SENSITIVITY ANALYSIS OF EXPERT SYSTEMS

Wm. Randolph Franklin
Rahul Bansal
Elissa Gilbert

Electrical, Computer, and Systems Engineering D ept.
Rensselaer Polytechnic Institute
Troy, NY, 12180, USA

(518) 276-6077
Internet: Franklin@ Turing.CS.RPI.LEDU
Telex: 6716050 RPI TROU
Fax: (518) 276-6003

1. ABSTRACT

The Expert System Parsing Environment has several tools to
analyze the sensitivity in expert systems written in IBM'’s Expert Systems
Environment. For each pair of values of each output parameter, we
determine all input parameters that have different values for the two ele-
ments of the pair. In one example, comparing all pairs chosen from 34
output values of an expert system to determine all the input differences
took only 5 minutes in an IBM 4341-12. The numbers of such input
differences induce a metric on the output values. We also determine the
input parameters that remain unchanged. We calculate the output
parameters that are changed when any input parameter changes value.
We can also count the number of paths of any length between any two
parameter-value pairs or rules, and plot some of these relationships.
This system, written largely in Prolog, operates by abstracting a directed
acyclic graph from the expert system and then tracing the flow of infor-
mation through it. The concepts can be extended to any other rule
based expert system.

August 1, 1988 1 ~/p/aaai/paper.ms

g

2. INTRODUCTION

An expert system is an expensive term for a program that is written
in an expert system shell, which is a programming language, and often a
badly designed one from a software engineering viewpoint. Many shells
lack concepts of information hiding and modularity. Their mix of for-
ward reasoning, backward reasoning, fuzziness, etc reminds one of Pl/1,
which had so many overlapping features that their interactions were not
humanly predictable in advance. For example, the Pl/I statement X = 25
+ 1 /8 would set X to 5.333333 and raise an fixed overflow condition
that was usually disabled. As larger expert systems are written, we may
expect similar counterintuitive results, and therefore there is a need for
systems to debug and test expert systems.

3. SOFTWARE ENGINEERING REVIEW

Since, as expert systems get larger, issues of debugging and testing
will become more important, it is reasonable to review past experience
with the software engineering life cycle. Experience with large projects
has shown that the first four stages — requirements analysis,
specification, design, and coding — together consume less than 25% of
the system’s total cost and time. Debugging and testing require another
25%, while maintenance after delivery costs as much as everything
before combined.

However, much current research in expert systems is concerned
with issues such as expert system shell, that is language, design. This
research, which affects only the coding part of the life cycle process, is
about where software engineering was in the 1960s. Some of the few
references on debugging expert systems or on graphical access to expert
systems are 3,8,9,11 There are many references to expert systems that
debug hardware, such as 2,5, Prolog has been used to implement expert
systems, as described in 4,

6

An earlier report of the project is Some relevant theses at RPI

are 17,10,

August 1, 1988 2 "/p/aaai/paper.ms

4. SYSTEM OVERVIEW

The Expert Systems Environment (ESE) contains two components,
the Expert System Development Environment (ESDE), which builds a
rule-based expert system, and the Expert System Consultation Environ-
ment (ESCE), which consults it. Although it prefers to use an internal
format to write expert system files, ESDE can write an expert system in
an EXPORT format. Figure 1 shows some sample rules in the EXPORT
file format for a toy animal identification expert system, and for a larger
expert system used to debug hardware.

ULE GIRAFFE2
dPROP Rule text
1fianimal_class is 'mammal’' and
animal appearance is ‘has long n '
animal_color is 'dark spots' 9 medkt Rus
then animal = ‘'giraffe!’

RULE RULE123

PROP Rule text

if crit_volt is "no"

and k1 is "no"

and thermal is "yes"

and therm ind flashing is "no"

and (imlp_ind is "no" or

imlp_ind is "yes")

and IPC_PC_pon_pb_imm_fail is "yes"
and cb2le is "no"

and sr_or_agate therm_fault is "yes"
then fault is "card AlD2. Replace it"

Figure 1: Sample ESE Rules in EXPORTED Format.

We present a graphical overview of our system in figure 2. In Pro-
log, both data and program files appear similar; we assume that data files
contain simple facts, while programs contain procedures with variables.
The system names we use here are descriptive rather than the actual file
names. PARSER PROLOG reads the EXPORTED file and analyzes the
text of the rules to abstract a directed acyclic graph (dag) from the
expert system. The nodes of the dag are parameter-value pairs and
rules. If a rule tests whether a certain parameter has a certain value then
there is an arc from that parameter-value pair to that rule. Likewise, if a

August 1, 1988 3 "/p/aaai/paper.ms

ESE

rule sets a parameter to some value, then there is an arc from that rule
to that parameter-value pair. PARSER finally writes a Prolog file con-
taining facts describing the nodes and arcs, and some other bookkeeping
information such as the expert system name.

* Path Counts

Plots

ES

PARSER
PROLOG

Y

EXPORTED

Goal Differences

Goal Similarities

Source Differences

Figure 2: System Overview

A feature of parser is the determination of input parameters (those
not written by any rule), and output parameters (those not read by any
rule). This is useful for error checking against the user’s opinion of
what the input and output parameters should be.

This abstraction of the expert system does ignore certain informa-
tion such as conjunctions and disjunctions within each rule, but does cap-
ture a much of the important information about the expert system in a
much smaller volume than the original expert system.

The DAG file is read by all the other components of our system;
there is no need to refer to the original EXPORTED file again.

Our system contains five components that produce output: path
counts, plots, goal differences analysis, goal similarity analysis, and
source analysis.

August 1, 1988 4 "/p/aaai/paper.ms

5. PATH COUNTS ANALYSIS

Here the program COUNT PROLOG reads ES DAG and counts the
number of paths, of any length, between every pair of nodes in the dag.
Although a simple declarative Prolog program count be written for this
task, it would require exponential time, so we used a procedural program
that required linear time in the total number of paths. Next a PL /1 pro-
gram, COUNT PLIOPT, formats the table for printing by deleting empty
rows and columns and splitting the table into strips if necessary. PL/1
was used because of its powerful formatting capabilities. The two pro-
grams communicate through a file, COUNT DATA.

Although a table of path counts bears a superficial resemblence to a
low level core dump, it is actually the result of considerable processing.
By examining it, one may notice, for example that some value of a
parameter have many more paths leading from them than other values
of the same parameter. This is an indication of the relative importance
that the knowledge engineer placed on those two values.

6. PLOTTING

The plot subsystem, uses several Prolog programs in PLOT PRO-
LOG to calculate the layout of plots and write that information to a file,
PLOT DATA. Then a Fortran program reads the data file and produces
the actual plot on any of several output devices. Fortran was chosen
because of its easy interface to the library plotting routines. We can pro-
duce the following plots 127,10,

« The nodes in a given focus control block (FCB).

o The nodes connected to a given node.

. The tree of focus control blocks.

o The links between only the rules, ignoring parameters.

« An and-or plot of parameters that uses the conjunctions and disjunc-
tions within each rule.

7. GOAL DIFFERENCE ANALYSIS

The subsystem, which is diagramed in figure 3, analyzes what
differences in input parameter values can lead to an output parameter
being set to one value instead of another. The first program, DIFFS

August 1, 1988 5 ~/p/aaai/paper.ms

DIFFARRY | .| DIFFARRY

ouT

PL1OPT
DIFFS [DIFFDAG DIFFARRY DIFFARR
PROLOG PROLOG PROLOG DATA DIFFREPT DIFFREPT
PL1OPT ouT

Figure 3: Goal Difference Subsystem

PROLOG, has three options for comparing the values of some specified
output parameter.

« Compare two specified values. An example of this is shown in figure
4, where we see that the only difference is that tiger is a result of
input parameter animal_color having value black stripes, while cheetah
results from animal color being black spots.

« Compare one specified value with all other values.

« Compare all pairs of values. This option can produce voluminous
output if there are many values, a file, DIFFDAG PROLOG, is writ-
ten that other programs can summarize.

DIFFARRY PROLOG reads DIFFDAG PROLOG and writes sum-
mary information into DIFFARRY DATA, which can be read by DIF-
FARRY PLIOPT which writes DIFFARRY OUT. Some sample output
from this is shown in figure 5. We see that there are 21 pairs of
different values of the output parameter animal, and four input parame-
ters, locomotion, appearance, class, and color. Output values albatross and
penguin differ in only one of the four input parameters: locomotion. How-
ever, albatross and giraffe differ in all four. Thus we have a metric

August 1, 1988 6 "/p/aaai/paper.ms

vmprolog

--- YM/PROLOG 06/04/85 5785-ABH (C) Copyright IBM Corp. 1985 ---
<-consult(diffs).

GOAL : <- CONSULT(DIFFS)

1047MS SUCCESS

<- CONSULT(DIFFS) .
<-PAIRDIFF.

GOAL : <- PAIRDIFF .

PARAMETER NAME?
animal

FIRST VALUE?
"tiger'

SECOND VALUE?
'cheetah'

PARAMETER ANIMAL VALUES 'tiger' AND 'cheetah' ARE DISTINGUISHED BY:

(1) ANIMAL COLOR
(2) ANIMAL COLOR
50MS SUCCESS

<- PAIRDIFF()
<-fin.

GOAL : <- FIN .

black stripes
dark spots

Figure 4: Comparing Values tiger and cheetah of Parameter animal

induced on the output values, as shown in figure 6.

Another program, DIFFREPT PLIOPT, can process DIFFARRY
DATA to produce DIFFREPT OUT, which summarizes DIFFARRY
OUT, as shown in figure 7. Here we see the extreme values. Of the
input parameters, appearance is the most important, distinguishing 18 of
the 21 output value pairs, while locomotion is the least important, distin-
guishing only 11 pairs. Therefore, if questions were equally expensive,
we might ask about appearance first.

The goal difference analysis has been tested on an expert system
with 34 output values. Determining which input parameters dis-
tinguished among each half of the 561 pairs took only 5 minutes of CPU
time on an IBM 4341-12 using VM-Prolog. The execution time appears

August 1, 1988 7 " /p/aaai/paper.ms

VALUE PAIRS:

1 albatross penguin 12 ostrich zebra
2 albatross ostrich 13 ostrich giraffe
3 albatross zebra 14 ostrich tiger
4 albatross giraffe 15 ostrich cheetah
5 albatross tiger 16 zebra giraffe
6 albatross cheetah 17 zebra tiger
7 penguin ostrich 18 zebra cheetah
8 penguin zebra 19 giraffe tiger
9 penguin giraffe 20 giraffe cheetah
10 penguin tiger 21 tiger cheetah
11 penguin cheetah

PARAMETERS:

1 ANIMAL LOCOMOTION
2 ANIMAL APPEARANCE
3 ANIMAL CLASS
4 ANIMAL_COLOR

LAST COLUMN INDICATES NUMBER VALUE PAIRS THIS PARAMETER DISTINGUISHES

BETWEEN
LAST ROW INDICATES NUMBER PARAMETERS DISTINGUISH BETWEEN EACH VALUE
PAIR
12345 6 7 8 910 11 12 13 14 15 16 17 18 19 20 21 TOTAL

1% % %% & % % % * * * 11

2 Ak E ok Kk K Kk Kk Kk F* Kk ok * ® % K * Kk 0k 18

3 ok kK k %k K Kk Kk Kk % 12

4 * k k Ok * * K Kk * Kk * Kk Kk Kk F* Kk * 17
TOT:1 2 4 &4 &4 & 2 & & 4 4 3 2 3 32 2 2 11

Figure 5: Goal Value Difference Array

linear in the number of pairs, or quadratic in the number of values.
Therefore the Expert System Parsing Environment can be used on rea-
sonably sized expert systems.

8. GOAL SIMILARITY ANALYSIS

This subsystem, reports similarities in the input parameters for pairs
of values of the output parameter. Two specific values may be com-
pared, one value may be compared against all the others, or all pairs of

August 1, 1988 8 "/p/aaai/paper.ms

Penguin

Albatross 1
4
4
4
g 4
4 Zebra
4
Ostrich 2
3 3 2
2
Tiger
2 1
Giraffe 1
Cheetah

Figure 6: Metric Induced on Values of Animal

values may be compared. Figure 8 shows the comparison of penguin and
zebra; they share the same value of color, black and white, but share no
other input parameter values.

The similarity analysis for all pairs of values may be summarized as
shown in figure 9.

9. INPUT VALUE ANALYSIS

The previous analyses have been centered on the output parameters.
This section reverses the viewpoint to consider which output parameter
values can be reached from either or both of a given pair of input
parameter values, as shown in figure 10. This compares values Sflies and
flies well of input parameter locomotion. Of all the values of output
parameter animal, only one, albatross, can be reached from both input

August 1, 1988 9 "/p/aaai/paper.ms

e et

There were 21 pairs of values,
and 4 parameters make distinctions.

The average number of distinguishing characteristics between goal
value pairs is 2.76

Value pairs with fewer than 2 differences:
albatross, penguin-- 1 differences.

giraffe, cheetah-- 1 differences.

tiger, cheetah-- 1 differences.

Parameters that distinguish more than 15 value pairs:
ANIMAL APPEARANCE--used for 18 differences.

ANIMAL COLOR--used for 17 differences.

Figure 7: Goal Value Difference Summary Report

vmprolog
--- 'VM/PROLOG 06/04/85 5785-ABH (C) Copyright IBM Corp. 1985 ---
<-consult(goalsim).
GOAL : <- CONSULT(GOALSIM)
969MS SUCCESS
<- CONSULT(GOALSIM)
<-PAIRSIM.
GOAL : <- PAIRSIM .
Enter name of goal parameter:
animal
First value?
'penguin’
Second value?
'zebra'
Similarities between ANIMAL = penguin and ANIMAL = zebra:
ANIMAL COLOR = black and white

53MS SUCCESS

Figure 8: Goal Similarity Analysis

August 1, 1988 10 "/p/aaai/paper.ms

VALUE PAIRS:
1 albatross penguin 12 ostrich zebra
2 albatross ostrich 13 ostrich giraffe
3 albatross zebra 14 ostrich tiger
4 albatross giraffe 15 ostrich cheetah
5 albatross tiger 16 zebra giraffe
6 albatross cheetah 17 zebra tiger
7 pengu%n ostrich 18 zebra cheetah
8 penguin z§bra 19 giraffe tiger
13 penguin giraffe 20 giraffe cheetah
penguin tiger 21 tiger
11 penguin cheetah ® SRS
PARAMETERS:
1 ANIMAL COLOR
2 ANIMAL CLASS
3 ANIMAL APPEARANCE
123456789 1011 12 13 14 15 16 17 18 19 20 21
1 % % % * % P ; ------- ;----
2 * * % * 0k 0k R k%
3 * %

Figure 9: Goal Value Similarity Array

Comparison of goal ANIMAL values reached by input parameter

ANIMAL LOCOMOTION values flies and flies well

Goal values reachable from both input values are:

ANIMAL = 'albatross'

Values reachable only by ANIMAL LOCOMOTION = fl%es:
Values reachable only by ANIMAL LOCOMOTION = flies well:

26MS SUCCESS

Figure 10: Input Value Analysis

values, and no output values can be reached from only one. Most out-
put values cannot be reached from either input value.

August 1, 1988 11 ~/p/aaai/paper.ms

As before, the data from comparing many pairs of values may be
summarized in a table, as shown in figure 11. Here we see a comparison
of input values flies, flies well, and swims against output values albatross
and penguin. For example, albatross is reachable from flies but not from
swims. Penguin is reachable from swims but not from flies. Albatross is
reachable from both flies and flies well.

10. SUMMARY

Programs to determine the sensitivity of the values of the input and
output parameters of a rule-based expert system have been described.
They form the beginning of software engineering applied to expert sys-
tems.

Input parameter value pairs:
1 flies-flies well
2 flies-swims
3 flies well-swims

Goal values:
1 albatross
2 penguin

Array rows represent input value pairs.
Array columns represent goal values.

Array contents have the following meaning:
A--the goal value is reachable only from the first input value.
B--the goal value is reachable only from the second input value.
C--the goal value is reachable fromboth values in the input pair.

1 2
1 C
2 A B
3 A B

Figure 11: Input Value Analysis Array

August 1, 1988 12 " /p/aaai/paper.ms

11. ACKNOWLEDGEMENTS

This work was supported by the National Science Foundation under
PYI grant number CCR-8351942 and by the Data and Federal Systems
Divisions of the International Business Machines, Corp.

12. REFERENCES

1. Rahul Bansal, Debugging, Testing, and Maintaining Ezpert Systems,
Electrical, Computer, and Systems Engineering Department,
Rensselaer Polytechnic Institute, November 1987. M.S. thesis

9. JS. Bennett and C.R. Hollander, “DART: An Expert System for
Computer Fault Diagnosis,”” Proc. IJCAI-81, pp. 843-845, Van-
couver, BC.

3. D.C. Berry and D.E. Broadbent, ‘‘Expert Systems and Man-Machine
Interface - The User Interface,” IEEE Ezpert Systems, July 1986.

4. KJL. Clark and F.G. McCable, “PROLOG: A Language for Imple-
menting Expert Systems,”’ Machine Intelligence, vol. 10, pp. 455-470,
1982.

5. R.Davis et al, ‘‘Diagnosis Based on Structure and Function,’’ Proc.
AAAI Conference, pp. 137-142, August 1982.

6. Wm. Randolph Franklin, Rahul Bansal, Elissa Gilbert, and Gautam
Shroff, “Debugging and Tracing Expert Systems,’’ Proceeding of the
21st International Hawa# International Conference on System Sciences,
vol. III, pp. 159-167, Kona, Hawaii, January 1988.

7. Elissa Gilbert, Software Tools for the Maintenance of Expert Systems,
Rensselaer Polytechnic Inst. Electrical, Computer, and Systems
Engineering Dept., November 1987. M.S. Thesis

8. D.W. Loveland and M. Valtora, ‘‘Detecting Ambiguity: An Example
in Knowledge Evaluation,”’ Proc. IJCAI-83, pp. 182-184, Karlsruhe,
West Germany, August 1983.

9. Mark H. Richer, ‘“‘An Evaluation of Expert System Development
Tools,”’ IEEE Expert Systems, July 1986.

August 1, 1988 13 " /p/aaai/paper.ms

10. Gautam Shroff, EXPLOT: A Software Tool for Analyzing Ezxpert Sys-
tems, Electrical, Computer, and Systems Engineering Department,
Rensselaer Polytechnic Institute, 1987. Master’s thesis

11. S. Tsuji and E.H. Shortliffe, ‘‘Graphical Access to the Knowledge
Base of a Medical Consultation System,’’ Proceedings of American
Association For Medical Systems and Informatics Congress, pp. 551-
555, May 1983.

August 1, 1988 14 "/p/aaai/paper.ms

