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ABSTRACT

Data structures which accurately determine spatial and topological relationships in large
databases are crucial to future developments in automated cartography. The uniform
grid technique presented here offers an efficient solution for intersection i
which is the key issue in many problems including map overlay. Databases from cartog-
raphy, VLSI, and graphics with up to 1 million edges are used. 1,819,064 cdges were
processed to find 6,941,110 intersections in 178 seconds on a Sun 4/280 workstation.
This data structure is also ideally suited for implementation on a parallel machine.
When executing on a 16 processor Sequent Balance 21000, total times averaged ten
times faster than when using only one processor. Finding all 81,373 intersections in a
62,045 edge database took only 28 seconds clapsed time. These techniques also appear
applicable to massively parallel SIMD (Single Instruction, Multiple Data Stream) com-
puters. We have also used these techniques to implement a prototype map overlay sys-
tem and performed preliminary tests on overlaying 2 copies of US state boundaries, with
3660 edges in total. Finding all the intersections, given the edges in memory, took only
1.73 seconds on a Sun 4/280. We cstimate that the complete overlay would take under
20 seconds.

INTRODUCTION

Algorithms specific to polyline intersection are particularly important for cartographic
purposes. The classic problem of map overlay is a good example where edge intersection
forms the core of the algorithm. The results of this paper are also useful in diverse dis-
ciplines such as graphics and VLSI design.

We are given thousands or millions of small edges, very few of which intersect, and
must determine the pairs of them that do intersect. Clearly, a quadratic algorithm com-

paring all [’2‘] pairs is not acceptable.

Useful line intersection algorithms often use sweep line techniques, such as in Nievergelt
and Preparata (1982), and Preparata and Shamos (1985). Chazelle and Edelsbrunner
(1988) have an algorithm that finds all K intersections of N edges in time
T = 8(K+NlogN). This method is optimal in the worst case, and is so fast that it
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cannot even sort the output intersections. However, this method has some limitations.
First, it cannot find all the red-blue intersections in a set of red and blue edges without
finding (or already knowing) all the red-red and biue-blue intersections. Second, it is
inherently sequential.

Alternative data structures, based on hierarchical methods such as quadtrees, have also
been used extensively, Samet (1984). They are intuitively reasonable data structures to
use since they subdivide to spend more time on the complicated regions of the scene.
An informal criticism of their overuse in Geographic Information Systems in given in
‘(Nuu;h (1986). A good general reference on cartographic data structures is Peucker
1975).

Since cartographers deal with vast amounts of data, the speed and efficiency of the algo-
rithms are of utmost importance. With the advent of parallel and supercomputers, effi-
cient parallel algorithms which are simple enough to implement, are gaining importance.
Since this field is relatively new, few implementable algorithms exist. Some of the
related parallel algorithms in computational geometry are as follows. Akl (19

describes some parallel convex hull algorithms. Evans and Mai (1985) and Stojmenovic
and Evans (1987) present parallel algorithms for convex hulls; however they require s
MIMD machine, and have tested on caly a few processors. Aggarwal ct al (1985) give
parallel algorithms for several problems, such as convex hulls and Voronoi diagrams.
They assume 8 CREW PRAM (concurrent read exclusive write, parallel random access
machine). This is a MIMD model. No mention is made of implementation. Although
it is not mentioned in those papers, randomized algorithms, such as described by Clark-
son (1988a), and Clarkson and Shor (1988b) appear to lend themselves to parallelization
sometimes. Yap (1987) considers general questions of parallelism and computational
geometry. Hu and Foley (198S5), Reif and Sen (1988), and Kaplan and Greenberg
(1979) consider hidden surface removal. Scan conversion is considered by Fiume, Four-
nier, and Rudolph (1983). For realistic image synthesis see Dippe and Swensen (1984).

This paper concentrates on an alternative data structure, the uniform grid. Here, a flat,
non-hierarchical grid is superimposed on the data. The grid adapts to the data since the
number of grid cells, or resolution, is a function of some statistic of the input data, such
as average cdge length. Each edge is entered into a list for cach cell that it passes
through. Then, in cach cell, the edges in that cell are tested against cach other for inter-
section. The grid is completely regular and is not finer in the denser regions of the data.

The uniform grid (in our use) was first presented in Franklin (1978) and was later
expanded by Franklin, Akman, and Wu (1980), (1981), (1982), (1983), (1984), (1985),
(1987), and Wu(1988) . The latter two papers used extended precision rational numbers
and Prolog to implement map overlay. Geometric entitics and relationships are
represented in Prolog facts and algorithms are encoded in Prolog rules to perform data
processing. Multiple precision rational arithmetic is used to calculate geometric intersec-
tions exactly and therefore properly identify all special cases of tangent conditions for
proper handling. Thus topological consistency is guaranteed and complete stability in the
computation of overlay is achieved.

In these papers the uniform grid was called an adaptive grid. However, there is another,
independent and unrelated, use of the term adaptive grid in numerical analysis in the
iterative solution of partial differential equations. Our papers present an expected linear
time object space hidden surface algorithm that processed 10,000 random spheres
packed ten deep in 383 seconds on a Prime 500. The idea was extended to a fast haloed
line algorithm that was tested on 11,000 edges. The concept was applied to other prob-
lems such as point containment in polygon testing. Finally it was used, in Prolog and
with multiple precision rational numbers in the map overlay problem in cartography.

This present paper presents experimental evidence that the uniform grid is an efficient
means of finding intersections between edges in real world data. The uniform grid is
similar to a quadtree is the same sense that a relational database schema is similar to a
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hicrarchical schema. The power of relational databases, derived from their simplicity
and regularity, is also becoming apparent.

The uniform grid data structure is llloidunyau.iulmuemﬁmonapnnuelmumne
because of the simple data structures. Also, it is more numerically robust than sweep-
line algorithms that have problems. mudhmmmwmm
because numerical instability can easily introduce topological inconsistencies which tend
to be difficult to rectify.

mmmmquuuumnmn lndclnbeuaedcnlndetydsmet:ic
problems such as computing Voronoi diagrams, convex hull determination, Boolean
combinations of polygons, etc.

INTERSECTION ALGORITHM

Assume that we have N edges of length L independently and identically distributed

(.

i.d.) in & 1X 1 screen. Weplmuoxapidmmeml‘huuchmdcdlh

otdu-%x%. The grid cells partition the screen without any overlaps or omissions.
The intersection algorithm proceeds as follows.

1.

2.

memumm-mmnmwmmnmm
(call number, edge number).

h&mtdmmwmcmunmhmdmnumenmbmdmm
edges that pass through each cell.

Pnreachal.l,mplul.uthcedguinlt,pl.lrbynir.mmtlwhm.l’l
the edges are a priori kna-nuhedmuwrﬂcdwbw,mvmm
mmmﬁwi&ﬁehﬁmﬂeﬂ;umly.romulmdmuhm-
na,wuuteaﬂed;e'sendpquﬁmt&cequdmdﬁeoﬁnndge. We
ignore calculated intersections that fall outside the current cell. This handles the
mdmsp&dedgumﬂubminmmm:nmnu.

Fig 1(s). USA Map - Shifted and Overlaid on itself

Fig 1(b). C‘hinh.-.ul.l Arsa - All 4 overlays

2 5



THEORETICAL ANALYSIS

Let N/, be the number of cclls that an average edge passes through. The determination
of N/, is similar to the Buffon's Needle Problem, McCord (1964). A simple analysis
shows that,

Noe = 1+226) (Bq-1)
Then N, the total number of (cell, edge) pairs is

N, = N(1+ %w) (Eq.2)
The average numbe:gedcelpcaen is

Nye = -;;- (Eq.3)

- % (1+26) (Eq.9)

The time to calculate the (cell, edge) pairs is

T, = aN, (Eq.5)
where a is a constant. The time to test the edges for intersections is about

Ty = B G3Ny(Noye= 1) (Eq.6)
wheze § is a constant. The overhead for processing the cells is

T3 = vG? (Eq.7)

where v is a constant. and the total time is

-0—1 =G
This is minimized thsztummnnmesmpwnﬂumw, which occurs
when G = min[nVH, ﬂ—] for some 8.

T=T +T+ T,
- NJ@-g)q-f@-sM + puz[ 1 +i£+%ﬁ] + vG? (E4.8)

mm:memmgmmmmmmlyamnmﬂ Since the
ﬂmebmnnﬂdepmchmﬂuaqmdﬂnmbudedwhmuaﬂ.m
uneven distribution might increase the total time. However, since the edges are
mmedindependsm,ﬂnnnmhcdedmwuﬂh?dumdhﬁw,mdme
upmadvﬂud&sqmedﬁenmbudedluequﬂnﬂulqmdmw
number of edges. Therefore the expected time doesn't increase.

RESULTS

Edge Intsrsection

qunchdahmwelﬂadnmynluudaulumﬂ:urlnﬂonddncwimo. Table
ll.hawltheruuluh'cminnruudn.thouﬁmd;uhlllhd.wuhndmecm-
kamauga DLG (Figure 1). There are 144,666 intersections in all, and the best time is
37umawimuszsnzsmd.mm«uﬂmwudmmmm
175 x 175 up to 1000 x 1000, which shows the extreme insensitivity of the time to the
grid size. This s why real scencs with dense and sparse arcas can be accommodated
efficiently. -

FwﬁeUSAsnubmmdnﬂulhiMuﬂweﬂddonﬂmmelm, the execution time is
within 20% of the optimum from about G = 40 t0 G = 400 and is within a factor of two
of the optimum from about G = 20 to G = 700. Outside these limits, the execution
time starts to rise quickly.

Ihmydmmdsmueulhawnbymmmmemhudmm
Mmmdmmwmmmmummmnmwd
the edges when using the optimal grid resolution. This behavior was also observed in
hidden surface algorithm described in earlier publications. There is not much room for
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No. of edges 116896
Avg. edge length 0.00231
Standard deviation 0.0081

Xsects. by end pt. coincidence 135875
Xsects. by actual equation soln 8791

Total intersections 144666

Grid Size Paira P/Cell PEBdge Grid  Sort Xsect. Total
Time Time Time Time

50 131462 52.585  1.128 4.33 3.67 182.04 190.04
80 140407 21.939 1.201 4.50 3.93 90.75  99.18
100 146389 14.639 1252 472 422 6731  76.25
125 133492 9.823 1.313 4.88 4.32 51.36  60.56
175 168341  5.497 1.440 5.43 4.82 36.22 46.46
200 175791 4.395 1.504 6.70 6.13 35.18  48.01
275 197815  2.616 1.692 8.45 7.68 31.78 .47.91
325 212282  2.010 1.816 7.37 6.18 23.60 37.15
400 234372  1.465 2.008 8.37 7.15 21.82 3733
500 263646 1.055 2.255 10.18 7.78 20.62  38.58
625 300413  0.769 2.570 11.72 8.92 20.22  40.85
800 351891 0.550 3.010 1452 10.77 2137  46.65
1000 410589 0.411 3.512 1772 1293 2305 53.70
2000 704147  0.176 6.024 3105 2292 29.57 83.53

Table 1: Intersecting 116,896 Edges of the Chikamauga DLG
further improvement by a hierarchical method.

mmgmwmwumunmmdmcmmm.nmm '

Line Graph (DLG) from the USGS sampler tape. The average edge length was 0.0022
and the standard deviation 0.0115, so the edges were quite variable. We used a
325x 325 grid to find all 144,666 intersections in 37.15 seconds on a Sun 4/280. Other
results are listed in Franklin, Chandrasekhar, Kankanhalli, Seshan, Akman (1988).

One of cur examples consisted of 1,819,064 edges, with an average length of 0.0012,
forming a complete VLSI chip design. We found all 6,941,110 intersections in 178
seconds. hm.mqﬂnmwuowmlmnwmﬂmmwdhm.
mm'lmmqmuvmﬂm&wmmuuwusoumu
the mean. mmmmumm;muqdmmudlquw
other arcas besides cartography. .

Execution in Parailsl

The uniform ﬂidmﬁdndhiduuymitndnmdmmtmudmlduuﬁnuh
mostly consists of two types of operations that run well in parallel: applying a function
mmﬂuymuﬂdmmdammgmnamm,mm Determining
wmmmmmmmuumpudmm«m

We mmwmmdmumummn,hqmmnm com-

- puter, which contains 16 National Semiconductor 32000 processors, Sequent (1986),

Kallstrom(1988) and compared the ¢lapsed time when up to 15 processors were used to
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ummmhmm.mlwmdthemhmnedw
using atomic locks. Mauy,mwa'lomm'mmwmmu
algorithm to achieve parallelism.

There were scveral different ways of implementing the uniform grid data structure.
First, we had a G?MP wrray of cells, where G is the grid size, M is the maximum
nunbadedsapucaﬂpermud?ilﬂumbudwm. However this
imiplemenudonmukuplludmmwyapmm;hitmmmcmnnuh.Thm.
G mnyo(unkedmuwumed.mmodldnrequ.lnlmuubuxltwnllo-
because of the dynamic allocation of shared global memory. Then it was implemented
u:.in;t].!.nkedl.lttot(cdl,ldn)wnbmmmcwuuwhnmddynmic
memory allocation. Finally a G?M array implementation was made which used atomic
locks. This implementation gave the best results.

The speedup ratios range from 8 to 13. mmzmmemmammungs
wmanamumumwmmuymﬂmuuonph,muoz.w
edges. 81,373 intersections were found, The time for one processor was 273 seconds,
mmnsm-unm,fanwdmm. This is a rate of 7.9
mlllimed;andlﬂ.ﬁnﬂﬂminmperm. For other data sets, these extra-
pdnudﬂqunddmndmmmum'mbudhwmswm

mmmﬂdhmywduwmummthmmd
inherently sequential computation in the algorithm, the hardware contention imposed by

cantly. My.m-lpeedup.uahncﬂwdthenumbwdm.wumurmng
smoothly at 15 processors. 'mlsmuunhuwcwdacueumeunumwup

Map Overiay

Wemimplemmﬂuamplmmpmerhy package in C on & Sun workstation. The
inputudwmmlnndmmﬁxmdm&wudmymymwcdaam

; Dcfom:lntﬂnmchnimmhukeninhedgu.
2. Mna:'l‘hiungeﬂnﬂuﬂlnﬂeeﬂmpoinubemm

3. Commslmhﬂhupalﬁmlchﬁminbmduim,lddidmdm
pdnhbdum“ﬂ:cinmm.

4. mm:mnlnﬂmmdmhmbemmdmmumh
node and the x-axis.

S Fm:ﬁhaanrmhumpulyzmtmedbyﬁemchdu. =

b
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Fig 2. Time and Speedup when intersecting the 62045 edges in the Roads &
Trails, Railroads and Pi and Transmission Lines Overlays of The
Chickamauga DLG in Parallel om 1 to 15 Processors. Grid size = . 81,373
intersections found.

6. Display: This displays the resulting overlaid map along with labels for each recog-
nizable polygon.

7.  Timer: This sums up the time each of the first § modules takes to complete each
individual task.

One, possibly controversial, decision, was 1o split the chains into the individual edges at
the start. This makes the data more voluminous, but much simpler, since now the cle-
ments have a fixed length. After we have intersected all the edges, and split them into
pieces which are the edges of the result, it is easy to reform the output chains.

Another advantage of using individual edges is that the algorithm will be easier ©
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implement on a parallel machine for cven greater speed.

Wehauiml:imenndmellgunhmMyaun&mysomdpanonnSmmo. Teat-
wmmwmmmmtmmummmmmyl.nmmm
Sun 4.

CONCLUSION

Omnchdquhubenlummuyudtwﬂuimmptondmnpweﬂny
which occurs in cartography. Tharuuluindiuum:ﬂlhaverymhmsmdn:h—
nique which is fast and simpie. It Is evident from this research that simple solutions are
often faster than theoretically efficient but convoluted and complicated methods. Also,
hm«dnﬂdmindhhﬁqmmﬂmmmdnlphmuwuupouenlhm
being appreciated. wummumuﬂmmmmnvuym-m-im
minimal auxiliary data structures.

Mnmﬂmdbdm.wcmhvaﬂgnﬂuoﬁcwoﬂnnwh«e&cmﬂm;ﬁdtwh—
nlqumnybanppuedrwlavmﬂngpuﬂmummaw;hdﬂmmmmmd
wuquhnmdmmthmlud;mwicmmﬁminmmm
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