse than the minimum. From 175
to 800, the time is less than 30% worse than the minimum, which occurs at 325. The
insensitivity is due to the time to insert the edges into cells running slower when
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Figure 2: Chikamauga DLG
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there are more cells, while the time to process the cells runs faster (within broad lim-
its) because the cells are emptier. Contrary to our expectations, at the optimal grid
resolution, most of the time is spent in processing the cells.

When implemented on a 16 processor Sequent Balance 21000, which has separate pro-
cessors with a common bus and memory, the program ran 10 times as fast with 15
processors in use as with one processor. Finding all 81,373 intersections in a 62,045
edge database (half the Chikamauga data) took only 28 seconds elapsed time. Unfor-
tunately, the Balance with 16 National Semiconductor 32000 processors is an older
machine which is slower than the Sun 4. Figure 4 shows the relative parallel effi-
ciency, that is (time on one processor) / P / (time on P processors). It is 66% for
P = 15, which is quite good.



492

200

150

Time

(secs.) 100 -

Total

50

""'"".""T““""“.’“1“"“.“"““.::::f::::;". : |

0
50 100 200 500 1000 2000
No. Grid Cells per Side

Figure 3: Effect of Grid Size on Edge Intersection Time

3. LOCAL TOPOLOGY DATA STRUCTURES

New formulae for polyhedron edge length, surface area, volume, and point inclusion
testing are possible using only local topological information. The input data is the
set of vertex, edge, and face coincidences. Neither any global topology, nor even the
edges, faces, nor complete vertex neighborhoods are required. Since the formulae
merely sum a function of each set element, they are suitable for a vector processor or
a SIMD machine. The computation is a vector reduction operation. This contrasts
with the usual data structure for representing a polyhedron, which stores the com-
plete topology consisting of components, shells of faces, loops of edges, etc. Special
attention is needed for the non-manifold cases [18-20]. That data structure is
hierarchical, with numerous pointers.

Another conceivable data structure would be to represent the polyhedron as a result
of unions, intersections, and complements of halfplanes defined by the faces. How-
ever Guibas has shown that this is not always possible in E3, although it is possible
in E2. One might also try to represent a polyhedron as the disjoint union of tetrahe-
dra with vertices chosen from the polyhedron vertices. This is also impossible, as
cited in O'Rourke [16]. The counterexample is a triangular prism with the top rotated
30° relative to the bottom. Some of the following formulae have been independently
discovered and used in a solid modeler by Gursoz and Prinz [11]; they call this data
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Figure 4: Parallel Efficiency for Intersecting 62,045 Edges on Sequent

structure a cusp.
Assume the following notation and definitions.
O is the coordinate origin.

P is a vertex. When it is necessary to refer to individual components, we will use
P = (P, Py, P3).

T is a unit tangent vector from P along an edge.

N is a unit vector normal to T, in the plane of a face adjacent to both P and the edge,
and pointing towards the face’s interior.

B is a unit vector normal to both T and N, which makes it normal to the face plane,
and pointing towards the interior of the polyhedron.

L is the total length of all the faces’ perimeters, with each edge counted once for each
face that it is adjacent to.

A is the total area of all the faces.

Vis the volume of the polyhedron.

1 if x>0
o is the sign function, o(x) = {0 if x=0
-1 if x<0

Pis a unit vector parallel to P.

Consider the polyhedron vertex, and its neighborhood, shown in figure 5.
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Figure 5: Polyhedron Vertex - Edge - Face Adjacency
The polyhedron is represented as the set {(P,T,N,B)}, where there is one element for
each occurrence of an adjacency of a vertex, edge, and face.

Given this, the following theorems are true; the proofs are in [8].

L= PT
A-%EP-TP-N
V-——(IS-EP-TP-NP-B

Let s =0 (PxTx) o(PxNx+PyTy) o(P-B)

outside the polyhedron 0
Then if O is inside the polyhedron ; then s = -8
on the boundary 0,—4, or -8

If O is on the boundary, then its value is the average of the value for points in the
neighborhood above and those below. There is no loss of generality in testing O
since any arbitrary point may be transformed to O. Although there are cases, such as
display and filleting, where the complete topology is required, these formulae show
that there are also many cases where it is unnecessary, and that then the calculations
are both faster and parallelizable.

Other local topological methods are also possible. The vertex neighborhood method
[7], defines the polygon as a set of the neighborhoods of the vertices, that is as
{(P,A,B)}, where P_is a vertex's position, and A and B are unit vectors along the two
adjacent edges. A and B are oriented so that sweeping from A to B traverses inside
the polygon. For each neighborhood, we can define a weight function assigning a
value to each point in the plane depending on its relation to the neighborhood. The
sum of these weight functions is a characteristic function for the polygon, which can
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be uased for point inclusion testing and mass property calculation. This also extends
to E°.

Alternatively, one may split each edge into two semi-infinite rays [4]. Again, point
inclusion testing and mass property calculation are a parallelizable vector reduction
operation on the set of data, regardless of the global topology.

4. COMBINING SEVERAL TECHNIQUES

4.1. Mass Properties of the Union of Many Polygons

Given a set of many small polygons in the plane, we want to find the covered area
and the perimeter of the union. This is useful in VLSI design for circuit extraction
from the mask geometry of a chip. The techniques used for this problem are the uni-
form grid to find edge intersections and the vertex neighborhood technique. With
the notation:

N = number of input edges
K = number of output edges,

a summary of the method is as follows.

1.  Each output vertex is either an input vertex or an edge intersection. Find all edge
intersections.

2. An output vertex of the union is not in any input polygon. Test each point
returned above for inclusion in any input polygon. For this we have an efficient
point inclusion testing algorithm which takes expected constant time per point
tested.

3. For each surviving point, determine its local neighborhood.
4. Use the vertex neighborhood algorithms to determine area, perimeter or any

other mass property.

Note that we never need to determine the number of components, or even the edges
of the output. Nevertheless, we could link the vertices if necessary in
T =6((N+K)log(N+K)). Also, the algorithm is obviously parallelizable.

The algorithm, described in more detail in [9], was implemented in C and run on a
Sun 4/280 machine. The algorithm was timed for several database fragments of the
chip. The timings obtained for computing area and perimeter are given in Table 1.

4.2. Mass Properties of CSG Trees

The same concepts can be extended to determining the mass properties of construc-
tive solid geometry trees. The procedure in E2 would be this.

1. Determine all the intersections of any edges anywhere in the tree. The time is
T =6(N+K) for N input edges and K output intersections.

2. Determine the local neighborhood of each intersection. Based on this delete any
intersections that are not vertices of the output object. If the depth of the tree



496

Number of
Database Number of | Intersections of | Grid | Total Time

Rectangles | Rectangle edges | Size (sec.)
VLSI Data - xfacea.mag 109 960 150 0.41
VLSI Data - xfacell.mag 490 4343 65 0.53
VLSI Data - part of WaRP1 2500 25232 400 5.32
VLSI Data - part of WaRP1 25000 262058 750 34.28
VLSI Data - part of WaRP1 50000 538776 1000 82.76
VLSI Data - part of WaRP1 100000 1457593 1500 199.36

Table 1: Timing for Measure of Unions of Rectangles

is D, then using a uniform grid to test one intersection will take about
T =6(logD) for a total of T =6(KlogD).

3. Make one pass through the remaining set of vertices to calculate the desired
mass property, such as area or total edge length.

The above method would fail if many objects, which did not actually generate ver-
tices of the result, intersected. This must be tested by analyzing actual CSG trees, but
we do not expect a problem since as the number of object grows, their size shrinks.

4.3. Map Overlay with Multiple Precision Rationals in Prolog

The problem of arithmetic roundoff errors that occur when the intersection of two
lines is not exactly representable is well-known. Cartography simplifies the problem
compared to general CAD databases since cartography uses only straight lines in EZ.
Therefore the intersections are exactly representable in rational numbers. Although
the numerators and denominators may be multiple precision, this is a problem only if
the computation tree for the operation is deep. After considering various representa-
tional issues [5], we combined this with a test of the usefulness of Prolog as an imple-
mentation tool by implementing a multiple precision rational number map overlay
package in Prolog [22]. As would be expected, the program ran quite slowly, although
this would be improved by the Prolog hardware boards now in existence. On the
other hand there were no roundoff errors.

5. SUMMARY

By synthesizing techniques such as uniform grids and local topological data struc-
tures, it is possible to derive geometric algorithms which can process large data sets
with the following properties.

. Simple data structures, that is, sets, instead of trees. This obviates the need to
tree balance, which is messy, but essential for optimal searching. Hierarchical
methods such as quadtrees are not necessary.
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« Ease of implementation, because of the above.

« Parallelizability, because the operations are mapped over sets of elements. The
algorithms can be implemented even on a SIMD or a vector machine. Scheduling
the cooperating processes becomes easier because of the simple set-based data
structures. This results in lesser overhead, and hence gives better speed-ups.

« Speed of execution on all the real data seen so far, including regions of widely
differing density.

4. Dynamizability, since the data structures could be extended to allow us to add and
delete objects on-line, and quickly know the changes in intersections and mass
properties.

We are now extending these concepts to boolean operations and hidden surface cal-
culations on many polyhedra, fast evalution of mass properties of the regions of
overlaid maps, and to evaluation of CSG trees.
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