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Abstract -

The uniform grid data structure is a flat (non-hierarchical) grid
whose resolution adapts to the data. An exhaustive analysis of the uni-
form grid data structure for determining intersections in a set of many
small line segments is presented. Databases from cartography, VLSI,
and graphics with up to 1 million edges are used. For each data set, the
intersection time, the ratio of edge pairs tested to pairs found to inter-
sect, and size of intermediate data structures was measured as a function
of grid resolution. The execution time was relatively insensitive to the
grid size over a range of up to a factor of 10. One million edges were
processed to find 2.01 million intersections in 294 seconds on a Sun
4/280 workstation. This data structure is also ideally suited for imple-
mentation on a parallel machine. When executing on a 16 processor
Sequent Balance 21000, the total times averaged ten times faster than
when using only one processor. Finding all 81,373 intersections in a
62,045 edge database took only 28 seconds elapsed time. This research
shows that more complicated, hierarchical data structures, such as quad-

trees, are not necessary for this problem.
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Introduction

In diverse disciplines such as graphics, cartography, and VLSI design
there are problems, such as hidden surface detection, map overlaying,
and interference detection, respectively, where the fundamental, low
level operation that consumes most of the time is edge intersection.
Some applications are described in Brown (1981), Eastman and Yes-
sios(1972), Levin (1979), Maruyama (1972), Ottman, Widmayer, and
Wood (1985), Nievergelt and Preparata (1982), Six and Wood (1980),
Tilove (1980), and Bentley and Wood (1980).

We are given thousands or millions of small edges, very few of

which intersect, and must determine the pairs of them that do intersect.
Clearly, a quadratic algorithm comparing all [12\/] pairs is not acceptable.
A worst case solution that finds all K intersections of N edges in time

Nlog*N

£ =9[K+ loglog NV

] is presented in Chazelle (1983). However, this

method has some Ilimitations. First, it cannot find all the red-blue inter-
sections in a set of red and blue edges without finding (or already know-
ing) all the red-red and blue-blue intersections. Second, it is inherently
sequential, and is more difficult to parallelize. Chazelle and
Edelsbrunner(1988) have recently improved the time to
T =0(K +NlogN).

Alternative data structures, based on hierarchical methods such as
quadtrees, have also been used extensively, Samet (1984). They are

intuitively reasonable data structures to use since they subdivide to
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spend more time on the complicated regions of the scene. A criticism of

their overuse in Geographic Information Systems in given in Waugh

(1986).

This paper concentrates on an alternative data structure, the uniform
grid. Here, a flat, non-hierarchical grid is superimposed on the data.
The grid adapts to the data since the number of grid cells, or resolution,
is a function of some statistic of the input data, such as average edge
length. Each edge is entered into a list for each cell that it passes
through. Then, in each cell, the edges in that cell are tested against each
other for intersection. The grid is completely regular and is not finer in

the denser regions of the data.

The uniform grid (in our use) was first presented in Franklin(1978)
and was later expanded by Franklin, Akman, and Wu
(1980, 1981, 1982, 19832, 1983b, 1985, 1987). In these papers the uni-
form grid was called an adaptive grid. However, there is another,

independent and unrelated, use of the term adaptive grid in numerical
analysis in the iterative solution of partial differential equations. Our
papers present an expected linear time object space hidden surface algo-
rithm that processed 10,000 random spheres packed ten deep in 383
seconds on a Prime 500. The idea was extended to a fast haloed line
algorithm that was tested on 11,000 edges. The concept was applied to
other problems such as point containment in polygon testing. Finally it
was used, in Prolog and with multiple precision rational numbers in the

map overlay problem in cartography.

g

t



However, an objection has been repeatedly raised to the uniform
grid. Although it is proven theoretically and demonstrated experimen-
tally that the grid is fast for random data, real world data appears much
worse than random. Frequently some parts of a real scene are much
denser than other parts so that an evenly spaced grid would appear not to
work. A hierarchical technique, such as a quadtree, appears to be neces-

sary.

However, even a quadtree cannot efficiently process all data sets. If
we have N parallel edges separated by distances of N-? for p>1, then it
will take more than quadratic time to build either a uniform grid or a
quadtree with cells fine enough to distinguish the edges. The plane
sweep algorithm would work well in this case. However, the plane

sweep cannot handle the red-blue intersection case mentioned above.

There are good reasons for assuming that data sets with one region
exponentially denser than another are not common. If there are rela-
tively sparse regions in the data, people then tend to put anything at all
in to fill the vacuum. We could also define such data sets out of
existence as numerical analysts do with partial differential equations.
Just as they consider only equations that satisfy a Lipschitz condition
where the greatest slope of a curve is bounded, we might restrict our-
selves to sequences of data sets where the densest region’s density, rela-

tive to the average density, remains bounded as N—oo0.

This present paper presents experimental evidence that the uniform
grid is an efficient means of finding intersections between edges in real

world data also. The uniform grid is similar to a quadtree is the same
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sense that a relational database schema is similar to a hierarchical
schema. The power of relational databases, derived from their simplicity

and regularity, is also becoming apparent.

The uniform grid data structure is also ideally suited to execution on
a parallel machine because of the simpler data structures. Also, it is

more numerically robust than sweepline algorithms that have problems.

In the following sections, we will review the theoretical development
of the uniform grid, see the databases used for testing, and learn the test

results.

Intersection Algorithm

Assume that we have N edges of length L independently and ident-

ically distributed (i.i.d.) in a 1 X1 screen. We place a G XG grid over

the screen. Thus each grid cell is of size —lé— XIE' The grid cells partition

the screen without any overlaps or omissions. The intersection algo-

‘rithm proceeds as follows.

1. For each edge, determine which cells it passes through and write

ordered pairs (cell number, edge number).

2. Sort the list of ordered pairs by the cell number and collect the

numbers of all the edges that pass through each cell.

3. For each cell, compare all the edges in it, pair by pair, to test for

intersections. If the edges are a priori known to be either wvertical or

—
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horizontal, the vertical edges are compared with the horizontal edges

only. To determine if a pair of edges intersect, we test each edge’s

endpoints against the equation of the other edge. We ignore calcu-

lated intersections that fall outside the current cell. This handles the

case of some pair of edges occurring together in more than one cell.

Theoretical Analysis

Let N,/ be the number of cells that an average edge passes

through. The determination of N e is similar to the Buffon’s Needle

Problem (McCord 1964). A simple analysis shows that,
4
Nc/e =(1+?LG)

Then N,, the total number of .(cell, edge) pairs is

4

P

The average number of edges per cell is

N,

4

Ne/c =F

N, 4
= (1+-16)

The time to calculate the (cell, edge) pairs is

Tl = Ct'Np



where a is a constant. The time to test the edges for intersections is

about
Ty =P G*N,/(N,— 1)
where (3 is a constant. The overhead for processing the cells is
Ty =~G?
where v is a constant. and the total time is

T=T1+T2+T3

+ yG?

. 9 L 1 8 L 168 ;4
=N|(«a ,B)-i—n(oz ﬁ)LGl+ﬁN2[G2 - Gl‘j'['2L

This is minimized if the 2 fastest terms in the sum grow at the same

speed, which occurs when G =min[6\/N,L] for some 6.

4L

What about some cells being denser since the edges are randomly
distributed? Since the time to process a cell depends on the square of
the number of edges in that cell, an uneven distribution might increase
the total time. However, since the edges are assumed independent, the
number of edges per cell is Poisson distributed, and the expected value
of the square of the number of edges equals the square of the expected

number of edges. Therefore the expected time doesn’t increase.
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Test Data

We used four different types of data sets, as follows (Chandrasekhar

1987).

1.

The Resch Ukranian Easter egg(Blinn 1988) , projected onto a
plane. The multiple coincidences make this a hard case, especially
for a sweep-line algorithm that must keep all the active edges

ordered.

The state boundaries of the coterminous USA, shifted and overlaid

on themselves. The multiple near correlations make this a bad case

also.

The USGS (United States Geological Survey) DLG (Digital Line
Graph) sampler tape. This represents a quadrangle around Chi-
kamauga Tennessee that is split into 8 rectangles. Each rectangle

has 4 overlays, for a total of 32 files. The overlays are
a) hydrography,

b) roads and trails,

¢) railroads, and

d) pipes and transmission lines.

Each file overlay was divided into 8 sections by USGS. These data

files were sometimes processed separately and sometimes combined.

Some CIF (Caltech Intermediate form) VLSI data.
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Sample plots of this data is shown in figure 1.

Experimental Results

For each data set, we tried different grid sizes to find the optimum.

For each experiment, we measured

the standard deviation of edge length,

the number of (edge, cell) pairs,

the number of pairs per cell,

the number of pairs per edge,

the time in seconds to determine the pairs on the Sun 4 /280,

the time to sort the pairs by cell number,

the time to pair up the edges in each cell and calculate intersections,
the total time,

the number of intersections where the two edges shared an end-
point,

the number of intersections where they didn't,

the total number of intersections,

the expected number of intersections, calculated from .2 N2L?2,

the observed number of comparisons between pairs of edges,

the expected number of comparisons, assuming that the edges were

independently and uniformly randomly distributed, and
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o) the ratio of observed and expected comparisons; large values indi-

cating nonuniform or correlated data.

For each data set we tried many values of G to learn the variation
of time with G. Table 1 shows the results from intersecting the 116896
edges in all the 4 overlays of the Chikamauga DLG (Fig 1c). There are
144,666 intersections in ail, and the best time is 37 seconds with a
325 X325 grid. The time is within 50% of this for grids from 175 X175
up to 1000 X1000, which shows the extreme insensitivity of the time to
the grid size. This is why real scenes with dense and sparse areas can be

accommodated efficiently.

The economy of the grid structure is shown by the fact that the
number of comparisons between pairs of edges needed to isolate the
intersections is about twice the number of the edges when using the
optimal grid resolution. This behavior was also observed in hidden sur-
face algorithm described in earlier publications. There is not much room

for further improvement by a hierarchical method.

Figure 2 graphs the time versus G for the USA state boundaries
shifted and overlaid on themselves. The execution time is within 209 of
the optimum from about G =40 to G =400 and is within a factor of
two of the optimum from about G =20 to G =700. Outside these lim-

its, the execution time starts to rise quickly.

Table 2 shows the results from processing each data set. Our biggest
example (Fig 1d) consisted of 1,000,000 edges from the densest region
of a 2,500,000 edge chip database with an average length of 0.0012. It
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took only 294 seconds on a 600XB00 grid to compute the 2.01 million
intersections when we used the fact that all the edges are either horizon-
tal or vertical. If the above fact was not used, it took 784 seconds on
20002000 grid. The higtogra.m of edge lengths (Fig 3) shows the bad
distribution in this example. It can be seen that a few very long edges
increase the mean value and that the length of most of the edges is less
than the mean length.. This example proves that the uniform grid
method is suitable for badlj distributed edges too. The size oflthe grid,
1,710,208 cells, may appear inefficient. However, most cells are emi)ty
and, unlike in a tree data structure, an empty cell does not occupy even

one word of storage, not even for a nil pointer.

Execution in Parallel

The uniform grid method is ideally suited to execution on a parallel
machine since it mbstly‘consists,of two types of operations that run well
in parallel: applying a functic;n iﬁdependently to each element of a set to
_generate a new set, and sorting. Determining which cells each edge

passes through is an example of the former operation.

We implemented several versions of the algorithm on a Sequent
Balance 21000 computer, which contains 16 National Semiconductor
32000 processors _(Seqqent 1986,Ka.llstr§m 1988), and compéred the
elapsed time ‘when up to 15 processors were used to the time for only

one processor (Kankanhalli 1988). We used the “‘data partioning’
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paradigm of parallel programming which involves creating multiple,
identical processes and assigning a portion of the data to each process.
The edges are distributed among the processors to determine the grid
cells to which each edge belongs and then the cells are distributed among
the processors to compute the intersections. Since the Sequent Balance
21000 is a shared memory parallel computer, shared data structures is
the communication mechanism for t.hg processors. The synchronization
of the processoré, is achieved by using atomic locks. Basically, the con-
cept of ‘local p'roce;ssing‘ has been adopted in th;ls algorithm to achieve

parallelism.

There were several different ways of implementing the uniform grid
data structure. First, we had a G2MP array of cells, where G is the grid
size, M is the maximum number of edges per cell per processdr and P is
the number of processors. waaver ﬂ;is implementation took up a lot of
memory space though it obviated the use of locks. Then, G? array of
linked lists was used. This also did not require iocklng but it was slow
because of the dynamw allocation of shared global memory. Then it was
implemented using a linked list of (cell,edge) pa.lrs Ibut this also was slow.
'because of dynamic memory allocation. Finally a G2M array implemen-
tation was made which used atomic locks. This implementation gave the

best results.

.Table 3 shows the results of the parallel implementation of the algo-
rithm. The speedup ratios range from 8 to. 13. Figure 4 shows the
results from processing 3 overlays of the United State Geological Survey

Digital Line Graph, totaling 62,045 edges. 81,373 intersections were
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found. The time for one processor was 273 seconds, and for 15 proces-
sors was 28 seconds, for a speedup of about 10. This is a rate of 7.9 mil-
lion edges and 10.5 million intersections per hour. For other data sets,
these extrapolated times would depend on those data sets’ number of

intersections per edge.

The speedup achieved for any parallel algorithm is dependent on the
amount of inherently sequential computation in the algorithm, the
hardware contention imposed by the competing processors, the overhead
in creating multiple processes and the overhead in synchronization &
communication among the multiple processes. We believe that the first
factor is not dominant when using the uniform grid technique. The large
speedups achieved show that the other three factors also do not affect
the performance significantly. Finally, the speedup, as a function of the
number of processors, was still rising smoothly at 15 processors. This
means that we should achieve an even bigger speedup on a more parallel

machine.

Conclusion

We have answered the objection that the uniform grid is suitable for
only evenly spaced data by showing experimentally that it is just as
efficient on unevenly spaced, real data. Since it is a.]slo very easy to
implement, and executes well on parallel machines, there is now no need

for more complicated methods such as quadtrees and plane-sweep
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algorithms.
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Fig 1(a). X-Z Plane Projection of the Resch Easter Egg



Fig 1(b). USA Map - Shifted and Overlaid on Itself
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VLSI file (windowed between 0.2-0.8 in x and y dir)

HISTOGRAM
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Fig 3. Histogram of edge lengths of database shown in Fig. 1(d)
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Fig 4. Time and Speedup. When Intersecting the 62045 Edges in the Roads & Trails, Rail-
roads, and Pipes and Transmission Lines Overlays of the Chikamauga DLG in Parallel on 1 to
15 Processors. Grid Size = 250. 81,373 Intersections Found.
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D atabase Edges Length Std Xsects Grid Time
Dev Size
5897 0.0355 0.0124 39666 40 7.27

Resch Egg - YZ Projection
XZ Projection 5897 0.0391 0.0132 37415 50 7.65
XY Projection 5897 0.0352 0.0131 40177 40 7.02
USA Map 915 0.0186 0.0245 1078 50 0.25
Shifted by 2% and overlaid on 1830 0.0184 0.0243 2430 65 0.65
itself
Shifted by 10% & overlaid 1830 0.0180 0.0237 2348 50 0.60
Chikamauga Area 1 - Hydrogra- 140068 0.0045 0.0087 15513 150 3.50
phy, Roads & Trails
Area 2, HR&T 14145 0.0049 0.0080 16595 125 3.47
Area 3, HR&T 18092 0.0044 0.0081 23586 150 4.83
Area 4, HR&T 16425 0.0048 0.0076 20335 150 4.17
Area 5, HR&T 12869 0.0053 0.0103 14978 140 3.28
Area 6, HR&T 13871 0.0050 0.0080 16072 140 3.42
Area 7, HR&T 13578 0.0048 0.0083 16066 140 3.28
Area 8, HR&T 11937 0.0048 0.0098 13283 125 2.80
All sections - Railroads 1122 0.0159 0.0543 1316 65 0.33
Pipe & Trans. Lines 850 0.0277 0.0523 1211 85 0.33
Railroads, Pipe & Trans. Lines 1972 0.0206 0.0533 2745 65 0.85
Railroads, Pipe & Trans. Lines 3944 0.0206 0.0533 13268 65 2.87
Overlaid on itself
Hydrography, Railroads, Pipe & 56823 0.0022 0.0122 62108 400  15.90
Trans. Lines
Roads & Trails, Railroads, Pipe 62045 0.0026 0.0106 81373 325 19.18
& Trans. Lines
Hydrography, Roads ‘& Trails, 116896 0.0022 0.0115 144666 325 37.15
Railroads, Pipe & Trans. Lines
VLSI Data - xfacell.mag 1960 0.0467 0.0852 6488 65 0.82
VLSI Data - Windowed 1,000,000 0.0012 0.0038 2,010,564 600 293.75

between 0.2-0.8

Table 2. Summary of Results for Serial Computation
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No. of edges 116896
Avg. edge length 0.00231
Standard deviation 0.0081
Xsects. by end pt. coincidence 135875 .
Xsects. by actual equation soln 8791
Total intersections 144666
Grid Size - Pairs P/Cell P/Edge Grid Sort Xsect Total
' " Time Time Time Time

50 131462 52.585 1.125 4.33 3.87 182.04 190.04

80 140407  21.939 1.201 4.50 3.93 90.75 99.18

100 146389 14.639 1.252 4.72 4.22 87.31 76.25

125 153492 9.823 1.313 4.88 4.32 51.36 60.56

175 168341 5.497 1.440 5.43 4.82 36.22 46.46

200 175791 4.395 1.504 6.70 6.13 35.18 48.01

275 197815 2.616 1.692 8.45 7.68 31.78 47.91

325 212282 2.010 1.816 737 6.18 23.60 37.15

400 234372 1.465 2.005 8.37 .7.15 21.82 37.33

500 263646 1.055 2.255 10.18 7.78 20.62 38.58

625 300413 0.769 2.570 11.72 8.92 20.22 40.85

. 800 351891 0.550 3.010 14.52 10.77 21.37 46.65

1000 410589 0.411 ‘3512 17.72 12.93 23.05 53.70

2000 704147 0.176 6.024 31.05 22.92 29.57 83.53

Table 1. Results from Intersecting the 116896 Edges in the Roads & Trails, Railroads, and

Pipes and Transmission Lines Overlays of the Chikamauga DLG
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D atabase Edges Xsects Grid Time Taken For

Size 1 Proc 5 Procs 10 Proes 15 Proes
Resch Egg - YZ Projection 5897 39666 100 98.91 24.02 14.19 11.96
XZ Projection 5897 37415 115 97.88 23.55 14.83 11.81
XY Projection 5897 40177 80 92.33 20.33 12.36 10.40
Hydrography, Railroads, Pipe & 56823 62108 250 255.80 54.62 29.43 21.01
Transmission Lines
Roads & Trails, Railroads, Pipe 62045 81373 250 273.11 62.98 39.42 27.77
& Transmission Lines
Hydrography, Roads & Trails, 116896 144666 100 1292.06 302.46 160.69 120.04
Railroads, Pipe & Trans. Lines
Random Edges of Size 0.01 50000 45719 100 521.06 108.90 57.88 40.15

Table 3. Summary of Results for Parallel Computation
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