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Cartographic map overlay is the process of superimposing two maps into one to convey information in spatial cor-
relation. A map refers to one in vector representation: a two-dimensional spatial data structure of nodes, chains, and
polygons. We present a map overlay system developed in Prolog. The system adopts a relational approach to data
structuring. We represent geometric entities and their relationships as facts, and encode geometry algorithms in the
rules. Set-based operations perform data processing. To speed up the search for chain intersections, a uniform rectan-
gular grid is imposed over the object space for spatial sorting by distribution. We sort out potentially intersecting edge
segments to those occupying some common grid cell. Each bucket, if non-empty, is implemented as a Prolog fact iden-
tifying the grid cell for random access. Geometric intersections are calculated using exact rational arithmetic imple-
mented in Prolog. Numerical accuracy is preserved and we can identify all the special cases of tangent conditions.
We can then guarantee topological consistency, and stability in the process of map overlay is therefore achieved.

Key words: map overlay, polyline intersection, Prolog, rational arithmetic.

La confection de cartes géographiques nécessite la superposition de deux cartes afin que 1’on puisse mettre en cor-
respondance des informations sur le plan spatial. La référence d’une carte a une autre se fait sous forme de représenta-
tion vectorielle, c’est-a-dire une structure bidimensionnelle de données spatiales de noeuds, de chaines et de polygones.
Cet article présente un systéme de superposition de cartes élaboré dans Prolog. Le systéme favorise une approche rela-
tionnelle a la structuration des données. Des entités géométriques sont représentées ainsi que leur relation comme faits;
des algorithmes de géométrie sont ensuite encodés dans les régles. Des opérations basées sur des ensembles effectuent
le traitement des données. Afin d’accélérer la recherche des intersections de chaines, une grille rectangulaire uniforme
est superposée sur I’espace de ’objet pour permettre un tri spatial par répartition. On distingue les segments de con-
tours qui font I’objet d’intersections de ceux qui occupent une cellule commune de la grille. Chaque cuvette qui n’est
pas vide est traitée comme un fait Prolog identifiant la cellule en vue d’un accés aléatoire. Les intersections géométri-
ques sont calculées a I’aide d’une arithmétique rationnelle exacte incorporée a Prolog. La précision numérique est préservée
et il est possible d’identifier tous les cas spéciaux de conditions tangentes. Nous pouvons ensuite garantir la consistance
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topologique et assurer la stabilité du processus de superposition de cartes.
Mots clés : superposition de cartes, intersection polyligne, Prolog, arithmétique rationnelle.

Comput. Intell. 6, 61-70 (1990)

Introduction

Map overlay is the process of superimposing two or more
maps into one to convey spatial correlation information
between the input maps. Figure 1 illustrates the traditional
manual process of map overlay using transparencies over
a light table. Automation of this process on the computer
depends on how the map is represented. In the raster for-
mat, a map is an image. In the vector format, a map is a
two-dimensional (2D) spatial data structure consisting of
nodes, chains (polylines), and polygons. In the context of
this paper, a map refers to one in the vector format. The
map overlay problem is often also referred to as the polygon
overlay problem, since it encompasses a number of geometric
and topological computation problems.

Fundamental to the development of a solution for map
overlay was the research effort in computational geometry
during the 1970s. Solutions were reported for the basic prob-
lems in point-in-polygon test (Ferguson 1973) and polygon
intersection (Eastman and Yessio 1972; Franklin 1972).
Shamos and Hoey (1976) later developed a host of algo-
rithms to efficiently solve many geometry problems. Algo-
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rithms specific to polyline intersection (Burton 1977; Little
and Peucker 1979; Ballard 1981) were particularly important
to map overlay. Nievergelt and Preparata (1982) formulated
the plane-sweep approach for geometric intersection prob-
lems in general. Map overlay systems were not implemented
until the mid 1970s (Tomlinson ef a/. 1976), but an object
space geometric solution was first implemented in ODYSSEY
(White 1978). The algorithm we implemented was due to
Franklin (1983a), and to our knowledge it was not imple-
mented elsewhere.

Using Prolog is a venture motivated by the quest for more
suitable tools to implement geometry and graphics systems
(Forrest 1988'). Swinson (1982, 1983) reported studies in
using Prolog for architectural design. Gonzalez et al. (1984)
compared Prolog to Pascal and concluded in favor of Prolog
for computer-aided-design applications. Nichols (1935)

'Also presented in an invited address, Computational
Geometry and Software Engineering, in the Second Annual
Symposium on Computational Geometry, 1986, Yorktown
Heights, NY.
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output map
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FIG. 1. The manual process of map overlay on transparencies.

implemented a subset of the graphics kernel system in
Prolog. Prolog was also used in geometric modelling: solid
construction by constraints (Bruderlin 1988) and octree
modelling (Guerrieri and Grover 1986). We also reported
some preliminary work of using Prolog in a number of
geometry projects (Franklin ef a/. 1986).

In this paper, we present a system developed in Prolog
to perform map overlay. The system decomposes the process
of map overlay into a number of steps grouped into four
major stages. Using Prolog, we naturally adopt a relational
approach to data structuring. The strategy allows us to
simplify the data structures involved. We represent instances
of geometric entities and their relationships as “‘facts,”” and
we encode geometry algorithms in ‘‘rules’’ to perform data
processing. To speed up computing polyline intersections,
we impose a uniform grid onto the object space in an
approach similar to sorting by distribution. Numerical inac-
curacy in computer arithmetic has bedeviled many overlay
systems, since it destroys the topology. We use exact rational
arithmetic implemented in Prolog. We can then preserve
numerical accuracy and guarantee topological consistency,
and we can properly identify and handle all special cases
of tangent and coincidental conditions. Thus we have
achieved a map overlay system completely stable in the pro-
cess of computation. The last section will discuss some of
our test results.

The map overlay problem

A map refers to a 2D spatial data structure consisting of
nodes, chains, and polygons. A node is a point in the plane.
It is a point of topological junction where chains begin or
terminate. A chain is a directed polyline, a sequence of con-
tiguous edge segments beginning at a node and terminating
at a node (which may or may not be the same node). A chain
does not intersect with any other chains in the map, nor with
itself. The network of nodes and chains partitions the 2D
plane into polygons. Each polygon is a connected region of
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Overlay Relationship:  over(C1,A1,B3).
over(C2,A1,B1).
over(C3,A2,B3).
over(C4,A2,B1).
over(C5,A3,B1).
over(C6,A3,B2).
over(C7,A3,B3).

FiG. 2. Map overlay and the overlay relationship.

FIG. 3. A uniform grid isolates potentially intersecting edge
segments. Note: When two chains intersect, they do so between
two edge segments which occupy the same locality.

the 2D plane with polygonal boundaries. (A polygon with
holes has more than one boundary.) The cyclic order of the
chains around the boundary determines whether the interior
of the polygon is to the inside or outside of the polygonal
boundary.

The structure of nodes, chains, and polygons constitutes
a map. However, with proper attributes, the set of chains
alone suffices to carry the complete map information. Hence
we can represent a map as a file of chain records, each
having the following fields:

¢ chain identifier;
¢ beginning and terminating node identifiers;
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Map A
chain #1: [a, d]
chain #2: [a, e, d]
chain #3: [a, b, ¢, d]

Overlay Example
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Sort Chains at each node

by incident angles

‘ Edges split by intersection

polygon(1, [ht(18), ht(19)])

polygon(2, [ht(6), th(14), th(15)])

polygon(3, [th(6), th(12), ht(10)])

polygon(4, [th(5). ht(9), ht(12)])

polygon(S, [ht(11). th(9)])

polygon(6, [ht(5), ht(15), th(18), ht(21), ht(25)])
polygon(7, [th(21), th(24)])

polygon(8, [ht(24), th(19). ht(14), th(10), th(11), th(25)])

FiG. 4. Linking chains to form polygon boundaries.

e ordered list of (x, y) pairs for the polyline sequence; and
e identifiers of the polygons to the left and right.

Given this set of chains for a map, we can derive the nodes
as well as the polygons.

Based on the terminology defined above, we can now
describe the map overlay process in more precise terms.
Given two input maps A and B, the map overlay process
produces an output map C by superimposing A and B. New
nodes are formed at the intersection points where chains of
A intersect those of B. Map C consists of all the nodes of
A and B, and the new nodes. Map C consists of all the chains
of A and B except that those involved intersection are split
up at the new nodes, that is, the intersection points. The
network of nodes and chains in map C partitions the 2D
plane into polygons, each of which is a resultant polygon
from the intersection between a polygon in A and another
one in B. An overlay relationship associates each polygon
in C with these two polygons in A and B, respectively. To
solve the map overlay problem, we have to construct the

output map C and determine the overlay relationship.
Figure 2 illustrates a map overlay process and the overlay
relationship.

A map overlay system in Prolog

Our system divides the complicated process of map over-
lay into four major stages. Each is further subdivided into
various steps. The following presents an overview and a brief
description of the four different stages in the process. Then
we will describe each stage in further details.

Stage 1. Chain intersection. Split intersecting chains and
generate the new nodes.

Stage 2. Polygon boundary formation. Link up chains
from stage 1 to form polygon boundaries.

Stage 3. Overlay polygon identification. Identify for each
output polygon boundary the input polygons.

Stage 4. Boundary containment resolution. Resolve the
containment relationship between polygon boundaries to
identify polygons and holes.
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Overlay

FIG. 5. When P = P1, P and all its neighbors (Ns) are inside
the same P2.

Stage 1. Chain intersection

Given two sets of chains, one from each input map, we
determine the intersecting chains and split them at the inter-
section points. In search of intersections, we decompose each
chain into its sdge segments and cast a uniform grid over
the object space. The grid isolates potentially intersecting
edge segments to those which occupy some common grid
cell, as illustrated in Fig. 3. We can then determine the inter-
sections by pairwise comparison of edge segments within
each grid cell. This stage involves the following steps.

Step 1.1. Determine the appropriate cell size for the
uniform grid.

Step 1.2. Cast the grid over the edge segments; determine
for each edge segment the grid cells it occupies and collect
the edge segments over each grid cell.

Step 1.3. Determine intersections in the set of edge seg-
ments in each grid cell; split the edge segments and generate
a new node for each intersection point.

Step 1.4. Connect the edge segments back into chains,
split at the intersection points.

In the section on chain intersection, we will discuss further
the grid strategy and the issue of determining the appropriate
cell size for the grid.

Stage 2. Polygon boundary formation

The network of nodes and chains from stage 1 should par-
tition the plane into polygons. We can therefore link up the
chains around the polygon corners at each node. Each com-
pleted cycle of chains identify a polygon boundary. This
stage involves the following steps.

Step 2.1. Identify for each chain the nodes where it begins
and terminates, and calculate the incident angles.

Step 2.2. Sort the chains by the incident angles around
each node into proper cyclic order. Each adjacent pair of
chains identify a corner of an output polygon at the node.
Link up the adjacent chains in the proper cyclic direction.

Step 2.3. Match the chain linkages and connect them until
a list of directed chain linkage begins and ends with the same

entry; the list identifies the chains along the boundary of
a polygon in its proper cyclic order.

Figure 4 illustrates the overlay process of two simple maps
A and B up to identifying 8 completed lists of polygon
boundaries. When we have identified all the polygonal
boundaries in the output map, we need to determine for each
boundary list the two original polygons in the two input
maps.

Stage 3. Overlay polygons identification

Each output polygon is formed by the intersection of two
input polygons, one in each input map. However, each poly-
gon boundary may or may not be involved in intersection.
If a boundary is involved in an intersection, the list of
boundary chains will consist of chains from both input poly-
gons. We can then determine the input polygons by examin-
ing the original input chains along the boundary. But if a
boundary is not involved in any intersection, all the chains
along the boundary come from the same input polygon in
one of the input maps, the polygon being completely con-
tained in another polygon of the other input map. We can
determine one input polygon P1 form the boundary chains;
the unknown P2 from the other map is the containment
polygon. Observe that all the neighbors of P1 in the output
map must be contained also in P2, as illustrated in Fig. 5.
We can therefore search through the neighbors of P1 until
we find one with the boundary intersecting the containment
polygon.

The search fails only when the entire connected group of
polygon boundaries are not involved in any chain intersec-
tion with the other input map. In this case the entire con-
nected group is completely contained in the same polygon
of the other input map. We will have to take a point from
the group and test it for containment against polygons of
the other input map. The point-in-polygon test will find the
containment polygon. The following outlines the steps in
this stage.

Step 3.1. For each polygon boundary, examine the input
chains to determine the input polygons. If it is involved in
chain intersection, we can find both input polygons.

Step 3.2. If it is not involved in chain intersection, we can
find one of the input polygons. Search the neighbors to
determine the containment polygon.

Step 3.3. If the search fails, identify the group of con-
nected neighboring polygons together. For each connected
group, perform point-in-polygon test to determine the con-
tainment polygon in the other input map.

Stage 4. Boundary containment resolution

Two polygons may intersect to form more than one poly-
gon. Moreover, since we have defined a polygon to be a con-
nected subset of the 2D plane, each polygon may have more
than one polygonal boundary. In the preceding stage, we
have determined the input polygons for each output polygon
boundary, we must also determine which of the boundaries
refer to the same connected piece of output polygon.

We examine only the polygon boundaries that are formed
from the same pair of input polygons. We then divide them
into two groups by the cyclic order: (i) positive polygon
boundaries, and (i) the holes which are negative. Each posi-
tive boundary identifies an output polygon. Each negative
boundary identifies a hole contained in one of the positive
polygons, except for the holes in the outside polygon, a
region which extends to infinite on the 2D plane, The out-
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side polygon contains holes only and no positive polygon
boundary. The following describes the steps taken to resolve
containment relationships and identify the holes from the
polygon boundaries.

Step 4.1. Gather the polygon boundaries which are
formed from the intersection of the same pair of input
polygons.

Step 4.2. Divide into two groups according to the bound-
ary cyclic order: positive ones are polygons and negative ones
are holes.

Step 4.3. Determine containment polygon for each hole
by point-in-polygon test. Update the polygon identifier for
each hole to that of its containment polygon.

Once finished with this step, we have the complete sets
of nodes, chains, and polygons of the output map, as well
as the overlay relationship.

Data structuring and logic programming

Unlike conventional programming languages, Prolog is
a declarative language. This means, at least in theory, that
a Prolog program is not a prescribed set of instructions to
solve a particular problem, but is instead a description of
the objects and their relationships involved in the problem
which provides information to solve the problem. The
Prolog facts and rules constitute such a description. In our
map overlay system, we represent geometric entities and their
association as facts, and we encode the geometric and topo-
logical relationships into the rules.

The way Prolog maintains the facts provides us with a
relational approach to data structuring. For example, a map
consists of nodes, chains, and polygons, represented in the
following:

node(Node-id, [x, y]).
chain(Chain-id, Nodel, Node2, [[x, ¥], ...], Polyl, Poly2).
polygon(Polygon-id, [B1, B2, ...]).

A ‘“‘node”’ fact comprises the Node-id and [x, ], the coor-
dinates of the node. A ‘‘chain”’ fact comprises the Chain-id;
the beginning and ending Node-id, Nodel and Node2; the
list of [x, »] vertex coordinates of the polyline from Nodel
to Node2; and the Polygon-id’s Polyl and Poly2 on the left
and right of the chain. A ‘“‘polygon” fact comprises the
Polygon-id and a list, [B1, B2, ...], of the boundary chains
in proper cyclic order around. Each Bi may be ht(Ci) for
Chain Ci from head to tail, or th(Ci) from tail to head. Note
that the Polygon-id is not necessarily unique for each
“‘polygon’’ fact, but each fact identifies a polygon bound-
ary. Similarly, the overlay relationship is represented by the
set of ““over’’ facts:

over(Poly-A, Poly-B, Poly-C).

The ““over” fact states that output polygon Poly-C is formed
from the intersection of input polygons, Poly-A from map A
and Poly-B from map B. During the process of map overlay,
our system also generates different interim data files for use
in the subsequent steps. These we also keep as sets of Prolog
facts. For example,

incident(Node-id, Chain-id, Incident-Angle).

represents the chain-to-node incidence relationship.
Given the map data represented as facts in the Prolog data
base, the map overlay system performs data processing on

the facts by set-based operations. Each step in the process
applies a certain operation on the entire sets of geometric
entities. Obviously, Prolog system predicates retract and
assert can provide for simple set-based operations. However,
we must be careful when simultaneously iterating and updat-
ing the same set of facts. Specifically, retract and assert may
affect the sequence of iteration. We opt to avoid this in many
cases. When we do need to have simultaneous assert and
retract, we use a repeated_retract predicate.

repeated_retract(INSTANCE):-
repeat,
(not(call(INSTANCE)), !, fail;
retract(INSTANCE)).

The predicate succeeds to retract an INSTANCE until no
more exists, and it works independent of specific assert and
retract implementations.

While the assert and retract predicates provide for access
to the data base, the Prolog rules encode geometry algo-
rithms to perform data processing. A common paradigm
in our map overlay system uses pattern matching to propa-
gate geometric and topological properties. The scheme
involves retrieving facts matching in certain properties to
construct new facts until no matching patterns can be found.
For example, in linking chains to form polygon boundaries,
we first form the corners around each polygon. Each corner
is a fragment of a polygon boundary. Whenever two frag-
ments exist and they can be connected, we retract both frag-
ments and assert the new connected fragment. When no such
fragments exist, we have all the polygon boundaries. Con-
sider the set of ‘‘linkage’” facts in the following.

linkage(a, b, [a, b]).
linkage(b, c, [b, c]).
linkage(c, d, [c, d]).
linkage(d, a, [d, al).

These are the fragments of a quadrilateral. These fragments
can be connected if they match the linkage properties. We
identify a new polygon when we have a complete cycle in
the linkage.

connect(A, A, [A|L]) :-
!, assert(polygon(L)).

connect(A, B, L1) :-
retract(linkage(B, C, [B|L2])),
append(L1, L2, L3),
assert(linkage(A, C, L3)).

% completed cycle.

% fragment matched.

The “‘connect’’ rule matches fragments of polygon bound-
aries to link them up. We use repeated_retract to perform
set operation on the entire collection of linkages.

match_all linkages :-
repeated retract(linkage(A, B, L)),
connect(A, B, L),
fail.

match_all_linkages. % match until linkages exhausted.

When ‘‘match_all_linkages’ finishes, we have the quadri-
lateral represented as

polygon([a, b, ¢, d]).

Note that the direction designators ht() and th() for the
chains in the polygon boundary have been omitted for clarity
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FiG. 6. The United States map of state boundaries.

and ease of presentation. When linking chains in the map
overlay system, chains have their specific directions in the
polygon boundaries.

Chain intersection

The cost determining factor in the map overlay process
is in computing chain intersections. Guevara (1983) ascer-
tained this by asymptotic complexity analysis. In the intro-
duction, we alluded to a number of existing algorithms for
chain intersection (Burton 1977; Little and Peucker 1979;
Ballard 1981; Nievergelt and Preparata 1982). Either they
deal with two chains at a time or the entire set of chains
to exploit spatial coherence, these algorithms all attempt
various ways to search the chains to determine the intersec-
tion points. They aim at achieving a low worst case time
complexity, and they approach the chain intersection prob-
lem very much like sorting by comparison.

In our map overlay system, we adopted a rather different
approach. When two chains intersect, they do so between
two edge segments which occupy the same locality. We
impose a uniform rectangular grid over the object space and
take each grid cell as a bucket in sorting by distribution.
We can then avoid comparing edge segments unless they
occupy some common grid cell; and we do not have to search
into the chains, since we are dealing with the constituent edge
segments.

For each edge segment, we can determine the grid cells it
occupies in time linear to the number of grid cells occupied.
The total time required to distribute all the edge segments
to the buckets for the grid cells occupied is therefore pro-
portional to the total number of (grid-cell, edge-segment)
pairs. We, however, have to be careful with the data struc-
ture for the grid so that empty grid cells do not take up any
storage space. In our map overlay system, the data structure
for each non-empty grid cell is a Prolog fact with a unique
functor name generated to identify the grid cell. For exam-
ple, grid cell No. 344 is the fact

g344([El, E2, ...]).

where [El, E2, ...] is the set of edge segments in the bucket.
Hence, each bucket is accessed directly by linear hashing,
and that empty cells do not take up any storage, not do they
need CPU time to check that they are empty. The grid
method avoids pairwise comparison between edge segments
that are not in the same vicinity, and it attempts to focus
the attention directly on the intersection points by sorting

Fic. 7. The United States map perturbed with new points
introduced.

out potentially intersecting edges to within those that share
some common grid cell.

An interesting question in the grid method is how to deter-
mine the appropriate size for grid cells to set up the grid.
Since the grid is intended to isolate cases of intersecting edge
segments, it may seem desirable to use smaller grid cells so
that two edge segments will less likely occupy a common
cell unless they intersect. On the other hand, smaller grid
cells result in a grid with more cells, and will take more pre-
processing time in distributing the edge segments to the grid
cells. We are therefore looking for some appropriate grid
cell size to optimize the average case performance. However,
formal analysis of the expected performance is difficult. Dif-
ficulties arise in part because of substantial complications
in the mathematics, but also because there is hardly any con-
sensus in an appropriate model characterizing the expected
input data. Franklin er al. (1988, 1989) collected plentiful
experimental results and showed that performance is relative
insensitive to the grid-cell sizes within a range around the
optimal. In our results reported in this paper, the grid cells
are rectangular, and we have chosen the length and width
to be the average length of the edge segments projected along
the axes, rounded up to integral number of grid cells.

Exact rational arithmetic

A problem in dealing with geometry on the computer is
the numerical inaccuracy of computer arithmetic. It is, how-
ever, not so much a problem with accuracy, but that of
topological consistency, which can be affected by inaccurate
numerical results. Early in the 1970s, Malcolm (1972) and
Gentleman and Marovich (1974) identified and reported
peculiarities of floating-point arithmetic. Map overlay sys-
tems are therefore prone to instability when dealing with
situations such as nearly coincidental points, almost touching
chains, and other tangent conditions. White (1983) called
for attention to the proper use of coordinates in mapping
systems. Franklin (1984) examined alternative models of
arithmetic for geometry and cartography on the computer.
We developed two arithmetic packages in Prolog: BIG for
integers with no overflow limit and XQ for exact rational
numbers built upon BIG (Wu 1986). Our map overlay system
installed these packages to calculate geometric intersections.

The package BIG implements integer arithmetic with vir-
tually no overflow limit. A BIG number is a list of integer
terms in Prolog. The absolute value of each term is limited
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Fi1G. 8. The United States map overlay on itself perturbed.

to less than a certain maximum, say M. The list [ay, a,, ...,
a,) represents a value given by

+ a.M"!

Since Prolog does not impose a limit to the length of a list,
the BIG number has virtually no overflow limit. The follow-
ing illustrates some BIG numbers, taking M = 100.

a + a;M + 03M2 A s

0 is represented as []
1 is represented as [1]
100 is represented as [0, 1]
12345 is represented as [45, 23, 1]
—10045 is represented as [—45, 0, —1]
—1 is represented as [—1]

The package XQ builds upon BIG to implement exact
rational arithmetic. An XQ number is a fraction in which
both denominator and numerator are BIG integers. We
represent an XQ number by a division expression with BIG
integer operands, and we omit the denominator when it is
unity. Hence, we have compatibility, since a BIG integer is
a legal XQ number with denominator equal to unity. The
following illustrates some XQ numbers.

0 is represented as []
33 is represented as [33]
11/310 is represented as [11] / [10, 3]
48/100 is represented as [12] / [25]
—321/100 is represented as [—21, —3] / [0, 1]
—1 is represented as [—1]

For the arithmetic operations, since Prolog allows operator
overloading, the syntax for arithmetic expressions can
remain unchanged. Furthermore, evaluation of XQ arithmetic
can simply follow a set of rules, each of which defines one
arithmetic operation on XQ operands. We merely need new
operators to call for evaluation in different arithmetic
domains. While Prolog commonly uses ‘‘is’’ for arithmetic
evaluation, we added ‘“‘are’” for BIG and ‘‘isx’’ for XQ arith-
metic expressions. The following examples illustrate their
use.

Xis@@ x4 /@2 x 5).

Xoare (3 % )/ (2. % 5). % BIG integer: [1].

X0 X 42 X S % XQ number: [6]/[5].

Hence, we can install BIG and XQ arithmetic in a highly
modular fashion.

% integer: 1.

F1G. 9. The United States map overlay on itself rotated by 1°.

In map overlay, the arithmetic in geometric intersection
is based on the calculation of edge segment intersections.
Given the input coordinates in rational numbers, the coor-
dinates of an intersection point is always a rational number,
since it is the solution to a linear system of equations with
rational coefficients. We have closure of numerical repre-
sentation in using rational arithmetic for geometric intersec-
tions. Much more important is that we can preserve numeri-
cal accuracy and guarantee topological consistency in
calculating geometric intersections. We identify properly all
the special cases of coincidental and tangent conditions by
checking absolute equality instead of setting a tolerance
value. Hence neither coincidental nor tangent conditions can
cause our system to fail. Stability in the process of map over-
lay is therefore achieved.

On the cost for exact rational arithmetic, we contend that
it does not affect the asymptotic behavior of the algorithm.
Given a fixed precision of the operand values, evaluation
of an arithmetic expression is only proportional to the depth
of the expression tree structure. For a static arithmetic
expression, as in the case of map overlay, its evaluation is
a constant time operation. Hence, the total CPU time
required is proportional to the size of the data volume. The
multiplicative factor may be large, depending on the spe-
cific implementation. But rational arithmetic will not impose
a need for CPU time more than linear to the size of the data
volume. In other words, the precision level needed in the
output values is limited, given that of the input values.
Specifically, let mmaxint be the maximum value of an integer
word. If the input coordinates are all integer values
< ~maxint, and we do arithmetic in double precision, we
can express all the output values in exact rational number
with both numerators and denominators within the limit of
maxint. Since we can minimize software emulation of the
arithmetic involved, we can improve the performance.
Hence, we need exact rational arithmetic implemented on
integers with no overflow limit only when we want to fur-
ther operate on the calculated results.

A further complication occurs, since in cartographic map
overlay, we rarely just overlay two input maps, but several
of them, to generate an output map. We argue that the depth
of the arithmetic expression tree structure does not need to
be deeper than that in the case of two input maps. Since
a new node in the overlay of many input maps is still only
an intersection point of two edge segments from two of the
input maps, we have the same arithmetic expression for the
new coordinates derived from the input values. However,
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FiG. 11. The United States map with July isotherms. (Temperatures in °F.)

in the process of handling two maps at one time, we need
to preserve the coefficients of the straight line equations for
each edge segment involved in intersection, so that we do
not recalculate these coefficients using the calculated coor-
dinates from a previous overlay process.

Implementation and results

The map overlay system and the arithmetic packages,
except the graphics output software, are implemented in
C-Prolog, which is-a Prolog interpreter written in C (Pereira
et al. 1986). The system runs on a Sun/2 microsystem
computer.

To test the stability of a map overlay system, there are
some tests commonly known: to overlay a map on itself and
on a slightly perturbed version of the same map. We have
done both tests and an additional test of a map over itself
rotated by a small angle. We used a United States map of

the state boundaries (excluding Alaska and Hawaii). The
map has 164 chains, 913 edges, and 861 nodes and vertices,
and 50 polygons. Figure 6 shows the map. To overlay the
map on itself, our system generated a uniform grid of
113 x 73 grid cells. The U.S. map survived the test and
passed undistorted. The second test involved expanding the
U.S. map complexity. We slightly shifted the midpoints of
those edges that would not cross over to another polygon.
We repeated the process to generate a map shown in Fig. 7.
Figure 8 shows the output map from our overlay system.
In the third test, we rotated the original U.S. map at about
the center by approximately 1°. Figure 9 shows the output
map.

For some “‘normal’’ tests, we overlay the U.S. map with
the temperature maps of January and July. Figures 10 and
11 show respectively the output maps, and Tables 1 and 2
present the usage of resources, namely CPU time and storage
space, in each of the stages involved in the overlay process.
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TABLE 1. Resources for overlay of U.S.A. with January

isotherms
Stage CPU (s) Storage (K words)
1. Intersect chains 12527 889
2. Form polygons 2 105 440
3. Identify overlay 248 440
4. Resolve containment 160 522
Total 15 040 889
TABLE 2. Resources for overlay of U.S.A. with July
isotherms
Stage CPU (s) Storage (K words)
1. Intersect chains 14 100 1070
2. Form polygons 2162 471
3. Identify overlay 412 423
4. Resolve containment 246 543
Total 16 920 1070
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In each case, the entire overlay process took more than
4 h of CPU time on the Sun/2 system. The performance
of our system is not acceptable for practical use. However,
we do note that this is not a necessary trade-off for the
stability we have achieved.

Conclusion

We presented a map overlay system developed in Prolog.
The system decomposes the map overlay process into four
major stages, each into various steps. The decomposition
allows us to simplify the data structures involved. Prolog
provides for a relational approach to data structuring. We
represent the geometric entities and relationships in Prolog
facts, and we encode geometry algorithms in Prolog rules
to perform data processing. To speed up searching for chain
intersections, we impose a uniform rectangular grid over the
object space and take each grid cell as a bucket to sort the
edge segments by distribution. Thus we isolate potential
intersections to only those edge segments that occupy some
common grid cell. Each bucket, if non-empty, is imple-
mented by a Prolog fact accessed by linear hashing of the
identifier for the grid cell. Using exact rational arithmetic
implemented in Prolog, geometric intersections are calculated
without round-off errors. We can therefore identify exactly
all the special cases of tangent conditions for proper han-
dling. Topological consistency is guaranteed and we have
achieved complete stability in the map overlay process. This
is verified in our tests on stability. The general performance
of our experimental system is not good, due both to the
Prolog interpretation and to our implementation of exact
rational arithmetic. However, we did contend that the
asymptotic growth of CPU usage for rational arithmetic is
only linear to the size of the data volume.
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